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low power when run on specialized architectures like neuromorphic
hardware. However, the techniques in use to configure these neural
networks on massively parallel neuromorphic crossbar arrays remain
sparsely explored. This motivates the research on how neural network
topologies encompassing spiking architectures can be configured on a
neuromorphic hardware. In this thesis, a unique placement algorithm
is devised to map diverse and complex neural network architectures
on a connectivity-constrained array with thousands of processing el-
ements(PEs) within seconds. Wide spectra of SNNs with varying
complexity are investigated to evaluate the feasibility of mapping on
the target neuromorphic architecture involving unique connectivity
constraints. The performance of the proposed ALAPIN mapper is val-
idated through time-to-solution for the surveyed SNN schemes with
varying network sizes and diverse complexity measures. Experiments
show that simple networks converge within 10 milliseconds. With lim-
ited resources and as the network architectural complexity increases,
hardware constraints become overwhelming to achieve placement so-
lution within a decent time frame. Further experiments are carried
out to estimate the resource utilization of each candidate SNN for
varying network sizes on target hardware. Liquid state machines use
a greater number of synapses for a same number of neurons than the
rest of the candidates, with approximately 100% neurons, 30% input
resources, and 20% synapses on target hardware.
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Abstract

As we move towards edge computing, not only low power but concurrently, critical
timing is demanded from the underlying hardware platform. Spiking neural networks
ensure high performance and low power when run on specialized architectures like
neuromorphic hardware. However, the techniques in use to configure these neural net-
works on massively parallel neuromorphic crossbar arrays remain sparsely explored.
This motivates the research on how neural network topologies encompassing spiking
architectures can be configured on a neuromorphic hardware. In this thesis, a unique
placement algorithm is devised to map diverse and complex neural network architec-
tures on a connectivity-constrained array with thousands of processing elements(PEs)
within seconds. Wide spectra of SNNs with varying complexity are investigated to
evaluate the feasibility of mapping on the target neuromorphic architecture involving
unique connectivity constraints. The performance of the proposed ALAPIN mapper is
validated through time-to-solution for the surveyed SNN schemes with varying network
sizes and diverse complexity measures. Experiments show that simple networks con-
verge within 10 milliseconds. With limited resources and as the network architectural
complexity increases, hardware constraints become overwhelming to achieve placement
solution within a decent time frame. Further experiments are carried out to estimate
the resource utilization of each candidate SNN for varying network sizes on target hard-
ware. Liquid state machines use a greater number of synapses for a same number of
neurons than the rest of the candidates, with approximately 100% neurons, 30% input
resources, and 20% synapses on target hardware.
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Introduction 1
1.1 Problem description

Spiking neural networks (SNNs) are the 3rd generation of artificial neural networks
(ANNs) that employ spiking neurons as compute units. Lately, SNNs have received
immense attention due to their ability to closely replicate the biological neural be-
haviour. The rich temporal pattern in spiking neurons, mimicking the brain, is what
makes a spiking neural network best suited for time-series analysis which is much needed
for sensory data processing. The applications of SNNs are vividly large. Applications
like pattern recognition, pattern classification, involving RADAR, audio, or LiDAR
sensor data are heavily benefited with the deployment of SNNs at the sensor edge.
This necessitates the use of low-power embedded hardware to deploy AI at the sensor
edge. The conventional hardware architectures like Von Neumann do not cater well to
the behaviour of spiking neural networks, due to the precise spike timings that SNNs
work on leads to early performance bottlenecks and this behaviour is approximated on
traditional Von Neumann architecture. As we move towards edge computing, ultra low
power and concurrently, critical timing is demanded. Running SNNs on edge compute
devices ensures low power and high performance with a good accuracy. To accomplish
this task, a new underlying hardware like neuromorphic architecture is emerging.

For data centers or cloud based applications, systems like SpiNNaker or BrainScaleS
provide insights to neuromorphic research community through real-time simulations
and hardware emulations respectively. Nevertheless, these gigantic processing systems
custom made for running SNN applications are not viable when the focus lies on edge
applications demanding low-power, low-area and high performance. At the sensor edge,
power constraints dictate the design of the embedded hardware, thus leading to a
new architectural revolution seen through neuromorphic hardware. The overarching
theme of neuromorphic engineering is to impart the cognitive abilities to an electronic
device by implementing this architecture in silicon. The advancement in this field is
to try and implement the biologically inspired spiking neural networks on a dedicated
neuromorphic hardware to achieve high energy efficiency and high performance.

The process of compilation for a traditional compute architecture is well established.
However, there is no neuromorphic assembly language or well defined and generalised
instruction set to translate the neural network that can be understood by the underlying
neuromoprhic hardware, due to the fact that the hardware designs are just emerging.
The spiking neural network topologies are colossal and complex in nature and the target
neuromoprhic hardware has thousands of PEs(processing elements)/resources. There
are numerous configurations of placement possible for a single network on a given hard-
ware, thus the problem falls in NP complexity class. Respecting the constraints and
obtaining a solution, is primarily a big challenge. Achieving a valid placement solu-

1



tion is time-consuming and days/months of human effort is needed. This engenders
devising a mapping algorithm that takes into account an increasing complexity of the
hardware constraints, and efficiently performs placement of neural networks. Having
an automatic way of mapping neural networks will also benefit faster design space ex-
ploration allowing designers to reiterate over the hardware design for better occupancy
of resources, or design upgrades of specific neuromorphic components in silicon.

1.2 Objective

There is ongoing research in mapping spiking neural networks on neuromorphic plat-
forms using different techniques like particle swarm optimization methods[58], greedy
algorithmic approaches[60] etc. The research efforts so far have been mostly focused
on partitioning the large network and multi-core mapping. There is sparse literature
on mapping spiking neural networks topologies onto low-level primitives of hardware.
As the problem in this work is a new subset of hardware architecture, there is a need
for new subset of algorithm to perform the placement of the network.

The underlying target platform employed in this thesis work is unique and due to the
design of neuromorphic hardware, the resources on the neurosynaptic crossbar and at
the I/O interface have a distinct and an intelligent way of sharing resources. The design
introduces a new set of connectivity constraints that doesn’t allow for straightforward
placement of the network graph. There is a need for a new algorithmic approach to
carry out placement accounting for all the hardware constraints imposed by the new
neuromorphic hardware design. The objective of this thesis work is to primarily devise
a placement algorithm to allocate resources on the hardware, map complex topologies
of spiking neural networks using a single mapper within a decent time-frame. Different
varieties of spiking network topologies are investigated for the feasibility of mapping
on the neuromorphic hardware, resources they demand specific to the target hardware,
and the time-to-solution for each of the network topologies.

1.3 Research Questions

1. How can diverse and complex neural network architectures be placed on a con-
nectivity constrained array with thousands of processing elements(PEs)?

2. Given a set of neural network topologies and hardware constraints, how quickly
and effectively can the mapper converge to a valid placement solution?

3. How well can the mapping algorithm accommodate a wide spectra of neural net-
work topologies accounting for all the constraints imposed by target hardware?

4. How can the estimate of resource utilization of each candidate SNN topology on
the target hardware influence decision of choosing a specific neural network for
an application?
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1.4 Contributions

This thesis work presents a mapping pipeline for SNNs with an algorithmic approach.
The SNNs are converted into a graphical representation readable by the custom built
mapper for the target hardware platform. The contributions of this thesis are as follows:

• A placement algorithm, called ALAPIN mapper that maps intermediate represen-
tation of the complex spiking neural network topologies strictly adhering to the
hardware constraints imposed by target neuromorphic architecture within a de-
cent time frame. The proposed algorithm is adaptable to different configurations
of hardware architectures with reconfiguration capability.

• The proposed mapping algorithm is designed to accommodate a wide spectra of
neural network topologies.

• Given the topology of a neural network, the proposed mapper is capable of provid-
ing different placement solutions, strictly respecting all the hardware constraints
for every solution produced.

• An automatic network generation tool is designed to create wide range of SNN
candidate topologies to evaluate the proposed methodology seamlessly. The tool
is designed to generate very large networks taking into account different network
architectural complexity measures.

• Synthetic networks generated are employed in evaluation of the feasibility of map-
ping the candidate SNNs complying to connectivity constraints of the underlying
target hardware. This evaluation also provides an early projection of the different
design upgrades needed in the neuromorphic hardware to accommodate a vast
variety of spiking based neural networks with non-threshold activation functions.

• A translation engine is designed to convert a neural network description to an
intermediate representation(IR).

• The proposed method has an accurate estimate mechanism for the resources de-
manded by the candidate SNNs and the maximum reachable parameters of the
neural architecture on target hardware.

1.5 Outline

This thesis work introduces an efficient realization of compile-time mapping of complex
architectures of Spiking Neural Networks onto a massively parallel neuromorphic array.
Predominantly, it provides new insights into the placement techniques for mapping
neural networks and the resources utilised by different SNNs on the target hardware.
Main themes of the thesis work are placement technique, spiking neural networks and
neuromorphic processor architecture. The outline of the entire thesis work is divided
into six chapters.
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Chapter 2, 3 introduces the necessary background for spiking neural network
and their working. It provides an overview of the various topologies of spiking neural
networks, which will be evaluated in depth in Chapter 5. Following which, there
is a literature study on different neuromorphic systems and the mapping strategy,
specifically, on few neuromorphic hardware available publicly.

Chapter 3, 4 describes and explains the hardware architecture used in this thesis
work in detail, in addition, introducing hardware imposed constraints that innately
restricts the mapper in terms of achieving a valid mapping within decent time-frame.
This chapter also presents the proposed methodology employed in strategic mapping
of neural networks onto the priorly explained target hardware.

Chapter 5 investigates the characteristics of the proposed ALAPIN Mapper
through various spiking neural network schemes and the complexity imposed by these
neural architectures onto the proposed mapper. This chapter also provides insights
into the parameter space of candidate neural networks and the feasibility of mapping
a particular neural network model on the hardware.

Chapter 6 summarizes the thesis work, addressing the research questions briefly.
This report concludes with discussion of the future work for efficient deployment of spik-
ing neural networks on neuromorphic hardware serving the greater purpose of achieving
energy efficient and high performance for inference at the edge seamlessly.
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Part I

Literature Review and Background
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Neuromorphic Paradigm 2
2.1 Pre-requisite

Inception of a giant automaton carved in bronze to guard Europa from invaders is
the rightful cradle of Artificial Intelligence[4]. Although AI was coined for the first
time in 1956 by John McCarthy, the first decade of the 21st century has immensely
popularised the paradigm of integrating artificial intelligence in a wide variety of appli-
cations. Technological advancements to upsurge computing efficiency, access to large
datasets, accurate and improvised algorithms, and a comprehensive investment from
academia and industry has enabled a very powerful AI, that we witness today. The
devastating effect of publications on ‘Perceptron’ by Rosenblatt led to the cessation of
activity in connectionism for almost a decade. The revival of researchers in the Neural
Network paradigm has made them an influential part of artificial intelligence[5]. De-
spite the immense progress, the hardware platform readily available today fails to cater
to the needs of different application domains with varying intelligence levels (choice of
algorithms), high demand for energy efficiency and faster execution.

There is a wide plethora of hardware that have evolved throughout history based
on the application demands. The von Neuman based compute platforms including
CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field Pro-
grammable Gate Array), and TPU (Tensor Processing Unit) fail, substantially, due
to memory bottleneck. Data retrieval, transportation and storage leads to increased
latency and energy consumption[20].

Table 2.1 encapsulates the comparison of spatial and temporal architectures to de-
ploy AI workloads, however, it is not candid to compare which stands out as the best
solution, since it is purely based on the application and various design constraints in-
cluding time-to-market and cost of the individual chip. For example, edge-applications
demand smaller chip area and low power consumption, whereas cloud-applications need
to cater to the requirements of speed and flexibility[22].

The computational structure of both architectures are very similar, mainly consist-
ing of a set of processing units. A distinguishing feature between both architectures is
the way these units are controlled. Spatial architectures have internal control, whereas
control is centralised in temporal architectures. CPU and GPU fall in the category of
spatial architectures. CPUs consist of multiple ALUs to process multiple data in par-
allel. They adopt the SIMD (Single Instruction Multiple Data) execution model. On
the other hand, GPUs have SIMT (Single Instruction Multiple Threads) in addition
to SIMD, which gives them the true power to run regardless of Cache overhead. A
primary reason of fast execution on GPUs is because they don’t waste cycles waiting
on resources.

The qualitative benchmarking of different hardware is shown in the Table 2.1 as
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surveyed by W. Dei and D. Berleant[6].

1. Compute Density: It is a correlation of which hardware uses how many processing
units in comparison to others. As the traditional CPUs have sequential data
processing with multiple cores, the compute density is low. However, parallel
execution in GPUs is enabled via thousands of cores, making them compute dense.

