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Preface
To me, biology is in its fundamentals wildly interesting. It is a strange biochemical dance; the unex-
pected route the universe takes while pushing towards entropy. I find it fascinating that somewhere
on this path our consciousness developed which allowed us to observe where we are and who we
are. We started looking outwards, exploring the earth, and we started looking inwards, exploring the
microscopic world that is everywhere. In 17th century Delft, Antonie van Leeuwenhoek was the first to
document microscopic observations of Biology. Ever since we have been creating tools to make such
observations on an increasingly smaller scale. DNA was discovered and we started measuring and
perturbing it. We found that our own DNA consists of roughly 3.2 billion elements, which is apparently
enough to carry the instructions for creating and maintaining a human being. Meanwhile, the computer
on which I am currently writing has roughly 3.2 billion remaining bytes available, which is insufficient
to install updates. On this computer I code instructions that set off a surge of blind and uninformed
calculations based on a model with randomly initialized parameters. By comparing the outputs of this
model with billions of DNA repair measurements and updating its parameters accordingly, the calcula-
tions become incrementally less blind and more informed, until we are left with a model that has some
understanding of the dynamics of DNA repair. I hope the reader can share my sense of wonder and
enthusiasm for this subject when reading my work.

I would like to thank Marcel Reinders and Odette Scharenborg for investing their time to learn
about my work. I am grateful of my friends and family for their interest in my work and for hearing my
tumultuous explanations of the subject before I really understood it myself. I thank Sander, Attila, Yasin,
Roy, Aaron, Matthijs, Ruben, Pia, Francesca, Caroline, Eric, Kirti, Frank and Sjoerd for their valuable
feedback, interesting discussions, support and gezelligheid during my project. I am greatly thankful of
my daily supervisors, Joana de Pinho Gonçalves and Colm Seale, for their availability, their flexibility,
their dedication to the project and for their great enthusiasm for the subject.

Jurrian de Boer
Delft, October 2022
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Attention-based deep learning for DNA repair
outcome prediction

Jurrian H.D. de Boer
Delft University of Technology
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Abstract—Recent advancements in quantification of repair out-
comes of CRISPR-Cas9 mediated double-stranded DNA breaks
(DSBs) have allowed for the use of machine learning for predict-
ing the frequencies of these repair outcomes. Local DNA sequence
context influences the frequencies of mutations that arise when
DNA gets repaired after it is targeted by CRISPR (CRISPR
outcomes). Contemporary models exploit this and can predict
what the frequencies are of CRISPR outcomes at predetermined
genomic loci. Predictions of such models are reasonably precise,
but there may be opportunities for improvement in how the
DNA sequence context is leveraged for making predictions. Some
models only utilize a set of hand-crafted features, limiting the
available information for the model. Other models do utilize
broader sequence context but disregard sequence order or only
predict a limited set of outcome classes. In this work we present
an attention-based deep learning model that uses DNA sequence
context to make fine-grained CRISPR outcome predictions. We
present a custom input embedding for representing DSB repair
outcomes and we expand on existing methods for analyzing
attention-based models.

I. INTRODUCTION

W ITH the introduction of CRISPR-Cas9, genome editing
has advanced greatly in the over the past decade.

CRISPR-Cas9 (CRISPR) is a transformative technology that
can be used to introduce a DNA double strand breaks (DSBs)
at a predetermined location in the genome of a cell [1]. The
technology operates by recruiting a Cas9 nuclease to a chosen
location in the DNA (target sequence) using a synthetic guide
RNA (gRNA). The nuclease cuts the DNA introducing a DSB,
after which the cell will attempt to mend the DNA. CRISPR is
widely used for gene editing [2] and gene-based therapeutics
(e.a. [3], [4]) by exploiting this process. For these applications,
it is important to gain more insights into the dynamics of
CRISPR induced DSBs and subsequent DNA repair.

DSB repair is a stochastic process, where the resulting
DNA sequence may differ from the original DNA sequence
(mutation). While these repair outcomes of CRISPR-Cas9
induced DSBs (CRISPR outcomes, repair outcomes) were
initially thought to be random [1], evidence now suggests
that they are in fact partially determined by a number of
factors, such as target site sequence context [5]–[7], cell-
state [5] or even the orientation of binding of the Cas9-
gRNA complex [8]. This suggests that CRISPR outcomes
follow a probability distribution that is perhaps predictable.
Indeed, various machine learning models have recently been
developed attempting to predict CRISPR outcomes based on
local sequence features such as cut site adjacent base pairs, mi-

crohomologies, and the protospacer-adjacent motif (PAM) [9]–
[14]. Such CRISPR outcome prediction technologies could
assist researchers to know what outcomes to expect when
using CRISPR therapeutically. They can help us learn what
influences those CRISPR outcomes and use this to design
CRISPR assays in a way to maximize accuracy and minimize
side effects.

Although contemporary models are able to predict CRISPR
outcomes with reasonable precision, there may still be op-
portunities for improvement by changing how target sequence
features are utilized. CRISPR outcomes and their frequencies
are influenced by and can be predicted based on the DNA
sequence context around the target site [5]–[7]. Some present
models exploit such sequence context by making use of a set
of hand-crafted features based on established knowledge [10],
[11]. However, this limits the available information for the
model to only what is included in the hand-crafted feature set,
and it prevents us from finding novel relationships between
sequence context and DNA repair outcomes. Other models
do utilize the broader sequence context but have different
limitations. In [9], the target sequence order is disregarded
by treating sequence features as independentent, and in [12],
[13], predictions are made only for broad CRISPR outcome
classes like insertion/deletion ratio and frameshift frequency,
instead of the more fine-grained prediction of individual repair
outcome frequencies that we see in other models.

