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We propose a unified framework based on persistent homology to characterize both local and global structures
in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and
data structure, and has been shown to be highly effective and interpretable in predicting particle rearrangements
and classifying global phases. We also demonstrated that using a single variable enables a linear support vector
machine to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a nonpara-
metric metric, the separation index, which not only achieves this classification without sacrificing significant
performance but also establishes a connection between particle environments and the global phase structure. Our
methods provide an effective framework for understanding and analyzing the properties of disordered materials,

with broad potential applications in materials science and even wider studies of complex systems.
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I. INTRODUCTION

Local and global structural characterizations emphasize
different aspects of materials, with the former focusing on
microscopic features like coordination environment [1,2],
short-range order (SRO) [3-5], bond angles and lengths [6-9],
and the latter on macroscopic features like long-range order
(LRO) [3,10-12], phase structure [13—16], lattice constants
[17-19], and overall symmetry [20-24]. In conclusion, local
characterization focuses on the environment and structure of
individual particles or regions, while global characterization
refers to the overall topology or geometry of the material.

In most cases, local characterization is straightforward be-
cause the geometric and interaction environment of particles
has clear physical significance. However, most global char-
acterization methods at present rely on simple operations,
such as averaging, concatenation, or transformations of local
features, to derive global representations from local char-
acterizations. As a result, local and global characterizations
often originate from different mathematical frameworks, al-
gorithms, or data structures.

For instance, the radial distribution function (RDF) char-
acterizes the global structure of a system by analyzing its
average density distribution, which is obtained by averaging
the local density of individual particles across the system [25].
Besides, in the context of feature engineering for machine
learning (ML), atom-centered symmetry functions (ACSF)
[26,27] and smooth overlap of atomic positions (SOAP)
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[28] characterize the local environment of individual par-
ticles using coordinate-independent functions and Gaussian
smoothing combined with spherical harmonics expansion.
For global characterization, the ACSF and SOAP vectors of
individual particles are typically concatenated into a single
vector or subjected to straightforward transformations, such
as compression into vectors of uniform length. Moreover,
order parameters [29,30] are commonly used to quantify the
degree of order and symmetry. For local characterization,
Steinhardt’s bond-orientational order parameter measures lo-
cal structural symmetry using spherical harmonics [31], while
the ten Wolde’s approach extends this by defining bonding
criteria between particles and constructing bonding networks
to better distinguish ordered and disordered environments
[32]. For global characterization, the bond-orientational or-
der parameters for all particles are typically averaged to
quantify the global degree of order, providing an estimate
of LRO formation [31,32]. Recently, we have noted that
the introduction of the perspective of inversion symmetry
and its breaking [33-36] has brought new insights to the
relevant field. Additionally, the static structure factor (SSF)
investigates multiscale order by mapping the average den-
sity distribution of particles into the frequency domain using
Fourier transformations, with the ability to capture SRO and
LRO by adjusting the wave vector [37]. Medium-range order
(MRO) also plays a significant role in understanding the rela-
tionship between microscopic and macroscopic properties of
materials, particularly in phase behaviors [38,39]. However,
the extraction of MRO, such as local connectivity [40] or
motifs [25,41,42], indeed still relies on averaging or statistical
processing of local information of particles.

The above methods are already well-established with few
shortcomings in effectiveness and performance, but their
primary limitation lies in interpretability. Aggregating local
features into a global representation by simple averaging,
concatenation, or transformations often fails to capture or
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explain the complex mechanisms through which micro-
scopic structures interact and transition into macroscopic
properties. Complexity science emphasizes that macroscopic
phenomena, such as self-organized criticality [43,44] or phase
transitions [45], emerge from nonlinear, cross-scale interac-
tions rather than simple additive contributions [43,45,46].
Existing approaches lack a unified mathematical framework
to explain these interactions, making it difficult to bridge
the microscopic and macroscopic scales. Therefore, an ideal
global characterization method should not only accurately
describe the overall structure of the system but also provide
a mechanistic model that explains how microscopic structures
influence macroscopic properties.

In recent years, deep learning has found broad use in
physics [47-50]. For instance, graph neural networks (GNNs)
[51] aim to combine local and global features in graphs
by iteratively aggregating and updating node representations
through message passing, but they lack interpretability and
rely on predefined graph structures and initial mappings at
the node, edge, and graph levels, which limits their flexibil-
ity. Physics-informed neural networks (PINNs) [52] integrate
physical laws into models but rely on explicit equations, such
as PDEs, making them less suitable for problems that cannot
be precisely described by analytical expressions. Both of them
are task-driven, making them better suited for ML tasks rather
than as tools for traditional physics based on mathematical
derivation.

Our goal is not to compare with or surpass the existing
descriptors in terms of performance, nor to replace the auto-
mated feature engineering of deep learning, which is already
highly effective [53]. Instead, we aim to develop a unified
mathematical framework that seamlessly transitions between
local and global representations. In our framework, local
characterizations describe the structure of a neighborhood
centered around a particle, and as the neighborhood radius
increases, it gradually incorporates structural information over
a larger area, eventually encompassing the entire system. This
approach naturally enables a transition from local to global
characterization, as both the neighborhood around a particle
and the global system can fundamentally be represented as
point clouds that differ only in scope.

Topological data analysis (TDA) provides a robust and
effective tool for representing and analyzing point cloud data,
and through persistent homology (PH), a method from alge-
braic topology [54], we can encode the topological informa-
tion of point clouds into a vectorizable representation [55-57].
It is notable that PH has already seen successful applica-
tions, such as in studying the global topological characteristics
of osmolyte molecular aggregation and hydrogen-bonding
networks [58], integrating machine learning to predict the
structure-energy relationships of molecular clusters [59], and
employing weighted approaches to uncover local topological
features and propose new quantitative tools [60]. PH has also
been employed to reveal SRO and MRO in silica glass and Cu-
Zr metallic glass [61]. Additionally, the persistence weighted
Gaussian kernel (PWGK), developed based on PH, has
demonstrated stability and efficiency in feature engineering
for machine learning (ML) tasks [62]. Furthermore, PH-based
ML potential descriptors enable efficient prediction of the
physical properties of amorphous carbon without the need

for hyperparameter tuning [63]. These works have greatly
inspired us.

Based on this approach, we have developed a frame-
work that enables both local and global characterization of
disordered systems. This framework can serve as a supple-
ment to traditional physical methods, providing a unified
representation that seamlessly interprets how microscopic
structures influence macroscopic properties. Besides, it can
also generate high-performance descriptors, enriching the fea-
ture engineering or initial structural mapping in downstream
tasks of interpretable machine learning.

In our applications, we explore two main pathways within
the PH-based framework we developed: an ML approach and
a traditional physics (non-ML) approach. In the first path-
way, we applied ML to two key tasks: classifying particle
rearrangements by labeling particles as “soft” or “hard” and
identifying the global phase structure, distinguishing between
liquid, amorphous, and crystalline phases. The two tasks
above are closely related. Based on physical intuition, solids
mostly contain hard particles, while liquids are primarily soft.
Additionally, highly ordered and symmetric structures are also
largely composed of hard particles. Interestingly, we find that
high classification accuracy across the three phases in multi-
particle systems can be achieved using just a single variable.
By leveraging the optimal hyperplane from a linear support
vector machine (SVM) model, we define a scalar field called
“global softness”, which represents the average distance of all
samples to the hyperplane and effectively captures the overall
fluidity trend in the system.

The second pathway uses a traditional physics approach
without ML. We analyzed the topology of both local particle
environments and the global systems using our proposed new
metric, the separation index (SI). The SI maintains a compa-
rable level of performance to that achieved by the machine
learning model, aligning with the finding that high accuracy
of phase classification can be achieved with a single variable.
By adjusting the neighborhood radius, SI also functions as
a mechanistic model, illustrating how long-range order and
global symmetry in crystalline materials emerge from the
local environment of hard particles. The calculated results
of SI align with those of global softness, offering a unified
interpretation of fluidity and structural order through both ML
and traditional physics perspectives.

We further explored how SI and global softness detect
phase transitions. The results show that SI can capture the
onset point of structural transitions between any two phases,
especially a shift from a high-energy phase to a low-energy
phase. Besides, global softness effectively identifies changes
in system fluidity trends. Ultimately, these two pathways,
i.e., the ML approach and the traditional physics (non-ML)
approach have achieved a harmonious integration.

This article is organized as follows:

(1) Section II introduces the theories and methods in-
volved in this article, including the persistent homology (PH),
unified structural characterization, and both ML-based and
non-ML approaches.

(2) Section III introduces the methods of data gen-
eration, including the protocols of molecular dynamics
(MD) simulations, the approach of group division, the
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method of sample labeling, and the process of dataset
construction.

(3) Section IV introduces the computational experiments,
presents the results, and provides an analysis, including the
outcomes and interpretations of both ML-based and non-ML
approaches. Additionally, it explores phase transitions and
their onset by tracking changes in various metrics along the
simulated trajectories.

(4) Section V concludes the article and discusses the di-
rections of future research.

II. METHODS
A. Topological methods

1. Vietoris-Rips complex

A multi-particle system can be represented as a point
cloud P = {p1, p2, ..., pn}, Where each point p; = (x;, y;, Z;)
lies in a subspace of R3. The distance matrix D is defined
by D;; = |p; — pjl2, representing the Euclidean distance be-
tween points p; and p;.

Given a distance threshold e, the Vietoris-Rips (VR)
complex, a type of abstract simplicial complex (simply as
“simplicial complex” or “complex”), VR(P, €¢) can be con-
structed. Some points form a simplex if the pairwise distances
between them are less than or equal to €. Formally, a simplex
o = [piy, Piy» - --» Pi] © P belongs to VR(P, €) if D;;, < €
forall j,/ € {0,1,...,k}.

The process of building VR(P, €) begins by treating each
point in P as a O-simplex (vertex). If two points p; and p;
satisfy D;; < €, they will be connected by a 1-simplex (edge).
The 1-dimensional part of VR(P, €) is thus a graph composed
of vertices and edges. Similarly, if the pairwise distance be-
tween three points p;, p;, pi satisfies D;;, Dy, Djx < €, they
form a 2-simplex (triangle), representing the 2-dimensional
part of the complex.

