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Chapter 1

Introduction

1.1 A gentle introduction to stereology

At the time of writing this thesis, it is precisely a century ago since the statistician Sven Dag
Wicksell introduced the corpuscle problem in his paper [114], which is now commonly
known as Wicksell’s corpuscle problem. The problem he was dealing with originated
from anatomy and may be described as follows. In post-mortem studies so-called follicles
or corpuscles were observed in slices of organs. The follicles observed in the 2D slice
were approximately circular, suggesting that the original follicles were approximately 3D
balls. Anatomists at the time were interested in determining the statistical distribution of
the radii of the (3D) follicles. This inspired Wicksell to define the following mathematical
model. Suppose balls of varying sizes are randomly positioned in an opaque medium.
These balls cannot be observed directly, instead the medium is intersected with a plane,
and we observe the circle radii of the balls which happened to be hit by the plane. The
problem is then to estimate the probability distribution of the 3D radii given the sample of
the observed 2D radii. A visualization of the problem setting is shown in Figure 1.1.

Figure 1.1: Left: Random spatial system of balls intersected with a plane. Right: Observed
section profiles.
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More formally, one may consider the centers of the balls to be a realization of a homo-
geneous Poisson point process, and their radii are drawn independently from a common
probability distribution with distribution function F. As it turns out, it is possible to ex-
press this unknown distribution function F in terms of the distribution of the observed 2D
radii. Despite of this inversion formula, estimation of F is a not a trivial matter, and vari-
ous estimators for ' have been proposed over the years. We refer to [18] for an overview
of various estimators, and for some recent developments see for instance [33] and [34].

Wicksell’s corpuscle problem belongs to a larger field of research which is known as
stereology. Stereology deals with the estimation of higher dimensional information from
lower dimensional observations. In many practical applications this often means that one
is interested in 3D characteristics of some object, while only 2D observations are available.
An important field of application for stereology is materials science, and throughout this
thesis, applications to materials science will be the main motivation for our research. For
steel, there are unfortunately no quick or cost-effective methods to perform a 3D scan of
the steel sample. It is however possible to obtain 2D microscopic images of the surface, or
cross sections of the steel sample. Examples of such images, obtained via different imag-
ing techniques can be seen in Figure 1.2. In these images one can see that the so-called
microstructure of a steel consists of some kind of cells, called grains. In the images the
grains are the approximately polygonal areas delimited by lines called grain boundaries.
The reason that accurately describing or characterizing the 3D microstructure of a material
is of interest is because properties of the 3D microstructure, such as the grain size distribu-
tion, are closely related to mechanical properties of the material, such as its strength. If an
accurate model of a materials microstructure is available, laborious experiments such as
stress tests may be replaced by computer simulations, thereby saving time, energy and re-
sources. Additionally, a better understanding of materials microstructures may eventually
allow for designing new materials with desirable properties.

Throughout this thesis, we mainly take a model-based approach to stereology. This
means that we mathematically define a 3D structure, which involves randomness, such
as the random placement of balls of random sizes in the Wicksell model. We will then
intersect this 3D structure with a plane, and then we aim to estimate the parameters of the

SED 20.0kVWD10mm
TU Delft

Figure 1.2: Images of metal microstructures, taken using various imaging techniques and
different scales. Pictures taken by (a) Javier Hidalgo, (b) Wei Li, (c) Carola Celada-Casero.
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underlying model based on the resulting 2D observations. We should also mention that
design-based stereology is another approach to stereology. In design-based stereology the
3D structure at hand is considered deterministic as opposed to random, and randomness
is introduced by sampling with random section planes. In this thesis, only in chapter 2 we
take a design-based approach. For a more complete overview of design-based stereology
we refer to [9] and [20]. For model-based stereology, see chapter 10 in [18].

1.2 Stochastic geometry

As described in the previous section, we study mathematical models for 3D structures, in
particular materials microstructures. Because stochastic geometry is a branch of mathe-
matics which deals with random geometric patterns and structures, it is an obvious starting
point for our purposes. An essential component of many models in stochastic geometry is
a so-called point process, which may also be described as a random point pattern. In the
previous section we already mentioned that a homogeneous Poisson point process may be
used to position the randomly sized balls in Wicksell’s corpuscle problem. A realization
of a homogeneous Poisson point process in 2D is shown in the left panel of Figure 1.3.
Of course, the Wicksell model involves a homogeneous Poisson process in 3D, but this
should provide some intuition on what these random point patterns may look like. The
Poisson process is often considered to be the most important point process, and it will
also play a significant role in this thesis. For more details on Poisson point processes and
more general point processes we refer to [22], [23] and [53]. For a thorough treatment of
stochastic geometry we refer to [86] and [18].

As is evident from the title of this thesis, we are interested in stereological estimation
for particle processes and random tessellations. An example of a particle process is for
example the random system of 3D balls in the Wicksell model. Mathematically, a particle
process is a specific type of point process where each ”point” is in fact a set, and may be

Figure 1.3: Left: A realization of a homogeneous Poisson point process. Right: The
corresponding Poisson-Voronoi tessellation.
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referred to as a particle or a grain. A particle in a particle process may for example be a
(randomly sized) ball or a (random) polytope. If the particles of the particle process have
a similar shape as the grains in a real materials microstructure, one can imagine that such
a particle process may be a reasonable model for the microstructure at hand. That being
said, even if the particles have similar shapes as the grains in a microstructure, this may
not be enough to consider the model sufficiently realistic. For instance, if the particles are
positioned via a Poisson point process, then the particles will not necessarily “fill space”.
Recall Figure 1.1, there is clearly empty space between the balls. Meanwhile, if one looks
at the images of steel microstructures shown in Figure 1.2 then there is no empty space
between grains. Evidently, replacing the balls in the Wicksell model with a shape that is
similar to the shape of a grain in a real material is a step forward, compared to just using the
Wicksell model. Moreover, an attractive feature of these kinds of models is that they are
tractable for mathematical analysis. We should also note that there are materials which
do not have a space-filling microstructure. Then, these models of randomly positioned
particles are of interest as they may in fact accurately describe the real microstructure.
However, in order to obtain more accurate models for steel microstructures, considering
models which are space-filling seems to be crucial. Therefore, we also study random
tessellations.

A tessellation or mosaic is a way to divide 3D or 2D space into non-overlapping pieces.
Mathematically, a random tessellation may be described as a specific kind of particle pro-
cess, which has non-overlapping particles and which does “fill space”. An example of a
random tessellation is shown on the cover of this thesis. The particles of a random tessel-
lation are usually referred to as cells. A well-known example of a random tessellation is
the so-called Poisson-Voronoi tessellation. A realization of a 2D Poisson-Voronoi tessel-
lation is shown in the right panel of Figure 1.3. This tessellation is constructed as follows.
First, one simulates a homogeneous Poisson process. Then, to each point (or seed) in
the Poisson process a cell is assigned. In 2D, a cell in a Poisson-Voronoi tessellation is
a polygon, and a point in 2D space is contained in this cell if it is closer to the seed of
this cell than it is to any of the other seeds. Stereological estimation for Poisson-Voronoi
tessellations was considered in [42]. Intersecting a 3D Poisson-Voronoi tessellation with
a plane yields a tessellation which is no longer a Voronoi tessellation. Only recently a
precise mathematical description of this random tessellation was given in [41]. For more
details on random Voronoi tessellations we refer to [67]. As the Poisson-Voronoi tessel-
lation only has one parameter (the intensity of the Poisson point process) it may not be
flexible enough for some applications. One could then for instance consider the Poisson-
Laguerre tessellation, which is a more advanced tessellation model. For an overview of
random tessellation models see [78].

1.3 Overview of the thesis

In this section we present an overview of the contents of this thesis. In the previous sec-
tions we provided a motivation for studying stereological estimation and we informally
introduced the main mathematical concepts considered in this thesis. In principle, the
chapters in this thesis are self-contained, and all necessary definitions and notation are
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introduced in each chapter. That being said, some of the described theory is needed in
multiple chapters, and therefore we may occasionally refer the reader to sections in pre-
vious chapters. Readers who are not yet familiar with point processes, particle processes
and random tessellations may consult Appendix A. In this appendix we provide a formal
introduction of these concepts.

This thesis may be of interest to both mathematicians as well as materials scientists.
We should however note that in most chapters the focus is on formal mathematical results.
The chapters in this thesis are mainly based on published papers, as we outline below. A
complete list of publications used for writing the chapters in this thesis is provided at the
end of this thesis.

This thesis is organized in two parts. In part I, we consider stereological estimation for
a specific class of particle processes. This may be seen as a generalization of Wicksell’s
corpuscle problem. In this generalization, 3D particles are randomly positioned and -
oriented in an opaque body. These particles are all of the same convex shape, but not of
the same size. Intersecting the opaque medium with a plane, some of the particles are
also hit by this plane. This procedure yields a sample of observed 2D section profiles, and
we wish to use the areas of these section profiles to estimate the size distribution of the
3D particles. In order to deal with this problem we first study random section areas of a
fixed convex shape. This is the content of chapter 2, which is based on the paper [105].
The results in chapter 2 are then used in chapter 3 to define a nonparametric estimator for
the 3D particle size distribution, given a sample of observed section profile areas. The
statistical methodology developed in chapter 3 is based on the publication [106].

Next, we consider a practical application. We apply the estimation procedure described
in chapter 3 to microscopic image data of a real steel sample in chapter 4. Additionally, we
apply the estimation procedure to various simulated materials microstructures. We study
the quality of the resulting estimates, and shed some light on how our statistical method-
ology may be of use for materials scientists. In this chapter we also briefly summarize
the statistical methodology derived in chapter 3. The content of chapter 4 is based on the
paper [108].

In part IT of this thesis we focus on a class of random tessellations known as Poisson-
Laguerre tessellations. This model is a more flexible generalization of the classical Poisson-
Voronoi model, as it allows for more variation in cell sizes. We study these random
tessellations not just from a stereological point of view (observations via a planar sec-
tion) but also from the point of view of direct observations, as this already poses various
challenges. A statistical methodology for Poisson-Laguerre tessellations is described in
chapter 5, which is based on [107]. In Chapter 6 we study whether one can estimate the
weighted generators corresponding to the observed cells of a Poisson-Laguerre tessella-
tion. This is of interest because knowledge of these weighted generators is an essential
ingredient for statistical inference for Poisson-Laguerre tessellations.

At the end of this thesis we provide some conclusions in chapter 7. Here, we also high-
light several interesting future research directions. Finally, this thesis has two appendices.
In Appendix A we provide a theoretical background for this thesis and in Appendix B we
present auxiliary results for chapter 3.
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Part 1

Particle processes with a fixed
grain shape
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Chapter 2

The section volume distribution of a
convex body

2.1 Introduction

In a typical stereological problem we are presented with observations which originate from
alower dimension than the dimension of interest. Recall from the introduction the classical
example of the Wicksell corpuscle problem, which considers the following setting. Balls
of varying size are randomly positioned in 3D space. This system of balls is intersected
with a plane and the circular section profiles of the balls which happened to be cut by the
section plane are observed. The problem is to determine the distribution of the radii of the
3D balls given the distribution of the radii of the observed 2D circular profiles.

An interesting generalization of this problem is to choose a convex shape other than
the ball for the shape of the particles. Then, the distribution of observed section areas
may be used to estimate the size distribution of the particles. The particles we consider
are convex bodies, i.e. compact and convex sets with non-empty interior. In order to deal
with such problems we study a class of distributions which is especially important in this
setting. Suppose we take some convex body K ¢ R? of choice and intersect K with a
random section plane. More generally, we may take a convex body K ¢ R¢, and intersect
it with a random (d — 1)-dimensional hyperplane. The random section planes we consider
are Isotropic Uniformly Random (IUR) planes, which will be formally introduced in the
next section. What can be said regarding the cumulative distribution function (CDF) Gk
associated with the (d — 1)-dimensional volume of such a random section of K? In this
chapter we study this kind of distribution functions. In particular, we obtain results on
absolute continuity. Whenever we refer to absolute continuity of a cumulative distribution
function we mean absolute continuity with respect to Lebesgue measure. The existence
and the accurate approximation of the density of G is an essential ingredient for defining
likelihood-based estimators for particle size distributions as we will see in chapter 3.

Given a convex body K ¢ R? an IUR section of K is the intersection of K with a ran-
dom line. The distribution function G g is then also known as a chord-length distribution
function. Some results regarding this function may be found in [32]. The author notes
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Figure 2.1: 50 IUR sections through a convex dodecahedron.

that it is typically assumed without proof that the CDF of a chord length distribution is
absolutely continuous. Only for a limited set of convex polygons there are some results
on absolute continuity. See for example [44] for the chord length distribution function of
a regular polygon which is absolutely continuous.