2. Memory overhead: Data movements are reduced in FPGAs and ASICs to plum-
met energy consumption by employing reusable dataflow movements[7]. Data
movement significantly consumes energy, in GPUs low-latency temporary storage
architectures are used. Overall, the memory overhead is highest in CPUs.

3. Energy Efficiency: Edge devices have high demand for better energy efficiency
because of their limited power envelope. Google’s TPU for cloud and edge appli-
cations is moreover a special type of ASIC, therefore its energy efficiency is highly
ranked than GPUs/FPGAs which come second and third in order respectively.

4. Upgradability: The biggest bottleneck for ASIC is undergoing a new upgrade after
delivery. Flexibility is ranked highest for GPUs and then comes FPGAs, whereas
CPU up-gradation is a bit of a challenge in itself.

5. Performance: In computing terms, performance is measured using FLOPS. A
quadrillion FLOPS (petaflops) are used in ASICs and GPUs.The latest release
by Google, TPU 3.0 provides 23.0 petaflops [11], whereas NVIDIA GeForce RTX
2080 Ti has only 13.4 Teraflops [8]. As critically acclaimed by [6] and [10], ASICs
have the most FLOPS and performance wise stand out with respect to CPUs,
GPUs and FPGAs.

6. Compatibility: FPGAs are bottlenecked by non-availability of special developing
libraries. GPUs are the most compatible with large sets of ML frameworks in
comparison to TPU (ASICs). Google’s TPU might stand out in terms of energy
efficiency and performance, nonetheless, they only support Tensorflow[9]. It is not
even Tensorflow Lite but only models quantized to 8-bit integers (INT8), hence
making them unsuitable for deep learning models.

Bottle-necked by synchronization and communication overhead, the neural comput-
ing is still plausible on von Neuman architecture, but not very efficient. On the other
hand, FPGAs are capable of catering to the needs of neural computing, they are a
promising surrogate target platform balancing between power hungry computing ar-
chitectures and power-efficient and fixed function ASIC. The stroke of luck in FPGAs
is their reconfigurable capabilities, that allows efficient mapping of CNN to meet la-
tency, throughput and power requirements in areas from embedded systems to data
centers[6]. However, the capabilities of FPGAs fail when there are millions of neurons
and trillions of synapses to recreate the capabilities of our brain on a compute plat-
form using Spiking neural networks (SNNs), which entails the fast-paced research and
development of neuromorphic hardware. To be able to efficiently perform the neural
network computing without any power overhead and compromise in throughput and
performance, there is an immediate need to define and set an underlying architecture
like neuromorphic chips[21].
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Table 2.1: Comparison of qualitative benchmarking of different hardware platforms for AI
CPU GPU TPU FPGA

Compute Density Low High High Moderate

Memory Overhead High Low Low Low

Energy efficiency Low Good High Moderate

Architecture TemporalTemporal Spatial Spatial

Upgradability High High Low Moderate

Performance Moderate High Very High Low

Compatibility Moderate High Low Low

2.2 Neuromorphic Computing

The architecture of human brain makes it the most energy efficient and lowest la-
tency system on earth[14]. Human brain is made up of dense neurons transmitting
signals through synapses efficiently. Carver Mead in the late 1980’s coined Neuromor-
phic Engineering as systems containing analog/digital circuits to mimic neurobiological
elements[23]. A typical neuromorphic hardware encompasses any electrical device which
mimics natural biological structures of the nervous system. The overarching goal is to
impart cognitive abilities to a machine by implementing neurons in silicon. Today’s
methodology of implementing neural networks on the traditional von Neuman hard-
ware fails inherently to provide low power and fault tolerant operation in comparison
to the neuromorphic systems directly implemented in hardware[24]. The major draw-
back of von Neuman architecture is that it is built around the principle of transistors
operating in saturation region with a very deterministic behavior, making them power
hungry, primarily synchronous and vulnerable to physical damage[25]. On the other
end of the spectrum lies the biological systems which have non deterministic operation
with immense parallelism.

The theme of brain inspired approach is to utilise biological guidelines of neuromor-
phic computing for high speed design of large-scale biological nervous systems as BMI
(brain machine interfaces)[26], or to address the limitations of CMOS digital comput-
ing in applications such as pattern recognition, computer vision, in general, learning at
low power consumption[27]. Spiking neural networks are computational models quite
different from their ancestor artificial neural networks, and hence understanding and
appreciating how they work is important before diving into why a specialised hardware
might be beneficial to run these spiking neural networks.

2.2.1 Spiking Neural Networks

Neuro-biology inspired Spiking Neural Network (SNN) are efficient to perform learning
and classification, closely mimicking the human brain. The resemblance of DNNs is
only marginal to the brain-like computation. The energy efficient and event-driven
processing of brain is succinctly replicated in SNNs, making them a promising candidate
for AI applications[12][13][15].
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Figure 2.1: Illustration of Venus Flytrap showing trigger hairs to signal the contact of 1/10th
of an insect in their trapping structure. The redundant trapping mechanism is closely related
to how spiking neurons work. Image from [16]

• Spiking Neuron As much as the working of SNNs mimicks the biological nervous
system, interestingly, it can be co-related to a Venus fly trap, a carnivorous plant
as shown in Figure 2.1. The trapping mechanism is beautifully interwoven or
timed to ensure a bug or insect is caught, just upon 1/10th of the contact of the
insect with leaves, specifically contacting the sensitive hair on the inner surface of
the leave. Atleast two-sensitive hair must be triggered to identify an insect and
call for closure immediately upon trapping a fly.

A neuron receives the incoming spikes from presynaptic neurons through synaptic
connections in the form of membrane potential. These incoming spikes can possess
either excitatory potential or inhibitory potential which solely decide whether the
neuron is going to fire a spike or not. After integration of the various membrane
potentials, once the threshold potential is hit, the neuron fires an output spike as
shown in Figure 2.2.

• Synapse The neuronal information is transmitted from presynaptic neuron to
postsynaptic neuron through a synapse. The standard communication protocol
is facilitated through a train of spikes- consisting of a stream of binary numbers,
where a ‘0’ corresponds to spike off and ‘1’ corresponds to spike on.

• Synaptic Weight Synaptic efficacy or weight definitely represents the impact
that a transmitting neuron activity signal can have on a receiving neuron through
synaptic connections. From the biological perspective, synaptic weight is the net
propensity of the transmitting end neuron’s action potential to release neurotrans-
mitter, and the propensity of the neurotransmitter to open synaptic channels on
the postsynaptic neuron.

Synaptic weights determine what exactly is a neuron detecting. A strong weight
value implies sensitivity of a neuron to a particular input neuron, while a low
weight implies input of a neuron is comparatively not important. There are two
types of synapses:
Excitatory input: Increases neuron’s membrane potential

10



Figure 2.2: (a) Illustration of a biological neuron. Dendrites send pre-synaptic stimulus to the
neuron, soma performs the integration of synapses. ((b),(c)) Action potentials release neuro-
transmitter in synaptic vesicle. EPSP(depolarisation) and IPSP(hyperpolerisation) charac-
teristic through stimulation of ion channels are shown (d) Schematic representation of Spiking
Neural Networks (SNNs).The integration of the membrane potential over incoming spikes to
output a spike (shown in red) when the firing threshold is hit. Image from [29]

Inhibitory input: Decreases neuron’s membrane potential

As depicted in Figure 2.2, the membrane potential of the neuron increases or
decreases as a spike is injected to it. Variation of the membrane potential of
a postsynaptic neuron is termed as ‘Post-synaptic Potential(PSP)’. Positive or
Excitatory Post-Synaptic Potential (EPSP) is the result of spike generated by ex-
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citatory synapse, whereas a negative or Inhibitory Post-Synaptic Potential (IPSP)
is the result of spike generated by an inhibitory synapse.

• Neuron models There are a bunch of neuron models developed in the past over
the decade and the analog neurons on the hardware are LIF (Leaky Integrate
and Fire) neuron model.In a LIF neuron model, a leaky integrator fires the spike
if membrane potential of the neuron hits a leaky threshold, after which it drops
down to a refractory state to reset itself. Electrically, it can be envisioned as RC
circuit[4]. LIF model is a popularly used spiking neuron model due to its low
computational cost and simplicity. There are a couple other potentially stronger
neuron models, although high on cost and they bring along extreme implementa-
tion plausibility. For example, the Izhikevich model.

2.2.2 Neuromorphic hardware architectures

Mimicking brain and scaling it down for different low power embedded applications to
tap the benefits of parallel architecture in silicon is ac hived through a new paradigm
of hardware called neuromorphic hardware. There are some architectures for neuro-
morphic hardware that evolved during the last decade by research institutes like IBM,
Intel’s INRC, Stanford etc that provide a good insight at the way of implementing spik-
ing neural networks on these dedicated hardware and these systems are highly energy
efficient. To be able to host real-time operation, realise low-power consumption and
scalability, a radical departure from conventional design to brain-inspired architecture
is taken.

1. Loihi : Intel’s Loihi comprises 128 neuromorphic cores, each core realising the
implementation of 1024 primitive spiking neural units that are a group of sets of
trees constituting neurons. Loihi is built on Intel’s 14nm process and it is the state-
of-the-art fully integrated spiking neural network chip in silicon. It imparts most
important qualities like programmable learning rules, dendritic compartments,
synaptic delays etc. The chip consists of over 130,000 neurons that communicate
with a thousand other neurons, the dedicated hardware is built to optimize SNNs
and in turn support accelerated learning fulfilling the ultra low power requirements
and high performance[59].

2. TrueNorth : IBM developed TrueNorth as a part of Defense Advanced Research
Projects Agency (DARPA) SyNAPSE program[6], the largest neurosynaptic com-
puter with 4096 neurosynaptic cores consisting of 1 million spiking neurons and
256 millions synapses interconnected in an event-driven routing infrastructure[55].
Each core out of 4096 neurosynaptic cores, brings together memory, processors
and communication as Synapses, Neurons, and Axons respectively in IBM’s 45-nm
SOI process[55].

As shown in the figure 2.1, the neurosynaptic core consists of buffers that receive
inputs from the network, axons form the horizontal lines, dendrites form the
vertical lines and neurons are represented by triangles. A synapse is the junction,
represented by a dot, between axons and dendrites[55]. The output of each neuron
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Figure 2.3: Bipartite graph of a neural network (left), with arbitrary connections between
axons and neurons, and the corresponding logical representation of a TrueNorth core (right)
depicting the input, neurons and synaptic junctions[55]

is connected to the input buffers. The following steps are the way the computation
of neurosynaptic core proceeds.

• Input buffer stores the spikes arriving from the network.

• On the arrival of synchronization trigger, the current spikes are read from
input buffers and distributed across the horizontal axon line.

• In case of joint formation at horizontal axon and vertical dendrite (synaptic
connection), the spike from axon is delivered to the neuron through dendrite.

• The membrane potential updates in each neuron with every incoming spike.
Upon integration of all spikes in a neuron, the leak value is subtracted from
its membrane potential.

• Upon exceeding the threshold, a spike is generated and sent to the network.

3. Neurogrid : Neurogrid is the born at Stanford University’s BrainLabs. With
the help of a mixed-signal system, researchers were able to pull off a humongous
and affordable simulator to provide computational neuroscientists with the capac-
ity to perform brain simulations with millions of neurons and a billion synaptic
connections. It has a 256x256 neruo-synaptic array fabricated in 180-nm CMOS
which makes one neurocore. 16 such chips were used to build a board which was
arranged in a tree-structure called Neurogrid.

4. SpiNNaker : SpiNNAker stands for Spiking Neural Network Architecture, a
massive parallel computer which is a cost-effective and quite flexible simulator
for neuroscientific experiments. Like any other neuro-synaptic chip, this one can
also simulate billion neurons and trillion synapses in real-time. A SpiNNaker chip
has 18 ARM968 processor nodes residing in synchronous islands, it has a custom
designed globally asynchronous locally synchronous (GALS) system[54].
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5. DYNAP-SEL: A novel mixed signal multi-core architecture for neuromorphic
processors which amalgamates the perks of asynchronous digital logic for commu-
nication and dynamics of analog circuits for computation. There are two varia-
tions in the mixed signal chip i) Dynamic Neuromorphic Asynchronous Processors
(DYNAPs) which was designed in 180nm CMOS process and ii) Dynamic Neuro-
morphic Asynchronous Processor with Self Learning abilities(Dynap-SEL), both
were created at the University of Zurich in Switzerland. Both the chips have 4 dif-
ferent neural processing cores. Every core has neurons structured in 16x16 grid,
the neuron model is Adaptive-Exponential Integrate and Fire (AdExp-IandF).
There are 64 programmable synapses for each neuron.

2.3 Mapping SNNs on neuromorphic systems

Inspired by biology and supported by research in neuroscience, the hardware evolu-
tion has been seen through past years and it is evident that the neural networks can
be mapped onto hardware with biological time plausibility [19]. The generic way of
achieving simulation or emulation of the neural networks on von-Neuman based com-
puting paradigm usually follows these steps: i) Compilation, ii) Resource allocation
and iii) Run time mapping. There is sparse literature on how the spiking neural net-
works are deployed on the neuromorphic systems. In the past decade, there has been
extraordinary research in accomplishing the implementation of brain-inspired spiking
neural network on brain-inspired neuromorphic hardware.