The simplices in a complex are not isolated but rather
interconnected by sharing vertices and edges, forming a
higher-dimensional structure. For instance, if two triangles
[pi, pj, pr] and [p;, pi, pi] share an edge [p;, pi], they are
connected to each other by this shared boundary, forming
part of the complex. This process generalizes to higher di-
mensions, yielding a simplicial complex that includes points,
edges, triangles, and higher-order simplices. The construction
is controlled by ¢, and different € corresponds to different ge-
ometric realizations of the point cloud, enabling the extraction
of its geometric and topological information at varying scales.

2. Homology groups

The VR complex reveals topological features such as con-
nected components, loops, and voids, which describe the
topological relationships between points. These features are
characterized by homology groups [64,65], denoted H, where
k is the dimension of the homology group. Specifically,
Hj represents connected components, H; represents cycles
(one-dimensional loops), and H, represents cavities (two-
dimensional voids).

The homology group is a fundamental tool from algebraic
topology [54] used to classify topological spaces [66—68] by
analyzing the structure of simplicial complexes. The boundary

of a simplex is the most significant to understand the ho-
mology. Specifically, a k-simplex is a k-dimensional analogy
of a triangle. For instance, a point is a 0-simplex, an edge
is a 1-simplex, a triangle is a 2-simplex, a tetrahedron is a
3-simplex, etc. The boundary of a k-simplex is composed of
its (k — 1)-dimensional faces. Each (k — 1)-dimensional face
is defined by a subset of the vertices of the k-simplex. For
example, the boundary of a solid triangle is all three edges
of this triangle, and the face of this solid triangle means the
hollow triangle with its interior removed.

The boundary operator 9, maps each k-simplex to its
boundary, consisting of (k — 1)-simplices: 9 : Cy — Cy—_;.
Here, C; represents the k-chain group of a chain complex,
composed of formal linear combinations of k-simplices over
a chosen coefficient group, i.e., the cyclic group Z,. Specifi-
cally, an element o € Cj can be written as a finite sum: o =
c101 + c00 + - - - + ¢,0,, Where o; are k-simplices, and ¢; €
7, are coefficients subject to modular arithmetic, meaning all
addition and scalar multiplication are performed modulo p.
A key property of the boundary operator is that the bound-
ary of a boundary is always zero, i.e., d—[0k(c)] =0 for
any k-simplex o. This ensures that the boundary of a closed
structure, such as a cycle, has no further boundary, which is
essential for identifying topological features like cycles.

The kernel of 9y, ker(9;) = {0 € Cy | d(o) = 0}, consists
of k-chains whose boundaries are zero—these are the cycles
(closed loops) in the space. All operations in C; are performed
modulo p, meaning the coefficients of k-chains belong to the
cyclic group Z,. When p = 2, the coefficients are reduced
to binary values (0 or 1), so k-chains and their boundaries
are reduced to binary relationships, simplifying analysis by
focusing on the presence (1) or absence (0) of topological
features.

The image of 8k+| N im(8k+1) = {8k+] (U) | (OS] Ck+l }, con-
tains the boundaries of (k + 1)-chains, which are the bound-
aries of higher-dimensional simplices. The homology group
H; = ker(9y)/im(0x41) identifies k-dimensional cycles (or
loops) that are not boundaries of higher-dimensional objects.

The Betti number B, which is the rank of H,
indicates the number of independent k-dimensional
features. Specifically, By = rank(Hy) describes the number
of connected components, with By = dim (ker(dy)) —
dim (im(d;)); B; = rank(H;) counts independent cycles,
with 8; = dim (ker(9d;)) — dim (im(d,)); and B, = rank(H,)
measures independent cavities, with B, = dim (ker(d,)) —
dim (im(d3)).

3. Persistent homology

Figures 1 and 2 illustrate how persistent homology (PH) is
applied to point cloud data, leading to equivalent representa-
tions like barcodes [57], persistence diagrams (PDs) [55,56],
and the smoothed representation as persistence images
(PIs) [69].

Persistent homology (PH) analyzes topological features by
constructing a sequence of VR complexes VR(P, €) as the
distance threshold e varies. Tracking changes in homology
groups reveals features such as connected components (Hy),
loops (H;), and cavities (H,). The filtration variable [55] €
determines the scale at which the topological structure is built.
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FIG. 1. This figure is adapted from Ref. [57]. It demonstrates
barcodes, a faithful representation of the persistent homology (PH)
results, showing how topological features emerge and persist as the
parameter € increases. The lines in the barcodes are categorized
by their homology group (Hy, H,, H,), with each line represent-
ing a homology class. The left endpoint marks the feature’s birth
at ¢;, while the right endpoint indicates its death at €;, with the
length representing its persistence. Each line corresponds to either a
birth-death pair (¢;, €;) or a birth-persistence pair (¢;, €; — ¢€;), where
the persistence is the lifespan of the feature. The number of lines
intersecting a vertical line at any e represents the number of H;
topological features at that scale, corresponding to the Betti number
Bi. This paper focuses on k = 0, 1, 2.

As € increases, the VR complexes evolve, capturing different
features at various scales. Betti numbers [70,71] (i) count the
number of k-dimensional features, where 5y counts connected
components, B; counts cycles, and 8, counts cavities.
Topological features are “born” when they first appear in
the complex. For example, a new connected component (Hy)
is born when points first merge as € increases. Similarly, a
cycle (H;) is born when a closed cycle (or loop) forms, and a
cavity (H,) is born when an enclosed space emerges.
Topological features “die” when they vanish. For con-
nected components Hy, death occurs when two components

as a triangle), effectively eliminating the open space enclosed
by the cycle. For cavities H,, death occurs when the cavity is
fully enclosed by higher-dimensional simplices, becoming the
boundary of a 3-dimensional structure. In general, the death of
a topological feature in the homology group H; happens when
the feature becomes the boundary of a higher-dimensional
simplex in Hyy,. Filling the feature with lower-dimensional
simplices (such as adding a line segment inside a triangle) will
not cause the H; feature to die.

A filtration chain [55] is a sequence of nested com-
plexes =Ky <K, C---CK,=VR(P,¢,), with ¢ <
€] < --- < €, and the homology groups satisty H;(Ky) —
Hy(K;) — -+ — Hy(K,). Each k-dimensional homology
class [71] Hy, is born at some K; and dies at some K, forming
birth-death pairs (e;, €;) or equivalent birth-persistence pairs
(E i»€j — 6,‘).

A barcode [57] is a set of intervals {[¢;, €;)}, where each
interval represents the lifespan of a homology class, with ¢; as
the birth time and ¢ as the death time. As shown in Fig. 1, the
barcodes of the point cloud P are a faithful representation of
the results of the persistent homology analysis of P.

A persistence diagram (PD) [55,56] is the set of birth-
lifespan pairs PDj = {(€;, €; — €;)} where each element
indicates the birth time and the lifespan of a homology class.
It is obtained by mapping each interval from the barcode onto
a two-dimensional (2D) Cartesian coordinate system, where
each interval is represented as a point, as shown in Figs. 2(a)
and 2(b). The PDs for Hy, H,, and H, are often combined as
PD =UPDy Yk =0,1,2.

A persistence image (PI) [69] uses kernel density estima-
tion (KDE) [72,73] to convert points from a PD into a smooth
distribution, producing a fixed-size image, as demonstrated in
Fig. 2(c). Each point (¢;, €; — ¢;) in the PD is denoted (b, d),
where b = ¢; is the birth time and d = €; — ¢; is the persis-
tence. Assuming the PI has a resolution of 9t x I, the pixel
value at position (m, n), where m € [1, 9] and n € [1, ], is
computed by

Pl = Y [@(’““‘j")cp(y";d")wwk,dk)],

merge. For cycles H;, death happens when the cycle is filled, kePD
meaning the cycle becomes the boundary of a 2-simplex (such M
Hy, 3.0{0 O Ho
Hl 25 @) Hl
Ha O H;
02.0
£
:q"_‘, 15 %
—1.0 0
0.5
© 8 ]
(@) 0ol ® (©)
0 1 2 3 0 1 2 3
Filtration Variable Birth

FIG. 2. This figure shows the relationship between barcodes, persistence diagrams (PD), and persistence images (PI): (a) shows barcodes,
(b) is the PD, and (c) is the PI. PD maps barcode points to a 2D Cartesian system, and PI smooths these points using kernel-density estimation
[KDE, see Eq. (1)], compressing varying PDs into fixed-size images for machine learning (ML) tasks.
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where o is the standard deviation of the Gaussian kernel,
w(b,d) = d/max(d) represents the weight and ®(z) is the
cumulative distribution function (CDF) of the standard normal
distribution [74]. Finally, the PI is flattened into a vector for
use in ML tasks.

In this article, we used the Ripser [75] package to compute
persistent homology (PH), and its time complexity for obtain-
ing barcodes from a point cloud with N points, including the
computation of Hy, H,, and H, homology classes, is O(N “Yin
the worst case [75].

4. Persistent homology descriptors

Local characterization. The local environment of a particle
is characterized by its neighborhood (surrounding region). For
particle p;, its neighborhood is denoted ]IJEP)(r) ={aeR?|
lpi — all» < r}, where r > 0.

To analyze the local environment of a particle p € P,
we compute the PH for a sequence of increasing radii
r <ry <--- <ry, generating point clouds PB) for each

corresponding neighborhood. Each point cloud () has a
corresponding PI vector V(). Intuitively, a smaller-radius
neighborhood has a stronger impact on local characteristics,
while a larger-radius neighborhood contributes less. There-
fore, the multiscale PI feature vector I for particle p is then
obtained by adding the PI vectors with exponential decay as
follows:

N
= 3 2
g=1

Global characterization. For the entire system, PH is ap-
plied directly to P, resulting in the global PI vector:

1Y) = Vee(P). (3)

entire

The global PI vector captures the overall structure of the
system, while local PI vectors provide multi-scale information
by expanding neighborhood radii with an exponential decay in
influence for more distant regions. Together, these vectors es-
tablish a unified mathematical framework that links the global
structures with the local environments of individual particles.

B. Traditional metrics

Here, we present the methods for labeling or classifying
the three phases (liquid, amorphous solid, and crystalline)
of a multiparticle system constrained by the Lennard-Jones
interactions within traditional physics.