For convex bodies K C R3 the distribution function Gk is sometimes called a cross
section area distribution. In [84] it is noted that in a stereological setting it is of interest
to obtain the density of Gk for some basic shapes such as the simplex or the cube. How-
ever, to the best of our knowledge there are no results on whether Gg has a density for
a large class of convex bodies, especially in R¢ with d > 3. To overcome the difficulty
in obtaining an expression for G, simulations may be used to find an approximation. In
[69] a description is given for approximating Gx (when K is a polytope in R®) and for
how it may be used to estimate the size distribution of particles from a sample of observed
section areas.

The outline of this chapter is as follows. First, we introduce necessary notation and
definitions in section 2.2. In section 2.3 we present various results on the distribution func-
tion Gg. In particular, we show that for a large class of convex bodies, G is absolutely
continuous. In section 2.4 we propose a Monte Carlo simulation scheme to approximate
the corresponding probability density function g . Finally, we provide some conclusions
in section 2.5.

2.2 Isotropic Uniformly Random planes

In this section we formally introduce Isotropic Uniformly Random (IUR) planes, along
with some necessary notation and definitions. In particular, we introduce some terminol-
ogy from convex geometry, a standard reference is [85]. In R? a convex body is a convex
and compact set with non-empty interior. Let ¢ denote the class of convex bodies in R¥.
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Let v4(K) be the d-dimensional volume of K, its d-dimensional Lebesgue measure. K
and L indicate convex bodies. Given a point x € R?, the translation of K with x is given
by: K +x = {k+x : k € K}. The sum of two sets, also known as the Minkowski sum,
is defined as: K+ L ={k+1[: k € K,I € L}. The dilatation or scaling of K with 2 > 0
is given by: AK = {Ak : k € K}. 0K denotes the boundary of K. Given x € R? and
r>0,wewrite B(x,r) ={y e R?: [x—y|| <r}and B(x,r) = {y e R? : |lx = y|| < r}
for the open and closed ball respectively, with radius r centered at x. SO(d) denotes the
rotation group of order d, containing all orthogonal d X d-matrices of determinant one.
Given M € SO(d), the rotation of K with M is denoted by: MK = {Mk : k € K}. We
write int K and relint K to denote the interior and relative interior of K respectively. The
set relint K contains all points x € K which are contained within the interior of the affine
hull of K. That is, there exists a r > 0 such that B(x, r) N aff(K) c K. Here, aff (K) is the
affine hull of K, the smallest affine set containing K. A convex body K € K is strictly
convex if for all x,y € K and 2 € (0, 1) we have Ax + (1 — 2)y € int K. A strictly convex
body does not have any line segments in its boundary. The unit sphere in R¢ is denoted
by S9! = {(x1,...,xq) € RY : x? +--- +x2 = 1}. The upper hemisphere in R is given
by: S971 = {(x1,...,x4) € S : x4 > 0}. Let 04— denote the spherical measure on
S4-1 also known as the spherical Lebesgue measure on S¢-!. In integrals over (a subset
of) S-! the notation dé should be interpreted as oy (d6). Recall that a hyperplane may
be parameterized via a unit normal vector § € S¢~! and its signed distance s € R to the
origin:

Tos = {x € RY: (x,0) = s}, 2.1
with (-, -) being the usual inner product in R¢. The following definition gives a convenient
parameterization of IUR planes, see [9] for IUR plane sections of convex bodies in R? (the
generalization to R¢ is straightforward):

Definition 2.1 (IUR plane). An IUR plane 7 hitting a fixed K € K¢, d > 2, is defined as
T = Te.s where (0, S) has joint probability density, fx : S¢~! x R — [0, co) given by:

—L i KNTys#0
9,s) = { #UKD) S
Tk (6.5) {O otherwise,
with Ty ¢ as in (2.1) and
u([K]):/d / 1I{KNTy s + 0}dsdb. 2.2)
S+_l —o0

Loosely speaking this means that for an IUR plane through K, every plane which has
a non-empty intersection with K has equal probability of occurring. The notion of ITUR
planes was originally introduced in [25]. It is important to highlight that there are other
kinds of random planes which appear in stereological problems, hence care should be
taken in considering the appropriate distribution. See [65] for more details. ITUR planes
may also be defined via invariant measures, see for instance section 8.4 in [86].

Note that the distribution in Definition 2.1 is a joint uniform distribution; the marginals
are in general not uniform. We stress that the density fx prescribes the probability asso-
ciated with the possible locations and orientations of the section plane, not the volumes of
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hyperplane sections. Fix K € K< and let fx be as in Definition 2.1. Integrating out the
variable s, we obtain the marginal density:

L(po(K))
u(IKD -

In (2.3), pe(K) represents the orthogonal projection of K on the line through the ori-
gin with direction 6. L(pg(K)) is then the length of this orthogonal projection, hence
L(pg(K)) may also be called the width of K in direction 6. The constant u([K]) is re-
lated to the average width b(K), via:

fr.0(0) = 6 esdt, (2.3)

W -
u([K]) = S7B(K). 2.4)
The average width is defined as:
- 2
b0y == [ Lvatx)a0, 2.5)
Wd Jsd-!

Here, wg = 04-1 (S97') and wy/2 = 04—y (S¢") represents the normalization constant.
Conditioning an IUR plane on a fixed direction yields a so-called Fixed orientation Uni-
formly Random (FUR) plane. Fix § € S?~!, let a = a(6) be the smallest number such that
KNTg, # 0, similarly let b = b(6) be the largest number such that K N Ty p # 0. Then,
conditional on this direction ® = 6, S is uniformly distributed on the interval [a, b], and
we denote this conditional density by:

fyo(slo) = { Fram s € 1a(). b(O) (2.6)
! 0 otherwise, '

We may also write: S|® = 6 ~ Unif(a(6),b(60)). We also need the following lemma,
which appears as proposition 1 in [25]:

Lemma 2.1. Suppose that K, L € K¢ with K C L. Let T be an IUR plane hitting L, then:
1. Hitting probability:

b(K
P(TNK +#0)= &
b(L)
2. Conditional property: Given that T hits K, i.e. TNK # 0, T is an IUR plane hitting

K.
We are now ready to introduce the CDF of interest in this chapter.

Definition 2.2 (section volume CDF). Fix K € K d d>2, let fx be as in Definition 2.1.
Let (®,S) ~ fk, the random variable Z = v;4_;(K N T s) has cumulative distribution
function G g which is given by:

Gr(@ = [ [ 100K Ta) < 2 fico.5)ds00.

We refer to G as the section volume CDF of K.
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We remark that the expression for the CDF G follows from the fact that Gk (z) =
P(Z < z) = E(1{Z < z}) and the law of the unconscious statistician. In R? we may still
refer to G as chord length distribution function and in R* we may call it cross section
area distribution function.

2.3 Properties of the section volume CDF

In this section we derive various properties of the section volume CDF as described in
Definition 2.2. The following lemma highlights some basic properties.

Lemma 2.2. Fix K,L € K9, let Gk, G|, be their section volume CDF respectively. Let
z € R, then:

1. Translation invariance: Gk4x(z) = Gk (2) for all x € RY.
2. Rotation invariance: G pk(z) = Gk (2) for all M € SO(d).
3. Scaling: Gk (z) = Gk (z/A97") forall A > 0.

4. Inclusion: If K C L then:

Gr(z) £ Gk(2)

) (1 by
b(L) b(L))"

The translation and rotation invariance of IUR planes is a defining property of IUR
planes, [25], and it may be used to prove property 1 and 2 in Lemma 2.2. The third property
also appears in [84] for d = 3. All of these properties are well-known for chord length
distributions and the generalization to (d — 1)-dimensional sections of convex bodies in
R4 is not difficult. For the sake of completeness, the proof of this lemma may be found in
section 2.6. We need Brunn’s theorem (see for example [52]) to prove our first result:

Theorem 2.3 (Brunn). Let K € K9, d > 2. Fix 6 € S?~'. The function fy : R — [0, c0)
given by:
1
Jo(s) =va-1(KNTys)aT
is concave on its Support.
Ignoring the exponent 1/(d—1) in the definition of fj, this function returns the volume
of the intersection of K with Ty ;. Because we fix 6 this means the function considers
volumes of parallel slices of K, and it is a function of the (signed) distance of the section

plane to the origin. The statement of Brunn’s Theorem inspires us to study a distribution
function which is closely related to Gg:

Definition 2.4 (Transformed section volume CDF). Fix K € K, d > 2, let fk be as in
Definition 2.1. Let (®,S) ~ fk, the random variable Z = v4_1(K N Te.s)"/¢~1) has
cumulative distribution function Gi which is given by:

Gf((z) = /Sd?l ‘/R]l{vd_l(K N Tg’s)# < z}fK(G, s)dsdg.

We refer to Gi as the transformed section volume CDF of K.
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This distribution function Gi turns out to be more natural to study compared to Gg.
This will become clear in the proof of the upcoming theorem. Note that, for K € K¢, Gg
and G §< are related as follows:

Gi(z) =Gk (zd_l) .

Remark 2.1. G is absolutely continuous if and only if Gi is absolutely continuous. After
all, suppose that G% has probability density function gIS<. Let X ~ gIS(, then X471 ~ G
and via the well-known change of variables formula this random variable has the following
probability density function:

2-

zd-1
d-1

1
gx(2) = g§ (zﬂ) 2.7)
The converse case is analogous.

In the proof of the upcoming theorem we use some additional notation. Given a convex
body K € K¢ its inner section function mg : S4~! — [0, c0) is defined by:

mg(6) = max vg_q (K N Tg’s) . (2.8)
seR
This function returns the maximal section volume for any given direction. We now present
one of the main theorems in this chapter:

Theorem 2.5. Let K € K9, d > 2. Define the function fg : R — [0, o) by:

fo(s) =va-1(KN Tg,s)ﬁ.

If fo has a unique maximum and is continuous on R for almost all 6 € S¢=1, then G is
absolutely continuous with respect to Lebesgue measure.

Proof. Given K € K d 1et G k be its section volume CDF and let G‘f( be its transformed
section volume CDF. We show that Gi is absolutely continuous, from this it follows that
G is absolutely continuous by Remark 2.1. By conditioning the distribution function Gi
on O having a particular value, G§< may be written as a mixture distribution:

G =P(fos) <= [ P(fo(s) <0 =0) frco(@)a0,

with fx @(6) being the marginal density of ® as in (2.3) and fu( ) as in the statement of
the theorem. For notation convenience, write:

G (z10) =P (fo(S) < z|© =) (2.9)

Leta = a(6) and b = b(6) be as in (2.6) such that S|® = 6 ~ Unif(a, b). Choose § € $¢-!
such that fy has a unique maximum and is continuous on R. By definition of a we know
that Ty , intersects K only through the boundary of K. By the assumed continuity of fy
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we have fy(a) = 0 and similarly: fy(b) = 0. Note that fy has the following domain and
codomain:
1
fo: [a,b] = Dg, with Dy = [o,m,((e)ﬁ], (2.10)

and mg (-) asin (2.8). By Brunn’s theorem fy is concave on its support and by assumption
it attains its maximum in a single point c. As aresult, fy is strictly increasing on (a, ¢) and
strictly decreasing on (¢, b). Therefore, fy restricted to (a, c) is invertible, and its inverse
is convex and strictly increasing. Let:

fa: (O,mK(H)ﬁ) — (a,c),

denote this inverse. Similarly, fy restricted to (¢, ) has an inverse:

fa + (0.mx(®)7T) = (e, b),
which is concave and strictly decreasing. Write:
p=P(S € (a,c)®=0).