In this work we propose the use of sequence-based deep
learning to leverage the complete target sequence context for
predicting CRISPR outcomes on the resolution of individual
outcome frequencies. A recently developed promising archi-
tecture for sequential data is the Transformer [15]. Transform-
ers are attention-based deep learning frameworks that were
able to obtain state-of-the-art results in the field of natural
language processing by capturing contextual information in the
input sequence (e.a. [16]). Contextual sequence information is
relevant for working with features in DNA sequences such as
microhomologies (MHs), which are pairs sequence features
that strongly influence DNA repair outcomes [5], [7], [17],
but require contextual information to be detected. Attention-
based models have already been successfully employed on
other DNA sequence based problems [18], [19]. Moreover,
a deep learning framework for predicting CRISPR outcomes
was published during our research that employed attention in
conjunction with BiLSTM layers [14]. In this work, we present
an attention-based deep learning model that employs a custom
embedding of repair outcomes for predicting CRISP outcomes.
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In addition to modeling contextual sequence information,
the self-attention operation that is the fundamental building
block of attention-based models provides opportunities for
model interpretation by analyzing its intermediate represen-
tations (attention values) [20], [21]. In this work, we use
these methods to reveal behaviour of our model in the context
of CRISPR outcome prediction, and we expand on these
methods by introducing alternative attention visualizations.
Although the reliability of utilizing attention values for model
explanation is disputed [22], [23], we validated that attention
values provided a useful demonstration of model behaviour
in controlled learning contexts that were relevant for CRISPR
outcome prediction.

Our models did not achieve state-of-the-art performance,
and we did not report novel sequence features for CRISPR
outcome predictions. However, our work forms a basis for
attention-based CRISPR outcome prediction. We contribute a
custom input embedding that combines target sequence context
with outcome specific characteristics. Our work may provide
opportunities for improving our understanding of the dynamics
of CRIPSR induced DSBs and resulting repair outcomes.

II. METHODS

In the present study, we had two main research questions:
(I) can we use an attention-based deep learning architecture
to predict CRISPR outcomes, and (II) can we interpret these
models to gain novel insights about DSB repair. To answer
these questions, we established two intermediate prediction
problems: microhomology detection (MH detection) and mi-
crohomology length detection (MH length detection). These
problems simplified aspects of CRISPR outcome prediction
in order to explore model training and interpretation in the
present learning context and to validate our methods.

A. Prediction problem definitions

The introduction of a DSB at a given target sequence using
CRISPR activates DNA repair mechanisms in the cell. DNA
repair is not always faithful to the original DNA sequence,
resulting in mutations of the DNA. In this way, the targeting
of a given DNA sequence using CRISPR can generate a range
of repair outcomes, each with a given probability. The goal
of CRISPR outcome prediction is to predict the probabilities
of CRISPR outcomes given a DNA target sequence. So the
input into our model is the set of possible CRISPR outcomes
for a given DNA target sequence, encoded using featurized
sequence and position representations (see Section II-C), and
the output is the probability distribution of these outcomes.

These repair outcomes include insertions, where one or
more nucleotides (A, C, G, T) are inserted into the DNA at
the cut site, and deletions, where one or more nucleotides
are removed around the cut site. In the literature (e.a. [10]),
‘CRISPR outcomes’ refers to this set of repair outcomes.
However, in the present study, we use ‘CRISPR outcomes’
to refer only to the set of possible deletions and we focus on
predicting only their frequencies. We chose to focus on this
aspect of the prediction task because a the set of features with
predictive power over deletion outcomes is larger and more

complex than the set of features for modeling insertions [10].
We left insertion modeling and the modeling of the interaction
between insertion and deletion probabilities as a subject for
future work.

There are two main DSB repair pathways; homology di-
rected repair (HDR) and non-homologous end joining (NHEJ).
The HDR pathway is generally accurate, while NHEJ is
more error-prone [24]. Therefore, when we observe CRISPR
outcomes, they are usually the result of NHEJ. The NHEJ
pathway can be further subdivided into the two subcategories
c-NHEJ and MMEJ (alt-NHEJ), each of which has their own
characteristics and outcome profiles. MMEJ, can make use
of microhomologies (MHs) to repair CRISPR-induced DSBs.
MHs are small stretches of DNA located on both sides of the
CRISPR cut site (i.e. the location where CRISPR indtroduces
a DSB) that are identical in both nucleotide composition and
order. In MMEJ, the cell uses these MHs to align loose DNA
ends. The homology sequence upstream of the cut site on one
DNA strand algins with the homology downstream of the cut
site on the other DNA strand. The DNA is ligated and excess
single-stranded DNA is removed, resulting in deletions in the
sequence (Figure 1) [17], [24].

Fig. 1: Model for microhomology mediated deletions [17],
[24]. After a DSB induced by a nuclease, for example
CRISPR, MHs from either side of the DSB align with each
other, after which excess single-stranded DNA is removed.
From this process results a deletion genotype that is specific
for a given MH. Figure taken from Bae et al. [17]

Indeed, MHs are important features for repair outcome
prediction [5], [7], [17]. Therefore it is important that a repair
outcome prediction model is able to detect MHs. This is by
itself not a difficult problem: MHs can be detected by a simple
algorithm. However, by training a model to detect MHs, we
can validate that the model can distill such features from
an input embedding and we can analyze if this behaviour
is interpretable. Since MHs are relatively complex target
sequence features, we reason that they can serve as a good
proxy for other still unknown target sequence features that the
model may need to identify in order to predict repair outcome
frequencies.

For this reason, we first introduces two simpler reductions of
the repair outcome prediction problem, namely MH detection
and MH length detection. In these prediction problems, the
input of the model is only a single repair outcome. The outputs
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in these problems related to MH properties of these repair
outcomes that are explained in the following sections.

1) Microhomology detection: Deletion repair outcomes can
be broadly split into two categories based on the use of MHs.
Our proposed prediction problem of MH detection entails
predicting whether a deletion is microhomology-based (MH-
based) or not. A deletion is MH-based if it results from MH
alignment. That is, when k nucleotides adjacent to the left side
of the deletion are equal to the last k deleted nucleotides on the
right side, with k ≥ 1 (Figure 2a). The problem of predicting
whether a deletion is microhomology-based or not can be
defined as a binary classification task, based on an encoding of
a repair outcome in its target sequence context (Section II-C).
For this prediction problem, in theory, the model only has
to consider two positions in the target sequence once it has
identified the expected MH positions, because the length of
the MH is irrelevant for a correct prediction.