1. Mean square displacement

The mean square displacement (MSD) [76] describes the
translation diffusion of the particles. In an N-body system,
for each particle i, its position at time ¢ (initial time is denoted
as fy) can be represented by 7? The MSD is defined as

N
1
Mmm=wm04mmﬂ=ﬁ§nﬁm—7wﬁ
i=1

In crystals, particles are arranged in an orderly structure
with minimal mobility. The MSD shows slight fluctuations
initially but stabilizes over longer timescales, reflecting lo-
cal vibrations. In liquids, particles exhibit high mobility, and

the MSD increases approximately linearly with time, indicat-
ing free diffusion. Specifically, amorphous solids lie between
these states, with the MSD showing nonlinear growth as par-
ticles start confined locally and gradually stabilize or increase
slowly, indicating moderate mobility.

Generally, MSD can effectively distinguish between solids
and liquids and capture the crystallization of amorphous
solids, but it cannot differentiate low-mobility amorphous
solids from crystals.

2. Bond-orientational order parameters

Steinhardt’s local bond order parameter [31] ¢;(i) quanti-
fies the order of local atomic structure. Each ¢;(i) is a vector
with components ¢;,, (i) defined by spherical harmonics Y},

Np(i)

%MZEG;mMM“

where N, (i) is the number of neighbors of particle 7, and 6;;,
¢;; are the angles of neighbor j relative to i.

The ten Wolde’s order parameter [32,77] refines this by
defining connectivity S;; between neighbors i and j:

!
Sii =Y din(Dqm(j)-

m=—I

Particles i and j are connected if S;; > ¢, = 0.5. A particle
is classified as crystal-like if it has at least N, = 8 connections.
Based on this, the number of crystal particles in the system can
be counted as

N
Niolia = Z S
i=1

where ® is the Heaviside step function [78]:

1 ifx>0
0 ifx<O.

Ny (i)

D0 —cg) = WNe—1) |
j=1

Ox) = {

The global bond order parameter Q; averages |q;(i)| over
all solid-like particles Nyqjig:

1
lg: ()],
Nsolia Z

iesolid

0 =

where |g;(i)| = [anz# |q1m(i)|2]1/2. The value of Q; reflects
the degree of order in the solid regions.

In a uniform system with N particles where Q; can suf-
ficiently represent the overall degree of order, the following
relationship can be established:

Nyotia = NQ;.

It is evident because, from a statistical perspective, Q; can
be viewed as an average measure of the probability of being
ordered. Thus, Q; effectively serves as an estimate of the
fraction of ordered particles in the system.

Typically, we set [ = 6 and use Qg to represent the av-
erage degree of order in the system, distinguishing between
ordered phases (crystals) and disordered phases (liquids and
amorphous solids). This choice of I = 6 is particularly ef-
fective because it captures the sixfold symmetry typical of
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many crystalline structures and provides strong discriminative
power between ordered and disordered phases [31].

Combining the structural information presented in Q¢ and
the mobility shown in MSD allows us to distinguish between
liquids, amorphous solids, and crystals.

3. Identifying rearrangements

To characterize the tendency of particle rearrangement, we
define the positional change ppep, ,(¢) of a given particle p
within a time window [t — tg2, t + tr2] [79,80]. If phop, p(2)
exceeds a threshold p. during this interval, the particle is
labeled as “soft”; otherwise, it is labeled as ‘“hard” [81].
Specifically, phop,p(?) is defined by

Props(®) = AT, — (0,)8)2)al(, — (0000205, (4)

where r,, is the position vector of particle p, and (.)4 and {.)
represent averages over the intervals A = [t — g/, t] and B =
[t,t + tgs2], respectively.

We set tg/» =20 and p. = 0.1 based on the assumption
that most particles in a liquid state are expected to exhibit
“soft” behavior. The detailed explanation of threshold selec-
tion is provided in Appendix A2.

C. Machine learning techniques
1. Basic concepts

Machine learning (ML) can be employed to investigate the
relationship between data instances and target variables. In
this article, ML specifically refers to interpretable discrimina-
tive classification tasks with handcrafted feature engineering.

First, data instances are transformed into a feature matrix
through feature engineering, denoted as X = g(x), where x
is a vector representing all instances and g represents the
process of feature engineering. Each instance is mapped to
a corresponding feature vector, forming the feature matrix
X, where the ith row represents the ith instance and the jth
column corresponds to the jth feature.

Based on this representation, ML is applied to fit a com-
posite function y = f(g(x)) = f(X), where y is the target
property vector, and f is the ML model that captures the rela-
tionship between the feature matrix X and y. Here, we choose
support vector machines (SVMs) [82] as f, not only because
of their interpretability but also due to the convenience of
constructing a scalar field based on the directed distance from
samples to the decision hyperplane in the input space when
using a linear kernel. This allows for a more intuitive charac-
terization of the target properties of the samples.

2. Principal component analysis

In our research, the feature matrix X is constructed by
concatenating the vectors I” [defined in Eq. (2)] and Igﬁt)ire
[defined in Eq. (3)] corresponding to each sample into a single
matrix.

Typically, X contains a large number of columns cor-
responding to multiple predictors, making dimensionality
reduction necessary. Principal component analysis (PCA) [83]
is employed to achieve this by applying a linear transfor-
mation that generates a new set of uncorrelated principal

components. These components are ranked according to their
explained variance, enabling the selection of a smaller subset
while preserving most of the original information. Since the
importance of each principal component is determined by its
associated eigenvalue, ranking the eigenvalues quantifies their
relative contribution to the total variance in the data.

The steps for performing PCA on X with an explained
variance proportion of z are as follows:

First, we standardize X to Xy, ensuring each feature has a
mean of 0 and a variance of 1 using the formula Xg4 = (X —
n)/o, where w is the mean and o is the standard deviation.

Next, we need to compute the covariance matrix C =
(XSTthstd)/ (n — 1), where n is the number of samples, to cap-
ture linear relationships between features. We then perform
eigen decomposition on C, solving det(C — AI) = 0 to find
eigenvalues A, Ay, ..., A, and their corresponding eigenvec-
tors, sorting the eigenvalues in descending order and retaining
the first k components such that the cumulative explained
variance ratio % A,/ S A > z.

Finally, we construct the projection matrix P using the top
k eigenvectors and project the standardized data as Xpca =
X - P, reducing dimensionality while preserving essential
information, which aids in data compression, feature extrac-
tion, and noise reduction.

Note that, in the testing stage, it is essential to apply the
same PCA transformation used during model selection and
training. First, it maintains a consistent feature space between
training and testing, as the model was trained using the PCA-
defined space from the training sets. Second, it prevents data
leakage because recalculating PCA on the test sets could unin-
tentionally incorporate test data characteristics into the model.
Consistent PCA transformations are therefore essential for an
unbiased evaluation of model performance.

For all ML tasks discussed in this article, the feature ma-
trix undergoes PCA by default, which will not be elaborated
further. For simplicity, we use X to represent Xpca in the
following sections.

3. Machine learning models

This article uses two kinds of SVMs [82] as the ML
model f:

a. Support vector machine with linear kernel.

(i) Decision function:

fX)=X-w+u, 5)

where w is the weight vector, u is the bias term.
(ii) Objective function:

N
!
min Z{wll3 +C le max (0, 1 = yi(Xg) - W + 1),
where C is the regularization parameter that controls the trade-
off between the regularization term and the loss term.
(iii) Hyperparameters: C € [0.001, 1000], log-scaled.
b. Support vector machine with radial basis function (RBF)

kernel.
(i) RBF kernel:

KX, X)) = exp(—=y [1Xe — Xhl1),
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FIG. 3. A schematic diagram of a linear SVM, illustrating the
decision hyperplane, support vectors, support vector hyperplanes,
positive and negative samples, and the directed distance from a
certain sample to the decision hyperplane. For convenience, this
figure only illustrates the idealized two-dimensional case without
loss of generality.

where y is a parameter that controls the extent of the influence
of each data point on the similarity measure.
(ii) Decision function:

N
FX) =" ayiK (X, X)) + u,
i=1
where «; are Lagrange multipliers quantifying the importance

of X(;) within the decision function and u is the bias term.
(iii) Objective function:

N N N
1
max ; o =) D eiayiyiKXo, X)) |

i=1 j=1

subject to the constraints

N
D yi=0and0 <o K C Vi,
i=1

Here, C is a regularization parameter, and «; are Lagrange
multipliers relative to each sample.

(iv) Hyperparameters: (1) C € [0.001, 1000], log-scaled;
(2) y €10.001, 1000], log-scaled.

In this research, we set the hyperparameter optimization
as follows: tenfold cross-validation for validation, Matthews
correlation coefficient (MCC) [84] and accuracy as evaluation
metrics, and a Bayesian optimizer [85] with 200 steps using
expected improvement per second plus (Elps) as the acquisi-
tion function. For the multiclass strategy (only for Task 2), we
try the methods of one-vs-one and one-vs-all at the same time
and select the best-performing one.

4. Scalar field trained by linear support vector machine

As shown in Fig. 3, when explicitly choosing a linear SVM,
the training objective is to determine an optimal decision hy-

perplane that maximizes the margin between the two classes.
According to Eq. (5), the function of this decision hyperplane
is

X-w4+u—y=0. (6)

This hyperplane is determined by a subset of data points
closest to it, known as support vectors, which are marked
with circles on the dashed lines in Fig. 3. The support vectors
not only define the placement of the decision boundary (the
solid line in Fig. 3) but also establish two support vector
hyperplanes (the symmetric dashed lines in Fig. 3). These
hyperplanes are parallel to the decision boundary, forming the
margins between the two classes and ensuring that all other
data points remain outside this margin.

Furthermore, the directed distance from a sample point to
the decision hyperplane, which forms a scalar field, can be
used to quantify the confidence of the sample belonging to a
particular class, as illustrated by the solid yellow line with an
arrow in Fig. 3.

In Sec. I B 3, we introduced a binary classification system
for particles, using Eq. (4) to distinguish between soft par-
ticles, which are prone to rearrangement, and hard particles,
which are more resistant to it. When the sample consists
of particles, the directed distance of a corresponding point
from the classification hyperplane represents the confidence
level in the classification of a particle as “soft” or “hard.”
A positive value indicates a soft particle, while a nega-
tive value corresponds to a hard particle. The magnitude of
this value quantifies the tendency of a particle to undergo
rearrangement.