2.3.1 Placement strategies

An onerous process of hand-designing and manually laying out the designed integrated
circuits was metamorphosed into a set of software tools for designing electronic systems
like IC(integrated circuits), ASIC(application specific integrated circuits), PCB(printed
circuit boards) etc using electronic computer aided design (ECAD), also known as
Electronic design automation(EDA)[17].

Placement, typically, deals with choosing location for each logic block in the
technology-mapped netlist. Different components of the designed circuit are placed
like standard cells, macro blocks, I/O pads (assigned specifically to pins around the
periphery of the chip) etc. The complexity increases with a large circuit size. There is
a close relation between EDA frameworks existed so far and the strategies employed to
realise neural networks on the hardware. The placement techniques used in industry
and academia in placing VLSI circuits with tens of millions of standard cells are as
follows:

1. Stochastic approach

2. Partitioning approach

3. Analytical approach

Since the modern circuits are humongous in terms of module density, placers com-
bine various optimization techniques with a hierarchical approach to efficiently place
and route the net models.
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2.3.2 Mapping on neuromorphic hardware

In a normal placement problem for VLSI circuits, the logic circuits have to be converted
to a clique or net model before placing and routing them on the hardware. There
is a paradigm shift while mapping neural networks on any hardware platform (i.e.
CPU, GPU, or ASIC), the general flow will be discussed in Chapter 4.4 Section 4.1.
The placement techniques can coincide, however the challenges posed by neuromorphic
hardware and SNNs are very different than the usual circuits mapped. The strategies
employed by state-of-the-art neuromorphic hardware platforms will be discussed below:

• DYNAPs

DYNAPs is designed to have 4 crossbar arrays with 256 neurons per core in their
underlying architecture. Partitioning based approach is to cluster the SNNs and
the authors treat it as a bin-packing problem and employ greedy strategy to
solve the mapping problem with crossbar utility maximization as their primary
objective[52]. The evaluation of the approach is carried out through run-time
complexity and resource utilization for applications with dataset covering feed-
forward networks, convolutional neural networks and recurrent neural networks.

• SpiNNaker

SpiNNaker is a massively parallel chip multiprocessor that realises large scale SNN
simulations in real-time. PACMAN is implemented to map SNNs on SpiNNaker.
The SpiNNaker chip is visualised as a connection of six neighbours, by assigning
neurons to any processor arbitrarily and configuring routing tables to ensure the
timely neural events[54]. Since, the entire system has about 18 cores with ARM
processors, the primary objective is to optimize the routing resources to gain
positive impact on network traffic. This is tangential to the research carried out
in this work, as we deal with single core architecture with complex constraints.

• TrueNorth

A digital neuromorphic chip, IBMs TrueNorth is built on 28nm technology with
4096 cores, accommodating 256 neurons per core with 1-bit SRAM for synapse
weight storage. As proposed by authors in [55], TrueNorth uses corelet tool,
an object-oriented language to map SNNs. The trained parameters are mapped
using re-usable, composable hardware description function independent of any
neuromorphic platform[56].

• Loihi

Intel’s digital neurormorphic research processor, Loihi is a 128 core, built on 14nm
FinFET chip. Compiler developed in PythonAPI for Intel Loihi’s NxSDK uses
a greedy algorithm to map SNN onto multiple neuron cores[60]. The evaluation
is carried out on realistic AI models and how communications cost in terms of
energy and performance are optimised using the compiler built for Loihi.

The research effort by most of the above mentioned groups have been to address
the mapping of spiking neural networks from a Network-on-Chip (NoC) perspective,
addressing routing resources, inter-core spike traffic etc. The mention of mapping on
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a single crossbar is very sparse, only in [57], hence leaving placement under covered
in [54][56][52]. The underlying architecture of the target platform and the complexity
in the design dictates the complication of devising a placement technique to meet the
constraints imposed by hardware within decent run-time. TrueNorth’s architecture
with 1:1 neuron and synapse leads to no segmentation in the crossbar array, hence no
inferrable comparison is possible with target hardware. Intel does provide insights on
time complexity of running different SNNs on Loihi, however there is no straightforward
mention of the exact SNN architecture and the limited knowledge of their underlying
hardware design leads to no conclusive comparison with target hardware.

2.3.3 Conclusion

The comprehensive review in this chapter has pointed the sparse literature on map-
ping complex SNNs on a specialised neuromorphic processor, even though mapping is a
heavily researched topic. Different approaches used by industry and research institutes
have a commonality in them, their underlying hardware is only comparable in certain
degrees (example: design of the chip in terms of neurons, synapses and cores etc) and
not directly in terms of the architecture. This poses a huge challenge in comparing the
state-of-the-art, firstly. The sparse literature on mapping a complex variety of SNNs
using a custom compiler or placement technique on a specialised neuromorphic hard-
ware like target architecture is evident to show the complexity of the challenge this
thesis is trying to address. Consequently, there exists no refined dataset on SNNs that
can be experimented to qualitatively and quantitatively measure the performance of
the mapper. By employing the existing placement algorithms for solving the problem
posed by this thesis is not possible and needs further insights from literature. The
limited knowledge of placement techniques for neuromorphic paradigm and the chal-
lenges imposed in the introduction chapter are in tandem which will be addressed and
a solution will be proposed in methodology chapter.

16



Target architecture overview 3
3.1 Target hardware

The crucial part of this thesis is the hardware platform: neuromorphic crossbar archi-
tecture as shown in Figure 3.1. To be able to map the given neural network scheme,
it is substantial to understand the hardware architecture. Hardware architecture is
designed to accommodate large neural networks by intelligent resource sharing mech-
anism which impose constraints on the allocation of resources and availability of the
processing elements (PEs). These challenges and hardware constraints are introduced
in Section 4.2. This section will introduce hardware to understand the origin of con-
straints, the complex topologies of spiking neural networks and the impact of these
challenges while mapping will be discussed in Chapter 5.

3.1.1 Neurosynaptic Array

The neurosynaptic array is the most important element of the spiking based neuro-
morphic hardware. Predominantly, the core comprises of M neurons and M2 synapses.
The dashed lines colored in pink in Figure 3.1 mark the boundary portraying the array.

The complex formation of synapses, neurons and the inner architecture of input
resources, bring out the best in the hardware and forming a basis for fabrication of
constraints which will be discussed in detail in Section 4.2.

3.1.1.1 Neuron

In determining the scheme of neural network that can be mapped onto the hardware,
knowledge of activation function employed in the spiking neural networks, and a know-
how of neuron model implemented in the hardware is necessary. This can decide the
spectra of spiking neural network topologies that can be placed on the hardware. Nev-
ertheless, it just doesn’t limit to that, depending on the flexibility of the physical neuron
model, there can be more complex networks mapped onto the hardware seamlessly.

3.1.1.2 Synapse

An important processing element of the neurosynaptic core is the SYNAPSE. The
functioning of synapse is quite straightforward. Depending on the edges in the neural
network that will be mapped onto the synapses on hardware, this enables/activates the
synaptic operation to output the current upon receiving input current. Synapses store
the weights of neural networks in the form a memory on hardware.
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Figure 3.1: Illustration of the significant PEs on Spiking Neural Processor

3.1.2 Digital interface

This section is ommitted due to confidentiality purpose.

3.1.3 Architecture overview

The introduction to the target hardware architecture bridges the gap to understand the
hardware constraints and the proposed methodology for mapping seamlessly. Having
introduced the complex target hardware with thousands of processing elements (PEs),
the next section will give a brief overview on surveyed topologies of spiking neural
networks that needs to be mapped on to the target hardware to achieve the objective
of this thesis work, and at an overarching level, configure the hardware to implement
the neural networks for different applications.
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Figure 3.2: Feed Forward Network (Encoder style)

3.2 Spiking Neural Network Schemes

In this thesis work, there is a detailed investigation on which schemes of neural networks
are possible to be mapped onto the neuromorphic hardware. Therefore, this section
introduces background on different neural networks, topologically and functionally.

The elemental building blocks of any neural network are artificial neurons and
synapses with weight values. Figuratively, the functioning of neural network is con-
cretely defined by the signals paths and adjustable weights. Henceforth, throughout
the thesis report, the terms nodes and edges will always refer to a neural network or its
graphical representation, whereas neurons and synapses will be used in the context of
neuromorphic hardware. The spiking architectures are reviewed in detail which form
the basis for design of experiments in Section 5.

3.2.1 Feed Forward Networks

Feed forward networks are one of the simplest forms of neural networks with input and
output layer with number of hidden layers in between. A notable characteristic of this
scheme of network is the flow of signal which is in one-direction, without any loop-back.

Typically, a feed forward network has input, hidden and output layers with certain
number of nodes that receive sum of product of input weight values and based on the
activation function, the nodes decide to pass the output value to the next layer node
or not. The feed-forward networks employ supervised learning, wherein the network
is taught to which particular category does the pattern belong to. Once the category
pairing is done for every pattern, you have achieved an epoch of learning.

Figure 3.2 is an over-simplification of an encoder style feed forward neural network
with input layer with nodes (0-7), hidden layer with nodes (9-12) and finally, the output
layer with nodes (13-15). The degree(in -degree and out -degree) of the hidden layer
nodes are relatively higher than the input layer and output layer nodes.
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The feed forward based deep neural networks are employed from cardiovascular en-
gineering in clinical applications to cyber-forensics[33][36]. Notably, there are numerous
NNs that employ feed forward architecture, like, Multi-layer Perceptrons (MLP), Deep
Belief Networks (DBN), Convolutional Neural Networks (CNN) and Auto-encoders.

3.2.2 Autoencoders

As rightly explained by Hughes phenomenon or peaking phenomenon[34], the expected
predictive nature of a classifier or regressor is linear with respect to the features, however
due to curse of dimensionality, the predictive nature begins to decline progressively
instead of gradual improvement with additional dimensions.

Nevertheless, pertaining to simple classifiers, Zollanvari et al[35], have shown analyt-
ically and empirically, that not just the size of the features but the discriminatory effect
contribute towards the nature of predictive power. The vastness of high dimensional
space leads to inefficacy in predictive performance, forming a predominant machine
learning problem, if it is adding only noise instead of signal to the space. For unsuper-
vised data analysis, this effect can be swamping, giving rise to techniques that employ
dimensionality reduction using PCA(Principal Component Analysis) which leads to lin-
ear network generation. To address larger problem space, autoencoders are harnessed.
Unlike PCA, autoencoders are powerful enough to model non-linear functions.

The simplest autoencoders are non-recurrent and feed forward in nature, essentially,
comprising of input, output and hidden layers. From the discussion above, to achieve
dimensionality reduction for non-linear activation functions, autoencoders are deployed
for compressing the input data in the hidden layer, which later, represents the original
input at the output layer. The hidden layer is also known as the “Bottleneck layer” as
the number of nodes are constrained to limit amount of information flow through the
network. Consequentially, letting the model to learn and retrieve the most important
latent attributes of input data. The number of nodes in the hidden layer(s) accounts
for the certainty that the model is not memorizing the input data.

3.2.3 Recurrent Neural Networks

As discussed in section 3.2.1, the signal moves in a single direction for feed forward
networks, however, there is a possibility of feedback from one layer to previous layer in
a recurrent neural network, as shown in Figure 3.4.

For a wide variety of application having different input-output scenarios, the net-
work functions to accommodate the sequential inputs and outputs through time for
applications like: Image captioning, document classification, video processing by frame
etc.

Since, backpropogation through time is utilised for training RNNs, consequentially,
introducing the vanishing gradient problem. This problem is over-amplified in RNNS
due to the incurrence of time steps. For instance, a network trained for 1000 time
steps, the gradient will vanish exponentially as it would in a Multi-layer perceptron
(MLP) with depth of 1000. To combat the vanishing gradient issue, Felix Gers, Jürgen
Schmidhuber and Fred Cummins architected forget gate (keep gates) in 1999 [37], lead-
ing to a advanced architecture of RNNs called as LSTM(Long-Short Term Memory) in
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2000[37]. A much simplified variant named GRU (Gated Recurrent Unit) was proposed
by Kyunghyun Cho et al[38].

Most significant application of recurrent neural networks are seen in auditory appli-
cations like speech recognition, text-to-speech recognition etc. It is also proven as the
technology companies like Google employ LSTMs on Google Voice [40][41], Apple uses
LSTMs for quicktype in iPhones for Siri[42][43], Amazon uses a bi-directional LSTM
in Polly (voice behind Alexa)[46].
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Figure 3.5: Self- Organizing Map/Kohonen Network architecture

3.2.4 Self-Organizing Maps

Self-Organizing Maps, or classical Kohonen networks are biologically inspired algorithm
that mimic the mammalian cortices. Topologically ordered spatial representations of
feature maps in various sensory areas of cortex are evident as acclaimed by H. Kaas
and Rumbell [44][45].