By using the fact that S|® = 6 ~ Unif(a, b) we find p = (¢ — a)/(b — a). Moreover, we
obtain the following expression for G (z6):

GS.(2]0) = P(fg(S) < z‘@ -6,S e (a,c)) p +P(f9(S) < z‘@ —0,S ¢ (c,b)) (1-p)

=P(S < f;(z)(@) _0,5e (a,c))p+P(S > f;(z)|® _0,5¢€ (c,b)) (1-p)

Oy (B0,
-c

p+ (1 -
c—a
Because f, is concave and strictly decreasing, —f, is convex and strictly increasing.
Therefore, Gi( -10) is a convex combination of two functions both of which are convex
and strictly increasing on the interval Dg (as in (2.10)). As a result, G*;(( -10) is convex,
continuous, and strictly increasing on D g, which is the support of this distribution func-
tion. We conclude that for almost all § € S¢~!, G%.(-16) is absolutely continuous because
it is convex on its support and continuous on R. Finally, this means that Gf( as a mix-
ture of absolutely continuous distribution functions is absolutely continuous by Fubini’s

theorem. o

Remark 2.2. The arguments used in the proof of Theorem 2.5 do not hold for general
convex bodies. For general convex bodies the function fg is concave by Brunn’s theorem.
Therefore, the set of points at which it attains its maximum may be an interval rather
than a single point. When this is the case, G‘Z( -16) is still convex on its support, but it is
discontinuous in the point mg (6)'/ 4=V which is the right boundary point of its support.
As a result, for any convex body K € K<, G‘;( is convex on the interval (0,7g) with:
Tg = MiNggd-1 mK(Q)l/(d_l).
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2.3.1 Strictly convex bodies

Let us now consider a particular class of convex bodies known as strictly convex bodies.
The class of strictly convex bodies is large in a precise sense. For one, the class of convex
bodies which are not smooth or strictly convex form a set of first Baire category, see [117]
for details. We have not yet mentioned smooth convex bodies, loosely speaking it means
that their boundary is smooth. An important result we obtain in this section is that given
that K € K9 is strictly convex, then Gk is absolutely continuous. Therefore, we show that
for a large class of convex bodies Gk is absolutely continuous. The main tools to obtain
this result are the famous Brunn-Minkowski inequality and a variant of Brunn’s theorem.
In the field of convex geometry the importance of the Brunn-Minkowski inequality can-
not be overstated, we refer to the review paper [31] for variants of the theorem and its
applications.

Theorem 2.6 (Brunn-Minkowski). Given convex bodies K,L € K¢ and 0 < 1 < 1 the
Jollowing inequality holds:

va(AK + (1 = DL)7 = Avg(K)w + (1 = A) va(L)7,
with equality if and only if K and L are equal up to translation and dilatation.

The equality condition in Theorem 2.6 means that there exist § > 0 and x € R? such
that K = 6L + x. In order to prove that Gk is absolutely continuous for strictly convex
K € K we show that the conditions in Theorem 2.5 are satisfied. First, we need the
following Lemma:

Lemma 2.3. Let K, L € K¢ with K C int L, then vq(K) < vg(L).

Its proof is given in section 2.6. We show that the strict convexity of a convex body
carries over to strict concavity of the function fy (as in Theorem 2.3).

Theorem 2.7. Let K € K be a strictly convex body, d > 2. Fix 6 € S?~!. The function
fo : R — [0, o) given by:
L
Jo(s) =va-1(KNTp,s)dT
is continuous on R and strictly concave on its support.

Proof. The proof is a slight variation of a proof of Brunn’s theorem using the Brunn-
Minkowski inequality as found in [52] (pp 18, 19). Fix 8 € S¢~!. Choose r,? in the
support of fy, such that r < t. Let 2 € (0,1), set s = Ar + (1 — )t and consider the
hyperplane sections K, :== K N Ty ,, Ky := KN Ty and K; := K N Ty ;. We show that:

AK, + (1 = DK, C (intK) N Ty (2.11)

Letz € AK, + (1 — A)K;, then z = Ax + (1 — A)y for some x € K, and some y € K.
Because also x,y € K we have z € int K due to the strict convexity of K. Also, note that
(z,0) = Ax,0)+ (1 = )(y,0) = Ar + (1 — )t = 5. Hence, z € Ty s, which proves (2.11).
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It can readily be verified that: (int K) N Ty ¢ = relint (K). Combining this with (2.11) we
find: AK, + (1 — 1)K, C relint (K). Let I1(L) denote the orthogonal projection of L on
the hyperplane Ty o. Note that AK, + (1 —1)K; and K are subsets of Ty s, projecting them
on Ty o preserves the inclusion:

II(AK, + (1 = )K;) C relintII(Ky).

Identifying Ty o with R?-! we may regard IT(AK,+(1-21)K;) and I1(K,) as convex bodies
in R?~!. Under this identification IT(AK, + (1 — 2)K,) C intIT1(K) and applying Lemma
2.3 yields:

va-1 (IL(AKy + (1 = DKy)) < va-1 (TII(Ky)) -

Keep in mind that the sets which are projected on Ty ¢ have the same (d — 1)-dimensional
volume as the original sets. Note that we may change the order of these projections and
the Minkowski sum:

AII(K,) + (1 = HII(K;) = TI(AK, + (1 = D) K;),
where the sum of sets is considered in the plane Ty 0. Hence,
va-1 (II(Ky)) > va-1(IN(AK; + (1 = D)Ky)) = va—1 (A(K;) + (1 = VIN(K,)). (2.12)

Once again, IT1(K,) and TI(K;) may be identified as convex bodies in R?~! and we may
apply Brunn-Minkowski’s (B.M.) inequality to obtain the desired result:

1
fo(s) = va—1(Ky)aT
1
=va-1(II(Ky)) @7
> vao1 (A(K,) + (1 = DII(K,)) a1 (by equation (2.12))
> Avaot (K )T+ (1= D) v (1K) T (BM.)
= Ava1(K) 7T + (1= ) va_1(K) 7T
=Afo(r) + (1 =) fo(1).
Continuity of fg(-) can be shown as follows. Let a = a(#) and b = b(0) be as in (2.6).
By definition of a we know that Ty , intersects K only through the boundary of K. This
intersection only contains a single point, if another point were in the intersection this would
imply that the boundary of K contains a line segment which contradicts the strict convexity

of K. As aresult: fg(a) = 0 and similarly: fy(b) = 0. Because a and b are the only
possible points of discontinuity, fy(-) is continuous. O

Because a bounded concave function has a maximum, strict concavity then implies that
the maximum is unique. We obtain as a direct consequence of Theorem 2.1 and Theorem
2.5:

Corollary 2.1. Let K € K9 strictly convex, and let G g be its section volume CDF. Then,
Gk is absolutely continuous.
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2.3.2 Polytopes

In this section we study polytopes, which are especially of interest for practical applica-
tions. Being examples of non-strictly convex bodies, they are not covered by Corollary
2.1. The main result we obtain in this section is that the section volume CDF of a full-
dimensional convex polytope is absolutely continuous. In order to obtain this result for
polytopes, we need to deal with the regions where the function fy, as in Brunn’s theo-
rem, is constant. The following lemma shows that this can only happen if the polytope has
parallel edges.

Lemma 2.4. Let P C R? be a full-dimensional convex polytope, d > 2. Fix 6 € S¢~! and
define the function fg : R — [0, 00) by:

fo(8) = va 1(PNTp )@,

Suppose fg attains its maximum on the entire interval [s_, s], with s_ < s,. Then, any
plane Ty s with s € [s_, s.] intersects the same edges of P and these edges are parallel.

Proof. Leta = a(6) and b = b(0) as in (2.6). For s € (a, b) the intersection P N Ty  is a
(d — 1)-dimensional polytope, and its vertices are the intersections of Ty s with the edges
of P. By Brunn’s theorem we know that fy is concave on its support. The set of points
at which a concave function attains its maximum is convex, hence it is a nondegenerate
interval or a single point. By assumption it is the interval [s_, s;]. By Brunn-Minkowski’s
inequality, and in particular its equality condition, we know that all sections {P N Ty s :
s € [s—, s;]} are equal up to dilatation and translation. But, because all such sections have
equal volume, these sections then have to be equal up to translations. Write P;_ = PNTg _
and P;, = PN Ty, . Because Py, is equal to P, up to translation there exists a x € R4
such that P, = Py +x. Lets € [s_, s;], we claim that:

PNToy =Py + " x = 0(s). (2.13)
Sy —S_
Let z € Q(s), then there exists a y € Ps_ such that:
Z=y+ L y+(1— e )(x+y).
Sy —S_ Sy —S_ s = S_

Since y € Ps_and (x +y) € P;_ +x = Py, it follows that z is the convex combination
of two points in P, hence z € P. Moreover, we have (y,0) = s_ and (x + y,0) = s;. A
direct computation yields: (z,8) = s. This means that Q(s) € PNTy . Because Q(s) isa
translation of P;_ and since PN Ty s is equal to Ps_ up to a translation we necessarily have
that (2.13) holds. Therefore, for any vertex v of Py, v+ ((s —s_)/(s+ — s-))x is a vertex
of P N Ty . Itis evident that all vertices of the polytopes {P N Ty 5 : s € [s—,s+]} lie on
parallel line segments which are subsets of the edges of P, this finishes the proof. O

In the next theorem we combine some of the techniques used earlier in this chapter and
Lemma 2.4 to show that the section volume CDF of any full-dimensional convex polytope
is absolutely continuous.
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Theorem 2.8. Let P C R? be a full-dimensional convex polytope, d > 2. Let G p be its
section volume CDF. Then, G p is absolutely continuous.

Proof. Given 6 € S¢~! define the function fp : R — [0, o) by:

fo(s) = va_1 (PN Tps)aT.

Let B c R be a Borel set of Lebesgue measure zero. Let fp be as in Definition 2.2 and let
(0,8) ~ fp. As in the proof of Theorem 2.5, we condition on ® = 6 and write:

B(va1(P N To.5)7T € B) =P (foS) € B) = /S B(fo(5) < Bl = 6) fr.0(e)a8.

with fp ¢(6) being the marginal density of ® as in (2.3). In order to show that Gp is
absolutely continuous it is sufficient to show that P (fg(S) € B) = 0. Let a = a(6) and
b = b(0) be as in (2.6) such that §|® = 6 ~ Unif(a, b). Note that fy is continuous on R
for almost all @ € S¢~!. For almost all 6 € S¢~! the section planes Ty, enter the polytope
through a vertex as s runs from a(6) to b(6). For any such 6, fy(a) = 0 and fg(b) = 0,
because a vertex has no (d — 1)-dimensional volume. As a and b are the only possible
points of discontinuity, fg is continuous on R for almost all § € S~

By Brunn’s theorem we know that fy is concave on its support. The set of points
at which a concave function attains its maximum is convex, hence it is a nondegenerate
interval or a single point. Denote this set by: [s_(8),s(0)], in the case it consists of a
single point, s_(0) = s.(0). Write: p; =P(S € (a,s5-)|® =0), p» =P(S € [s_,5,]|® =
0) and p3 = P(S € (s4,)|® = 0). We may write:

P(fo(S) € B|® =0) =P(fo(S) € B|®@ =6, € (a,s-))p1+
+P(fo(S) € B|® =0, € [s-,s4]) p2+
+P(fo(S) € BI® =0,S € (s4,b))p3.

Arguing as in the proof of Theorem 2.5 we obtain that for almost all § € S¢°! the
distribution functions z +— P(fy(S) < z|® = 6,5 € (a,s-)) and z — P(fy(S) <
7|® = 6,8 € (s4,b)) are continuous and convex on their support and therefore abso-
lutely continuous with respect to Lebesgue measure. Hence, for any such 6 we have
P(fo(S) € B|® = 6,5 € (a,s-)) = 0 and P(fy(S) € B|® = 6,5 € (s4,b)) = 0.
Clearly, for any 6 € S471: py(0) = (54(0) — 5s_(0))/(b(0) — a(6)). Further note that
P(fo(S) € BI®=6,S € [s_,s.]) = 1{mp(6)"/4~1D) e B}, with mp(-) is as in (2.8) and
6 € S¢71. Combining these results we may therefore write:

P(fo(S) € B) =/ 1 {mp(e)ﬁ € B} 5+(0) = 5-(6)

sd- b(0) = a(d) fpr.e(0)de. (2.14)

In (2.14) we effectively only integrate over 6 such that s, (6) > s_(68). By Lemma 2.4 this
strict inequality only holds if for all s € [s_(6), 5+(0)] the same edges of P are intersected
by Ty, s and these edges are all parallel. Define:

D={0eS" " :5,(0) >5-(0)}.
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Hence, for any 8 € D and any s € [s_(6),s+(0)], we have mp(6) = v4_1(P N Ty ) and
the plane T s only intersects edges of P which are parallel. If 04— (D) = 0, for example
because P does not have any pair of parallel edges, then P(fg(S) € B) = 0, hence Gp is
absolutely continuous.