Following the method by Cubuk et al. [81,86], we define
the directed distance from the corresponding point of the
pth particle to the decision hyperplane at time ¢ as the local
softness of the particle at time #:

f(X(p)(t)) _ X(p)(l) W+ u
[Iw]]2 [lw]]2 )

Jn (@) = @)

In essence, this approach represents the evolution of the
tendency for particle rearrangement as a temporal scalar
field [81].

For a system with .4 particles, the overall fluidity trend of
the system can be obtained by summing the local softness of
all particles and taking the average. We define this averaged
scalar field as global softness, which quantifies the overall
fluidity trend of the system at time step 7:

N

1 X)) -wHu
Sit)=— AL 8
N ; Wil
Note that global softness is not our original method but an
application of the SVM decision hyperplane.

5. Shapley values

To determine which of the homology classes, Hy (con-
nected components), H; (cycles), or H, (cavities), plays the
dominant role in the classification, we employed Shapley
values [87,88] to quantify the contribution of each homology
class.
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In detail, we used seven combinations of Hy, H;, and H,
(i.e., H(), Hl, H2, HOH1, HOH2, H1H2, HOH1H2) to generate
persistence images, flattened them into vectors, and trained
models to obtain accuracies. For comparison, we applied PCA
to retain 98% of the variance and used an SVM with an RBF
kernel. Then, we calculate the marginal contribution of each
homology class in various combinations as follows:

3 ISIHACT = 18| = D!
IC!

¢ = [v(S U {i}) —v(S)],

SCC\{i}

where C represents all homology classes (Hy, H, H), S is
a subset of C excluding i, v(S) is the classification accuracy
of subset S, and ¢; is the Shapley value for homology class
i. The Shapley values are normalized to sum to 1 for easy
comparison.

D. Descriptive statistics on persistent homology
(non-machine-learning approach)

We define a mapping from the results of PH on point cloud
data to a real number in the range [0, +-00), referred to as the
separation index (SI).

Separation index. For a temporal point cloud P with N
points evolving over time step 7, we obtain its PD at time step
t, ie., {(b{qi(t), d,’ii(t))}, where i € {0, 1,2}, j € [1, BN
N, and B"** is the maximum Betti number for the homol-
ogy class H; over the range of €. The PD is generated by
plotting the birth-persistence pairs (bfq, (t),d 1{, (1)) correspond-
ing to each homology class in a 2D Cartesian coordinate
system. We define a new nonparametric metric, the separa-
tion index (SI), based on descriptive statistics to quantify the
clarity of the boundary between clusters of H; and H, on
the PD:

mean ({d*" (1 ™Y — mean d™ P
SI(l): | ({ Ji )}_/]:xl) ({ J2 )}ﬂ{z:l)|. (9)

sd({d O} 7)) + sa({d o))

h=1

The process of increasing € from zero can be interpreted as
the emergence and disappearance of topological features. As
defined in Eq. (9), the subscript j denotes the index of each
topological feature within the homology group, correspond-
ing to each birth-persistence pair in the barcode data. The
Betti number B indicates the total number of topological
features in H;, meaning the total number of birth-persistence
pairs in dimension i. The time step ¢ captures the evolution of
the system at different time points. Ultimately, SI quantifies
the separation between the point clusters corresponding to
different homology classes in the PD by calculating the sum
of mean differences of the (b, d) pairs in H; and H, to the sum
of their standard deviations.

As shown in Fig. 4, the SI provides an intuitive vi-
sual interpretation. Specifically, the PD of a homogeneous
Lennard-Jones (LJ) system, generated by Protocol 1, as de-
fined in Sec. IIT A, typically displays a characteristic pattern:
H, persistence points align along a vertical line on the left,
while H, and H, persistence points form two distinct but
adjacent clusters in the lower-right corner. The value of SI
quantifies the clarity of the boundary between these H; and
H, clusters, providing a measure of particle ordering within

1.4 (a) e Hp 05 (b) ° :1
8]..2 . [ H, 80 et 2
0 0. . n
£0.4 & g0-2

. V. 0.1
0-2 L&;p E NI
0.0 L < 0.0 . .
0.2 0.8 1.4 1.0 1.2 1.4
Birth Birth

FIG. 4. (a) The persistence diagram (PD) for a crystal [Traj(TS(l))
at time step ¢+ = 900], of which the homology classes of H, are
distributed along a line near the y axis, while the H;, and H, classes
are located within the yellow circle and magnified in panel (b). The
yellow solid line in panel (b) divides the point sets of H; and H,
into two disjoint parts. Inspired by this, the separation index (SI) is
defined to measure the clarity of the boundary of the point sets for
H, and H,.

the analyzed region. The figure illustrates the distribution of
these clusters and their boundary, with the SI calculated from
the mean difference and combined standard deviation of the
clusters.

Notably, the SI is a purely mathematical and non-ML
metric derived from the descriptive statistics of persistent ho-
mology, providing a complementary perspective to traditional
physical methods. In addition, SI is applicable to both local
and global characterizations because the objects they describe
are essentially point clouds.

III. DATASET GENERATION

In our study, molecular dynamics (MD) simulations
[89,90] serve as the core technique. To begin with, we utilized
the MD simulations to generate multiple trajectories. Then,
we sampled these trajectories to obtain system-level samples
(a single frame from a trajectory) and particle-level samples
(the local environment of an individual particle within a sin-
gle frame of the trajectory). Finally, using these samples, we
constructed different datasets for both ML and non-ML tasks.

We provide a comprehensive summary in Table I, detailing
the molecular dynamics (MD) simulation protocols, system
categories, and simulation dynamics. Additionally, we outline
potential structural transitions observed in the trajectories,
classification of groups, extracted datasets, corresponding
state sets, their respective tasks, and the figures generated
from these datasets for reference.

A. Protocols of molecular dynamics simulation

This study involves two MD simulation protocols:
Protocol 1 focuses on the isothermal evolution of the
Lennard-Jones (LJ) system, while Protocol 2 addresses
the Kob-Andersen (KA) binary mixture during a lin-
ear quenching process. Both protocols utilized a particle
count of 4 =864 to balance the demands and com-
putational efficiency. In the simulation, we use Lennard-
Jones reduced units [91] and denote each time step as
100[0.2(mo2/€)'/?].
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TABLE I. Summary of MD simulation protocols, system categories, simulation dynamics, potential structural transitions, group classifica-
tions, extracted datasets, state sets, corresponding tasks, and the figures generated from these datasets. Note that “Not applicable” means that

the content has no substantive meaning or is not relevant.

MD Protocol Protocol 1 Protocol 2
Group Group 1 Group 2 Group 3
Set Set 1 Set 3 Set 2 Set 4 Not applicable
Object Particle System Particle System Not applicable
Feature matrix X, X5 X, Xy Not applicable
Scale Local Global Local Global Not applicable
Property and/or Rearrangement Global phase Rearrangement Global phase Not applicable
status tendency structure tendency structure
State set Soft or hard Crystal, Soft or hard Crystal, Amorphous or
amorphous, or amorphous, or liquid
liquid liquid
ML task Training Testing Not applicable
Task 1 Task 2 Task 1 Task 2 Not applicable
Not applicable Not applicable Global softness Not applicable Global softness
Figs. 10(a) and Figs. 10(c) and
10(b) 10(d)
Non-ML task Separation index Separation index Separation index Separation index Separation index
Figs. 5(a) and 6(a) Figs. 5(b) and 6(b) Figs. 5(a) and 6(a) Figs. 5(b), 6(b), Figs. 10(c) and
10(a) and 10(b) 10(d)
System LJ system KA system
Dynamics Isothermal evolution Linear quenching
Potential structural (1) Crystallization from liquids, (2) Crystallization from amorphous solids, (3) Incomplete (1) Vitrification, or
transition crystallization from liquids to amorphous solids, or (4) Remaining liquid phases (2) Remaining
liquid phases

Protocol 1. For L] systems, the parameters of the Lennard-
Jones potentials are € = 1, 0 = 1, cutoff radius r, = 3.5¢
and mass m = 1M. We have adopted a tail correction as
the truncation scheme. The computational protocol we have
followed begins with a linear quench of the liquid from
Tinit = 1.25 to a given temperature Txpy in 20 steps. Then, we
perform a 1000 steps equilibration at temperature 75y, . These
simulations have been conducted within the NPT ensemble
with an isotropic pressure P = 5.68(¢/o?), enforced via a
chain of five thermostats coupled to a Nosé—Hoover barostat
[92] [which accounts for the Martyna-Tobias-Klein correction
[93]]. The damping parameter of the barostat is 0.5¢*, where
t* = 0.002(mo?/€)'/2. For convenience, we denote the trajec-
tory corresponding to its temperature 7" as Traj(7 ). All these
trajectories were generated using the same initial positions
and velocities for each particle. These settings are the same as
those adopted in Ref. [94], and previous work [95] shows that
these settings allow us to observe crystal nucleation within a
timescale accessible via unbiased MD simulations.

Protocol 2. For KA mixtures [96,97], we use the parame-
ter setting: €aqa = oaa = 1, €ap = 1.5, 045 = 0.8, €pg = 0.5,
opg = 0.88. We started from T;y; = 1.25 and quenched the
system to the final temperature Tfy,,. The details of these MD
simulations are identical to those utilized for the homoge-
neous LJ system, including the system size, 864 particles in
total, with the proportion of B particles xz = 0.2. We gener-
ated two trajectories within the time step of 1000, where one
time step equals 100[0.2(mo> / €)'/?]in LJ reduced units.

B. Group division

We generated trajectories for three groups according to the
protocols provided in Sec. III A. Specifically, Group 1 and
Group 2 used Protocol 1, while two trajectories of Group 3
followed Protocol 2.

Group 1 and 2 considered 20 corresponding T, val-
ues, denoted Ti, T3, ..., Trp, which form a monotonically
increasing sequence with equal intervals (see Table V in
Appendix E). The trajectory corresponding to 7; is denoted
Traj(T;), where j € [1,20] N N. Group 1 includes tempera-
tures with odd indices, i.e, the trajectories corresponding to
Ti(l) = Ti—1; conversely, Group 2 includes temperatures with
even indices, i.e, the trajectories corresponding to Ti(z) = T,
where i € [1, 10] N N. Group 3 considered two trajectories,
with their corresponding Tf,, values being Thyy = 0.5 and
Tina = 1.0. We denote these two trajectories as Traj%)\ and
Traj %l, respectively.