The spiking SOM architecture as shown in Figure 3.5 represents the input layer,
which receives input from the external data set feeding into a bank of neurons in the
first layer. The input data set is converted into a temporally rich spike series[45]. The
connections from this input to the SOM layer is one-to-all in feed forward fashion. The
SOM layer, more specifically, the torus layer implements the neighborhood function
with All-to-all lateral synaptic connections. The three factors contributing towards the
self-organization of feature maps are i) Temporal spike encoding of input dimensions,
ii) neighborhood function, and iii) STDP learning rule.

3.2.5 Lateral Inhibitory Networks

Lateral inhibitory networks are a type of spiking neural networks with excitatory and
inhibitory neurons. Inhibitory neurons have the ability to inhibit or decrease the action
potential of the synapse to whichever neuron they are connected to[30][31]. Figure 3.6
shows the topological representation of lateral inhibitory networks, where the hidden
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Figure 3.6: Layered full lateral Inhibition architecture in Lateral Inhibitory Network

layer neurons numbered(5-8) have a complimentary inhibitory neuron. The neuron in
hidden layer fires an action potential, and the inhibitory neuron connected to it will
fire and inhibit the rest of the neurons in the hidden layer from firing a spike.

3.2.6 Liquid State Machines

Reservoir Computing was proposed by two independent research groups. Echo state
networks proposed by Jaeger in 2001 are rate-based approximation, in contrast, Liquid
State Machines proposed by Maas et.al[12], are biologically inspired spiking neural
networks. Liquid state machines use reservoir of untrained neurons. They are more
tended towards unsupervised learning theme. It essentially has three layers, an input
layer, a liquid layer and readout layer as shown in Figure 3.7.

Since LSM’s are employed in audio classification, mostly binary classification, and at
times multi-classification applications. Few examples of LSMs applications are Speech
recognition, vision, music classification (Bach/Beethoven music). The number of neu-
rons and the way they connect between each other determine the degree of complexity
in liquid layer. The connections between neurons defines the dynamical process and
the lateral recurrent connections defines the topology.

The need for sufficient liquid neurons is necessitated by the fact that there is con-
version of input data to high dimensional expansion and readout layer fulfills the clas-
sification task. Ideally, the number of liquid neurons is 10x input neurons. Another
important aspect is the sufficient recurrent connections so that the neural network
maintains the information in a signal and it has the ability to separate different signals.

Primary neurons in liquid layer have the power of accepting feed forward signals, and
auxiliary neurons have the ability to connect to readout layer neurons. Both, primary
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Figure 3.7: Liquid State architecture with randomly connected liquid layer

and auxiliary, neurons have the capability of connecting to each other in a random
fashion. The number of synaptic connections from input layer to primary neurons in
liquid layer can produce unique high-dimensional representation of the input data set,
thus ensuring high accuracy.

3.2.7 Complete Hidden Layer

This scheme of neural architecture includes a complete hidden layer with input and
output layer as shown in Figure 3.8. E. Frady and F. Sommer proposed a temporal
neural coding scheme using networks with threshold neurons[49]. These neurons em-
ploy Hebbian type hetero-associative learning to store transitions of sequential neural
activity patterns.

The hidden layer is essentially a Hopfield network or more closely in collation with
bi-directional associative memory(BAM). The important applications of these network
types is image segmentation or image restoration with/without enhancement which
leads to two different modes of these networks. Firstly, the binary mode which employs
Hopfield networks with no self-connections for image segmentation and secondly, con-
tinuous mode which allows self-connections mainly used in medical image processing
or image restoration.

3.3 Conclusion

The underlying hardware was introduced in the first section of this chapter with empha-
sis on the significant resources that will be considered during design of the algorithm.
The nature of the hardware and the careful design leads to many constraints that make
mapping of neural networks not so straightforward. Detailed introduction to harwdare

24



-

-

-

-

-

-

-

-

-

-

--
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

10

9

8

7

6

5

4

3
2

1

0
Hopfield network

Figure 3.8: Complete Hidden Layer architecture

constraints will be discussed in section 4.2. Complex spiking neural network topologies
were explored extensively. The behaviour and integration of the various SNN topolo-
gies on the neuromorphic hardware is sparsely explored in the literature. The proposed
mapping algorithm will be evaluated on these aforementioned SNN topologies in detail
in Chapter 5 to investigate the ability of the proposed mapper to map to the target
hardware.
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Proposed Methodology
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Possible Placement Matrix
mapping method 4
The main goal of this thesis is to map different topologiess of SNNs on the target
neuromorphic processor. Before building an algorithm for realising the mapping of the
intermediate representation of a particular neural networks, it is crucial to know the
underlying architecture of the neuromorphic hardware and the hardware connectivity
constraints that form the basis of challenges for seamless mapping. The proposed
methodology is divided into two sections: i) Hardware constraints due to the design of
the target hardware and ii) the proposed mapping method.

4.1 Approach

The block diagram in Figure 4.1 depicts the approach and an overall flow taken in this
thesis work. Every block in the diagram forms an important element towards achieving
the end objective of mapping spiking neural networks onto the neuromorphic hardware,
which will be discussed in Section 4.4.

The idea behind the mapping of neural networks onto a specific hardware which is
inspired from biology is to reap the benefits in terms of processing power and speed
when realising it on an embedded device. This thesis will address mapping of a pre-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

15

14

13

12

11

10

9

8

6

5

4

3

2

1

0

Neural Network
Description

Graph

Representation

Hardware

Constraints

Mapper
Hardware

Connectivity
Matrix

Intermediate

Representation

Pre-trained model

Hardware

Figure 4.1: Block diagram illustrating the overall flow. Neural network description is input
to the mapper, hardware constraint aware connectivity matrix is produced as output, which
acts as an input to the configure the target hardware
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trained model of spiking neural network rather than training the model on-chip itself.
Therefore, a pre-trained model for applications like classification or detection etc are
considered as the input to the entire system. The pre-trained model is essentially
converted to an Intermediate Representation(IR) so as to ease the further process in
obtaining a graphical representation. The IR is incorporated to be able to parse to
any output format before giving it to the Mapper and in addition, to help visualize the
neural network easily through standard network softwares like Cytoscape or YAML.
The next block in the flow is the crux of this thesis work, the mapper. It performs
the allocation of nodes and edges of a neural network onto the processing elements like
physical neurons and synapses through input blocks on the specialised target hardware
and mapped addresses of these PEs are produced with a connectivity weight matrix
that can be used to configure the hardware.

The overarching goal of this hardware design is to accomplish running complex
neural networks, and accommodate myriads of synapses and neurons on a single system.
This complicates the software design to fulfill the constraints that transpire due to an
intricate hardware architecture. Capturing and defining the hardware constraints is
cardinal in designing and developing a matured mapping algorithm. Therefore, the
‘Mapper’ receives input from neural network and hardware. This block essentially
converts the parsed graph representation of the neural network to fit onto neurons
and synapses on the hardware, more definitively, in the form a hardware connectivity
matrix. The mapped addresses of physical neurons, input resources, weights assigned
to a synapse etc is fed in the configuration file, which can be later fed to the hardware
to run a pre-trained model on the chip.

4.2 Hardware Constraints

This section is omitted due to confidentiality purposes.

4.3 Challenges in mapping

The different constraints introduced in the above section formulate a strong basis for
architecting the algorithm and the design choices made. The computational complexity
of the algorithm depends on how quickly the constraints are satisfied when the available
hardware resources are exhausted for a huge neural network to be mapped.

At an interface level, the connectivity constraints dictate the feasibility of mapping
a network with higher layer widths in the early stages of neural network. Careful
consideration of all the hardware constraints based on the available hardware resources
can be laborious as the network size grows.

Consider a colossal neural network, and a tiny hardware, but with millions of
resource, it would take a normal human being about days to map these neural network
onto the hardware by satisfying all the constraints imposed by the hardware. Hence,
engendering the need of an automatic mapper. An intelligent mapping strategy or
an algorithm is needed for achieving a valid and legal solution within decent time-frame.
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Figure 4.2: (a) Weighted adjacency matrix which is obtained from the graph description,
(b) Mapped connectivity matrix produced by proposed Algorithm respecting the hardware
constraints

There can be multiple ways of performing resource allocation, a more static approach
was taken in the early attempts of mapping which led to a fixed placement only on
a particular corner of the hardware. This form of placement can introduce an over
utilization of the same resource and the exploratory space is reduced if neurosynaptic
delay or congestion etc is a major concern.

A formula based or mathematical approach to map the resources has been tried dur-
ing the attempts of devising the algorithm. A mathematical approach led to invalidity
in the placed neural network with overlap of resources and was applicable to single
layer networks (effectively). Given a deep neural network, the input resources were
exhausted quickly and hence, this mathematical approach is an ill-fit with different
constraints and the resources available on target hardware.

The iterative research and tweak in design choices has led to the possibility place-
ment technique which is insensitive to the layers or type of connections in a neural
network to allocate resources and converge to a valid placement.

4.3.1 Weighted Adjacency matrix

Using the pre-trained model or synthetic neural network description, the IR produces
a graph which is characterised using an adjacency list. Another possibility is using an
adjacency matrix of the graph of neural network, which can directly co-relate to the
placement of weights for different input and neurons on the hardware. This is visualised
in Figure 4.2. An important point to be noted here is that a straight forward adjacency
matrix may look like a viable option at first glance, however, it is not anywhere close
to a valid placement solution.

An important observation to be made is the size of the matrix in each case. In
Figure 4.2(a), the size is 38 x 38, however in Figure 4.2(b), the size is 128 x 128, which
is more than enough to fit a network size of 8 x 32 Self-Organizing Map architecture
on target hardware. It is clear that one is not same as the other and hence a weighted
adjacency matrix cannot be directly put on hardware. This enforces the creation of a
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highly intricate placement technique.

4.4 Possibility Placement Technique

This section discusses the placement framework proposed to meet certain objectives
which have been reached upon with iterative design choices in this thesis work. A
placement technique is introduced to run an application consisting of neural networks
on the neuromorphic target hardware. The mapping algorithm is designed with
careful consideration of numerous complex constraints arising from hardware design
to allocate the resources and arrive at a valid and legal placement solution.

Based on various hardware constraints and the format of intermediate representation
of the neural network scheme as introduced in Section 4.1, the mapping algorithm is
devised to meet the following objectives.
The primary goals of the placement technique proposed in this thesis work are:

1. Optimality of the solution

• Obtaining valid mapping

• Avoiding resource overlap

2. Valid placement within certain time-frame

4.4.1 Methodology flow

In this section, the possibility placement mapping method will be discussed in detail.
The working flow as illustrated in Figure 4.3 is discussed below:

1. The pre-trained neural network is given as an input, which is converted into an
intermediate representation. GraphML format is chosen to have interoperabil-
ity and flexibility in converting to a graph representation. It is a standard and
supported by a lot of graph libraries.

2. Obtained GraphML is graphically represented as an adjacency list which serves
as an input to the mapper. The adjacency list makes sure that all the associated
edges to a single node in the graph are placed at a stroke.

3. Depending on the target platform, hardware parameters are given as arbitrary
inputs to the mapper.

4. Possible Placement matrix is generated using the hardware parameters which is
essentially the search space of the mapper.

5. An empty container for physical neurons and input resources is created which
holds the mapped address of hardware resources.

6. Depending on the input graph parameters and the global constraints, initial fea-
sibility check is carried out. If this condition is met, then the detailed mapping
will begin.
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7. Breadth-first search traversal technique is employed while allocating the nodes
onto physical neurons and edge weights on to synapses.

8. An initial random input resource is chosen from the available resources and an
initial physical neuron is chosen randomly from the available resources.

9. Numerous checks will result in address updation of physical neurons and input
resources adhering to the strict rules based on the constraints.

10. Depending on the placement stage, legality checks are carried out to ensure there
is a non-overlapping solution produced.

11. After passing all the checks and if the end of adjacency list has been reached,
the final connectivity matrix is generated using the mapped address of physical
neurons and input resources. The compile-time generated mapped addresses and
weight connectivity matrix can be infused into a configuration file which acts as
an input to the hardware.

12. In addition to connectivity matrix, delay profiles and resource utilization estimates
are obtained for further evaluation.

13. To obtain the spread of the network on the neurosynaptic array, congestion clus-
ters are obtained in addition to noise points, which are co-relatable to congestion
of resources on the hardware.

4.4.2 Re-Configurable strategy

This section is omitted due to confidentiality purposes.

4.4.3 ALAPIN Mapper

To find a feasible and valid solution for a given neural network adhering to the hard-
ware imposed constraints, Alapin Mapper is proposed. It is an iterative constructive
placement strategy with semi-stochastic approach to allocate resources. The proposed
algorithm is unique because of its insensitivity to the SNN topology, its reconfigura-
bility, and moreover solution to an overlap-free and valid placement within a decent
time-frame.