(a) MH-based deletion. (b) Deletion not based on an MH.

Fig. 2: Two deletion repair outcomes where one is MH-based
(2a) and the other is not (2b). Both subfigures show a target
sequence of 13 nts before CRISPR lesion and DSB repair. The
red highlight shows which nucleotides were deleted in each
example repair outcome. The cut site indicates where a DSB
is introduced by the CRISPR nuclease. Potential MH regions
are indicated by the dashed square boxes.

2) Microhomology length detection: MH length is a feature
with predictive power towards repair outcome prediction [10],
[17]. Therefore, the second prediction problem we introduced
was MH length detection. For a given repair outcome, the
prediction output is defined as the length of the MH (i.e. the
number of homologous nucleotides) on which that repair out-
come is based. If the deletion is not MH-based, the expected
output value is 0. Figure 2a shows an example of an MH of 2
nts, so where the expected output value is 2. This prediction
problem was slightly more complex because it requires the
model to compare more than one pair of nucleotides in the
expected MH positions.

3) Repair outcome prediction: The output of this predic-
tion problem was the probability distribution of all possible
CRISPR outcomes given a target sequence and the set of
possible outcomes. Here, the probability of occurrence of one
repair outcome depends on the probabilities of all the other
repair outcomes for a given target sequence. Therefore, repair
outcome scores were calculated for every possible deletion
and these scores were normalized to obtain a probability
distribution. This probability distribution was then compared
compared to the true observed probability distribution.

B. Data and preprocessing

Several experimental CRISPR outcome datasets are avail-
able to train models on [9]–[12]. These datasets contain
records of observed repair outcomes and their frequencies
obtained using CRISPR-Cas9 on large collections of target
sequences. A library of pseudorandomly generated target se-
quences, including surrounding DNA context and paired with
complementary gRNAs, are transduced in Cas9-expressing
cells. Cas9-gRNA complexes form and introduce a DSB in
the target sequence at a predetermined cut site. The cell
subsequently repairs the DSB and the resulting DNA sequence
in its surrounding context is amplified and sequenced to
measure the frequency of insertions and deletions (indels) that
have been introduced (Supplementary Figure 12). So in these
databases each sample consists of the nucleotide composition
of a target sequence and a set of indel frequencies.

In the present study, we chose to work with the FORECasT
database [11] since this is the largest CRISPR outcome
dataset. The dataset contained 41, 630 target sequences, but
for the present research only the subsets “Explorative gRNA-
Targets” and “Counterpart to gRNA in Conventional Scaf-
fold gRNA-Targets,Explorative gRNA-Targets” and only the
“FORWARD” strands were selected to ensure our dataset
contained no duplicate target sequences. This brought the
dataset size down to 24, 849 target sequences. We truncated
the target sequences and their DNA context to a length of 8
nucleotides (nts) for the MH detection problem and 52 nts
for MH length detection and repair outcome prediction. That
is, we truncated the DNA context respectively 4 and 26 nts
upstream and downstream of the targeted cut site. Since we did
not want to include outcomes where the feature vector does
not contain the features relevant for detecting MH (lengths),
all outcomes where the deletion extends outside of the 52
nucleotide window were filtered out. Deletions where the MH
lies beyond the 52 nucleotide window were filtered out for
the same reason. For the repair outcome prediction task, we
also excluded target sequences with fewer than 100 mutagenic
reads within the 52 nucleotide window.

The dataset was split into a 80% train set and a 20% test
set. To prevent information leakage from the train set to the
test set, the split was made on the level of target sequences
rather than on the outcome resolution, to ensure that no two
outcomes from the same target sequence could appear in both
the train and test set. Cross-validation splits (see Section II-G)
were made in similar fashion for the same reason.

For the MHL prediction problem we defined the following
five class labels: 0 for non-MH outcomes; and 1, 2, 3, and
4+ for MH-based outcomes with MHs of the correspond-
ing lengths, respectively. As expected, there was a strong
imbalance between classes because long MHs are typically
scarce. The smallest class was 4+ with 47, 847 outcomes in
our train set. Since this was enough data for this prediction
task, we balanced the labels by randomly sampling from the
other classes until we have 47, 847 outcomes per class as well,
resulting in a dataset containing 239, 235 outcomes.
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Fig. 3: Input embedding for a target sequence specific mutational outcome. On top an example target sequence is displayed
with 16 nucleotides, and the red highlights show which nucleotides have been deleted in a specific repair outcome. This
information was encoded position-wise into a sequence embedding, where each position contains a one-hot encoding of the
nt, and a boolean encoding of the deletion status (0 = not deleted, 1 = deleted). The resulting matrix that encodes all positions
was concatenated with a positional encoding, which was a linear interpolation between [−1; 1] in n steps where n = target
sequence length. The resulting matrix was prefixed with a classification token column containing values that were unique in
their respective rows in the feature matrix.

C. Input representation: sequence embedding and positional
encoding

The target sequence and a repair outcome were encoded
into a single feature vector, which was one of our main con-
tributions (Figure 3). Our prediction models make use of the
following information about the samples repair outcomes: the
nucleotide composition of the target sequence and outcome-
specific information about the mutation (i.e. what nucleotides
were deleted in a deletion), represented as a sequence em-
bedding, and positional information of the nucleotides (i.e.
the order), represented as a positional encoding. The attention
operation in our architecture (Section II-D) is invariant to
the order of the input [15], so the positional information is
necessary to provide information about the order of the input.

The sequence embedding was a position-wise one-hot en-
coding of the nucleotide composition of the target sequence
combined with a boolean encoding of the deletion status
of each nucleotide in the given repair outcome (0 = not
deleted, 1 = deleted). In the literature (e.a. [9], [13], [18]), it
is common to one-hot encode k-mers of nucleotides, where
multiple positions are encoded together as one of the 4k

possible k-mers. Instead, we encoded sequences on the single
nucleotide resolution, using one of the possible 4-tuples for
each position corresponding to each of the four possible

nucleotides A, C, G, and T (similar to [25]). The use of k-mers
can speed up processing time if they are used to decrease the
sequence length. We chose to encode individual nucleotides
because it increases the resolution of model interpretation,
since features will then be on the single-nucleotide level.