In ML tasks, Group 1 was used for training, and Group 2
was used for testing. In non-ML tasks, Groups 1 and 2 were
jointly used for descriptive statistics of barcodes. Specifically,
the data presented in Tables II and III and Figs. 5 and 6 were
derived from Groups 1 and 2, while Figs. 10(a), 10(b), and 9
were generated by testing the model trained on data from
Group 1 with Group 2. The inclusion of Group 3 was solely
due to the need for simulating the vitrification of supercooled
liquids, which could not be captured from the isothermal
evolution trajectories of Groups 1 and 2. Consequently,
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Figs. 10(c) and 10(d) were produced by testing the model
trained on data from Group 1 with data from Group 3.

C. Sample labeling

Sample labeling is the assignment of a state set to its
corresponding sample. In our study, we focus on the influ-
ence of particle rearrangement tendencies on the global phase
structure. Thus, the state set of individual particles is {soft,
hard}, while the global system exhibits a state set of {liquid,
crystal, amorphous}.

The rationale behind this approach lies in the effective-
ness of selecting {soft, hard} as the particle state set (or
target property) in capturing the fundamental microscopic
characteristics of particles. Previous studies [81,86,98] have
demonstrated that machine learning models trained on particle
rearrangement properties (i.e., soft or hard) as target variables
are highly effective in exploring structural rearrangements
[81,86], dense packing structures [81,86], nonexponential re-
laxation [81], glassy dynamics [81], and crystallization [98].
Representing these intrinsic properties (i.e., soft or hard) as
a scalar field offers a robust framework for tracking their
temporal evolution and serves as a powerful tool for investi-
gating collective particle behavior at the system level [81,86].
In contrast, defining particle states solely based on structural
properties or symmetry, rather than employing the set of {soft,
hard}, fails to accurately capture particle activity and, as a
result, limits the ability to effectively study macroscopic phe-
nomena [81,86]. Therefore, setting the particle state set as
{soft, hard} and the global system state set as {liquid, crystal,
amorphous } must be done simultaneously.

We use MD simulations to obtain the data required for our
research. Naturally, the data are stored in the form of simula-
tion trajectories. The smallest accessible unit in a trajectory is
a frame, and, within each frame, the smallest accessible unit
is the position and velocity vectors of an individual particle in
the system at the corresponding time of this frame.

Each trajectory is essentially a time series composed of
frame-by-frame data, describing the changes in the coordi-
nates of each particle in the system over time. Our study
involves two types of samples: particle samples and system
samples. A system sample refers to a specific frame in a
trajectory, while a particle sample refers to a specific particle
within a frame of a trajectory.

The particle samples are labeled according to Eq. (4),
which is used to characterize whether the particles will un-
dergo rearrangement within a specific time interval. The labels
for particle samples are then derived from these ppop, p(t)
values, with the label for particle p in the system at time step
t in the trajectory Traj(7") denoted as yg,) € {soft, hard}.

The system samples are jointly labeled by MSD and Q.
First, MSD is used to distinguish between liquids and low-
mobility solids. In liquids, the MSD shows a linear increase
with a significant slope, indicating high particle mobility,
whereas in crystals and amorphous solids, the MSD remains
steady over time, reflecting particle stability. Note that the
MSD of an amorphous material undergoing crystallization
will be greater than zero. The difference between two types of
solids, amorphous and crystalline, lies in whether long-range
order (LRO) is established, and Qg is used as its estima-

tor. Note that both rapid linear quenching of a liquid and
incomplete crystallization caused by frustration can lead to
the formation of an amorphous state. The former typically
suppresses crystallization, resulting in Qg values close to zero,
while the latter produces nonzero Qg values that are constant
but still significantly smaller than those of crystals. Therefore,
we set a threshold of 0.5 to determine whether the system
has crystallized. When Qg exceeds this value, the system is
considered to be crystallized.

For system samples, we use MSD and Qg for phase label-
ing, denoting the label for trajectory Traj(T) at time step ¢
as yézt)ire , € {liquid, crystal, amorphous}. All data are listed in
Table VII of Appendix E for verification.

D. Dataset construction

For convenience, we denote the point cloud correspond-
ing to the frame in Traj(T) at time step ¢ as P(T,t). We
randomly select 15000 balanced positive and negative sam-

(1)
ples from {1y " " YIN to create Set 1, and 30000

’ p[
P(T? T,¢
balanced samples from {(I[( t)], ;, i ))} to create Set

2,wheret = 100 4+ 100k — 1), k € [1,9]NN,i € [1,10]N
N, pe[l,N]NN, and N = 864 is the particle number of

. PV 7!
each system. Besides, we set {(I[ @01 0 )} as Set 3

entire Y entire, t
P(T® T
and (AP0 4T ) as Set 4, where ¢ = 100+ 25(k —

1), ke[l,33]NN,andi € [1, 10]NN.

That is to say, Sets 1 and 2 are particle-level sample sets
with 15000 and 30000 balanced positive and negative sam-
ples, respectively. Sets 3 and 4 are based on global system
descriptors for classifying phases and structures. Sets 1 and
3 are drawn from Group 1, while Sets 2 and 4 are from
Group 2.

IV. EXPERIMENTS AND RESULTS

In this article, we conducted the following three computa-
tional experiments:

1. Applying PH descriptors to interpretable classifica-
tion tasks. We demonstrated that PH-based descriptors are
effective for interpretable classification tasks using SVMs.
Moreover, we showed that a single variable is insufficient
for soft-hard classification of particles but can success-
fully achieve the three-phase classification of the system
(Sec. IV A).

2. Analyzing the separation index. We computed the SI
values and observed that as the neighborhood radius increases,
the SI distribution of soft and hard particles gradually ap-
proaches that of liquid and solid systems. Moreover, the SI
of global systems can serve as an approximate surrogate for
explicitly mapping a single variable to global phase structures
(Sec. IV B).

3. Tracking the temporal evolution of four metrics. We ana-
lyzed the variations of SI and global softness along trajectories
and compared them with Qg and MSD (Sec. IV C).

A. Machine learning
1. Task description

This article aims to establish a relationship between local
structure and global properties within a unified mathematical
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TABLE II. Performance of models with persistent homology in two ML tasks.

Task 1 (Local)

Task 2 (Global)

Variance Variance
Models Metrics 98% 50% 98% 45%
. Accuracy 86.1% 84.2% 96.1% 94.2%
SVM (linear) MCC 0.723 0.686 0.763 0.763
Accuracy 86.1% 82.4% 95.5% 91.5%
SVM (RBF) MCC 0.723 0.649 0.760 0.715
Number of predictors 188 7 122 1

framework. As a case study, we examine the relationship be-
tween particle mobility trends and the global phase structure
of the system to evaluate the effectiveness of two types of
descriptors.

The motivation is clear: in liquids, most particles tend to
exhibit high mobility, whereas in solids, the opposite is true.

Therefore, we conducted two classification tasks. Task
1 assesses the local descriptor I;,P ) [Eq. (2)] to determine
whether a particle has a tendency for rearrangement (soft
or hard), while Task 2 examines the global descriptor Ig;)ire
[Eq. (3)] to classify phases throughout the entire system (lig-
uid, crystal, or amorphous). Note that the relationship between
data generation, dataset construction, and ML tasks is listed in
Table L.

The ML process follows the steps outlined below and is
applicable to both Tasks 1 and 2:

(1) We constructed four datasets, namely, Set 1, Set 2, Set
3, and Set 4, according to the description in Sec. IIID (or
the summary provided in Table I). Each set corresponds to
its respective feature matrix, denoted X, X», X3, and Xy.

(2) We performed PCA on Xj, X, X3, and X4, ensuring
that the explained variance ratio is z, and obtained the cor-
responding dimension-reduced matrices. Note that X, should
undergo the same PCA transformation as X, while X, should
undergo the same PCA transformation as X3, as required in
Sec. I C 2. For convenience, we retain the original notation
for the matrices after PCA transformation.

(3) We trained our model using SVM, with its decision
function uniformly expressed as y = f(X), evaluating both
linear [82] and RBF kernels [99]. Here, X denotes the feature
matrix corresponding to the training sets, i.e., X; or X3, while
y represents the label vector formed by concatenating yfy,T,)
(Task 1) or ygt)ire’t (Task 2) for each sample in the respective
set. For Task 1, we trained the model on Set 1 and tested it
on Set 2, while for Task 2, we trained on Set 3 and tested on
Set 4.

Through this process, we not only derived the classification
mappings for Tasks 1 and 2, f:X — 'y, but also ob-
tained the corresponding performance metrics, as reported in
Table II.

2. Machine learning results and analysis

The ML results are presented in Table II. As described in
Appendix Al, the feature matrix X initially contains 1600
columns, corresponding to a m x n grid with m = n = 40,
resulting in 1600 predictors. However, applying PCA with an

explained variance ratio of z = 98% reduces the number of
predictors to 188 for Task 1 and 122 for Task 2. Regardless
of the kernel function used, Task 1 consistently achieves an
accuracy above 86%, while Task 2 exceeds 95%. Overall, the
linear kernel performs slightly better than the RBF kernel,
though the difference remains marginal.

As shown in Table II, further reducing the explained vari-
ance ratio z reveals that at least seven predictors are required
to prevent a significant decline in the accuracy of Task 1.
Additionally, we evaluated scenarios with the number of pre-
dictors ranging from 1 to 7, with detailed results provided
in Table VI of Appendix E. Our analysis indicates that at
least three predictors are necessary for the accuracy of Task
1 to be significantly higher than that of random selection,
confirming that a single predictor is insufficient. This suggests
that mapping particles to a binary classification (soft or hard)
using a single variable is not feasible.

In contrast, Task 2 can be effectively performed using a
single variable without a significant loss in accuracy. This
suggests that mapping the entire system to a three-phase clas-
sification (crystal, amorphous, or liquid) based on a single
variable is feasible. However, deriving such a mapping ana-
lytically remains challenging.