Let us now consider the case o4_1(D) > 0. We may write D as a disjoint union
D = Uf:lD,- for some k € N. Here D; is defined such that for all 6 € D; all planes
corresponding to mp(6) intersect the same parallel edges. Leti € {1,...,k} and let
e, ..., ey, C P be the parallel edges of P corresponding to D;. Consider the plane T, o,
with ¢; € S¢-! such that this plane is orthogonal to the edges ey, .. ., e,,. Forany L c R¢
let IT; (L) denote the orthogonal projection of L on the hyperplane Ty, 0. Let 6 € D, s €
[s-(8), s+(6)] such that mp(0) = vq_1(PNTy ) and the plane Ty s intersects e, . . . , €.
Note that forany 6 € D; and s € [s_(0), s+(0)], v; := va-1(I1;(PNTy 5)) attains the same
value. After all, for any such plane, II;(P N Ty ) is a polytope in Ty, o and its vertices
are given by the orthogonal projections of e, . .., e, on Ty, 0. Moreover, it is well known
that the volume of P N Ty ¢ and the volume of its projection on T, ¢ are related via:

vi=va-1(IL(PNTgs)) = {0, di)| va_1(P N Ty ).

Hence,

mp(G) = Vd_l(P N TQ’S) = 0 eD;. (2.15)

Vi
<6, ¢)1”
If we were to draw ¢ ~ Unif(S?~!), then the Lebesgue density of the random variable
(&, ¢;) is given by:

r4$)

RS
This density does not depend on ¢; due to symmetry. Because the probability measure cor-
responding to the uniform distribution on the sphere is the normalized spherical measure,
we obtain oy_ ({8 € S : (0, ¢;) € B}) = 0. Via the change of variables formula it is
easily verified that the random variable (v;/|(£, ¢;)|)"/(¢~1) also has a Lebesgue density.
Therefore:

3

tre[-1,1] (1-)7.

oat ({eesd-' - (vi /{0, ) TT eB}):o. (2.16)

Finally, from its definition it is evident that the density fp g is bounded, see (2.3). Let
M > 0 be an upper bound of this density. Using this fact and (2.15) and (2.16), the claim
follows:

s+(0) —s_(6)

b(0) = a(d) fp.e(0)do

P(fo(S) € B) = /S 1fmp)7 < B)
< / 1{mp(e)ﬁ c B}fp,@(e)de
D
; .
< M;/iﬂ{mp(H) eB}de

k

=m Y, [ tfoisie.0007 € 5las

i=1
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<w o ({o e s Gise.00)7 < B})
i=1

=0.

2.4 Density approximation

In this section we consider convex bodies K € K< such that G is absolutely continuous.
For most convex bodies K € K¢ there is no known explicit expression for Gg or its
density gk . In this section we focus on approximating the density gg. This is achieved by
obtaining a large sample from G along with a kernel density estimator (KDE). We use
the following rejection sampling scheme, proposed in [65], to sample from the distribution
G K-

1. Enclose K inside a sphere: choose R > 0 such that K c B(0, R).
2. Choose an isotropic random direction ® ~ Unif (S¢71).

3. Sample S ~ Unif(0, R).
4

. The plane Tg s hits B(0, R), if the plane also hits K we accept, and Z = v4_1(K N
Te,s) is a draw from Gg. If the plane does not hit K, we reject and go back to step
2.

In R?, step 2 may be achieved by sampling @ ~ Unif(0, 27r) followed by setting ® =
(cos(®),sin(®)). In R3 step 2 can be performed as follows. Sample ® ~ Unif(0, 27)
and X ~ Unif(—1, 1). Then, we may set Q = arccos (X) and © = (sin(Q) cos(®), sin(Q)
sin(®), cos(L2)). In order to keep the rejection rate in the sampling scheme low, R should
be as small as possible and K should be positioned at the origin, meaning that O € int K.

Of course, for K € K with d = 2 we find: G = G%. Note that G, is initially convex
on some initial interval (see Remark 2.2). As a result, its density gf< is non-decreasing on
this interval. This means that gi may even be constant initially. In addition, note that if
d =2 and K is a polygon then in [32] it has been shown that g3 % is always constant on some
initial interval. Because of the relation between g% % and g, if g3 % s constant on an initial
interval, then g behaves like z(>~4)/(4=1) on this interval. Hence, when d = 3 this means
that gx behaves like 1/4/7 for z close to zero. Clearly, this complicates the approximation
of gk near zero. Therefore, we choose to approximate the density gi instead, and use
(2.7) to obtain an approximation of gg.

We will now introduce the Monte Carlo 51mulat10n scheme for approximating g3 v We
choose a large N € N and sample Zj,...,Zy ~ GK using the sampling scheme given
above. Setting X; = Zil/(d_l), we obtain that Xi,..., XN iid GS . The following KDE is
for example studied in [89], which we propose as an approx1mati0n for gIS<:

N
1 z— X; 7+ X;
> .
O hNZk( - )+k( ; ) 220, .17
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with & > 0 the bandwidth parameter and k a symmetric kernel. The KDE in (2.17) is also
known as the reflection method. A reason for using the reflection method over the classical
(Parzen-Rosenblatt) KDE is that it ensures that no probability mass is assigned for z < 0.
Recall that the classical KDE for the sample X, ..., Xy is given by:

1 ¥ (z-X;
f(z)=m2k( ) zeR. (2.18)

Note that when computing the KDE in (2.18) for the following ’sample’ of size 2N
X1, X2, .o, XN, X1, - X2, ..., = XN,

we find: f(z) = &3,(2)/2. This fact may be used to choose the bandwidth /, since most of
the literature is devoted to bandwidth selection for the classical KDE. In the data examples
in the next section we choose for k the Gaussian kernel and select the bandwidth with the
popular Sheather-Jones method [97]. Whenever we want to approximate gk instead of
gf(, we simply follow the procedure given above to compute gff,. Then, using (2.7) we set:

an(2) = g% (277) (2.19)
which is an approximation of gx. A drawback of the KDE in (2.17) is that this density
has (right)-derivative zero in z = 0. As mentioned before, when d = 2 and K is a convex
polygon this is not an issue since the density g;‘;( is then initially constant. In the data
examples in the next section the approximations of Gf, of some convex polytopes P in
R3 appear initially (close to) linear. This suggests that the choice of boundary correction
is reasonable. Should one consider a polytope P such that Gf, is far from being initially
linear then other boundary correction methods may be more appropriate.

2.4.1 Simulations

In this section we perform a few simulations to show that the Monte Carlo simulation
scheme works well. For these simulations we focus on polytopes. Throughout this sec-
tion, let P ¢ R be a full-dimensional polytope. We have implemented the sampling
scheme for drawing samples from G p specifically for d = 2 and d = 3. The code used for
the simulations may be found at https://github.com/thomasvdj/pysizeunfolder.
The polytope can be entered into this program either by presenting a set of points, such
that the polytope is given by the convex hull of these points, or by presenting a half-space
representation of the polytope.

In the literature, similar simulations have been performed, e.g. for the cube and the
dodecahedron. Therefore we also consider these shapes, such that we have a point of
comparison. Besides approximating gp and gls, we also approximate Gf,. The distribution
function G;f, can be approximated arbitrarily closely by an empirical distribution function,
given a large sample from Gf,.
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Figure 2.2: Left: 100 TUR sections through P the unit square in R?. Right: comparison of
the density gp to its approximation gy .
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Figure 2.3: Approximations of gf, and gp for P the unit cube (Left) and for P the dodec-
ahedron with volume 1 (Right).
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For all simulations, we set N = 107. For the first example, we choose the unit square
in R2. The density of its chord length distribution may be found in [19], it is given by:

3 if0<z<1
gr(2) = ;_% ifl<z<V2"

22Vz2-1

The approximation obtained via the proposed Monte Carlo scheme is shown in Figure 2.2.
Figure 2.2 also contains a visualization of 100 IUR sections through the unit square. As
can be seen in Figure 2.2, the approximation g is very close to the true probability density

8pP-

We should stress that the proposed method is especially useful in the spatial setting
d = 3. Naturally, whenever the analytical expression for gp is available this is preferable.
To the best of our knowledge, there are no known expressions for gp of any polytope P in
R3. In the planar case (d = 2) the density gp is known for various polygons, for example
for rectangles [19], and regular polygons [44]. In Figure 2.3 the approximations of gp and
gf, are shown for the cube and the dodecahedron, both shapes scaled to have volume 1.

Similar simulations were performed in [75] for the cube and dodecahedron, qualita-
tively the curves visualized there are close to the approximations of gp shown in Figure
2.3. For the cube, one can easily see that for any direction § € S¢~!, there exists a section of
area 1. By Remark 2.2, this means that g;i is non-decreasing on the interval (0, 1), which
can also be seen in Figure 2.3. Approximations of Gf) for the cube and dodecahedron
are shown in Figure 2.4. For these visualizations the same samples are used as in Figure
2.3. As mentioned before, these approximations of Gf, appear initially (close to) linear,
justifying the choice of boundary correction in the density approximation procedure.

Cube Dodecahedron
1.0 1 1.0
0.8 0.8
m 0.6 7 o 0.6

a a
O 044 © 044
0.2 0.2 1
0.0 0.0
T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
Square root area Square root area

Figure 2.4: Approximations of Gf, for P the unit cube (Left) and for P the dodecahedron
with volume 1 (Right).
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2.5 Concluding remarks

In this chapter we established absolute continuity of the (transformed) section volume CDF
for various classes of convex bodies. As we will see in the next chapter, absolute continu-
ity of these distribution functions is essential for stereological estimation of particle size
distributions using likelihood-based inference. Whether these distribution functions are
absolutely continuous for all convex bodies remains an open problem. From a theoretical
perspective we cover a large class of convex bodies with the strictly convex bodies. With
polytopes we cover a class of convex bodies which is especially important in practical
applications. Moreover, for polytopes we provide a Monte Carlo simulation scheme for
approximating the density corresponding to its (transformed) section volume CDF.

2.6 Additional proofs

Proof of Lemma 2.2. Letx € R, 0 € S¢7! and s € R. It can be easily verified that the
following holds:
(K+x)NTos = (KNTos—(x.0)) +X. (2.20)

Meaning that the intersection of a translated K with a plane is the same as the intersection
of K with a translated plane and then translating the result. It follows that:

T{va-1((K+x)NTo ) < 2} I{(K +x) N Ty s # 0}
Giix(2) = : . dsdé
() /S /R u([K +x]) s
(2.20) / / {va-1((KNTys—(x,0)) +x) < 2} I{K N Ty 5_(x,0) # 0}
= dsdo
sd-1 Jr u([K +x])
1{vag_1(KNTg s_(x S ZYI{KNTyg—(x 0
:/ / {va-1( 0.5—(x,0)) < Z}1{ 0.5—(x,0) * }dsde 221)
sd-1 Jr H([K +x])
/ / {va_1(KNTy,) < 2}U{KNTy, + 0}
= drdé
st Jr u([K +x])

In (2.21) we use the translation invariance of the Lebesgue measure. The final step is
obtained by substituting t = s — (x, ). Via the same substitution it can be shown that
u([K +x]) = u([K]). As aresult we obtain: Gg..(z) = Gg(z). Moving on to the
rotation invariance, let M € SO(d), then the following can be shown:

MK N Ty =M(KNTyrgy). (2.22)

Using this, we find:

1 ]l{Vd_l(MKﬂTgs)SZ}]l{MKﬂT@Si(b}
Guk(2) =~ : = 77 dsde 223
k@ =3 [, W(IMKT) woooew
(2.22) 1 / / W{yva 1t (M(KNTyrg ) < 2ZYU{M(K N Tyyrg ) # 0}
= = dsdé
2 Jga-1 Jr u([MK])
_ l/ / 1{vg_1(KN TMTH’S) < zZ}I{Kn Tyrgs # O}dsdg (2.24)
2 Jga-1 Jr u([MK])
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1 (KNnT, ) <z 1{KNT,
:/ / {va-1( ,\) Z} { s io}dsdu. (2.25)
sd-1 JR

u([MKT)

In (2.23) we use the fact that the inner integral does not change if we replace 6 with
-0, therefore we may integrate over S¢~! instead and divide the result by two. In (2.24)
we use the rotation invariance of the Lebesgue measure. In (2.25) the substitution: u =
M7 is applied. Because M is an orthogonal matrix of determinant one, the Jacobian
corresponding to the transformation has determinant one. Since M7S4~! = S9!, the
transformation does not affect the integration region. Via the same substitutions it can be
shown that u([MK]) = u([K]) such that indeed Gy (z) = Gk (z). Next, we consider
scaling of convex bodies. Let 4 > 0, we remark that the following holds:

AK N Tos = A (K N Tf,,%) . (2.26)

Using this and the fact that vy_; (1K) = 1971 v,_1(K) for K € K91, it is once again a
matter of applying a substitution to obtain:

B 1 {Vd_l(K N Tg,t) < %} I{K NTy,; # 0}
Gk (2) = A/Sfl /R (KD deds.