The sequence embedding was extended with a positional
encoding (PE) of the nucleotide. Specifically, we defined a
vector of floats where each value indicated the position of a
nucleotide in the sequence. This PE was concatenated row-
wise to the sequence embedding (see Figure 3 caption for
details). The values of the PE across the outcome embedding
are a linear interpolation between [−1; 1]. This makes our PE
symmetric around the cut site, since the DSB cut site is always
centered in our samples. Because of this, the PE intrinsically
informs about distance to the cut site. An alternative method of
encoding positional information was considered where a PE is
summed over all values in the feature vector, similar to [15],
[21]. However, this approach inhibited the learning abilities
of the model in our problem context. This was possibly
because the PE obfuscated the signal in our comparatively
small feature vector too much, or because our dataset size is
much smaller than datasets generally considered in the NLP
field. We favoured our linearly interpolated PE concatenated
to the feature vector because we were able to obtain excellent
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Fig. 4: Deep learning architecture of the models used in this paper (Section II-D). Input embedding, concatenate row (PE),
concatenate col (classification token): An input sample is first encoded into an embedding that contains the nucleotide
composition and the nucleotide order of the target sequence and an encoding of the repair outcome (see Section II-C). Self-
Attention Layer: a variable number of self-attention layers is applied to the embedding. Isolate classification token: after
the final layer, the model output at the classification token position is isolated and the other positions are discarded. Feed
Forward: a small linear layer maps the classification output to the desired output dimension.

performance on the MH detection and MH length detection
prediction problems using it.

Finally, a classification token was prefixed to the feature
vector, similar to [19]. This is a column containing values
that are fixed across all samples and where all values are
unique in their respective rows in the feature vector. This
token was used to collect an output from the final layer of the
model. This method reduced the dimension of the output of
the self-attention layers, and improved model interpretability
(see Section II-D).

D. Model architecture

A visual summary of the attention-based deep learning
model we developed in the present research is shown in
Figure 4. First, an embedding X of a repair outcome is created
that contains the nucleotide composition of the target se-
quence, an encoding of the repair outcome, and the nucleotide
order (see Section 1.3 for details). This embedding was passed
forward through a series of self-attention layers. The number
of self-attention layers was varied to adapt to the different
prediction problems and to regulate model complexity. A self
attention layer consisted of a multi-head attention operation
and a feed forward layer with one hidden layer. Additionally,
there were two residual connections over these respective
layers.

The input embedding contained l = TSL + 1 positions
xi, where TSL was the target sequence length. The multi-
head attention operation was applied to every position i in
the input embedding separately and in parallel. The values
of column xi were divided over the ‘heads’ of the model. A
‘head’ refers to a unit of the model that performs the scaled
dot-product attention operation to a subset of the values in xi

(see Section II-D1). The scaled dot-product attention outputs
zj for j ∈ [0; n heads] were concatenated into one matrix Z.
The multi-head attention output was calculated by multiplying
Z with a learned weight matrix into a vector of the same
dimension as input vector xi.

The output of every self-attention layer was a hidden state
that had the same dimensions as its input embedding, so
a matrix with l tokens of 6 values. However, the goals of
our predictions tasks were classification and regression, i.e.
outputs of much smaller dimensionality. This was one of the
reasons why a classification token was included in the input
embedding. In the last hidden state of the model we isolated
only the position of the classification token (so only the first
column x0 of the hidden state), similar to [19]. This token was
forwarded to the last feed forward layer of the architecture,
whose output dimension was adapted per prediction task. An
alternative to using a classification token was considered,
namely using an extra linear feed forward layer between the
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output of the last self-attention layer and the input of the
current feed forward layer. With this option, a larger portion of
model calculation would have taken place in this feed forward
layer. However, our model interpretation methods only applied
to self-attention layers (see Section II-E). For this reason,
model calculations outside of the self-attention layers were
undesirable since they were out of sight for our interpretation
methods. Using the classification token therefore improved the
interpretability of our model.

The MH detection problem was a binary classification task,
so the output dimension of the final layer was 1 and we
regressed to a 1-dimensional value between 0 and 1 using
a sigmoid. In the MH length detection problem we classified
outcomes into 5 categories, so the output dimension was 5 and
we softmaxed these values. In repair outcome prediction, the
output dimension was 1 representing an outcome likelihood
score. However, an outcome probability needs to be calculated
in the context of a sample target sequence with ∼ 550 possible
outcomes. Therefore, all 550 outcomes of a sample were
batched together and the model outputs were softmaxed to
create a probability distribution.

1) What is attention: The scaled dot-product attention op-
eration (Figure 5) is a fundamental component of Transformer
networks. This operation was applied to all positions xi in the
embedding of a sample X for i ∈ [0; l]. From xi three new
vectors were calculated: qi, ki and vi (query, key, value), that
were linear mappings of xi based on three learned weight
matrices. Next, a score was calculated for all pairs xi and xj

for j ∈ [0; l] as: scorei,j = xi · xj . These scores were divided
by

√
dk, where dk is the dimension of ki, and subsequently

softmaxed into attention values ai,j . The output oi of the
scaled dot-product operation was calculated as the weighted
sum of all value vectors vj :

oi =
l∑

j=0

ai,j · vj (1)

where the weights are the attention values ai,j . The following
formula summarizes the complete scaled dot-product attention
operation [15]:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (2)

E. Attention visualization

The attention values a can be seen as importance scores
for all pairs of positions xi, xj in the input. High similarity
between query vector qi and key vector kj result in a high
attention score ai,j . This in turn means that the output value oi
will be influenced strongly by vj . Therefore, if we display for a
repair outcome the attention values a, we can start visualizing
the relations between various positions in the target sequence
that resulted in the predictions made by the model for a specific
repair outcome. Figure 7a shows an example of such attention
visualization in the context of the MH detection problem.