3. Feature importance analysis

Here, we address two key questions: first, the significance
of homology classes of different dimensions in the two clas-
sification tasks; and second, in the three-phase classification
task of Task 2, which column in the feature matrix plays a de-
cisive role—specifically, which variable serves as the primary
determining factor.

First, we use the Shapley values introduced in Sec. IIC 5
to evaluate the importance of different homology classes,
specifically, Hy, H, and H,, in two classification tasks. The
results listed in Table III indicate that the significance of Hy is
slightly lower than that of H, and H,, with H; and H, together
contributing over 70% of the total importance in both tasks.

TABLE III. Contribution of each homology class to the classifi-
cation in tasks 1 and 2.

do(Hy) o1(Hy) b2 (H>)
Task 1 (local) 28.08% 35.29% 36.63%
Task 2 (global) 30.02% 35.05% 34.93%
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FIG. 5. Box plots of the seperation index (SI) of (a) all neigh-
borhoods with multiple radii of particle samples at time step ¢ =
100 + 100k — 1), k € [1,10] N N, and (b) all systems sampled at
time step + = 100 4+ 25(k — 1), k € [1,33] N N, from each trajec-
tory in Groups 1 and 2.

Second, in Task 2, a single predictor is sufficient to achieve
an accuracy of 94.2%, suggesting that the three-phase clas-
sification of a multiparticle system is largely dictated by
this single critical predictor. We conclude that this variable
corresponds to the 1389th element of the vector Igﬁl)ire, with
the reasoning process detailed in Appendix C. This single
variable, in conjunction with the SVM mapping f, effectively

characterizes the global phase structure.

B. Descriptive statistics on PH (non-ML approach)

In Sec. II D, we introduced a mapping from the results of
the PH analysis to a single real number in the range [0, +00),
specifically the separation index (SI), as defined in Eq. (9).
Since both the neighborhood of a particle and the entire
system can be represented as point clouds, the SI applies to
both local and global structures, mapping each to a single real
number.

We analyzed the SI (Fig. 5) and Betti numbers (Fig. 6)
of neighborhoods around two types of particles and systems
in different phases across various times and trajectories in
Groups 1 and 2.

The SI can be seen as an analytical approximation for
the mapping trained by ML. For Task 2 (three-phase clas-
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FIG. 6. The variation of average Betti numbers with € for (a) all
neighborhoods with a radius » = 2.5 of particle samples at time step
t =100+ 100(k — 1), k € [1, 10] N N, and (b) all systems sampled
attime step? = 100 + 25(k — 1), k € [1, 33] N N, from each trajec-
tory in Groups 1 and 2.

sification), while its accuracy is slightly lower, it can still
achieve near-perfect classification between liquids and solids
[Fig. 5(b)]. Additionally, the overlapping regions between
amorphous and crystalline phases lie outside the interquar-
tile range [Fig. 5(b)], indicating that SI can, in most cases,
achieve reasonably accurate three-phase classification. Al-
though SI sacrifices some accuracy, it significantly enhances
interpretability. For Task 1, although we have rigorously
demonstrated that a single variable is insufficient for fully
classifying particles on {soft, hard}, the interquartile ranges of
the SI for soft and hard particles begin to separate as the neigh-
borhood radius increases [Fig. 5(a)]. Simultaneously, their
distribution patterns progressively resemble those of liquids
and solids [compare Fig. 5(a) with Fig. 5(b)].

Therefore, beyond providing an approximate analytical
mapping for three-phase classification, SI plays a more crucial
role as a bridge, enabling the analysis of the relationship
between the soft-hard property of a particle and the global
phase structure within a unified framework. This analysis is
visualized in Fig. 5.

Although hard particles tend to be located in sym-
metric environments, the tendency for rearrangement and
the preservation of order are fundamentally distinct prop-
erties. Although symmetry is related to particle rigidity,
other factors—such as local packing density and stress
distribution—can also significantly influence rearrangement
behavior. Therefore, gg, which primarily measures six-fold
symmetry, is not a reliable predictor of particle rearrange-
ments, as demonstrated in Appendix D.

First, for the entire system, as depicted in Fig. 5(b),
crystals exhibit the highest SI values, followed by amor-
phous solids, with liquids having the lowest. The distinct and
non-overlapping interquartile ranges (IQRs) of SI for these
three phases allow for effective differentiation in most cases.
Notably, the highest SI for liquids is below the lowest SI
for crystals, ensuring perfect classification between the two.
As shown in Fig. 6(b), the mean S, peak is distinct for
each phase: crystals (B,cry) show the highest peak, amor-
phous phases (85 amo) slightly lower, and liquids (8s,1iq) the
lowest. This is expected because crystals, with their highly
symmetric and periodic structures, exhibit long-range or-
der (LRO), resulting in concentrated and distinct topological
features, especially in H; (cycles) and H, (cavities). These
factors contribute to the highest SI values. In contrast, amor-
phous solids, while lacking long-range order (LRO), exhibit
some short-range order (SRO), resulting in SI and mean S,
values lower than those of crystals but higher than those
of liquids.

Specifically, the mean B, primarily reflects the number
of two-dimensional cavities in the system. In crystals, the
highly ordered particle arrangement forms well-defined, sta-
ble cavities, resulting in a concentrated peak in the mean
B>. In amorphous solids, although long-range periodicity is
absent, localized short-range order (SRO) creates a more
scattered cavity distribution, resulting in a broader S, peak.
In the case of liquids, with even less structural coherence,
the distribution of cavities is highly random, resulting in
the lowest and most diffuse B, peak. These differences in
topological features directly reflect the degree of structural or-
ganization in each phase: crystals exhibit the most ordered and
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FIG. 7. H, and H, points for the entire system from selected
trajectories as follows: (a) for liquid [Traj(Tg(z)) at time step # = 900];
(b) for crystal [Traj(TS(l)) at time step ¢ = 900]; (c) for amorphous
[Traj(7,”’) at time step ¢ = 200].

interconnected structures, followed by amorphous solids, and
then liquids.

Figure 7 illustrates the concept of SI by showing the clarity
of boundaries in the clusters of H; and H, points across dif-
ferent phases. Clearer cluster boundaries correspond to higher
SI values, indicating a more ordered structure. Note that the
degree of order here is relative. In the liquids [Fig. 7(a)],
the clusters of H; and H, points are diffuse with indistinct
boundaries, resulting in the lowest SI value. The amorphous
solids [Fig. 7(c)] show the boundaries of moderate clarity,
yielding SI values between those of the liquids and crystals. In
contrast, the crystals [Fig. 7(b)] has the most clearly defined
boundaries, corresponding to the highest SI value.

Second, for particle environments, as illustrated in
Fig. 5(a), hard particles exhibit higher SI values than soft
particles in their neighborhoods. As the neighborhood ra-
dius r increases, the IQRs of the neighborhoods of hard and
soft particles diverge, and the number of outliers decreases.
This suggests that small-scale structures progressively merge
as r increases, leading to a more coherent understanding
of the global structure. The neighborhoods of hard particles
tend to exhibit SI distributions typical of solids, whereas
those of soft particles show more liquid-like characteristics,
as seen in Fig. 5(b). Furthermore, as shown in Fig. 6(a),
the mean B, of hard-particle neighborhoods peaks higher
than that of soft-particle neighborhoods. When € € [0, 1], the
mean B for hard-particle neighborhoods is greater, indicating
that these neighborhoods contain more particles. This is ex-
pected because hard particles generally reside in environments
with strong symmetry and SRO, where particles are densely
packed. This symmetry and dense packing enhance resistance
to rearrangement, giving hard particles solid-like properties.
In contrast, soft particles are found in less symmetric or or-
dered environments, exhibiting more liquid-like behavior.

Physically, these topological differences can be under-
stood by considering the role of cavities (mean ;) and
connected components (mean fy). The higher mean S, peaks
in hard-particle neighborhoods reflect well-defined cavities
resulting from tight, symmetric packing, indicative of solid-
like stability. Besides, higher mean S values in hard-particle
neighborhoods also indicate greater local connectivity, reflect-
ing a higher number of neighboring particles. In contrast,
soft-particle neighborhoods, with more dispersed and irregu-
lar cavity structures, indicate environments where particles are
less tightly bound, making these neighborhoods more liquid-
like. The lower local connectivity in these environments,
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16

FIG. 8. H; and H, points of neighborhoods with radius r =
2.5 after randomly sampling 100 soft particles and 100 hard par-
ticles from each trajectory in Groups 1 and 2 at time step ¢ =
100 + 100k — 1), k € [1,10]NN for (a) soft particles, and (b)
hard particles.

indicated by mean B, further emphasizes their liquid-like
mobility.

Figure 8 shows the H; and H, points in the neighborhoods
of soft and hard particles. For soft particles [Fig. 8(a)], the H;
and H, clusters nearly merge, yielding lower SI values, which
indicate low symmetry and disorder. In contrast, hard particles
[Fig. 8(b)] exhibit relatively clear cluster boundaries, resulting
in higher SI values that reflect a more symmetric and ordered
environment. In comparison with Fig. 7, the neighborhoods
of soft particles resemble liquid characteristics, while those of
hard particles are more solid-like.

In crystalline environments, the local symmetry and SRO
around hard particles lead to higher $,, as stable cavities form
in their surroundings. With a small radius r, the neighbor-
hood around a hard particle may exhibit properties similar
to those in amorphous materials, with evident SRO and local
symmetry. However, as the neighborhood radius increases,
periodicity, global symmetry, and LRO begin to emerge,
transitioning the topological features from local to global.
This shift results in increased S, and SI values as more
extensive, higher-dimensional structures develop, reflecting
the mechanism through which LRO and global symmetry
are established. In contrast, soft particles, especially those
in liquids, due to their higher fluidity and lack of such or-
dered structures, exhibit lower 3, and SI values, indicative of
the randomness and instability of the topological features in
liquid-like environments.

C. Metrics on trajectories

Tracking the evolution of various metrics along molecular
dynamics trajectories is a widely used approach for studying
how target properties evolve over time under controlled con-
ditions. In this study, we leverage this method to identify the
onset of phase transitions using our proposed metrics, such
as SI and global softness, while also providing a comparison
with traditional metrics like Qg and MSD.