The randomness in the algorithm is introduced to create an exploratory space for
different placement solutions possible. Having a fully random way of allocating the
processing elements on the hardware can lead to an invalid placement and saturation
of utilizable resources. Certain constraints like network mapping constraints and con-
nectivity constraints have to be respected in order to have a functioning neural network
when configured and run on the hardware. This necessitates to not randomize the al-
location of resources completely and in turn, augmenting the complexity of resource
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allocation and finding a valid solution quickly.

Algorithm 1: psblPlacement Algorithm
Input: Adjacency list, Hardware parameters, Node count[input layer of neural network]
Result: Hardware Connectivity matrix, Mapped address of PEs

1 psblPlcmt Matrix generation;
2 plcmtMatrix = [0];
3 Mappedpy neuron = [];
4 Mappedip signal = [];
5 while True do
6 for Nodesource in adjlist do
7 for Nodetarget in adjlist do
8 if Nodetarget ∈Mappedpy neuron then
9 Update address of py neuron;

10 if Nodesource ∈Mappedpy neuron then
11 if Nodesource ∈Mappedip signal then
12 Update address of ip signal;
13 Check legality (ip signal, py neuron);
14 Search ip signal in assigned input block;

15 else
16 Update address of ip block;
17 Search ip signal in assigned input block;

18 end

19 else
20 if Nodesource ∈Mappedip signal then
21 Update address of ip signal;
22 else
23 Get random address of ip signal;
24 end

25 end

26 else
27 if Nodesource ∈Mappedip signal then
28 Update address of ip signal;
29 Get random address of py neuron;
30 if py neuron is illegal then
31 Search ip signal in assigned input block;
32 Update random address of py neuron;
33 Update address of ip signal;

34 end

35 else
36 if Nodesource ∈NodesInputlayer then
37 Get random address of ip sig ,py neuron;
38 else
39 Allocate unique input block;
40 Choose random ip signal in assigned ip blck;
41 Get random address of py neuron;

42 end

43 end

44 end

45 end
46 Check legality(ip signal, py neuron);
47 Update address of Mappedpy neuron;
48 Update address of Mappedip signal;
49 Populate plcmtMatrix with weight value;

50 end

51 end
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Mapping procedure starts with first source node in adjacency list and maps it
randomly on available input resources and available physical neurons. This process is
carried out until a discovered node is hit in the neural network graphical representation.
After which, depending on previously allocated resources, the same resources are
re-allocated to the discovered nodes. When the hidden layer is reached, the checks
take place to put them in either mapped py neuron or mapped ip signal category.
Depending on if it has feed-forward or recurrent connections, the allocation of resources
take place to either random resource or a previously allocated resource to meet the
hardware constraints and the functionality of neural network is kept in check. As
soon as the adjacent nodes of hidden layer are discovered, the rules change and the
stringent local constraints needs to be met to converge to a solution quickly. The local
constraints discussed in hardware constraints section (omitted due to confidentiality
purposes) are transformed into satisfiability rules and employed in the algorithm as
presented above.

4.5 Conclusion

The possibility placement method and the unique algorithm proposed in this chapter are
in line with achieving the objectives of this thesis work. The algorithm’s performance is
dependent on numerous factors. Hardware constraints, network size and the resources
available, concurrently dictate time-complexity of the algorithm. The nature of the
target hardware (i.e. neuron model and synapse flexibility) influences the feasibility of
mapping to a greater extent than just the global constraints.
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Results
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Experiments 5
This chapter narrates and discusses the experiments performed to evaluate the quality
of proposed mapper and the feasibility of mapping different schemes of spiking neural
networks on the target hardware. Section 5.1 gives an introduction to the goal of the
experiments. Section 5.3 provides details on experimental set up, choice of parameters
that provide insights into different aspects of mapper through neural network topologies
and sizes. The experiments in Section 5.6 investigates the resource utilization demanded
by each candidate SNN to evaluate the best fit on underlying neuromorphic hardware
for a specific use-case in AI application.

5.1 Evaluation Objectives

The objective of this thesis is predominantly focused on creating a technique, more pre-
cisely, a mapping framework which maps the NN topology on the target neuromorphic
platform. The experimental objectives are as follows:

1. The feasibility of mapping a candidate SNN on target hardware.

In the light of this research question, the experiments are performed on chosen
candidate SNN topologies which are concomitant to real-world applications.

2. The time-to-solution of the mapper for surveyed spiking neural network
topologies to qualitatively measure the performance of the proposed
mapper

Major experiments are designed to evaluate the influence of different parameters
of the neural network topologies on the solution time and therefore, performance
of the proposed mapper.

3. The resource utilization on the hardware prescribed by each candidate
neural network architecture

Depending on the literature survey, experiments are designed to garner sufficient
evidence on largest network sizes of the broad range of spiking neural networks
that are a possible fit on the target hardware. A collateral advantage of per-
forming the experiments with above mentioned objective is to report the amount
of resources demanded by the SNN architectures which directly influences opti-
mality in choosing the neural network for an application focused on low-area or
high-performance etc.
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5.2 Evaluation Methods

The proposed algorithm for mapping the SNN topologies onto a given configuration of
the hardware needs to be evaluated. There are two ways of evaluating the proposed
mapper.

1. Efficiency of mapper

2. Efficiency of mapping

5.2.1 Efficiency of proposed Mapper

To evaluate the performance of the mapper, a more detailed experimental analysis is
carried out. Since, the goal of the thesis is to perform mapping of various spiking
NN schemes on the target hardware platform, it is crucial to evaluate how sensitive
the mapper is to a given neural network scheme. The following methods are used to
evalaute the performance of the mapper.

• Time-to-solution
The evaluation of the proposed methodology is carried out by investigating the
computational complexity of the algorithm. Since the proposed mapper is semi-
stochastic in nature, the time-to-solution for every map produced for the same
network varies. Hence, the average time-to-solution for 5 iterations of the same
neural network is measured to report time complexity of the algorithm.

• Hardware Resource Utilization
Hardware resource utilised for each network scheme of different size is varying and
the solution time’s dependency on these hardware resources is evaluated. Different
resources needed for different network schemes and how they are interdependent
on each other and what restrictions they impose on the mapper is evaluated. The
rationale behind this is to investigate a hardware resource space for candidate
neural networks so as to indirectly estimate the number of cores needed in future
to map a huge neural network on a multi-core architecture.

5.2.2 Efficiency of mapping

The proposed mapping technique is capable of producing ‘n’ mapping solutions for a
given network. Due to the randomness, the value of n is quite large. An attempt has
been made to create an exploratory space with ‘n’ placement solutions for the same
network. The cost of each produced mapping is measured using the delay profiles and
spread of the network. However, the optimization of cost function is not carried out in
the present work.

5.2.2.1 Spread of the network

Spread of the network mapped on the hardware is a quantitative congestion metric.
Higher congestion is not exemplar in usual cases with respect to VLSI or multi-core
processor architecture. The approach taken in this thesis work is simple and abstract.
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Density based clustering algorithm [48] is employed. A single value of epsilon value
is set to measure the number of clusters based on the hardware connectivity matrix
generated from the mapper. The noise points in the algorithm also provide information
about the outliers.

Estimated number of clusters indicate the quantitative metric of congestion. Higher
the number of clusters, lower the congestion score indicating a good spread of the
network on the hardware, whereas, lower the number of clusters, lower the congestion
score indicating high congestion and very low spread of the network on hardware.

5.2.2.2 Delay Profile

The path delay in the neuro-synaptic array is modelled to see what is the impact of
each mapping for the same network in different run. Apparently, the delay increases or
decreases depending on the way a network is mapped onto the hardware. Path delay
is modelled as follows:
tp: propagation delay to synapse
tsc: Wirelength delay to physical neuron
tbuffer: buffer imposed delay
rf: Re-configurable factor
The delay inside the neuro-synaptic core is calculated as shown below:

Td = tp × j + tsc × [(ipblck × rf) − i] (5.1)

where,
j = mappedpscl neuron
i = mappedip signal

Tb = (j/32) × tbuffer (5.2)

TotalPathDelay = Td + Tb (5.3)

Since the value obtained using Equation 5.3 is large, a normalised value is calculated
which is as shown below:

NormalisedDelay = TotalPathDelay × 1e− 4 (5.4)

5.3 Experimnetal Setup

The effectiveness of proposed mapping algorithm is illustrated through different exper-
imental designs meeting the objectives proposed in section 5.1. In this thesis work, all
the experiments are carried out on Intel i5-1035G1 4-core CPU machine with processor
base frequency 1.00 GHz and 8GB memory.

All experiments are performed on the machine and only software implementation
and verification is carried out in the present work. The hardware configuration used
throughout the experiments are as per the data available for the target hardware.
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Table 5.1: Candidate SNN architectures: The experiments performed in this thesis work
involve candidates mentioned below, whose architecture is assumed to be spiking in nature.
Note: *marked are not inherently spiking neural architectures and hence assumed to be one
in this work.

Candidate ID Neural Network Architecture

1 FFN Feed-Forward Network*
2 AE Undercomplete Auto-encoder*
3 SOM Self-Organising Maps
4 RNN Recurrent Neural Network
5 LSM Liquid State Machines
6 LIN Lateral Inhibitory Network
7 CHL Complete Hidden Layer

5.3.1 Experimental Dataset

Ideally, going by the primary theme of a challenging problem this thesis is trying
to address, the end goal is to map a pre-trained neural model that accomplishes a
classification / prediction application. Synthetic networks are generated which closely
replicate the real-world neural networks employed for AI applications.

The synthetic networks for different spiking based applications are generated in
Python covering all the candidate SNN architectures with sufficient flexibility to modify
the network sizes. The neural network architectures are parameterizable on various
parameters like network depth, layer-width, sparsity in the network, and few others
which are architecture specific and will be explored in detail in further sections.

5.3.2 Parameter space

The experimental designs and the outcome of each experiment is dependent on the
parameter space, which is meticulously designed and tuned based on the literature
survey of candidate architectures as presented in Chapter 3 and Table 5.1. Since the
experimental dataset was not readily available, this led to the generation of synthetic
networks for all candidates through an automatic network generator tool, devised in
Python exclusively to smoothen the experimental phase in this thesis. A collateral
advantage is the flexibility to tune various parameters to investigate their influence on
the hardware and on the proposed mapper.

A general notion while constructing a neural network architecture; especially the
topology, excluding the nature of neurons, synapses and mathematical functions in-
volved; circumscribes carving out intricate details as follows:

1. The problem itself, which usually correlates to the number of inputs and outputs
needed.

2. Quality and quantity of available data

The most important parameters sweeped in the experiments performed on different
candidate architectures are mainly:
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• Depth: Total layers in a neural network

• Layer-width/Breadth: Number of neurons in a particular layer

• Sparsity: Number of connections between two layers in network

There are few non-trivial parameters pertaining to only some of the candidate ar-
chitectures, which will be discussed in design section specific to those network schemes.

5.4 Mappability check

The proposed mapping technique manoeuvred the exploratory research conducted on
different schemes of neural network architectures for feasibility check on the target
hardware. The mapper already scrutinizes the process of mapping and convergence
happens if and only if the hardware constraints are satisfied. However, a proof checker
or an analytical checker is devised in this thesis work, which double checks the function-
ality of neural network before and after mapping on the hardware using the generated
connectivity matrix with precise information about mapped address of PEs.

A visualization for the connectivity matrix produced from mapper is generated
using Python. An example of the neural network against the connectivity matrix is
illustrated in Figure 5.1. The network demonstrated in Figure 5.1(a) is a 3 layered
RNN with various forms of recurrences. RNN is chosen as it covers the feed-forward,
recurrence within and from other layer and self-loops. The hardware size is chosen
arbitrary in this case to have clear resolution and to illustrate the behaviour of the
mapper in case of tight constraints and the allocation procedure. The Figure 5.1(b)
is a visualisation of the connectivity matrix from the mapper. It is a grid replicating
the hardware for a size of 13x13. The green dots essentially indicate the synapses
occupied, the horizontal rows relate to the mapping of input PEs and vertical columns
are in direct co-relation with the total physical neurons occupied. This can be clearly
verified from the RNN with total 7 nodes excluding the input layer in Figure 5.1(a).

In a similar way, the networks generated for each of the candidate neural network
architecture and an examination is carried out assuming the neurons in these NN are
spiking architectures. The exploratory research led to the mappabiltiy results as shown
in Table 5.1, which is divided into three categories.

1. Possible

All the listed NN architectures and their variations are possible to be mapped
onto the target hardware. The candidate neural networks are mainly assumed to
spiking in nature, specifically for FFN, and AE for experimental purpose. The
remainder of the architectures like SOMs, LSM, LIN and associative memory in
case of CHL inherently have spiking behaviour.