These attention values can be visualized for a single self-
attention layer in a model, but our typical model has three

Fig. 5: Visualization of scaled dot-product attention. Figure
adapted from Jay Allamar (The Illustrated Transformer)

or more self-attention layers. Attention values were averaged
across the layers as follows:

ai,j =

n layers∑
l=0

ai,j
n layers

(3)

In addition to showing the attention value ai,j for every pair
of positions i and j, we can also sum all outgoing attention
values aj =

∑l
i=0 ai,j per position j. These values were

summed across the layers, showing the total outgoing attention
of every position j throughout the model. Figure 7d shows an
example of such attention visualization in the context of the
MH detection problem.

Since outcomes were each encoded in their own embedding
and our model could produce outputs for every outcome sep-
arately, we were able to analyze our model on the resolution
of single outcomes.

F. Attention boxplotting

Attention visualization is useful for displaying model be-
haviour on the resolution of a single repair outcome prediction.
However, it does not quantify the behaviour of the model
across the dataset. For this reason we also generated attention
boxplots that show attention values categorized by nucleotide
type in categories as summarized in Figure 6. Specifically, for
every outcome o in our dataset and for every position j in its
embedding we calculated the average outgoing attention:

Aj =
l∑

i=0

ai,j
l

(4)

where Aj is one data point displayed in the boxplots. Con-
ceptually, we displayed the average influence strength that the
value vector vj has on any output oi of a self-attention layer.
Again, these values were available for every self-attention
layer in the model, so we either displayed the attention
values for a single layer or averaged across all layers of the
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Prediction task n layers n heads d hid d out window size n parameters n epochs batch size LR γ
MH detection 3 1 6 1 8 835 500 * 64 0.0002 N/A‡
MH length detection 6 3 6 5 52 1691 200 64 0.0015 0.99
Repair outcome prediction 5 6 10 1 52 1689 400 16 ≈ 8800 † 0.0015 0.99

TABLE I: Hyperparameters for models used for each prediction task. n layers: number of self-attention layers in the model.
n heads: number of attention heads in the model (see Section II-D). d hid: Dimension of the hidden layer in each self-
attention layer (Figure 4. d out: output dimension of the final feed forward layer of the model. window size: number of
of nucleotides around the cut site that were included in the input embedding (sequence context). n parameters number of
learnable parameters in the model. n epochs: the number of epochs the model was trained for. batch size: number of samples
in a minibatch. In MH detection and MH length detection a sample is one outcome, in repair outcome prediction a sample
is the complete set of possible outcomes givne a target sequence. LR: learning rate the model was trained with. gamma (γ):
accuracy of the trained model. * Convergence at 100% accuracy was already reached after 20 epochs. † We used a batch size
of 16 for the repair outcome prediction problem, but in this problem context one sample consists of all the outcomes for a
single target sequence. For each target sequence there are about 550 possible outcomes, so one batch contains about 8800
outcomes. ‡ No learning rate scheduling was used for the MH detection problem.

model. Separate boxplots were made for attention values that
originated from outcomes that were MH-based and outcomes
that were not.

before del The last nucleotide before a deletion
after del The first nucleotide after a deletion
first del nt The first deleted nt
last del nt The last deleted nt
remaining del
mh

Remaining nucleotides that were deleted
and also part of an MH

remaining del Remaining nucleotides that were deleted
and not part of an MH

remaining non
del mh

Remaining nucleotides that were not
deleted and were part of an MH

remaining non
del

Remaining nucleotides that were not
deleted nor part of an MH

Fig. 6: Example of an outcome for a target sequence where all
nucleotides are labeled with their classes. The red hue indi-
cates which nucleotides were deleted in this specific outcome.
The various classes explained below in the table.

G. Training and evaluation

Our models were trained using minibatch stochastic gradient
descent optimized with Adam [26]. For the MH length predic-
tion problem and for the repair outcome prediction problem
we used exponential learning rate (LR) scheduling to decay
the LR to fine-tune model parameters as the model reaches
convergence: LR(e, γ) = LR0·γe, where e is the current epoch
and γ is a hyperparameter regulating LR decay speed. The
complete set of hyperparameters that were used for the models
are listed and summarized in Table I. Hyperparameters were
validated using 5-fold cross-validation. Some hyperparameters

were optimized by searching a range of possible values and
others were found by trial-and-error, see Results and discus-
sion (Section III) for details.

For MH detection, which is a binary classification problem,
we used binary cross-entropy as loss function. MH length
detection is a multi-class classification problem so we used the
cross entropy loss function. For the repair outcome prediction
task, the model outputs a probability score per single outcome.
These scores were batched together for all possible outcomes
for a target sequence and softmaxed to create a probability
distribution. This distribution was compared with the observed
probability distribution using Kullback-Leibler divergence as
a loss function.

MH detection models were evaluated by calculating their
accuracy on the test set. MH length detection models were also
evaluated based on their test set classification accuracy. Repair
outcome prediction models were evaluated by calculating the
Pearson correlation per target sequence between predicted
outcome frequencies and observed outcome frequencies. These
correlation values were visualized using a violin plot. Corre-
lation values from target sequences where the most frequent
repair outcome was MH-based were split from correlation
values where this was not the case.

III. RESULTS & DISCUSSION

For all three prediction tasks we trained models, evaluated
their performance and analyzed their behaviour, which we
discuss here.

A. MH detection
Our model was able to solve the MH detection problem,

obtaining 100% accuracy on the validation set and on the test
set. This result shows that a model with a limited number of
self-attention layers is able to accurately distinguish between
outcomes that are MH based and outcomes that are not.
We were able to train models with only two self-attention
layers that solved MH detection with 100% accuracy, but the
results were hard to reproduce. Possibly, the capacity of a
two layer model was not enough to obtain well-performing
models reliably for this prediction problem. Training three
layer models was more stable so we decided to use a three
layer model.
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(a) MH-based repair
outcome.

(b) Non MH-based
repair outcome. (c) MH-based repair outcome. (d) Non MH-based repair outcome.

(e) Attention boxplots.