We tracked the evolution in four metrics, including nor-
malized MSD, Q¢(t)/.4", SI(t) and S(z) over time on ten
trajectories in the test group (Group 2), i.e., Traj(Tk(z)), ke

[1, 10] N N, as well as two trajectories in Group 3, i.e., Trajgli

and Traj%l. The data for all metrics are provided in Fig. 19 of
Appendix E for reference.
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FIG. 9. (a) Separation index SI(z) and (b) global softness S(z),
wheret = 100 + 10(i — 1), € [1, 81] N N, for trajectories in Group
2, denoted as Traj(Tk(z)), k € [1,10] N N. These 10 trajectories are
divided into two categories: those with k£ < 6 (category I) crystal-
lized, while those with k > 7 (category II) remained liquid. The
metrics over time for each trajectory are shown as faded dashed lines,
with bold lines indicating the average in each category—blue for
category I and orange for category II.

The trajectories corresponding to the test set of Group 2 are
divided into two categories: category I, with k < 6, undergoes
complete crystallization from an amorphous or liquid state,
while category II, with k > 7, remains in the liquid phase. In
Fig. 9, the blue solid line shows the average of SI [Fig. 9(a)]
and global softness [Fig. 9(b)] for each trajectory in category
I, while the orange solid line shows the same for category II.
In Category I, SI rises sharply as global softness decreases,
whereas in category II, SI stays low and stable, with global
softness remaining at a high positive level. This distinction
clearly differentiates crystallized states from noncrystallized
ones. Notably, the global softness was calculated using a lin-
ear SVM explaining 98% of the explained variance, trained in
Task 1. In contrast, the other three metrics are non-ML based.

In Fig. 10, without loss of generality, we report the
evolution of four metrics over time for four representa-
tive trajectories: (i) Traj(T;z)), which undergoes a complete
transition from amorphous to crystalline [Fig. 10(a)]; (ii)
Traj(T6(2)), which undergoes a complete crystallization from

liquid [Fig. 10(b)]; (iii) Traj;l)\, depicting a glass transition

from a liquid [Fig. 10(c)]; and (iv) Traj%l, which remains in

the liquid phase during quenching [Fig. 10(d)].

The order parameter Q¢ captures the global ordering in
the system, particularly sixfold symmetry, and is effective
for detecting crystallization, especially from a higher-energy
phase (liquid or amorphous) to a more ordered crystalline
phase. In liquid or amorphous states, Q¢ values are typically
lower, indicating minimal structural symmetry. However, as
the system crystallizes, Qg rises sharply, signaling the emer-
gence of LRO. As local particle order increases and aligns
with the global structure, Q¢ gradually rises. A sharp increase
or spike in Q¢ during this transition [Figs. 10(a) and 10(b)]
clearly indicates the formation of LRO in crystals.

However, Qg lacks sufficient sensitivity to subtle variations
in SRO and thus cannot effectively distinguish between liquid
and amorphous solids [see Fig. 10(c)]. Therefore, Qg needs to
be combined with MSD to effectively differentiate these three
phases (liquids, amorphous solids, and crystals). Particle mo-
bility in the system is quantified by MSD, which measures the
average displacement of particles over a specified time inter-
val. In the liquids, particles move freely, and MSD increases
rapidly in a linear manner, indicating high mobility. After
crystallization, the MSD stabilizes, indicating that particles
are restricted to fixed positions [see Fig. 10(b)]. Notably, in
the amorphous solids that are undergoing crystallization, the
MSD also increases, but more gradually than in the liquids.
This slower increase reflects the gradual ordering of local
structures, as opposed to random diffusion [see Fig. 10(a)].

We propose that SI(¢) is highly effective for distinguishing
among liquids, amorphous solids, and crystals. In Fig. 10(a),
SI(t) increases steadily during the crystallization of the amor-
phous phase, indicating a transition from a disordered to an
ordered structure. Similarly, Fig. 10(b) shows a sharp rise
in SI(#) during liquid crystallization, indicating a shift of
the system to a solid state. In Fig. 10(c), SI(#) captures the
increase in SRO as the system quenches from liquid to amor-
phous, indicated by the upward turn in the curve. In contrast,
Qg fails to capture these subtle changes and remains close
to zero. Finally, Fig. 10(d) shows that SI(¢) remains stable
during quenching in the liquids, with minimal changes in
SRO. Notably, SI(#) demonstrates exceptional sensitivity in
capturing transitions between two disordered phases (e.g.,
liquid and amorphous), as consistent with the results observed
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FIG. 10. The normalized MSD [abbreviated as NMSD(t), normalizing the MSD into [0, 1]], Qs(¢)/.4", SI(¢), and S(¢) where t = 100 +
10 — 1), i € [1, 81] N N on the selected trajectories (a) Traj(T3(2)) containing a whole transition from amorphous to crystal; (b) Traj(T(,@))

containing a whole transition from liquid to crystal; (c) Trajg containing a process of vitrification from a supercooled liquid; (d) Trajy,

remaining liquid phase during quenching.
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in Fig. 5(b). This sensitivity significantly surpasses that of tra-
ditional order parameters such as Qg, which exhibit minimal
or no ability to distinguish between disordered phases.

In addition, S(¢) captures the fluidity trend of the system,
offering insights into both its current state and potential fu-
ture behavior. Note that S(¢) was trained on the training set
(Group 1, LJ system) and applied to the test set (Group 2, LJ
system) and Group 3 (KA system). When applied to Group 2,
anegative S(¢) indicates a trend towards solidification, while a
positive value suggests the system is likely to remain fluid. By
correlating with potential energy in the system, S(¢) captures
both current structural changes and the potential evolution of
fluidity over time. As the system transitions from an amor-
phous phase [see Fig. 10(a)] or a liquid phase [see Fig. 10(b)]
to a crystalline phase, a sharp drop in S(t) indicates a
substantial reduction in fluidity and the stabilization of the
crystalline phase. When applied to Group 3 [KA mixture, see
Figs. 10(c) and 10(d)], S(¢) required a correction to accurately
reflect the positive and negative relationships (see Fig. 17 of
Appendix B), as the differences in atomic configurations
caused systematic shifts in the absolute scale of fluidity. How-
ever, it only serves as a reference, and its shift does not impact
the presentation of the underlying principles. Therefore, we
ignore exploring the correction mechanism because it is not
the key factor. If the purpose is solely to track the fluidity on
a single trajectory, this correction to align the zero point is
not necessary. On the contrary, as mentioned at the beginning
of this paragraph, when applied to Group 2 (LJ system), S(¢)
requires no such adjustment [see Fig. 10(b)], indicating that
its positive and negative relationships can be directly used
without any corrections.

Overall, our proposed SI and global softness not only effec-
tively detect phase transitions but also reflect the harmonious
integration of ML and non-ML approaches within our PH-
based framework.

V. CONCLUSION

We employed persistent homology (PH) to develop a
unified mathematical framework for both local and global
characterization in disordered systems. This approach pro-
duces high-performance descriptors for interpretable machine
learning (ML) and offers deep insights into the structure-
function relationships in these systems. It reveals crucial links
between local particle environments and global structures,
predicting particle rearrangement and classifying phases in a
universal framework. In three-phase classification, the SVM
trained using ML methods can achieve near-perfect accu-
racy. In contrast, our proposed separation index (SI) sacrifices
some accuracy to enhance the interpretability of the three-
phase classification model. Our proposed model effectively
captures the differences in order among liquid, amorphous,
and crystalline phases in multiparticle systems, providing an
explanation for the mechanism of long-range order formation.
In addition, SI, in conjunction with global softness, achieves
precise detection of phase transitions through non-ML and
ML pathways, respectively. Furthermore, complexity science
suggests that global behavior in a system arises from nonlinear
interactions among local components, rather than from simple
linear addition. Our unified framework fundamentally avoids

the issue of nonlinear addition, while treating local and global
characteristics as homogeneous representations. This offers a
novel perspective for research in complexity science.

We acknowledge that there are certain limitations to our
approach as it currently stands. First, computational complex-
ity limits its scalability and cost-effectiveness when applied to
large datasets. Second, while the method effectively captures
topological features, its applicability may be limited in QSAR
tasks that depend on geometric properties like metrics and
curvature. Third, although the framework performs well in
specific multiparticle systems constrained by Lennard-Jones
potentials, its generalizability to other disordered systems and
diverse dynamical processes remains unverified. Finally, re-
garding the separation index (SI) and its relationship to order
and symmetry, current validation is computational, lacking
rigorous proof of how SI quantitatively reflects these physical
characteristics.

Our future work will naturally focus on addressing these
limitations. First, improving computational efficiency to han-
dle systems with over 103 particles will be a key objective
in scaling our approach. Second, we consider combining our
PH-based approach with computational conformal geometry
[100-102] to better accommodate targets requiring precise
geometric detail, such as defects and polycrystals, and tasks
like atomic-scale defect reconstruction or complex surface
structuring. Third, we plan to explore dynamical processes
beyond phase transitions, including defect migration and re-
construction, particle diffusion and aggregation, and phase
separation with multicomponent interactions. Lastly, we aim
to rigorously establish how SI captures order and symmetry in
the system and develop its mathematical foundation in relation
to underlying physics.
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APPENDIX A: PARAMETER SELECTION

1. The parameter selection for the persistence images

Here, the parameters we need to set are minBD, maxBD, T,
M, N, and o.

The parameters minBD and maxBD are used to filter out
features with very short or excessively long persistence. Based
on the analysis in Fig. 11, all H; and H, features have lifetimes
below 0.75, and most H, features are below 1.5. Therefore,
setting maxBD to 1.5 is sufficient to capture all relevant fea-
tures. To avoid numerical errors, minBD is set to —0.1.

In the formula I;,P ) = Zfl\i | fo ;e’f(’fl”" ), the decay factor
T is chosen to balance the rate of decay, ensuring V(") decays
from 100% to 10% as r, increases from 1 to 5. Based on
the decay curves in Fig. 12, we set t = 0.57 as the most
appropriate value.
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FIG. 11. Box plots of the barcode lifespan (persistence) of (a) all
neighborhoods with a radius » = 2.5 of particle samples at time step
t =100+ 100 (k — 1), k € [1,10] NN, and (b) all systems sam-
pled at time step r = 100 + 25(k — 1), k € [1,33] N N, from each
trajectory in Groups 1 and 2.