And similarly, via substitution we find: u([A1K]) = Au([K]) such that indeed: G 1k (z) =
G (z/A%7"). We now consider the final statement of the lemma. Let T be an IUR plane
hitting L. By Lemma 2.1, the probability that T hits K is given by b(K)/b(L). Moreover,
given that T hits K it is an IUR plane hitting K. It follows that:

Gr(z2) =P(vq_1(LNT) < 2)

b(K)

=P(vg((LNT) <z[KNT # @)er
+P(va_1(LNT) < ZlKNT = 0) (1 - %)
<P(vg((KNT) < 2K T # @)% N (1 _ %)
o9 59)

]

Proof of Lemma 2.3. Letx € 0K. Since x € int L there exists a R > 0 such that B(x, R) C
int L. Because x € dK we know that B(x,R) N (R? \ K) # 0. Choose y € B(x,R) N
(R?\ K). Note that y € int L and int L is open. Choose r; > 0 such that B(y, ;) C int L.
Because K is closed, R? \ K is open. Choose r, > 0 such that B(y,r;) ¢ R? \ K. Let
r = min{ry,r,}, then B(y,r) C (intL) \ K and this ball has a strictly positive volume.
Hence, we find:

va(L) = va(L\ K) +va(K) = va(B(y,r)) +va(K) > va(K).
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Chapter 3

Stereology for a particle process with a
fixed grain shape

3.1 Introduction

Having studied random sections of a fixed particle in chapter 2, we are now ready to con-
sider stereological estimation for a specific type of particle process. That is, in this chapter
we study a generalization of Wicksell’s corpuscle problem. This generalization may be de-
scribed as follows. Consider 3D particles, convex bodies to be precise, which are randomly
positioned in an opaque body and randomly oriented. A convex body is a compact and
convex set with a non-empty interior. These particles all have the same known shape,
but they do not have the same size. The particles cannot be observed directly, instead the
medium is intersected with a plane, and we observe the 2D section profiles of the particles
which happened to be hit by the plane. We address the statistical problem of estimating the
size distribution of the particles, using a sample of observed areas of the section profiles.
A visualization of the problem setting is given in Figure 3.1. In this particular example,
each particle is a convex dodecahedron.

o
& ® o 0

Figure 3.1: Left: Random spatial system of convex dodecahedra intersected with a plane.
Right: Observed section profiles.
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An overview of estimators for the size distribution in the spherical setting is presented
in [18]. The problem has been studied for shapes other than spheres as well. In [70] the
case of cubic particles is considered. In [68] a variation of the problem is studied: the
particles are random polyhedra, and therefore not all particles have the same shape in this
setting. A system of oriented cylinders is considered in [60].

More generally, the problem we consider in this chapter is a statistical inverse problem.
For an overview of the key concepts in statistical inverse problems, illustrated with the
deconvolution problem, we refer to [14]. Further aspects of statistical inverse problems are
discussed in [17]. In this chapter we also make a connection with deconvolution problems,
and the proposed estimator may also be applicable in more general settings. In particular,
it can be used for what may be described as a multiplicative deconvolution problem. In
the classical deconvolution setting the observations are contaminated with independent
additive noise, in the multiplicative setting the (positive) observations are contaminated
with independent (positive) multiplicative noise. A well-known instance of this problem is
multiplicative censoring. In multiplicative censoring the multiplicative noise is uniformly
distributed, this model was first introduced in [110].

The main contributions of this chapter are as follows. A key insight in our instance
of the problem highlights that we can separate the shape of the particles from their sizes
in the sense that an observed area may be interpreted as the product of two independent
random variables, one related to the particle size and the other related to the known particle
shape. The density function of the shape-related random variable is explicitly known only
in exceptional cases, therefore we rely on the simulation procedure described in section
2.4 that can be used to approximate it arbitrarily well.

Using that shape-related distribution as an ingredient, we design a maximum likelihood
procedure to estimate the size distribution of the particles, a procedure that can be used
for a large class of possible shapes. Furthermore, we show the consistency of the resulting
estimator and provide algorithms that can be used to compute it. Additionally, we assess
the proposed estimator in a small simulation study in which we focus on convex polyhedra
for the shape of the particles.

This chapter is organized as follows. In section 3.2 an integral equation is derived
which describes the problem. Via this equation, we obtain an identifiability result in sec-
tion 3.3 stating that the profile area distribution uniquely determines the 3D size distribu-
tion. We define an estimator for the so-called biased size distribution in section 3.4. In
section 3.5 we prove the consistency of this estimator. Algorithms for computing the pro-
posed estimator are discussed in section 3.6. In section 3.7 we describe how to estimate
the particle size distribution via the biased size distribution. In section 3.8 some simula-
tions are performed and at the end of the chapter we provide some conclusions in section
3.9.

We now briefly introduce some notation. Givena A > 0 and a set A C R? the scalar
multiplication of A with A is defined as: 1A = {Ax : x € A}. Let SO(3) denote the
rotation group of degree 3. It contains all 3 X 3 rotation matrices, which are orthogonal
matrices of determinant 1. When a convex body K ¢ R3 is hit by an Isotropic Uniformly
Random (IUR) plane, we obtain a section with a random area (recall that IUR planes
were formally defined in section 2.2). Let G g denote the cumulative distribution function
(CDF) associated with such a random area. Itis sometimes referred to as cross section area
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distribution. We studied the CDF G g in chapter 2, and we recall the following properties:

Theorem 3.1. Let K C R be a convex body and let T be an IUR plane hitting K. The
random variable Z = area(K N T) has distribution function Gg. Let G% denote the
distribution function of NZ. The following properties hold:

1. Motion invariance: Gk and Gi are invariant under translations and rotations of
K.

2. Scaling of convex bodies: G,k (z) = Gk (%)for alld >0,z €R.

3. Absolute continuity: If K is strictly convex or if it is a polyhedron then Gk and Gi
have a Lebesgue density.

4. Initial monotonicity: If Gi has Lebesgue density gIS<, then gf( is non-decreasing on
(0, Tx) for some T > 0.

Note in particular that for a large class of convex bodies, G ¢ has a Lebesgue density.
In section 3.4 we define an estimator for the particle size distribution. It will then become
clear why the square root transformation in Theorem 3.1 is relevant.

3.2 Derivation of the stereological integral equation

In this section we give a formal description of the model and derive a stereological integral
equation. As mentioned in the introduction of this thesis, stereology deals with estimat-
ing higher dimensional information from lower dimensional samples. The stereological
equation in this section directly relates the distribution of the 3D particle sizes to the dis-
tribution of observed 2D section profile areas. We derive an expression for the density
fa of the observed section areas. Another derivation of this density appears in chapter
16 of [84]. The derivation has two purposes, it provides an intuitive understanding of the
problem and the equation is used for defining an estimator. Throughout this section we
occasionally need to refer back to section 2.2 for properties of I[UR planes.

Let O c R? be the opaque convex body containing the randomly positioned particles.
The intersection of Q with a random plane yields a sample of observed section profile
areas. For now, assume that Q contains just one particle, a convex body K. Assume that
K is similar to a known convex body K ¢ R3, which we refer to as the reference particle.
This means that there exists a rotation M € SO(3), a point x € R? and a scalar A > 0 such
that K; = AMK +x := {AMk +x : k € K}. We refer to the scalar A as the size of K,
which is distributed according to an unknown size distribution on (0, c0) with CDF H and
PDF h. As such, the size is the scaling with respect to the reference particle, which has
size 1. The mean size is denoted by:

E(A) = fom Ah(2)da,

and we assume 0 < E(A) < oo throughout. Let 7 be an IUR plane hitting Q. Let B :=
{T N K| # 0} be the event that K is hit by 7. By Lemma 2.1, the probability that K| is
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hit by 7' given that it has size 4 is given by:

b(AK b(K

P(BIA = 1) = LUK _ b)Y 3.1)

b(Q) b(Q)
Recall that _B(K), the mean width of K, was defined in (2.5). In (3.1) we use the fact that
b(AK) = Ab(K) and b(K) is invariant under rotations and translations of K. While A is
drawn from H, the size of a particle which appears in the plane section follows a different
distribution from H. By this we mean that A|B is not distributed according to H. Note that
the probability in (3.1) is proportional to A, via Bayes’ rule the density of A|B, denoted by
h? is computed as:

P(BIA=)h(A) _ P(BIA=D)h() _ Ah(d)

b — _
W)= Tuis (D) = =5 T [TRBIA=Dh(DdL EA)

Throughout this chapter we refer to 4 as the density of the length-biased size distribution
associated with i. Let H” be the CDF corresponding to 4” and note that H and H” are
related via:
A1 b
~dH" (x)
and H(A) = 000);—,
ﬁ) ;dH b (X )

We refer to H? as the length-biased size distribution function, or the length-biased version
of H. For an elaborate overview of length-biased and more generally size-biased distribu-
tions we refer to [5]. The authors also prove the following general property of length-biased
distributions: if A, ~ H? and A ~ H, then: P(A;, > 1) > P(A > A). Hence, as H” is the
size distribution of the particles which appear in the plane section, this means that larger
particles are more likely to appear in the cross section.

We can now derive the distribution of an observed section area, resulting from K
being hit by the section plane. Conditional on K being hit let A := area(K; N T). By the
conditional property of IUR planes in Lemma 2.1, given that T hits K it is an IUR plane
hitting K. Therefore, if K; with size A appears in the section plane, its section area is
distributed according to G ;. Recall that the definition and some properties of G,k are
given in Theorem 3.1. Using the rules of conditional probability we find:

/0/1 xdH (x)

H () = ——
/0 xdH (x)

> 0. (3.2)

Fa(a) ::P(ASa|B)=/ P(A < a|B,A = Q) fajp(A)da

0
= / Gk (a)dH"(2).
0
Using point 2 of Theorem 3.1, F4 may be written as:
« a b 1 « a
F = Ggl|l=)dH" (1) = —— Gk |—=)AdH(Q). 3.3
w@= [ G (F)arw=gis [ o (F)ana. 63

Suppose now that we randomly position and orient non-overlapping particles K1, K>, . . .
in Q, each similar to K. More specifically, the centers of the particles are distributed
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according to a homogeneous Poisson point process. As for the orientations, all orientations
of the particles are equally likely and independent. The sizes of the particles Ay, Ao, . ..
are independent and identically distributed (iid) according to H. Intersecting Q with an
IUR plane yields an iid sample Ay, ..., A, from F4 of observed section areas, for some
random n. Let K be a convex body such that Gk has a density gk, recall Theorem 3.1.
Then, F4 has a density given by:

1 °° a1
1@ = 55 /O gx (55) J9H . (34

Let amax be the largest possible section area of K, such that gx has support (0, @max)-
Hence, gx (a/A%) = 0 whenever a/A% > apmax &= A < \/a/amax. As a result, the lower
bound of the integration region in (3.4) is effectively equal to y/a/amax. The stereological
equation (3.4) directly relates the sizes of the 3D particles to the areas of the observed 2D
section profiles.

Example 1 (Wicksell’s corpuscle problem). Choose for the reference particle K = B(0, 1) =
{x € R? : ||x|| < 1}, the ball with radius 1. Then: gg(z) = 1/(27y1 - z/n),0 < z < 7.
We may interpret H as the distribution function of the radii of the 3D balls. Note that any
plane section of a ball yields a circular disc. Given A ~ f4 set A = 7R, the density of
the observed circle radii satisfies: fr(r) = fa(wr?)2xr, r > 0. Combining this with (3.4)
yields:

?dH(/l) = dH(Q),

r /°° 1
EN S, Veog

1 * 1
fR(r):E(A)/, zﬂ@

which corresponds to the well-known Wicksell’s integral equation [114].

Remark 3.1. By raking an appropriate choice for the reference particle, the size dis-
tribution may be directly related to a more convenient distribution. For example, if the
reference particle has a diameter 1, then the size distribution corresponds to the distribu-
tion of the diameters of the particles. When choosing a reference particle with volume 1,
then a particle with size A has volume A3. The volume distribution function is then given
by Fy(x) = P(A3 < x) = H(x7).

The derived stereological equation also holds under different assumptions. The ran-
dom system of particles may be defined by choosing an isotropic typical particle, and then
positioning the particles using a stationary point process on R>. A formal derivation of the
stereological equation under these assumptions is presented in Appendix B. This model
is also known as a germ-grain process. Relevant references for germ-grain processes are
sections 6.5 and 10.5 in [18], as well as [69] and [70]. Hence, there is no need to restrict
the particles to an opaque body or to position the particles via a Poisson point process.