2. Potential

It is inherently difficult to realise the temporal dynamics of RNNs using spiking
neurons as stated by Diehl et al[50]. Assuming the threshold neuron models on
target hardware, the implementation of spiking RNN can be accomplished. How-
ever, Long Short Term Memory (LSTMs), the advanced versions of RNNs cannot
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Figure 5.1: Mapped hardware connectivity matrix: (a) A recurrent neural network (RNN)
with recurrences from layer n to n-1, recurrence within the layer and self-loops. (b) (Omitted
due to confidentiality purposes) Visualization of the mapped results on a 13x13 hardware
size to illustrate the occupation of PEs on hardware alongside the NN co-ordinates mapped
onto respective PEs

be implemented in a straight-forward manner. These recurrent architectures in-
volve non-linear tanh and sigmoid activation functions to realise store-and-release
mechanism. Another recurrent variant is Gated Recurrent Unit (GRUs) involving
forget and gate functions. The realisation of these non-linear activation functions
in spike domain is challenging at the moment given the neuron model on the tar-
get hardware. Therefore, mappability of LSTMs and GRUs is potentially possible
with certain upgrade in the hardware.

3. Unexplored

Having based the argument of considering few of the ANNs for mappability check
on the assumption of accomplishing ReLu (rectified linear units) activation func-
tions through spiking neurons doesn’t necessarily hold for more advanced ANNs
like Convolutional Neural Networks. Foreign architectures like CNNs with convo-
lutional kernels remain unexplored in this thesis work. Recent advancement in AI
research and computer vision led to the introduction of Generative Adversarial
Networks(GANs) for text-to-image description, generating very high-resolution
images etc. GANs too remain unexplored in this thesis work.

After a preliminary investigation on which are the neural architectures mappable
onto the target hardware, further investigation on the performance of the candidate
spiking neural networks and the qualitative measure of the proposed placement algo-
rithm will be discussed in next sections.

5.4.1 Architectural complexity measures of neural networks

A barrier in understanding the architectural complexity is the lack of a general definition
of the connecting neural architecture. This section introduces a brief overview on the
exploratory space of the neural networks being investigated to measure the performance
of the mapper. Design space is categorised into feed forward networks and networks
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Table 5.2: Mappability Results: Neural Network architectures summarised into three cate-
gories based on the exploration carried out for feasibility check on target hardware

Possible Potential Unexplored

FFN LSTM CNN
AE GRU GAN

SOM
RNN
LSM
LIN
CHL

Input:Output

Recurrence

Synapse:Neuron

Density

Depth

0 2 4 6 8 10

FNN

AE

Figure 5.2: Architectural complexity measures of candidate networks without recurrence

with recurrence considering all of them as spiking architectures in nature showing the
coverage on different aspects like:

1. Input:Output - It gives an impression on number of neurons in the input layer
in comparison to output layer. Higher the ratio, more the number of inputs to
outputs depending on the application. The ratio is 1 for AE, and CHL. It is very
high for FFN and RNNs, whereas, the ratio is less than 1 for SOMs and other
spiking schemes as seen from Figure 5.2 and 5.3.

2. Synapse:Neuron - This ratio gives a fair idea of the total synaptic edges in the
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Figure 5.3: Architectural complexity measures of candidate networks with recurrence

architecture for given number of neurons. To estimate the values for all the
candidates, more or less same neurons are considered, to see the resulting variation
in synapse count. Topologies like SOMs, CHL and LSMs(highest) have high
synapse to neuron ratio compared to other NNs as it evident from Figure 5.3.
The impact of higher ratio of synapse:neuron on solution time is validated in
further sections.

3. Recurrence - Another quantitative measure is the recurrence in the networks, it
gives insights into complexity imposed on placement of different resources adher-
ing to various connectivity constraints. Ideally, the recurrence value is clustered
around 70-75% for RNNs as they have self-connections, recurrence within the
layer and from their neighboring layers in addition to the recurrence depth. LSMs
have highest recurrence value due the random nature of connections in the liq-
uid layer. Self-organising maps do not have self-connections and only recurrence
within the layer, thus an estimate of 50% is made. Lateral inhibitory networks
have a reduced recurrence with less synapse to neuron ratio as seen in Figure
5.3. Therefore, a clear overlap is seen with the rest of the architectures and any
experiments performed will be redundant.

4. Density - This relates to the kind of edges or synapses a neural network has
as a default setting. The connections can be varied in number for experimental
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Table 5.3: Parameter Space - FFN: Encoder style architecture of feed-forward networks de-
signed with linear depth variation, input layer-width varying as 2n, and conglomeration of all
the layer width in the network is represented using (layer-width)LW-Difference

External Inputs Network size Depth LW-Difference

2n, n =1,2,3,.. Encoder style architecture 1,2,3,4,5,.. 2n, n=1,2,3..

8 8-4-2-1 4 1
32 32-16-8-4-2 5 2
128 128-64-32-16-8-4 6 4
256 256-128-64-32-16-8-4-2 7 4

purpose through a sparsity factor, however, topologies like SOMs have default full
connections than the rest of the candidates as seen in Figure 5.3.

5. Depth - It is the number of layers involved in the neural network. SOMs, LSMs,
CHL and LINs, usually have a two or layer depth, whereas, FFNs, AE and RNNs
have deep networks.

5.5 Quality of Mapper

The quality of the proposed algorithm is evaluated through the time complexity for
each of the candidate networks by performing a parameter sweep through various ex-
periments. In this section, mainly the candidate SNN schemes will be experimented
through the design as per literature survey and parameter sweep which is subjective to
each candidate. This section will have a theme of experimental design of the candidate
SNN, followed by results and discussion of the outcome.

5.5.1 Feed Forward Networks - Design

In this thesis work Encoder style FFN, which are realistically employed in numerous
applications like classification and regression, are investigated. The general theme while
designing the experiments in this thesis work has been to resemble the realistic models
as closely as possible. By doing so, an unclouded projection of challenges in terms of
mapping, hardware resources needed can be obtained.

We try to evaluate the execution performance of mapper for the encoder style ar-
chitecture(FFN) by varying the depth parameter to garner the knowledge of how deep
neural networks can be fit on a neuromorphic crossbar array. The number of nodes in
a particular layer is referred to as layer-width/ breadth interchangeably in the course
of experiments. Since, there are numerous layers involved in FFN, it is challenging to
show the variation of LW(layer-width), hence, a compact representation is opted which
is varied as 2n. Typically, if we look at Table 5.3, starting with any external input,
if the depth is known, the LW-difference can be achieved if we go decreasing it in 2n.
Another hint is the co-relation of output layer in the network to the LW-difference,
they are in tandem.
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Figure 5.4: Parameter Space for Feed Forward Networks sweeped over different parallel co-
ordinates to show the performance of mapper in terms of time-to-solution(seconds)
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5.5.1.1 Results

The simulations of the designed synthetic FFN are carried to obtain a solution using
the mapping algorithm. The hardware architecture size is kept constant throughout
these experiments. The experimental data gathered are categorised into 4 parallel co-
ordinates, external inputs, depth, LW-difference and sparsity as can be seen in the
Parameter space in Figure 5.4. The colorbar indicates the increasing solution time.
The reported time-to-solution for the highest possible network (256 external inputs,
5-deep and a LW-Diff of 128) to be mapped on hardware is about 2 seconds. This high
solution time is the direct reflection of exhausted neurons and stringent connectivity
constraints.

Every co-ordinate axis signifies the largest and smallest datapoint. For an encoder
style feed forward network, depth of 8 is possible with usually as small layer width
variations as possible. The cluster on LW-Difference in addition to the color shows
that solution is possible in the range of 0.5 to 1 seconds. It is quite obvious that from
any starting point on External inputs co-ordinate, with any depth in the network, the
LW variation is tending towards a smaller number. Because, as the number increases,
the convergence does not occur due to global constraints.

The contrasting color band is seen in Figure 5.4. Smaller network sizes with smaller
LW variation and with increasing density (sparsity –>1) converge quickly, within milli-
seconds. Interestingly, when the external inputs are huge, (which is generally the case
for realistic neural networks) i.e. higher depths in combination with higher external
inputs, the performance of the mapper is pretty decent as the convergence occurs
within 2 seconds. There is an additional skip in LW-variation considered to see the
performance of the mapper in terms of meeting the global constraints. The network
with ext inputs as 256, the first hidden layer is set to 64, giving rise to a LW-Difference
of 144 or 136 etc. However, the convergence in these cases is still possible, only that
the time-to-solution lies on the purple end of the spectrum.

Other side of the story is depicted in Figure 5.5, where the datapoints in the param-
eter space are shown when the convergence is not possible. The parallel co-ordinates
remain the same, however it is a binary value 0 or 1 for the huge networks, mostly
which are edge cases for target hardware size. The rose band signifies combination of
co-ordinates for which the solution doesn’t converge. The teal band portrays a larger
dataset that are not possible to be mapped due to hardware constraints failing at a
global level.

5.5.2 Auto-encoders - Design

An important variant of FFN is auto-encoder, mainly employed in image recovery or
image enhancement applications. The most generic architecture i.e. undercomplete
autoencoders are chosen to see their performance on the mapping algorithm and how
they fit on the hardware with a special architectural complexity of input:output as 1.
In a realistic application, the undercomplete architectures employed have a code size,
that is the bottleneck layer, with lesser number of neurons in comparison to rest the
encoder/decoder layers.

The evaluation is carried out by varying the depth and layer-width of the auto-
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Table 5.4: Parameter Space -AE: Undercomplete architecture of auto-encoders are designed,
depth of the AEs is generally odd-numbered, input layer-width varying as 2n, and the code
size is varying as 2n, and sparsity lies between 0 and 1.

External Inputs Network Depth Code size Sparsity

2n, n =1,2,3,.. Undercomplete architecture 3/5/7/9.. 2n, n=1,2,3.. 0 to 1

32 32-16-8-16-32 5 8 1
64 64-32-16-8-16-8-32-64 7 8 1
128 128-64-32-16-8-16-32-64-128 9 8 1
256 256-128-64-32-64-128-256 7 32 1
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Figure 5.6: Parameter Space for Undercomplete Autoencoders sweeped over different parallel
co-ordinates to show the performance of the mapper in terms of time-to-solution(seconds)

encoders, keeping full connections in the network (sparsity =1). The depth is varied in
odd numbered fashion as it is the nature of undercomplete architecture of AE, having
a converging and a diverging trend. Therefore, the depth variation is 3, 5, 7, or 9
depending on what is the max fit on the target hardware. The variation of layer-width
is again central to the fact how neural networks are architected in realistic application,
in the fashion of 2n, with n = 1,2,3,4,5...

5.5.2.1 Results

Figure 5.6 depicts the time-to-solution for the different network sizes of an auto-encoder.
It is clearly observable that, as external inputs increase, the solution time increases.
The maximum data-points on each axis is corresponding to the largest network feasible
on target hardware of size M × K and its co-relation with the highest time taken to
converge to a solution.
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Table 5.5: Parameter Space -SOM: Spiking architecture of self-Organizing Maps/Kohonen
networks are designed, input and torus layer are considered making depth as 2, input layer-
width varying as 2n, the layer-width is varying as 2n, and sparsity lies between 0 and 1.

External Inputs Network Depth Breadth Sparsity

2n, n =1,2,3,.. 2 2n, n=1,2,3.. 0 to 1

8 8 - 8x8 2 64 1/0.75/0.5/0.25
8 8 - 16x16 2 256 1/0.75/0.5/0.25
32 32 - 8x16 2 128 1/0.75/0.5/0.25
64 64 - 8x8 2 64 1/0.75/0.5/0.25

The entire parameter space shows the tried networks that have a convergence value
of 1. There are few edge cases which do not converge to a solution either due to
limited hardware resources or failure to meet constraints imposed by the neurosynaptic
crossbar array. An observation of the dipping values or a cluster formed with low depth
values, and low codesize indicates that as we go higher on these co-ordinate axis, the
feasibility of a solution is bleak. Having deep AE with high external inputs on hardware
is constrained by the available physical neurons. Even though other input resources and
synapses are abundantly available, the shortage of neurons resists the implementation
of huge networks.

Another observation is the difference in time-to-solution for the largest networks
for feed-forward networks and auto-encoders is about 80% less. This can inferred from
Figure 5.2, where the difference between FFN and AE is clearly visible in terms of
input:output ratio of FFN almost 9x AE. The primary reason for not having bigger
networks in comparison to FFN can be best reasoned out as due to the input:output
ratio of AE as 1, which makes the design of bigger networks extremely challenging with
exhaustion of physical neurons quickly.