To balance computational efficiency and model perfor-
mance, we set 9 =91 =40 initially and treat o as a
hyperparameter. The selection of o follows a two-stage pro-
cess: (1) coarse screening, (2) fine-tuning.

Coarse screening. In this stage, we visually inspected the
clarity of the PI generated with different values of o. A
smaller o preserves more details of topological features, while
a larger o smooths the image, reducing the impact of individ-
ual points, as shown in Fig. 13. By observing the degree of
blurring in the PI, we quickly identified a suitable range of o
between 0.001 and 0.01.

Fine-tuning. In this stage, we treated o as a hyperparameter
and refined it through iterative training and validation. Using
both kinds of SVMs, we found that 0 had minimal impact
on overall performance, as listed in Table IV. The model
achieved the optimal performance with o = 0.01.

2. Parameter selection for rearrangement tendency (Task 1)

Here, the parameters we need to set are g/ and p., aligned
with Ref. [94]. Figures 14—16 are all adapted from Ref. [94].
The settings are based on the statistics on Group 1 (Set 1), and
we cannot use the data in the Group 2 (Set 2) at this stage to
avoid the data leakage.

e T (rq—r1)

FIG. 12. The four curves in different colors respectively repre-
sent the change in e~*¢="1) as ry — 1y increases from O to 4 (or as 7,
increases from 1 to 5) under the premise of taking different values of
7. The gray horizontal dashed line is y = 0.1.

FIG. 13. The examples for (a) an unclear PI, with t = 0.1, and
(b) a clear PI, with T = 0.002, which are both generated from the
frame corresponding to Traj(T4(2)) at time step ¢+ = 100.

To select g/, we use the lowest temperature Tl(l) as a
reference because it corresponds to the system’s lowest mobil-
ity. The interval [t — tg/2, t + tg/2] should encompass as many
complete rearrangements as possible at this low mobility, as
shown in Fig. 14. The yellow region marks a full rearrange-
ment, where pyop rises above and then falls below p.. As seen
in Fig. 15, most rearrangements at this reference temperature
occur within tz = 40, so we set g, = 20.

As shown in Fig. 16, we chose p. = 0.1 because it effec-
tively separates the majority of particles in two trajectories
above and below the crystallization onset temperature, i.e.,
TG(I) and T7(1). The phop,i(t) values are mostly significantly
greater or less than p. = 0.1, respectively. Specifically, Tﬁ(l)
is the highest temperature at which crystallization occurs,
while T7( is the lowest temperature where the liquid phase
is maintained, both of which are critical for this analysis. By
plotting the histograms of ppep in Traj(Tﬁ(l)) and Traj(T7(1)),
we determined that p. = 0.1 is the value at which the relative
sizes of the two distributions reverse.

APPENDIX B: CORRECTNESS OF GLOBAL SOFTNESS

Figure 17 demonstrates the correction by a downward shift
of 0.15 when applying the model to the KA systems. After
correction, the positive or negative sign of global softness can
indicate the class of fluidity trend.

TABLE IV. Performance comparison of different values of 7 €
[0.001, 0.01] in Task 2.

SVM (98% Var) Linear RBF kernel

o ACC MCC ACC MCC
0.001 95.5% 0.760 94.8% 0.750
0.002 94.5% 0.730 95.5% 0.760
0.003 95.5% 0.764 95.5% 0.764
0.004 95.5% 0.764 95.5% 0.764
0.005 95.8% 0.757 95.2% 0.757
0.006 95.2% 0.743 95.5% 0.760
0.007 96.1% 0.763 95.2% 0.753
0.008 95.5% 0.764 95.2% 0.753
0.009 95.8% 0.767 95.5% 0.760
0.010 96.1% 0.763 95.5% 0.760
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FIG. 14. The evolution of py,, for a selected particle (No. 310)
over a period of time under the lowest temperature (i.e., Tl(') ). The
yellow region represents the interval with the time length of 2z,
encompassing a complete rearrangement, which means py,, rises
above p. and then falls back below p.. The red-dotted line is the
selected p, = 0.1.

APPENDIX C: DETAILS OF FEATURE
IMPORTANCE ANALYSIS

The single decisive predictor mentioned in Sec. IV A3,
corresponding to the lar}gest eigenvalue from the PCA, is
the 1389th element of I\') . located at pixel (28, 34) in the
PI. Given the PI dimensions of 40 x 40 and the birth and
persistence ranges of [—0.1, 1.5], each pixel has a resolution
of 0.04. We can get that the pixel (28, 34) is within the birth
range of [1.02, 1.06] and the persistence range of [0.1, 0.14]
in the PD, respectively. The feature importance, based on the
eigenvalues of the principal components, revealed that this key
predictor corresponds to the 1389th column of the original
feature matrix, which is the 1389th element of the vector
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FIG. 15. The histogram of rearrangement duration in Traj(T,(”),
corresponding to the lowest temperature and the system with the
lowest mobility. The red-dotted line is the selected zx = 40, which
equals 21 >.
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FIG. 16. The histogram of the value of py, in Traj(Té(U) and
Traj(T7“)). The onset temperature 7" of crystallization separates
7V and TV, ie., TV < T < V. The red-dotted line is the
selected p. = 0.1. The reason for setting p. = 0.11is when pyo, < pe,
the frequency of ppgp in Traj(Tﬁ(”) is larger than that in Traj(T7“));
when puo, > pe, the frequency of pyep in Traj(Tﬁ(l)) is smaller than
that in Traj(T7(1)). pe = 0.1 is the value at which the relative size of
the two frequencies of Traj(TG(])) and Traj(T7“>) reverse.

APPENDIX D: COMPARATIVE ANALYSIS BASED
ON THE ¢,-SI SWAPPED STATE SETS

To begin with, we examined the local bond order param-
eter g, which characterizes the six-fold symmetry of the
local particle environment (defined in Sec. I B 2), to assess
its ability to distinguish particles with different rearrange-
ment tendencies. Specifically, we evaluated the performance
of g¢ in differentiating between the state set of {soft, hard},
as reported in Fig. 18(a). Here, the states of {soft, hard} are
determined by ppop [see Eq. (4)].

Furthermore, we investigated the effectiveness of the sep-
aration index (SI) in distinguishing the degree of sixfold
symmetry preservation in the local particle environment.
In particular, we analyzed how SI differentiates between
the states {ordered, disordered}, with the results reported
in Fig. 18(b). It is important to note that the states
{ordered, disordered} are classified according to the values of
gs, which reflect the level of local structural order around the
particles.

As shown in Fig. 18(a), aside from the slightly lower av-
erage g¢ value observed for soft particles compared to hard
particles, no other significant nontrivial patterns are evident.
Thus, g¢ is not an effective predictor of particle rearrange-
ment tendencies, nor does it serve as a reliable criterion for
distinguishing between soft and hard particles. While the re-
sults suggest that hard particles exhibit, on average, a higher
degree of local symmetry, this difference alone is insufficient
to justify their use as a classification metric.

In Fig. 18(b), although the average SI differs between or-
dered and disordered particles, the lower bound of the IQR
for ordered particles does not separate significantly from the
upper bound of the IQR for disordered particles as the neigh-
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FIG. 17. The global softness S(¢) (red lines) shown in panel (a) is before the correction, while the softness shown in panel (b) is after the

correction by a downward shift of 0.15.

borhood radius increases. Instead, it does not exhibit any
clear nontrivial trends. Therefore, while particles in ordered
environments generally display higher average SI values, this
distinction also falls short of providing a robust basis for
classification.

The particle rearrangement tendency and the degree of six-
fold symmetry preservation in the local environment represent
entirely different properties and cannot be used interchange-

ge — {soft, hard} Sl — {disordered, ordered }

1.01(a) — 8 5 (b) [ Disordered
e [ Ordered
x4 B N
) o 9
B -
E =3 1
Sos 2
53 gz
]
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Soft Hard 1.5 2.5 3.5 4.5
Particle Type Neighborhood Radius

FIG. 18. Distribution of g¢ over the state set {soft, hard} and the
separation index (SI) over the state set {ordered, disordered}. Note
that the dataset used here is the same as in Fig. 5(a), with only new
metrics and labels applied.

ably as classification criteria. Overall, SI exhibits slightly
better performance than gg.

APPENDIX E: EXTRA DATA

Table V provides the values of the 20 monotonically in-
creasing temperatures mentioned in Sec. ITIB.

As demonstrated in Table VI, in Task 1, after applying PCA
with different variance explained ratios to the feature matrix,
we assessed the classification performance of an SVM with an
RBF kernel. The results indicate that at least three variables
are required to characterize the hard-or-soft property of the
particles with an accuracy significantly higher than random
selection. Furthermore, to achieve an accuracy loss within 2%
compared to the baseline (the first row of Table VI), at least
seven variables are necessary.

The datasets for Task 2 are listed in Table VII, and the
evolution of all four metrics over time for each trajectory in
Group 2 (testing group) is listed in Fig. 19.

TABLE V. The 20 different temperatures used in Protocol 1 for
generating LJ systems.

T, 1 1; n T T I 1y Ty Tio
050 0.53 0.55 057 060 0.63 065 0.67 070 0.73
Ty T, Tis Ty Tis T Ty Tig Ty Ty
075 0.77 080 0.83 0.85 0.88 090 093 0.95 0.97
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TABLE VI. Classification performance of RBF kernel SVM after PCA with different explained variances in Task 1.
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TABLE VII. The labels, i.e.,y
liquid, 1 represents crystal, and 2 represents amorphous. The ith row represents trajectory Traj(T,.(1 °r2)) and the jth column represents the

sample point at r = 100 + 25(j — 1).
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FIG. 19. The normalized MSD [abbreviated NMSD(¢), normalizing the MSD into [0, 1]], Q¢(t)/-4", SI(t), and S(t) where t = 100 +
10(i — 1),i € [1, 81] N N on all trajectories on Group 2 (Testing Group), containing (a) Traj(Tl(z)), (b) Traj(Tz(z)), (©) Traj(7"3(2)), (d) Traj(Tf)),
(e) Traj(1?), (f) Traj(T,>), (2) Traj(T,?), (h) Traj(Z>), (i) Traj(7,>), and (j) Traj(T,\}").
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