In this setting, let Ny denote the expected number of 3D particles per unit volume,
which corresponds to the intensity parameter of the stationary point process. Intersecting
the system of particles with a plane, let N4 denote the expected number of observed 2D
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section profiles per unit area. Here, F4 is the CDF associated with the typical section
profile area. By combining the well known stereological equation (Theorem 10.1 in [18]):

Na=Nyb with b:=b(K) /m/ldH(/l),
0
and (3.3), yields:
Na(l - Fa(a)) = NyB(K) /0 A1 = G g (@)dH (). (3.5)

A derivation of a slightly more general version of (3.5) may be found in chapter 6 of [11].
We specifically mention (3.5) since it appears more frequently in the literature than (3.4).

In order to obtain a better understanding of the problem it helps to apply a transforma-
tion. We apply a square root transformation to (3.3). For A ~ Fy4, set S = VA such that
S ~ Fs and Fs(s) = Fa(s?) for s € R. As in Theorem 3.1, let Z ~ Gk then VZ ~ G5,
and G5 (z) = Gk (z?) for z € R. Let s € R, then the following holds:

Fs(s) = /Omc;i (%)dy”u). (3.6)

This expression may be recognized as the distribution function corresponding to a product
of two independent random variables. This is a key insight which is made precise in the
following lemma.

Lemma 3.1. Consider a distribution function H with length-biased version H?. Suppose
Z ~ Gk and Ap ~ H? with Z and Ai independent. Set A = ZA%’. Then, A ~ Fyu, and
Fa,Gg and H? are related via (3.3).

Proof. Let X,Y, Z be non-negative random variables, with CDF Fx, Fy and Fz respec-
tively. If X = YZ with Y and Z independent, then their distribution functions are related
via:

. X
Fw = [y (2] aro.
0 Z
Comparing this with (3.6), the result is immediate. O

Let us provide some further intuition for Lemma 3.1. Note that point 2 of Theorem
3.1 means that for a given size 4 > 0, if Z ~ G then ZA2 ~ G k. As the sizes of
the particles in the section plane are distributed according to H?, this hints towards the
relationship given in Lemma 3.1.

Therefore, there are two main considerations in this problem. First, the size distribution
of particles appearing in the cross section is a length-biased version of the actual size
distribution. Second, we can separate the common shape of the particles and their sizes in
some sense. Taking a random size from H?, and independently taking an IUR section of
the reference particle yields a sample from F4 via the relationship given in Lemma 3.1.
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3.3 Identifiability of the particle size distribution

In this section, we present a general identifiability result for our model. This means that
under appropriate conditions, given a known reference particle, there are no two size dis-
tributions which yield the same distribution of observed section areas. For this result we
need the Mellin-Stieltjes transform, which we will also refer to as the Mellin transform.
While characteristic functions appear naturally when studying sums of independent ran-
dom variables, the Mellin transform is appropriate when studying products of independent
random variables. We collect some properties of the Mellin transform, for details we refer
to section 7.8 in [48] and to [118]. We note that the use of the Mellin transform for this
problem was already considered in [51]. The authors obtain a slightly different expression
due to the fact that an inversion formula for the density & was derived and because the
density f4 in (3.4) was studied up to a normalization constant. The identifiability result
in this section is new, a sufficient condition for identifiability in this context has not been
derived before.

Definition 3.2 (Mellin-Stieltjes transform). Given a non-negative random variable X, with
CDF F, the Mellin-Stieltjes transform of X is defined as:

My (s) :E(xs-l) :/Omxs_ldF(x),

for s € C, whenever the integral is absolutely convergent.

Note in particular, that whenever fow x¢~1dF (x) < oo for some ¢ € R, then the
Mellin transform exists for all s = ¢ +it, t € R. Hence, existence of the Mellin trans-
form corresponds to the existence of moments of a distribution. Let St(a,8) = {s €
C : @ < Re(s) < B} denote the open strip parallel to the imaginary axis. Analogously,
Sta,B] = {s € C: @ < Re(s) < B} denotes the closed strip. If we find @ < B such
that the Mellin transform of X converges absolutely on St[«, 8], then My is analytic on
St(a, B). Taking @ as small as possible and 3 as large as possible, this open strip is referred
to as the strip of analyticity of Mx. A Mellin transform uniquely determines a distribution
in the following sense:

Lemma 3.2 (Uniqueness of the Mellin transform). Let X ~ Fy and Y ~ F,. Assume the
integrals in Mx and My converge absolutely on St[a, ], 0 < @ < B. If c € (@, B) and
Mx(c+it) = My(c +it) forall t € R then F| = F,.

The proof is given in section 3.10. A similar statement is proven in Theorem 8 in [16]
for the case that the CDF has a Lebesgue density. Finally, we recall the Mellin convolution
theorem. Let X, Y, Z be non-negative random variables, such that X = YZ with Y and Z
independent. For any s € C such that My (s) and Mz (s) are finite:

Mx(s) =B (x1) =2 ((r2) ) =B (r*"1) B(27) = My () Mz (s).

Having collected these properties we now state the identifiability result.
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Theorem 3.3 (Identifiability). Suppose we are given densities fa, gk such that fa can be
expressed as in (3.4) for some CDF H.

1. Iffooo 77 %gk (z)dz < oo for some a > 0, then there is only one distribution function
H on (0, o) satisfying (3.4).

2. Assume fom/l“‘sdH(/l) < oo, for some & > 0. Then, there is only one such distri-
bution function H on (0, o) satisfying (3.4).

Proof. We first consider statement 1 of the theorem. Let A, ~ H b with H? as in 3.2),
andlet A ~ H. Let Z ~ ggx and A ~ f4. We first determine on which strips the Mellin
transforms of the random variables of interest are analytic. Since E(A") = 1/E(A) and
E(A ) = 1 we obtain that M,, is analytic on St(0, 1). Note that 1/2 < Re(s) < 1 &
0< Re(2s —1) < 1. As aresult:

My (5) =B (AF72) = Ma, (25 = 1),

forall s € St(1/2,1) and MA@ is analytic on St(1/2, 1). Choose @ > Osuchthat E(Z~%) <
co. Because gx has bounded support, all non-negative moments of Z exist and therefore
M is analytic on St(1 — @, c0). By Lemma 3.1 and the Mellin convolution theorem we
obtain:

Ma(s) = Mz (s)Mya (s).

forall s € St(1 — @, c0) NSt(1/2,1) = St(max{1 — a, 1/2}, 1). Moreover, this also means
that M is analytic on St(max{1 — a, 1/2},1). Let ¢ € (max{l — @, 1/2}, 1). Define:

Lz ={c+it:teR, Mz(c+it) #0}, and L :={c+it:teR}.

For all s € Lz we find: Ma(s)/Mz(s) = MAz (s). Define f : Ly — Cby f(s) =
Ma(s)/ Mz(s). Note that f is analytic on L, because s — M A2 (s) is analytic on the
line L. As a result there is a unique analytic continuation of f to L The uniqueness of
this analytic continuation implies: f(s) = M, (s), forall s € L. Suppose H also satisfies
(3.4), with A denoting its length-biased version and Ap ~ HP. Then, following the same
steps as before, we obtain: f(s) = Mz; (s) forall s € L. By Lemma 3.2, A} and A7 have
the same CDF. Therefore, for all x € R:

H’(x) :P(Ai < xz) =P<l_\i < xz) = HY(x).

By (3.2) this also implies H = H.

The proof of the second statement of the theorem is analogous, we simply highlight
the differences. Let 6 > 0 be such that E(A'*?) < oo. Note that E(A,') = 1/E(A) and
E(Ag) = E(A°!)/E(A). It then follows that M, is analytic on St(0, 1 + &) and MAi is
analytic on St(1/2, 1 + 6/2). Clearly, M is analytic on St(1, o). Hence, M4 is analytic
on St(1/2,1+6/2) NSt(1,00) = St(1,1+6/2). In this case we take ¢ € (1,1 +5/2) and
the remainder of the proof is as before. O

We obtain as a consequence:
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Corollary 3.1. In the following cases the distribution function H is identifiable:
1. The Wicksell corpuscle problem.
2. Gi has a bounded density gIS<.

Proof. Recall the expression for gx in Example 1. Then:

T T 1 v
7 2gk(z)dz = / —————dz = —.
./0 K 0 2m\z\1-Z 2

This integral may be computed by substituting ¢ = z /7 and recognizing the resulting inte-
gral as a constant multiple of the Beta function evaluated in (1/2, 1/2). Hence, condition
1 of Theorem 3.3 is satisfied. If G3. has a density g3 with g3- < m, then:

Amax 1 VAmax 1l g Vmax 1 1
/ 77 gk(z)dz =/ 272gp(2)dz < m/ z72dz = 2m(amax)? -
0 0 0

Therefore, in this case condition 1 of Theorem 3.3 is also satisfied. O

Identifiability for the Wicksell problem is a classical result, in this case there is also a
well-known explicit inverse relation.

Remark 3.2. The condition in Theorem 3.3: /Ooo A*OdH () < oo, for some § > 0, is also
implied by the assumption H(M) = 1 for some M > 0. Recall the derivation of (3.4) in
section 3.2, a maximum size of the particles is clearly enforced by that fact that they are
contained within the body Q. This is a typical assumption in stereological problems.

Note that the proof of Theorem 3.3 also presents (a rather implicit) inversion formula
for H?. Assume H? is continuous. Let ¢ be as in the proof of Theorem 3.3. Since analytic
functions only have isolated zeros, Mz (c + it) # O for almost all ¢ € R. By using the
Mellin inversion formula as in the proof of Lemma 3.2:

1 /c+iT MA(S) x—s+l

—ds, x>0. 3.7

HY (Vx) =P (A%7 < x) = lim ir Mz(s) s

T—oo %
H can then be retrieved via (3.2). We note that in [51] another expression for 2 was derived
in terms of (inverse) Mellin transforms.

3.4 Estimator for the length-biased particle size distribu-
tion

In this section, we propose an estimator for the length-biased size distribution H?. The
proposed estimator is inspired by the approach taken in [46], for Wicksell’s corpuscle
problem. Given the random fraction interpretation of Lemma 3.1, first estimating H?”
seems a natural intermediate step. We note that biased or weighted distributions frequently
appear in stereology, see also section 7.5 in [69]. For the remainder of the chapter we
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consider the number of observed section profiles # to be deterministic. This is a common
convention for problems of this type. This means that we condition on a fixed number of
particles being hit by the section plane. All further analysis is based on an iid sample of
size n from f4.

The reference particle K is considered to be known and we assume that it satisfies one
of the conditions in Theorem 3.1 such that Gf{ has a density gf{. We stress that this also
means that we consider gi to be known. While there are very few shapes for which an
explicit expression is known for gf(, we may use the Monte Carlo simulation scheme from
section 2.4 to approximate such a density arbitrarily closely. To give some insight into
what these densities look like, see Figure 3.2 for approximations of these densities for the
cube, dodecahedron and tetrahedron. These approximations are obtained by computing a
kernel density estimator with boundary correction, based on a sample of size N = 107.

Recall the square root transformation and the resulting expression (3.6). Because Gf(
has density gf(, Fs has a density fs given by:

s = [ ek (3) qarr . 68)

Keep in mind that g;i is supported on (0, 4/@max), such that the lower bound of the inte-
gration region is effectively s/+/@max-

Suppose we have a sample of observed section areas: Ay, ..., A,,iEl fa. Let S; = VA;,
then Sy,...,S, i fs, with fg as in (3.8). Now, let 51 < s, < --- < s, be a realization
of the order statistics of Sy, ..., S,. We use (3.8) to implicitly define an estimator for H' b

via nonparametric maximum likelihood. This is achieved by considering a large class of
distribution functions for H?. Let F* be the class of all distribution functions on (0, o).
Define:

Fr={F e F*:Fisconstanton [s;_1,s;),i € {1,...,n}, with F(sg) =0},

for some 0 < so < s1. This means that 7, contains all piece-wise constant distribution
functions with jump locations restricted to the set of observations, the s;’s. Note that as

. Monte Carlo approximations gf( , Monte Carlo approximations gx
—— Cube —— Cube
6 Dodecahedron 3 o Dodecahedron
Iy —— Tetrahedron 2 —— Tetrahedron
1) ‘A
= 4 = 21
(5] 5]
A A
g % " \
0 T T T T I O T T I
0.00 0.25 0.50 0.75 1.00 1.25 0.0 0.5 1.0 1.5
Square root section area Section area

Figure 3.2: Left: Monte Carlo approximations of gi, for various shapes K of unit volume.
Right: Approximations of gk, obtained via gk (z) = gi(\/Z) [ (2+/2).
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n — oo the set of observed s;’s becomes dense in the support of fs and the class 7, grows
to the class of all distribution functions with the same support as fs.