5.5.3 Self-Organising Maps - Design

Self Organizing Maps are an efficient way of performing unsupervised learning by form-
ing ordered mapping, a projection of a set of given data into 2-dimensional grid. SOM’s
are heavily employed in speech recognition applications. The external inputs are ar-
ranged to increase in 2n fashion. Keeping in mind the grid formation in the torus layer
of the self-organizing map, the hidden layer or the SOM layer is constructed to be a grid.
The depth is kept constant throughout all experiments, assuming an input layer and
SOM/Torus layer as the hidden layer in the network. Sparsity is varied between 25%
to 100% i.e.(less/sparse connections to dense connections). Table 5.5 gives a complete
overview of the design and knobs varied in this experimental setup. The connections
from input to torus layer are all-to-all and the connections in torus layer are one-to-all
for all the neurons forming an inhibitory layer of connections within the grid.

5.5.3.1 Results

The density of the connections from input layer to SOM layer is sweeped from 0.25
to 1. In this experiment, full connections are assumed in the torus layer without any
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variation in sparsity in the torus layer. Figure 5.7 shows the parameter space for
SOMs when convergence is 1 i.e. a solution is feasible on the target hardware. All the
possible combinations tried to obtain a placement solution is illustrated using different
axis co-ordinates.

The contrasting band shows that with smaller input size and highest value of
breadth, the solution is possible and it converges within 10 seconds. However, as
the external inputs are increased, the constraints on the mapper in terms of finding
an input block for lateral connections especially influences the mapping time heavily,
which goes upto 500-600 seconds.

Another observation is the color band seen in varying sparsity. The trend is seen on
how the sparsity influences the solution time even with the large networks like 64- 8x8
with sparsity 0.25 and 0.5 with just an increase in 1000 edge connections. The sparsity
variation projects which networks don’t stand a chance to even converge to a solution,
can essentially have a valid placement on the target hardware with limited connections
(i.e less density).

There are networks which do not converge to a solution, and Figure 5.8 shows
networks which fail to converge on the target hardware. These network sizes impose
great difficulty on mapper in terms of finding a solution. The teal band illustrates the
failed solution due to limited hardware resources, and the rose band shows the limitation
of the random mapper. Networks with 128 input neurons, with a breadth size of 16, 32
should be possible, but there is no convergence with the proposed mapper. However,
smaller external inputs with smaller and higher breadth sizes fail due to hardware
constraints imposed by synaptic connectivity constraints in the target hardware.

5.5.4 Liquid State Machines Design

Liquid state machines are SNNs with unsupervised learning theme. Depending on the
application, there are two types of LSMs designed and discussed further. As the LSMs
are mostly employed in audio classification or speech recognition etc, need very less
neurons at the output, typically 2 to 4[53]. The most generic LSMs are assumed and
evaluated for reporting the performance of the mapper. In case of generic LSMs, the
inputs are varied in arithmetic progression and the liquid breadth is 10x the external
inputs. To naturally reach the mark of 250 neurons overall, the external inputs are
varied in arithmetic progression. Since there is no readout layer present in the generic
architecture of LSMs, the output breadth is assumed to have neurons ranging from 2
to 8 depending on the application.

5.5.4.1 Results

Since, the hidden layer in these networks is usually of paramount interest and hence,
their breadth is varied in accordance with the given external inputs and plotted as
different co-ordinate axis in Figure 5.9. Only generic LSM’s are plotted in this section.
The largest possible network size with about 250 neurons, has high convergence time
recorded as 160 seconds. A clear contrast in the color bands in the last three co-ordinate
axis is notable. This signifies that higher liquid breadth dictates the solution time than
the sparsity and output neurons. For smaller inputs, the liquid breadth is also in the
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Table 5.6: Parameter Space-LSM: Two variants of liquid state machines are designed, input
and output breadth are either power series or arithmetic progression depending on architec-
ture, liquid breath is 10x inputs, depth varies depending on generic architecture, and liquid
sparsity lies between 0 and 1.
External In-
puts

Liquid breadth Liquid
sparsity

Readout
breadth

Output
breadth

Architecture

2n, n =1,2,3,.. 10x Ext inputs 0 to 1 2n, n=1,2,3.. 2/4/8 LSM+MLP
1, 13, 25, 37... 10x Ext inputs 0 to 1 - 2/4/8 Generic

LSM

0

20

40

60

80

100

120

140

160

Generic Liquid State Machines : Parameter Space

1

13

25

External Inputs

3

Depth

10

130

250254

Liquid Breadth

0.25

0.5

0.75

1

Liquid Sparsity

2

4

8

Output

Time-to-Solution
   (in seconds)

Figure 5.9: Parameter space for Liquid State Machines with five co-ordinate axis, keeping
depth constant throughout. The performance is measured in terms of execution time to find
a valid placement with different combinations

middle range of neurons (about 130) and sparsity variation doesn’t have much effect
on the solution time. A typical case of 254 neurons was experimented keeping a split
of 64 and 190 nodes in the liquid layer, and it is reflected in terms of increase in the
solution time to about 160 seconds from about 80 seconds. This split of having 64,
with allocating nodes to mostly all neurons available on the hardware is the reason
why there is 2x increase in the solution time in comparison to liquid breadth of 250.

5.5.5 Complete Hidden Layer - Design

Complete hidden layer is essentially a spiking variant of RNNs. Hidden layer is ei-
ther a Hopfield network or a bidirectional associative memory mainly used in image
enhancement applications.
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Table 5.7: Parameter Space -CHL: Hopfield networks in binary mode and continous mode are
considered for design of hidden layer. Architecturally, the cue inputs and retrieved outputs
are generally of same length, Hopfield breadth is varied, Cue:Hopfield and Hopfield:Retrieved
ratio are kept same, and have only two variations.

Cue inputs Hopfield breadth C:H ratio Output Architecture

2n, n =1,2,3,.. 2x Cue inputs 1 2n, n=1,2,3.. Hopfield in binary mode
2n, n =1,2,3,.. 2x Cue inputs 0.5 2n, n=1,2,3.. Hopfield in binary mode

The experiments are designed for CHL using Hopfield networks as the hidden layer in
binary mode, i.e without self-connections. The input and output neurons are considered
to be same. The input and output neuron values are varied in 2n fashion. Depth is
kept constant instead of any variations to stick to general guidelines of the network
architecture defined for CHL. A sweep is done for C:H ratio, i.e. ratio of input nodes
to hidden layer nodes and hidden layer nodes to output nodes is varied as 0.5 or 1 to
see the affect of reduced nodes and connections in the network.

5.5.5.1 Results

The nature of architecture for CHL heavily restricts the number of combinations possi-
ble to be tried. Figure 5.10 shows the results of different networks for CHL and the time
taken by the proposed mapper to produce a placement solution. A parameter sweep
for hopfield breadth varying as 2x the cue inputs leaves us with not having network
sizes of 64-128-64 or 128-256-128 possible to be mapped because of limited number
of available physical neurons. This limitation leads to maximum of 32 on input and
output co-ordinate.

The resulting solution time for the largest network size possible on target hardware is
about 845 seconds, so far the highest time-to-solution among the rest of the candidate
networks being evaluated. For all the small networks, irrespective of the C:H ratio
(ratio of neurons from input to hidden layer and from hidden to output layer) with
about few thousand synapses, the solution time is from milli-seconds to few seconds.
Contrastingly, when the number of synapses increases in large networks, in addition
to a tight ratio of input to hidden layer nodes i.e. from any number of input nodes
to hidden layer with 64 nodes will certainly have a greater impact on the mapper to
find a valid solution as the input connectivity constraints become overwhelming in
combination with finding the valid synaptic resources on crossbar array. This explains
the dramatic rise in solution time.

5.5.6 Recurrent Neural Network - Design

Recurrence is observed in all the spiking architectures like LSMs, SOMs and CHL etc.
These architectures have recurrence within the layer. The experiments designed for
RNNs are particularly to explore the effect of recurrence from layer n to n-1. Similar
to FFNs, the depth is an important variable parameter in this experiment, this also
necessitates the inception of LW-difference as breadth cannot be generalised to all
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Figure 5.10: Parameter space for Complete Hidden Layer with five co-ordinate axis, keeping
depth constant throughout. The performance is measured in execution time to find a valid
placement with different combinations

Table 5.8: Parameter Space-RNN: Recurrence from layer n to n-1 is considered for design of
RNNs. Recurrence sparsity is varied with depth, LW-difference and external inputs.
Ext inputs LW-Diff Recurrence

Sparsity
Depth Architecture

2n, n =1,2,3,.. 2n fashion 0 to 1 3,4,5.. RNN with recurrence from
layer n to n-1

layers. The recurrence occurring from one layer to another layer is controlled through
a recurrence sparsity parameter.

5.5.6.1 Results

Figure 5.11 shows that having recurrence from layer n to n-1 impacts the depth of the
network possible to be mapped on the hardware to just 5 layers with less LW difference.
As the external inputs and depth in the network increases, the solution time increases
because it becomes difficult to allocate input resources and recurrent connections in
the same line of synapse. The solution time is in bound with about 23 seconds due to
the fact that the network sizes possible with this kind of architectures are small and
the worst hardware constraints and exhaustion of resources have not reached to have
a very high solution time for valid placement.
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5.6 Estimate of Resource Utilization

This section discusses the hardware resource utilization for the candidate networks to
provide an evidence of the largest network sizes that can fit on target with available
hardware resources. These experiments give an insight into the resources demanded by
each of these candidate SNN architectures that can influence the choice of a particular
neural network to run on the target hardware. This section also gives an overview on
time taken to converge to a placement solution for variation of each individual hardware
resource using the proposed algorithm. A trend of synaptic utility for networks with
certain number of neurons, and varying the specific parameters is explored.

5.6.1 Feed Forward Network

The experiments designed as shown in Table 5.3 are used to garner the results of the
variation of one hardware resource with another. By varying the FFN depth-wise and
variation of sparsity in the network can be seen on Figure 5.12(a). With increase in
the network size, as a result of adding layers and increasing the layer-width, leads to
variation in the number of neurons that can be allocated on the target hardware. With
increase or decrease in the number of connections, the synapse utilization varies on
the hardware. The first window in the Figure 5.12(a) shows the neuron vs synapse
utilization, and the extent to which there is a mapping solution possible. The red
circles are the combinations which are not mappable because of the constraints at the
input resources having a direct impact on the FNN’s first layer nodes, leading to never
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(a) (b)

Figure 5.12: Hardware Utilisation: (a) utilisation of synapses and input resources against
neurons for FFN are shown for combinations which are mappable and not mappable on the
hardware (b) utilization of synapses and input resources against neurons for AE are shown.

reach a count of full neuron utilisation on target hardware.
With increase in neurons, the synapse utilization also increases, the value where it

stops, around 128 neurons, is the point after which the network sizes are not mappable
as the global constraints do not satisfy. The second window in Figure 5.12(a) provides
insights about the variation of input resources with increase in network size for feed
forward encoder style architecture. The variation is linear and it is observable from the
way the encoder style FFN are architected.

5.6.2 Autoencoders

The under-complete architecture of autoencoders have a special characteristics as it can
be seen in the second window of Figure 5.12(b), where exact number of input resources
are utilised as that of the neurons, making it perfectly linear. This can also be explained
from Figure 5.2, where the input-to-output ratio is 1 for auto-encoders. The variation
of parameters as designed in Table 5.4 leads to specific maximum values that are possi-
ble to be mapped on the hardware. The not-mappable cluster on both the windows in
Figure 5.12(b), is an estimate of the hardware resources, whereas the mappable data-
points are obtained by post-processing on the obtained connectivity/placement matrix
from the algorithm.

Approximately 200 neurons can be mapped with same amount of input resource
utilization and approximately 20K synapses on the hardware. The number of neurons
possible are certainly more than FFN, however, less input resources are exhausted in
comparison to FFN which is also just 40% of the total input resources available on
the target hardware. The network sizes with 256 or 300 neurons are not very huge,
however, the available neurons on hardware are exhausted and hence, not very large
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(a) (b)

Figure 5.13: Hardware Utilisation: (a) utilisation of synapses and input resources against
neurons for RNN are shown for combinations which are mappable and not mappable on the
hardware (b) utilization of synapses and input resources against neurons for LSM are shown.

auto-encoders are possible to be mapped even though the input resources and synapses
are ample enough.

5.6.3 Recurrent Neural Network

The recurrence sparsity is varied alongside the depth in these experiments. Due to the
recurrence in the networks, which also is affected by the connectivity constraints defined
in Section 4.2, the possible network sizes are small as it can be witnessed from lesser
number of resources utilized i.e. only about 15% of input resources, 25% of neurons
and roughly 14% of total synapses available on the target hardware.

The input resource utilization is not in tandem with variation of neurons, as it can
be seen from second window in Figure 5.13(a). This can be explained by the high
recurrence value in the RNNs which leads to saturation of input resources even if single
feedback lines are originating from neurons.

5.6.4 Liquid State Machines

For LSMs, mainly the breadth of the liquid layer is varied in combination with sparsity,
keeping depth as constant value as explained in Table 5.6(b). The mappability and the
resources occupied on the hardware is shown on both the windows of Figure 5.13.