Fig. 7: Attention visualizations for the MH detection problem, as described in Sections II-E & II-F. (a), (b): Attention
visualization of two samples for the MH detection problem. On the left side of each of these subfigures we see a vertical
representation of a repair outcome. The letters indicate the nucleotide composition of the target sequence, and CLS is the
classification token. The ‘ 1’ suffixes indicate nucleotides that were deleted in this repair outcome, and ‘ 0’ suffixes show
non-deleted nucleotides. On the right side of (a) and (b) we see an identical representation of the same repair outcome. The
line between two positions in the sequence i and j represent the attention value ai,j (see Section II-D1 & II-E), where a high
opacity indicates a high attention value. The left side of a connection shows position i, so the position of the query value qi
and the position of the output oi. The right side shows position j, the position whose key kj is compared with qi and whose
vj vector is used to build the value of output oi. The model outputs strong attention scores for expected MH positions: the
‘A 0’ before ‘C 1’ on top and the ‘A 1’ before ‘A 0’ below. (c), (d): These subfigures show attention values for each position
j, summed over all positions i: Aj =

∑l
i=0 ai,j/l, and split per layer of the model. The red hue highlights nucleotides that

were deleted in this each repair outcome. Again, we see high attention values for the expected microhomology positions ((c):
j = 2, 5, (d): j = 3, 7). In the second layer, attention was high for the (expected) right MH position, and on the third layer,
attention was high for the (expected) left MH position. (e): Boxplots showing attention values per nucleotide categorized as
described in Figure 6, averaged across the layers of the model (left) or shown per layer (middle, right). See Section II-F for
methods. On average, attention was high for expected MH positions (nt before del and last del nt) and for the first
deleted nucleotide (last del nt).

1) Attention visualization for MH detection: As described
in Section II-D1 we visualized the behaviour of a trained
model on the resolution of single outcomes by visualizing the
attention values it generated between positions in the target
sequence. We visualized attention for two repair outcomes,
one outcome that is MH-based (7a) and one outcome that
is not (7d). For both repair outcomes we can see that the
model is paying attention to the last nucleotide before the
deletion and to the last deleted nucleotide. These positions
are the expected positions for the MHs. In this controlled
prediction problem, we know that those are important features
for detecting MHs [5], [7], [17]. These results show that

attention visualization can help to reveal important features
in this problem context. However, we also note that in order
to find the expected MH positions, model should somehow
detect where the deletion starts and where it ends. The
attention visualization does not seem to provide insight on
that behaviour.

2) Attention boxplots for MH detection: We quantify the
attention values of the model across the whole dataset as
described in Section II-F (Figure 7e). In the averaged attention
values across layers we see that indeed the attention is strong
for the last deleted nucleotide (last del nt) and in a lesser
degree also for the last nucleotide before the deletion (nt
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before del). Interestingly, in the case of longer MHs the
attention values are not strong for other nucleotides that are
part of the MH (remaining del mh, remaining non
del mh). This follows expectation, as for this prediction
problem, the first nucleotide of the MH provides enough
information to determine MH presence. We saw specialization
of the second layer towards the right MH (last del nt)
and a specialization of the third layer towards the left MH (nt
before del). This result shows us that layers can specialize
towards subtasks of a prediction problem and therefore it is
important to analyze attention of different layers individually.

We saw a set of outliers in the first del nt category
with high attention values. These were all deletions of length
2 where both deleted nucleotides are the same. That is, the
embeddings of first del nt and last del nt were as
similar as they could be in our input embedding. Apparently,
this resulted in a high attention value not only for last
del nt, but also for first del nt. Possibly, this was
caused by the query vectors q of these nucleotides being
similar as well. This would mean that the high attention values
are merely an artifact caused by properties of the attention-
based model, rather than having any biological meaning. This
result highlights a limitation of linking model interpretation to
biological context using attention values.

B. MH length detection
The MH length detection problem on a window size of 52

nts was more complex and therefore we started by optimizing
our model for the prediction problem. We compared the
performance of three possible options for the number of heads.
The dimension of a position in the embedding dimension size
must be divisible by the number of heads, since the values
in the embedding are divided over the heads of the model
(see Section 4). Since our embedding dimension is 6, we can
choose n heads ∈ {1, 2, 3, 6}. In Figure 8a we compare the
learning behaviour of models with 1, 3 and 6 heads. We see
that the highest possible number of heads yields the best results
in our prediction problem.

The number of outcomes in a batch also influenced the
learning capabilities of the model (Figure 8b). A batch size
of 64 is too small for the model to find a suitable gradient in
the optimization landscape. Batch sizes of 256 and upwards,
however, seem to slow down learning. These high batch sizes
might even limit the final accuracy at convergence, although
the limited number of epochs on this experiment prohibit us
for making final conclusions on this matter. A batch size of
128 yields the best results.

As discussed in Section II-G, we used learning rate schedul-
ing with a exponential decay. This requires hyperparameter
optimization for the learning rate (LR) and the decay rate
(γ). We found good performing models for LR = 0.0015 and
γ = 0.99 (Figure 8c).

After optimization, the model attained near perfect perfor-
mance, with 99.987% accuracy (60280/60288 correct predic-
tions) on the test set. Our result shows that the complexity of
our model is enough to determine MH length from the input
embedding. MH length is an important predictor for the repair
outcome prediction problem [10], [17].

1) Attention analysis for MH length detection: We analyzed
how the model learned to handle this prediction problem. In
Figure 8d we can see an example where the model learned
to pay attention to nucleotides that are part of an MH or
to nucleotides nearby. For this outcome, attention values in
layer 3 were high for the edge of the MH (j = 19), and in
layer 4 for MH nucleotides (j = 19, 20, 49, 50). These results
suggest that layers could specialize in subproblems of the
prediction problem, and that attention visualization can reveal
this. Similar to Section III-A2 we quantified this behaviour
by plotting attention scores for categorized nucleotides across
the whole dataset (Figure 8e). For outcomes containing MHs
we saw that attention scores averaged across layers (left plot)
were higher for all the nucleotide categories that are part of
the MH (nt before del, last del nt, remaining
del mh and remaining non del mh). This is in con-
trast with Figure 7e, where the remaining del mh and
remaining non del mh categories did not show strongly
increased attention scores. This difference is explained by the
prediction problem setup. For the MH detection problem, the
model only needs to determine if the nucleotide before the
deletion (nt before del) and the last deleted nucleotide
(last del nt) are equal. If they are equal, then the out-
come is MH based, and no other information is necessary.
However, for detecting the length of an MH, the model needs
to check all nucleotides that are part of the MH. Even the
nucleotides adjacent to the MH are important, for example to
determine the difference between an MH of length 2 or 3.