Remark 3.3. If H*(M) = 1 for some M > 0, then fs is supported on the interval
(0, M+fasuax). When choosing the size of the reference particle K, it is important that
Amax > 1. This is due to the choice of the sieve F,F. Then, as n tends to infinity F,f
grows to the class of distribution functions which also contains the true CDF H?, since
MAfaynax = M. Taking a very large K means apgy is large, such that M~/ayqax is much
larger than M. Then, the s;’s will be quite sparse in [0, M|, which is also undesirable.
For the sake of interpretability of H, recall Remark 3.1, we choose a K with volume 1. For
the shapes considered in simulations we observed aq, > 1.

For H” € F,* we define the (scaled by %) log-likelihood:

L(Hb) = %Zn;log(fs(s,-)) = %Zn;log (‘/OoogK (/l) 1de(/l)) (3.9

A maximum likelihood estimator (MLE) H? for H? is defined as a maximizer of the log-
likelihood L, which may be written as:

H eargmax—Zlog ng (—) —(Hb(s])—Hb(s, DI (3.10)

n
HPeF} i=1

The following theorem shows that this estimator is well-defined, and provides a sufficient
condition for uniqueness:

Theorem 3.4 (Existence and uniqueness of I-AI,IZ). A maximizer of the log-likelihood L
in F,F always exists. The maximizer is unique if the matrix A = (a; ), with «;; =
gi(si/sj)/sj, i,j €{l,...,n}, is full-rank.

Proof. For H” € F,; define: Bj= Hb(sj) and write 8 = (81,82, ...,8,) . Consider the
closed convex set:

C={BeR":0<B <Pp<- <P, <1} G.1D

The maximization problem (3.10) is equivalent to maximizing [ : C — R U {—co} with [
given by:

1 n n
1) =~ > log| ) ai (B =Bj-) |. (3.12)
i=1 j=1

where a; ; = gi(si /sj)/s; and By = 0. The set C is closed and bounded, and therefore
compact. Because of the continuity of / on C, it has a maximum. We now show that [ is
strictly concave if and only if A = (a; ;) is full-rank. Strict concavity implies uniqueness
of the maximum as well as the maximizer. Fix 8 € C such that [(8) > —co. Let j, k €
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{1, ..., n}, computing the partial derivatives and Hessian of [ yields:
— @ j+l
l(ﬁ) n . (3.13)
Z Z 101 q(IBq ﬁq—l)
92 (@i — @) (@ix — @
5P =s (v el O Z i) gy
; n 4
1oPk S (2 i By - Ben)
Here, we have set a; ,+1 = Oforalli € {1,...,n}. Since [(B) > —oo, there are no divisions

by zero in (3.13) and (3.14). Note that the following holds for k € {1,...,n}:

n n n—1 n
Z(lk,j(ﬁj —Bj-1) = Zak,jﬁj - Zak,jnﬁj = Z(ak,j - ak,j+1)B;-
= = 7=0 j=1

Using this fact we show that the Hessian of / is negative definite if and only if A is full-rank.
Lety € R and set yg = 0, then:

YTH@B)Y =) Z H; k(B)yjvx
j=1 k=1
1 n n

Z (a’i,j - a’i,j+l) (ai,k - Oti,k+1) YiYk
2
=1 j=1 k=1 (22:1 a’i,q(ﬁq _ﬁq—l))

( 1ai,j(')’j_7j—l))2

(Z =1 @i, q(ﬂq ,qul))z

=|H
uM:

Clearly, H(3) is negative semidefinite. Note that the following holds:

YTHBY =0 & > ai;(y;—y;1) =0, forallie{l,...,n}. (3.15)
j=1
Define x € R" viax; = y; —vyj-1, j € {1,...,n}. Consider the matrix A = (a; ;), then

the RHS of (3.15) may be written as Ax = 0. Since yp = 0: y =0 <= x = 0. Therefore,
the Hessian is negative definite if and only if Ax = 0 &= x = 0, which corresponds to
A being full-rank. O

Recall that gi is supported on (0, y/@max). Suppose we choose the reference particle
such that \/@max = 1 + & for some small & > 0. Then, gf((l) > 0 ensuring that the
diagonal of A contains positive entries. Whenever s;/s; > 1+ foralli > j, Ais an
upper triangular matrix, because all entries below the diagonal are zero. It is well-known
that such matrices are of full-rank. If & > 0 is chosen sufficiently small, then with high
probability s;.1/s; > 1 +&forall j € {1,...,n}, such that the MLE is unique with high
probability. For the sake of convenience, we will refer to H ,lf as the MLE, even though we
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cannot always guarantee uniqueness. Note especially for the consistency result in the next
section that consistency of the MLE should be interpreted as consistency of any sequence
of MLE’s.

From the proof of Theorem 3.4 it is clear that A? may be computed by maximizing /.
Because [ is a concave function, computing A% can be done efficiently as we will discuss
in section 3.6.

3.5 Consistency of the maximum likelihood estimator

In this section, we show that the MLE A? (3.10) for H? is uniformly strongly consistent.
In order to prove this, we transform the problem into a deconvolution problem. Deconvo-
lution problems have been studied before quite extensively, see for example [37] and [38].
We use some results on estimators in deconvolution problems to show consistency of the
MLE. In deconvolution problems, it is typical that assumptions are made on the so-called
noise kernel to ensure consistency. For this problem, this translates into assumptions on
the density g3 e

We start by rewriting the problem of estlmatlng H? into a deconvolutlon problem.
Recall Lemma 3.1, for § ~ fs, NZ ~ gK and A, ~ H? we have: § = \/_Ab, with
VZ and A, independent. Let us now perform a log-transformation, define: ¥ = log(S),
€ = log(VZ) and X = log(Ap). The densities of ¥ and e are related to those of S and
VZ by: fy () = fs(e¥)e?, fe(z) = gi(ez)ez. The distribution function of X is given by
Fx(x) = H?(e*). We then obtain:

Y€ X+e

with X and € independent. Note that fy is the convolution of f and Fx:

(o) = / " oy = 0dFx () == (fu #dFx) (). (3.16)

In this setting, F is the distribution function of interest. We do not have direct observa-
tions from FY, there is additive noise from the known distribution of €. Let ¥ be the class
of all distribution functions on R. Define:

Fn={F € F : Fisconstanton [y;,_,y;), fori € {1,...,n}, with F(yg) = 0}.

The observed order statistics s1, . . ., 5, are transformed as well: y; = log(s;),i € {0, 1,...,

We proceed similarly as before, the log-likelihood may be written as:
. 1< 1< *
L(F) = > log (fr(y) =~ D log| [ fe(yi=x)dFx(x)).
i=1 i=1 -

A maximum likelihood estimator Fn for Fx is defined as:

E, e arg max L(Fy). (3.17)
Fxe%,
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We now show that we may assume 192 (x) = F,(log(x)). The likelihoods of the two
problems are related as follows. Let Fx € 7, define H?(x) = Fx(log(x)) such that
H” € 7', Then:

L(F) =~ Y log (Z fe (log(si) ~log(s)) (Fx(log(s;)) ~ Fx(log(s;-1))
J=1

gx (j—;) Ss—;(Hb(Sj) - H(s;-1))

= L(H®) + % Z log(s;).

i=1

If we find a distribution function which provides a better likelihood in one of the prob-
lems, we immediately obtain a distribution function which provides the same improve-
ment in likelihood in the other problem. So indeed, there exist MLE’s which are related
via: I:I,lj (x) = F,(log(x)). The estimator F,, was studied in [37] and shown to be strongly
uniformly consistent under some conditions on f,. This result may be used to show strong
uniform consistency of H%, since:

su% |ﬁs (x) — H” (x)| = su;()) \Fn(log(x)) - Fx(log(x))| = sug |Fn(x) - Fx(x)| .

Let us now specify the assumptions we require for f.. We assume it belongs to the
class G of upper semicontinuous functions that are of bounded variation on some compact
interval and monotone outside this interval. Let V(f (f) denote the total variation of the
function f on the interval [a, b], a < b. The class G may be written as:

G = {g : R — [0, o) : g is an upper semicontinuous density such that IM > 0
with VfWM(g) < oo and g is monotone on (—co, —M] and [M, oo)}.

This corresponds with the following assumptions on g;z:

Lemma 3.3. Assume that gIS( is upper semicontinuous and of bounded variation on its
support. Then, the density fe : R — [0, 00) given by fe(z) = gIS((eZ)eZ belongs to G.

The proof of this lemma can be found in section 3.10. We now collect some lemmas to
obtain a consistency result for F},. The following result can be found in [37], as Corollary
1:

Lemma 3.4. Ler F,, be the MLE for Fx defined in (3.17). Assume fe € G. Set fn =
fe «dE,, fy = fe * dFx, then almost surely:

tim 1, = frlle, = fim [ 17u9) = fr(0)]ds =0,
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The following lemma is a generalization of Lemma 3 in [37]. The proof is given in
section 3.10.

Lemma 3.5. Let f be a Lebesgue density onR. Let (Fp,),>1 be a sequence of distribution
functions on R, converging weakly to a distribution function Fx. Then, for f, := fe *dF),
and fy = fE * de.'

Tim |l fn = fyllz, = 0.

We now state the following theorem, which closely follows the proof of Theorem 3 in
[37].

Theorem 3.5 (Consistency of F,). Let fe € G. Assume that the deconvolution problem
with this fe is identifiable. Then, with probability one, lim,_,« F,,(x) = Fx(x) for each x
where Fx is continuous. If Fx is continuous then with probability one:
tim [, Fx]. =0

Proof. Let (Q, A,P) be a probability space supporting a sequence Y1, Y, ... of iid ran-
dom variables, distributed according to fy as in (3.16). Set f, := fe * dF,,. By Lemma
3.4 we know there exists a set Qy € A with P(Qg) = 1 such that for all w € Qy we
have || (-, @) = fr(-)|l, = 0asn — co. Fix w € Qg and choose an arbitrary subse-
quence (n;);>1 C (n),>1. By Helly’s selection principle, there exists a further subsequence
(ng)ks>1 C (ny);>1 such that ﬁnk (-, w) converges weakly to a distribution function F. By
Lemma 3.5 this implies that fnk converges to fe * dF in L;. Because the whole sequence
f, converges to fe * dFy in L; this implies F = Fx by identifiability of the deconvo-
lution problem. Therefore, every subsequence of MLE’s contains a further subsequence
converging weakly to F. This implies weak convergence of the whole sequence to Fy.
Finally, the uniform result follows from the monotonicity of all distribution functions in
the sequence and Fx, and continuity of Fy. O

Turning to a consistency result for ﬁ,’i as in (3.10), we need to make sure that gIS<
satisfies the conditions in Lemma 3.3. If gi satisfies these conditions, its boundedness
implies the problem is identifiable by Corollary 3.1. Note that identifiability in the original
problem implies identifiability in the corresponding deconvolution problem.

Corollary 3.2 (Consistency of I-AIZ ). Assume gf( is upper semicontinuous and of bounded
variation on its support. Then, with probability one, lim,_. H2(1) = H?(Q) for each A
where HY is continuous. If H is continuous, then so is H?, and with probability one:

lim |A} - H”|| =o0.
n—oo

3.6 Algorithms

In this section we describe some algorithms for computing the maximum likelihood esti-
mator H% (3.10). Since a distribution function in 7, is discrete, it may be described by a
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probability vector. Let $,, be the class of probability vectors in R":

n
={(p1,...,pn)GR":Zpizlandp[ZOforalliE{l,...,n}}.
i=1

A distribution function H? € #,f may be associated with the probability vector p € P, de-
finedas p; = H(s;)—H"(s;_1) (recall: H’(so) = 0). We can switch between probability
vectors and distribution functions via:

J
H'(s))= Y pi. and  pj=H(sj) - H"(s;_1). (3.18)
i=1

3.6.1 Expectation Maximization (EM)

The EM algorithm was first thoroughly studied in [26]. While it is typically used in para-
metric settings, it may also be used for non-parametric estimation. It is especially appeal-
ing due to its ease of implementation and its interpretation of incomplete data models. For
the application of EM to our problem, we follow the description of EM in [113]. The au-
thors describe the EM algorithm for problems similar to the one we are facing. The class
of problems they consider is the following.