The number of neurons possible for these candidate architectures are nearly 256,
full utilization, which leads to a synaptic utilization of roughly 12K and about 200-250
input resources. If there is a network with 250 neurons, with any number of connections,
keeping in check with the total synapses and input resources, the mapping solution can
be obtained for LSMs.
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(a) (b)

Figure 5.14: Hardware Utilisation: (a) utilisation of synapses and input resources against
neurons for SOM are shown for combinations which are mappable and not mappable on the
hardware (b) utilisation of synapses and input resources against neurons for CHL are shown
for combinations which are mappable and not mappable on the hardware

A linear variation of input resources is observed with respect to the neurons on the
target hardware. The amount of synaptic resources utilized for a certain number of
neurons is greater in case of LSMs than the rest of the candidates so far making them
better for applications where high utilization can be achieved with less number of cores.
The overall resources used for decently big network is higher for LSMs than the rest,
approximately 100% neurons, 30% input resources and 20% synapses.

5.6.5 Self-Organizing Maps

The breadth of the torus layer and the external inputs are varied in this experiment
alongside sparsity. The bar like lines seen in Figure 5.14(b) is due to the variation
of breadth for same external input, and the corresponding change in solution time
is observed due to exhaustion of available input resources and increased connectivity
constraints. The number of neurons utilised is very less(30%) and the occupied synapse
count is less(15%) with about input resources(18%) less in count as well. The not
mappable dots overlapping the mappable one’s arise due to the higher external inputs
and lower breadth not possible to be fit on the target hardware due to lack of input
resources.

5.6.6 Complete Hidden Layer

Hopfield networks have a circular fashion of neuron arrangement with recurrences
within the layer, forming a complete graph structure. Breadth variation is carried
together with variation of sparsity in the network. Figure 5.14(b) shows that CHLs use
less synapses even when there are full connections in the entire network, making them
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FFN: 

Figure 5.15: FFN: Variation of average confidence of time-to-solution for different hardware
resources

much worse candidates in terms of resource utilization. The neuron utilisation is 39%
and input resource utilization is about 9% slightly varying than SOMs as they have
CHLs have different input:output characteristics.

5.6.7 Time-to-solution vs Hardware resources

The proposed mapper is also evaluated by the time it takes to allocate resources and
produce a valid placement against the hardware utilization in the plots below. There
are three different types of resources, neurons, synapses and input resources, as per the
target architecture. The relation between variation of neurons to input resources and
synapses for different candidate SNNs, and the impact on the solution time is reported
in this section.

The time-to-solution in measured in seconds on the y-axis and the hardware re-
sources are presented on the x-axis of the plot in Figure 5.15. Since the number of
synapses are in 10’s of thousands, and therefore, the single x-axis is not suitable for
representing all the hardware resources.

The resources varied on x-axis in Figure 5.15 is representative of the different net-
work sizes experimented. The depth variation and breadth variation leads to increasing
nature of resources. When there is a time-variation for the same resource, it can be
inferred as the variation of sparsity in the network from less connections to full con-
nections. For FFNs, the blue line indicates the variation of time with neurons. It is
observed that the number of input resources needed for a particular network size will
be at-least two times the number of neurons. The synapses occupied reach upto 19K on
the hardware for FFNs and the convergence time for such a huge network is just about
0.75 seconds which means even when network size increases, the solution time doesn’t
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AE:

Figure 5.16: AE: Variation of average confidence of time-to-solution for different hardware
resources

RNN:

Figure 5.17: RNN: Variation of average confidence of time-to-solution for different hardware
resources

overshoot to hours or days for simpler networks with feed forward signal because not all
connectivity constraints come into picture and the input resources are not saturated.

Unlike FFN, a significant distinction is seen for AE in the second window of Figure
5.16. The overlap of neurons and input resources is due to the nature of converging and
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LSM:

Figure 5.18: LSM: Variation of average confidence of time-to-solution for different hardware
resources

diverging style of undercomplete auto-encoders. The maximum number of resources
that can fit on the target hardware take about half the time taken by FFNs. For
small network sizes of smaller depths, the resources utilised are very few and the time
to find a valid placement is an average value of milli-seconds iterated over 5 runs. A
confidence interval of 95% is plotted with a regression fit that shows the variation of
the time within the translucent bands. Auto-encoders better occupy the input-output
resources than FFN.

In case of RNNs, only recurrences from layer n to n-1 is considered excluding self-
connections and recurrence within the layer. The network sizes are varied sweeping over
the depth, and accordingly varying breadth as presented in Table 5.8. The first window
in Figure 5.17 shows the maximum synapses that are utilised for the largest RNN
possible on the target hardware. It also shows the time-to-solution is in milli-seconds
for 500-1000 synapses, and there is sudden increase in solution time as the synapses
increases, the neurons and input resources also increase. However, the explanation
for this would be the recurrences in the network introduces tighter input connectivity
constraints and finding suitable synapses for allocation, making it longer to find a valid
placement solution.

In liquid state machines, the neuron utilization goes upto 256 when depth is kept
constant, and the breadth of the liquid layer in combination with I:H and H:I is varied.
For 256 neurons, about 12000 synapses are utilised. Since the connections in liquid layer
are random and there is high recurrence among the layer itself, the time taken to find a
valid mapping solution is also high in case of LSMs. With maximum resources utilised
on hardware, the solution time is about 300 seconds with readout layer. The number
of neurons in liquid layer is 10x that of the input layer, this explains the advancement
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CHL:

Figure 5.19: CHL: Variation of average confidence of time-to-solution for different hardware
resources

SOM: 

Figure 5.20: SOM: Variation of average confidence of time-to-solution for different hardware
resources

in neuron curve than the input resources in second window of Figure 5.18.

Similar to AE, CHL also have same cue patterns and retrieved patterns at the input
and output respectively. This explains the overlap of neuron and input resource lines.
The recurrence in the Hopfield network in the hidden layer is the reason for rise in
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synapses for only a rise of 50% neurons on hardware, leading to very high time-to-
solution which is about 680 seconds. CHLs don’t occupy lot of input-output resources
for huge networks in comparison to rest of the candidates, however, with the increase
in recurrence, they form amongst the candidates with very high solution time.

For SOMs, generally, the solution time is in the bottom band within few seconds.
However, as we have full recurrences within the torus layer for SOM, leading to stricter
synaptic connectivity constraints and input global constraints. The co-ordination of
input resources for recurrent connections causes high solution time like 619 seconds for
larger networks on the target hardware indicating a tangential mapping approach for
special topologies like SOMs than the stochastic approach taken in this thesis work.

The experiments have shown that with rise in architectural complexity of networks
and strict hardware constraints that become significant when resources are on the
verge of saturation, the algorithm has exponential worst case complexity. The random
assignment of an initial resource could result in an incomplete solution class and there
is no confidence of finding a solution when it comes to a stochastic approach limiting
their performance.

5.7 Efficiency of Mapping

The proposed algorithm performs placement of different graph attributes on the given
target neuromorphic hardware considering different hardware constraints and strictly
adhering to these connectivity rules to provide a valid mapping in the form of hardware
connectivity matrix and mapped addresses of the different resources.

The placement technique does not consider any cost function optimization into
account while performing mapping. The algorithm is designed to produce a random
mapping given a network complying to the size of the hardware. This presents an avenue
of briefly investigating the different mapping solutions produced by the mapper and
infer the results in terms of low delay on neurosynaptic core or quantitatively measure
the congestion cluster through spread of the network. Different mapping solutions are
plotted as heatmaps showing the weight matrix or connectivity matrix on the target
hardware. A vast variation of placements can be observed in Figure 5.21.

Different placement solutions obtained for the same network is quantitatively mea-
sured by the total path delay inside the core as per Equation 5.2.2.2. The more closer
the network towards the topright corner of the hardware array, higher is the delay. If
the network is clustered in the bottomleft corner of the hardware array implies least
delay as it froms the ff corner on the chip. The effects of different mappings can lead
to various non-idealities in the hardware. It is not yet fully known what is the effect of
increased delay on the inference accuracy on target hardware or the effect of congestion
of resources in one cluster or corner in terms of non-linearity or cross-talk and which of
this outweighs the other. Therefore, this needs further insights which is not addressed
by this thesis work.
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Figure 5.21: Illustration of the different placement solution for the same network (generic
LSM of network size 6-48-2) on the hardware array size of MxK (The images are omitted
due to confidentiality purposes)
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Conclusion and Future Work 6
6.1 Conclusion

With the advent of new architectural era of neuromorphic computing, we are marching
towards ultra low power systems to be infused in embedded devices. On the other hand
AI models are becoming more powerful, tinier and energy efficient. This thesis work
tries to bridge the hardware-software gap by deploying these neural networks onto a
custom neuromorphic architecture.

A review of the literature revealed that the mapping algorithms employed have an
objective of improvement of certain cost function with lesser focus on the mapping of
neural networks onto low level hardware primitives. The underlying architecture dic-
tates the strategy and placement of neural network onto various hardware resources.
The literature in terms of mapping heavily diverse variety of spiking topologies is quite
sparse.

This thesis work focuses on setting up a mapping pipeline to deploy various candi-
dates of spiking neural networks onto the target neuromorphic architecture. Predomi-
nantly, the main objective has been to devise a placement algorithm strictly adhering
to the hardware constraints in order to provide a valid and non-overlapping mapping
solution in the form of hardware connectivity matrix, mapped addresses of different
PEs(processing elements) on the hardware.

In academia and research, the placement algorithms are evaluated using the time-
complexity. The proposed ALAPIN mapper is also evaluated using the time-to-solution
for chosen candidates of SNNs by performing a parameter sweep on depth, layer-width,
sparsity, recurrence sparsity etc. After a detailed evaluation, it is observed that the
proposed algorithm can accomplish mapping for all chosen candidates seamlessly. The
resource allocation and placement is achievable within milli-seconds for simpler net-
works like feed-forward and auto-encoders, however, with recurrence in the network,
limited resources and overwhelming hardware constraints, the average solution time
rises to few minutes (about 600 seconds for SOMs and CHLs).

Hardware resources occupied by each candidate SNN for different network sizes have
shown that physical neurons are the major bottleneck causing strict constraints for the
target hardware in order to accommodate bigger networks. The synapses and input
resources are never utilised to their maximum. Additionally, a comprehensive exper-
imentation on synthetic SNN-based topologies with vast architectural complexity has
shown that Liquid State Machines(LSMs) tend towards utilising most of the resources
combined for the largest network possible on hardware in comparison to any other
candidate SNN making them most suitable for spiking based application on the target
architecture employed in this work.
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6.2 Future work

This section narrates the future directions researchers can take to advance exploration
in the mapping of neural networks on neuromorphic architecture or embedded hardware
architectures. The below sections are divided into two subsections, the first one talks
about the immediate steps one can take specific to this thesis and the next section is
an opinion of the author on alternative future directions to realise neural networks on
embedded devices.

6.2.1 Natural Extensions

• Since this thesis has shown the maximum network sizes for different schemes of
spiking neural networks, an immediate extension is to optimize these networks
depending on the network sizes, and to map on the multi-core or multi-chip hard-
ware. Due to the inception of multi-core system, the interconnect can introduce
different non-idealities like latency. Therefore, it is crucial to account for these
delays in the mapper to plummet the communications costs.

• As the experiments have already shown that the time-to-solution increases as
the network size grows. This fact will become even more significant when the
realistic workloads are employed to map on a multi-core hardware. With the
advent of optimization of neural networks, the run-time of the algorithm can
grow exponentially, therefore a solution friendly algorithm with low run-time is
needed. To enhance from the present work, a flat approach of mapping needs to
be employed. Unlike a hierarchical approach, in a flat placer, thousands of nodes
will be allocated on the hardware resources in a single run.

• Results of analysing the mapping trend for each network has shown that even with
full recurrence in the network, the synapse utilization cannot be 100%. Having a
mechanism to utilize the synapses of external signal occupied input PEs through
a spike-time aware mapping strategy can be monumental. To achieve this, a
run-time compilation approach must be taken.

6.2.2 Optimization Avenues

• Research has shown that neural networks don’t perform at their best when they
are densely connected, rather may give optimum results when they are sparsely
connected. This fact is backed by biology as well. From an algorithmic viewpoint,
there is enough research on-going as to how the dense neural networks can be
pruned or made sparse for weights and activation functions. A placement approach
insensitive to structured and scattered sparsification will be needed to seamlessly
accommodate the energy efficient and sparse neural networks on the hardware.

• The spiking neurons have a specific activation functionality, which limits deploying
more complex network architectures with extremely complex activation functions
which are non-linear in nature and involve lot of MAC operations. There is on-
going research to emulate LSTM/GRUs in the neuromorphic hardware by a small
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tweak in the threshold variation. It will be exceptionally interesting to see how
a mapper can handle this instead of increasing the hardware cost by additional
resources. A solution to these architectures can open up avenues for a wider
variety of complex neural architectures to deploy on hardware.
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