These results on this prediction problem, where the features
are known, showcase how quantifying attention scores across
a dataset provides insight about feature importance and in how
an attention-based model works.

Another example where the attention analysis displays
model behaviour is shown in the attention values of layer 1
in Figure 8e. The attention scores displayed are from the first
layer of the MH length detection model. The attention scores
of deleted nucleotides are much higher than other attention
values. Therefore, it seems that this layer is specialized in
detecting which nucleotides were deleted, which is also visible
in the attention values for the repair outcome shown in
Figure 8d.

Note that the MH length detection prediction problem
was defined with 5 class labels, where the last class label
encompasses MH-based outcomes with MH lengths of 4 or
longer. In this setup the model can make correct predictions
for MHs longer than 4 nts based only on their first 4 nts. These
target sequences thus contain nucleotides that are part of the
MH but that are not important for the prediction task. However,
in our attention analyses, these nucleotides are categorized in
mh classes, which may be obfuscating our results.

C. Repair outcome prediction

The optimized models for the MHL prediction problems
provided us a starting point for what model complexity was
needed to capture MH features in a the target sequence and
what other hyperparameter settings could be fitting for the
frequency prediction problem.
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(a) Learning curves of number of heads opti-
mization for the MH length detection problem.

(b) Learning curves of batch size optimization
for the MH length detection problem.

(c) Learning curves of learning rate (LR) and
gamma (g) optimization for the MH length
detection problem. The curves show validation
set accuracy for three combinations of settings
for learning rate LR and g.

(d) Attention values for each position j, summed over all positions i: Aj =
∑l

i=0 ai,j/l, and split per layer of the model. The red hue
highlights nucleotides that were deleted in this each repair outcome. See Section II-E for details about the method. Attention values were
high for all expected MH positions (j = 17 − 20, 47 − 50) and for the nucleotides before (j = 16, 46). Positions j = 19, 20, 49, 50 are
MHs, and we saw especially high attention values for MH-adjacent positions (j = 18, 48).

(e) Microhomology length prediction attention boxplots. The attention values are categorized per nucleotide as described in Figure 6.
See Section II-F for methods. On average, attention values were high for all MH related classes (nt before del, last del nt,
remaining del mh and remaining non del mh). Attention values in layer 1 were relatively high only for deleted nucleotides.
Layer 5 attention values were high for expected MH positions (nt before del, last del nt).

Fig. 8: Attention visualizations for the MH length detection problem, as described in Sections II-E & II-F
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1) Model complexity: We trained models with varying
numbers of self-attention layers (n layers ∈ {4, 5, 6, 7})
on the repair outcome prediction problem (Figure 9). We
chose this set of options for number of layers in the
model because this was similar to model complexity that
was needed for the MH length detection problem, and it
was similar to the complexity of an attention-based model
that was used for a similar prediction task [18], [21]. The
model with the highest complexity had the lowest loss af-
ter 200 epochs (mean=0.00457, stdev=0.000388, KL diver-
gence). The other three models had comparable losses after
200 epochs (mean=0.00479, stdev=0.000318, mean=0.00472,
stev=0.000223, mean=0.00489, stdev=0.000283, KL diver-
gence, 4, 5, and 6 layer model, respectively). The losses of the
5 layer model and the 7 layer model did not differ significantly
(p = 0.754, Kruskal-Wallis).

Note that 200 epochs was not enough to reach convergence,
as the loss values were still decreasing at that point. Because
of time constraints and computational limitations, we chose
to train a 5 self-attention model for more epochs (400). Using
the 5 layer model also limited the model complexity compared
with a 7 layer model, albeit possibly at the price of lower
performance.

Fig. 9: Learning curves for models trained on the repair
outcome prediction problem using varying number of self-
attention layers. Lines show average KL Divergence loss on
the validation set and hues show standard deviation over 5-
fold cross-validation.

2) Correlations violin plots: In Figure 10 we show violin
plots of Pearson correlation values between predicted outcome
frequencies and observed outcome frequencies. Each correla-
tion value was calculated over one sample, which was the set
of all possible outcomes for one target sequence. In its present
form, the model was not on par with state-of-the-art perfor-
mance. The average correlation on test samples was 0.460
(Pearson’s R), whereas for example Lindel [9] achieved 0.70
on their dataset. Note that because these models were trained
on different datasets which can have different properties, the
correlation values might not be directly comparable. Across all
datasets, the correlation values varied from 0− 1 (Figure 10),

which implied that the models can make inaccurate predictions
and accurate predictions. The model performed better on the
train set (R = 0.505) than on the validation and test set
(R = 0.453 and R = 0.460, respectively), suggesting that
the model did not generalized completely.

The samples in the violin plots were categorized by whether
their most frequent outcome was MH-based or not. Our model
performed slightly better for MH based outcomes. Samples
where the model predictions correlated most strongly with
the labels (R > 0.9) were almost exclusively samples where
one outcome based on a long (>8 nt) MH was observed
with a relatively high frequency and all other outcomes were
relatively infrequent. This result highlights that the model
was able to distinguish outcomes with long MHs from other
outcomes and to link this with high outcome likelihood.
Conversely, the model did not make accurate predictions for
samples with high-frequent outcomes that were not MH-based,
suggesting that the model was not able to find and use other
features to make accurate predictions for these outcomes.

Because of the difference in model performance between
MH-based and non-MH samples, model performance could
possibly be improved with an approach like [10], where MH-
based and non-MH samples are modeled separately. This
would also provide an opportunity to interpret these models
separately, perhaps providing insights in individual DNA re-
pair mechanisms.

Dataset MH-based Non-MH Both
Train (avg. R) 0.520

(N=1305)
0.435
(N=295)

0.505
(N=1600)

Validation (avg. R) 0.463
(N=325)

0.409
(N=75)

0.453
(N=400)

Test (avg. R) 0.470
(N=1622)

0.417
(N=364)

0.460
(N=1986)

Fig. 10: Violin plot of Pearson correlation values per sample
between predicted outcome frequencies and observed outcome
frequencies. The average correlation values are listed in the
table. Samples in datasets were categorized by whether their
most frequent outcome was MH-based or not.

3) Attention visualizations: In Figure 11a we show a visu-
alization of only the outgoing attention of each nucleotide for
one typical MH-based repair outcome. We saw high attention
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(a) Attention values for each position j, summed over all positions i: Aj =
∑l

i=0 ai,j/l, and split per layer of the model. See
Section II-E for details about the method. The red hue highlights nucleotides that were deleted in this each repair outcome.
The outcome shown was MH-based with a MH length of 2. We saw increased attention scores for positions that are part of
the MH (j = 24, 25, 31, 32).

(b) Attention boxplots for the repair outcome prediction problem. The attention values are categorized per nucleotide as
described in Figure 6. See Section II-F for methods. Note that the boxplots was made on a random sampled 20% subset of
the test set (∼400 target sequences) because the number of data points was otherwise too large for our system.

Fig. 11: Attention visualizations for the repair outcome prediction problem.

scores for positions that are part of the MH. This observation
suggests that the model has learned to use MHs to make
outcome frequency predictions. The same can be observed in
Supplementary Figures 14a, 14b & 14c

4) Attention boxplots: In Figure 11b we quantified the
attention scores for various nucleotide types across the dataset
in a similar fashion as in Figure 8e. We saw relatively high
attention scores for the categories nt after del and last
del nt. Other MH categories also displayed heightened
attention values (nt before del, remaining del mh,
remaining non del mh), albeit to a lesser extend. For
the MH categories, we expected these results, since MHs are
important predictors for CRISPR outcomes [5], [7], [10], [17].
For the nt after del category, we did not initially expect
high attention values. Possibly, the first nucleotide to the right
of the right edge of a deletion had some predictive power
towards predicting CRISPR outcome.

We found that the fifth layer specialized towards the left
MH part (remaining non del mh, nt before del),

although the effect size is small. The remaining attention
scores were distributed more uniformly across the categories
compared to what we have seen in the other prediction prob-
lems. Again, this behaviour can be explained by the relation
between MHs and the prediction task. For detecting MH or
MH length, this connection was seemingly stronger than the
relation between MHs and outcome frequency.

We created a similar boxplot exclusively for samples in the
test set with strong correlations (R > 0.85) between predicted
and observed outcomes and exclusively for outcomes where
the predicted and true frequencies were above 25% (Supple-
mentary Figure 13). These samples were almost exclusively
MH-based (see Section III-C2). We saw that in this sample
subset, high attention scores were less common in non-MH
nucleotide categories. Indeed, the model focuses more strongly
on MH nucleotides for these MH-based samples.

IV. CONCLUSION & FUTURE OUTLOOK

In the present work we presented an attention-based deep
learning architecture that predicts CRISPR repair outcomes
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using an embedding that combined local DNA sequence con-
text with repair outcome specific properties. The performance
of our model was not on par with existing models. Yet, our
work can serve as starting point for developing attention-based
models with a more competitive performance. Attention visu-
alization methods revealed how our model behaved in CRISPR
outcome prediction. We introduced some additional attention
visualisation methods and validated them using simplified
reductions of the prediction problem. We showed that indeed
features that were previously known to be important for repair
outcome prediction received high attention scores. However,
our analyses also revealed some limitations of using attention
values for model interpretation. We did not identify new
target sequence features with predictive power for determining
repair outcome frequencies. Possibly, attention values were not
indicative of CRISPR outcome dynamics because our model
displayed limited performance. Namely, if the model did not
learn to properly predict CRISPR outcomes, than analyzing
the behaviour of the model only has limited meaning towards
understanding the prediction problem. The problem of using
attention values for exploring model behaviour may also be
a more fundamental one, as some recent research suggests
that attention values do not reliably correlate with feature
importance [22].

In our work we suggested that the attention mechanism
could be suitable for this prediction task. However, we were
not able to confirm or disprove that attention-based models
would be able to achieve state-of-the-art performance. A
recent study that was published during our research obtained
excellent performance using an deep learning framework based
on attention and BiLSTM layers [14].

For future work, we propose fine-tuning the model training
process and hyperparameters settings for the repair outcome
prediction task. We did not attempt a very broad range of
hyperparameter settings for the repair outcome prediction
problem. Our model might be underfitting the data, since the
average correlations between predicted and observed outcome
frequencies were much lower than models in the literature
that used similar data. Possibly, for example increasing the
number of layers or increasing the hidden dimension size
would further improve model performance, albeit at the cost of
higher complexity and thus reduced interpretability. However,
we do reason that model based mainly on self-attention layers
could be more interpretable in comparison to a mixed model
of attention and BiLSTM layers. We suggest attempting to
identify new features in local target sequence context that
influence repair outcome probabilities by exploring attention
values. This could provide leads for discovering novel charac-
teristics of CRISPR induced DSBs dynamics and subsequent
DNA repair. Our work forms a basis for such attention-based
modeling of CRISPR outcomes.
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V. SUPPLEMENTARY MATERIAL

Fig. 12: Schematic overview of DNA library transduction and
high-throughput measurements of indels (taken from [11])

Fig. 13: Frequency attention boxplot, averaged across layers,
only MH-based samples where the correlation between ob-
served and predicted outcomes is higher than 0.85 and only
outcomes where the observed and predicted frequency were
above 25% (162 out of 1986 target sequences in the test set,
165 outcomes)
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(a) Attention visualization for fre-
quency prediction problem. Aver-
aged attention across layers.

(b) Attention visualization for fre-
quency prediction problem. Layer 3
attention.

(c) Attention visualization for fre-
quency prediction problem. Layer 4
attention.

Fig. 14: Attention visualization for frequency prediction problem. Note that these figures are truncated on the top and bottom
part. The actual window size is 52 nts. See Section II-E and Figure 7 caption for details on the attention visualization method.
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