Suppose we aim to estimate a distribution function . We cannot directly observe a
sample X from F. Instead, we observe Y = T(X, C), with X ~ F and C some random
variable independent of X. Clearly, given Lemma 3.1 the problem of estimating H” be-
longs to this class of problems with T'(x, ¢) = xc and C ~ gls{. Suppose we have an initial
estimate HY € %, of the CDF H?. Let p(© be the associated probability vector as in
(3.18). Let Xi,...,X,, ~ H?. In[113] it is shown that in their general context the EM
algorithm yields the following update rule:

(k+1) Z]P’ (k) —SJ|S1,...,S,,). (3.19)

We use the notation PP, to indicate the probability measure associated with the probability
vector p. For our 'random fraction’ setting, we use Bayes’ rule to obtain:

(k)
gK( ) Jpl

i (k)"
pI g% (;q) 5q Pa

Pp(k) (Xi =Sj|51,...,sn) =

Plugging this into (3.19) yields:
1 n ai i AN
pi! = Z ﬁp(’” with: @, ; = g% (S—) —. (3.20)
1 2g=1 XigPyq iS5

When terminating the EM algorithm after an appropriate number of iterations we obtain
H? from p® via (3.18). The EM algorithm may for example be terminated when succes-
sive iterations do not meaningfully change the log-likelihood anymore. We do not provide
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a specific stopping criterion for EM, since we do not use it directly. We only use it in
hybrid form with the Iterative Convex Minorant algorithm (ICM) which is described in
the next section. For the ICM algorithm and the hybrid ICM-EM algorithm we do provide
explicit termination conditions.

3.6.2 Iterative Convex Minorant (ICM)

The ICM algorithm was first introduced in [38]. The version of ICM we discuss is de-
scribed in [45] and is sometimes called the modified ICM algorithm. This modification
of ICM ensures convergence under fairly general conditions. The algorithm is designed
to minimize a convex function ¢ over the closed convex cone:

Co ={BeR":0< B <Pr<-+- <Pk

Recall equation (3.12), computing the estimator H » is equivalent to solving the following
optimization problem:

. 1 n n
B € argmax [(B) = argmax; Zlog Zai’j(ﬂj -Bj-1) |- (3.21)
Bec i=1 =1

BeC F

With 8; = H(s;) and B = (H.(s1),...,H5(s,)). From (3.21) it is clear that for any
B € C, with 8, < 1, the likelihood can be increased by setting 5, = 1, since @;,; > 0.
Hence, we may incorporate the constraint 8, = 1 instead of §,, < 1. We achieve this via
a Lagrange multiplier. Define the convex function ¢ : C;, — R U {oo} as:

Zai,]‘(ﬁj =Bj-1) |+ Ba-

Jj=1

$B) = 1B + o= > log

1

Hereby we have incorporated the constraint, with a Lagrange multiplier equal to one. Also,
the problem is now written as a convex minimization problem since 3 € arg mingc, o(B).
Therefore, the ICM algorithm may be used to compute the MLE. Suppose we have some
initial estimate 8(*). The idea of ICM is to locally approximate ¢ with the following
quadratic form in iteration k:

—(g_g® )~ (k) )T ).
b0 (B) (ﬂ BL+w (80) Ve (80)] w(s") .
.(ﬂ_ﬁw)+W(ﬁ<k>)‘lv¢(ﬁ<k>)).

The notation V¢ is used for the gradient of ¢, the vector of partial derivatives of ¢. The
matrix W is a diagonal matrix, its diagonal is often chosen equal to the diagonal of the
Hessian matrix of ¢:

114 (,B(k)) = diag (;_;2¢ (,B(k))) )
J
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In the ICM algorithm, ¢ ) is minimized over C; instead of ¢ to obtain a candidate 3
for B+1) _If this candidate 8 sufficiently decreases ¢ it is accepted, and we set SK*1) = B.
Otherwise, a line-search is performed to obtain S8**1)| which is then given by a convex
combination of 8 and 8. A precise description of the algorithm is given in section 3.11.
We remark that minimizing (3.22) is equivalent to computing the weighted least-squares
estimator of a monotone regression function. This can be done efficiently, for more details
see [45]. The partial derivatives of ¢ are related to those of / as in (3.13) and (3.14), via:

2 2
O )= -2 1(p).

0 9
=2 ¢(B) = ——=-1(B) +1{j =n} and G

9B, B ﬁﬁf
For ICM we use the following stopping criterion, stop whenever:

(k) (k-1)
jemax B =B <8 (3.23)

for 10 successive iterations. In simulations we set & = 10™*. The interpretation of this
criterion is that we stop whenever the largest change in probability mass is below ¢ for 10
successive iterations. We note that this criterion could be inappropriate if ICM approaches
the optimum very slowly. In simulations (section 3.8) this was not an issue.

3.6.3 Hybrid ICM-EM

In [113] it was proposed to combine ICM and EM into a hybrid algorithm. The idea is that
a single iteration of this hybrid algorithm consists of first performing one iteration of the
ICM algorithm followed by one iteration of the EM algorithm. The ICM algorithm appears
somewhat slow initially, if it is started far from the MLE, whereas close to the optimal value
it converges quickly. On the contrary, the EM algorithm seems quicker at the start but has
trouble converging when close to the optimum. Moreover, when performing an EM step
after an ICM step, ICM ensures that many of the p;’s are zero. From (3.20) we see that
EM will never set such a p; to a positive value, hence EM only needs to operate in a lower
dimensional space. In practice, it seems that the hybrid ICM-EM algorithm inherits the
strengths of both algorithms and is quicker than both ICM and EM. This was for example
observed in simulations in [46] and [113]. As with ICM, the same termination condition
(3.23) is used.

3.7 Regularization of the maximum likelihood estimator

In this section, we describe how the MLE I:I,’f may be used to estimate H, the distribution
function of interest. At first glance, it seems reasonable to plug in A > for H in equation
(3.2). Unfortunately, simulations indicate that this yields a poor estimate of H. In sec-
tion 3.8 we describe in detail how simulations are performed. For now, Figure 3.3 shows
the result of a single simulation run. This simulation corresponds to the case where each
particle is a dodecahedron, n = 1000, and H corresponds to a standard exponential dis-
tribution. For this H, H” corresponds to a gamma distribution. The left panel of Figure
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MLE of H? Direct plug-in failure

CDF

0.2 - —— Direct plug-in
)

0 2 4 6
A A

Figure 3.3: Left: MLE of H?. Right: Direct plug-in estimate of H.

3.3 shows that ﬁf closely resembles H?. Meanwhile, in the right panel of Figure 3.3 we
observe that plugging in A ,bl for H? in equation (3.2) yields a poor estimate of H. This is
due to the influence of the behavior of H” near zero.

We propose a regularization technique to resolve this issue. Let ¢, > 0, truncating Fl,l:
at t,, yields:

Hb(/l)_Hb(tn) .
4 Tnnon) >
H,l:(/l,l‘n) = {O ]’H,I,’(tn) if A > th

otherwise

Plugging this truncated version of H ,11’ into (3.2) we obtain:

A1 giyb fotanb)
~dH,) (x;t dig x T 77
b i) Fraape  TAzW 3y

H, (A1) = =1
© 1 377D (1 "

b 4R o if0<a<t,

Therefore, we introduce a new parameter ¢,,, which we refer to as the truncation parameter.

In the following lemma, we show that for an appropriate choice of the truncation parameter

tn, asequence of approximating CDFs converging to H? may be de-biased to obtain a close

approximation of H.

Lemma 3.6. Let H be a continuous CDF on (0, ), with finite first moment and length-
biased version H?. Let (tw)n>1, th > 0 be a sequence such that lim,_, t, = 0. Let
(H 3 )n>1 be a sequence of CDFs. Assume H 3 converges uniformly to H” with rate at least
tn, that is: ||H? — H? ||« = o(t,,). Define:

f XOHEC)
o) = { a4z

0 fo<A<t,

then: limy, o ||Hy — H||o = 0.
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The proof is given in section 3.10. Lemma 3.6 shows that truncation is a viable ap-
proach for consistent estimation of H. Note that in Lemma 3.6, we may take ¢, =
VIIH: — H?||. In practice the result cannot directly be applied to H? since the quantity
|A% — H”||, is unknown. We propose a rule of thumb for #,,. Let s € R and define:

I:";?(s;t) :

s (S anb,.

/0 GK(E)dHn(/l,t) (3.25)
1Z:]l{s[Ss}.

ni:l

Note that £ S (- 1) is the distribution function of observed square root section areas induced
by the biased size distribution FI,’;( -3 1). That s, if I:I,’f( -, 1) is the true biased size distribu-
tion, then £ S(-;1) is the corresponding distribution of observed square root section areas.
We propose the following choice for ¢#,,:

F5(s) :

f, := argmin / |E5 (s:1) = F3 (5)|ds. (3.26)
0

t€{S1,»Sn}

Hence, 7, minimizes the L'-distance between the CDF of the observed square root sec-
tion areas, induced by the estimated (biased) size distribution, and the empirical CDF of
observed square root section areas. We minimize over {s, . .., s, } for computational con-
venience. In practice, the integral in (3.26) can be computed via numerical integration.

3.8 Simulations

In the previous sections, we have introduced the MLE I—AI,’Z , and shown that under rea-
sonable assumptions it is a consistent estimator of H?. Also, a regularization technique
was introduced to consistently estimate the size distribution function H using the MLE.
In this section, some simulation results are presented to assess the performance of these
estimators for H” and H. The code used for the simulations may be found at https:
//github.com/thomasvdj/pysizeunfolder. Using this code the simulation and es-
timation procedure can be carried out in principle for any choice of convex polyhedron for
the reference particle K.

Let us start by describing how to generate an iid sample of observed section areas,
for a given H and a chosen reference particle K. Lemma 3.1 shows that it is sufficient
to draw Z ~ Gk and independently draw A, ~ H?, followed by setting A := ZA%. A
may be considered a random section area, and repeating these steps n times yields an iid
sample Ay, ..., A, distributed according to f4. Taking the square root yields a sample of
observed square root section areas. A sampling scheme for generating IUR planes through
K is described in [25], see section 2.4 for sampling from G . Finally, we consider some
well-known parametric distributions for H, for these choices Hb corresponds to some
other well-known parametric distribution. Hence, drawing from H” is straightforward.
The following choices for H are considered, with the corresponding H”:


https://github.com/thomasvdj/pysizeunfolder
https://github.com/thomasvdj/pysizeunfolder
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1. Exponential distribution: For H we consider a standard exponential distribution,
such that H” corresponds to a gamma distribution.

HA) =1-¢* and H*(A)=1- A+ De*, 1> 0.

2. Lognormal distribution: For H we consider a lognormal distribution with parame-
ters ¢ and o. For this H, H” corresponds to a lognormal distribution with parame-
ters u+o?and o. Weset u=2,0 =1/2.

log(4) —

M , A>0.

o

H(/l):dD(

), and H?(Q) = @(M)

Here, @ denotes the CDF of a standard normal distribution.

For the simulations, we consider the following shapes for the particles: the dodecahe-
dron, cube, and tetrahedron. As for the specific choice of the reference particle K, each
of the shapes is scaled such that they have volume 1. Because these shapes are polyhedra,

Estimates of H? (Dodecahedron) Estimates of H (Dodecahedron)

1.0 1.0 A

0.8 4 0.8 A
m 0.6 7 0.6 4
a a
© 0.4 © 0.4

0.2 —— Mean estimate 0.2 - —— Mean estimate

--= H"() === H()
0.0 1 0.0
T T T I T T T
0 2 4 6 8 0 2 4 6
A A
Estimates of H? (Dodecahedron) Estimates of H (Dodecahedron)

1.0 A 1.0

0.8 0.8 1
. 0.6 . 0.6 -
a a
C 0.4 © 04

0.2 4 —— Mean estimate 0.2 4 —— Mean estimate

--= H"() --= H()
0.0 1 : : 0.0 : :
0 10 20 30 0 10 20
A A

Figure 3.4: Simulation results for the dodecahedron, n = 1000. Top left: H” is a gamma
distribution. Top right: H is an exponential distribution. Bottom left: H is a lognormal
distribution. Bottom right: H is a lognormal distribution.
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Estimates of H? (Cube) Estimates of H (Cube)
1.0 H 1.0 -
0.8 0.8
. 0.6 i 0.6
a a
C 0.4+ C 0.4 -
0.2 4 —— Mean estimate 0.2 —— Mean estimate
--- H"(1) === H(1)
0.0 0.0
T T T I T T T
0 2 4 6 8 0 2 4 6
A A
Estimates of H? (Cube) Estimates of H (Cube)
1.0 1.0 4
0.8 0.8 -
0.6 . 0.6 1
a [a)
© 0.4 - © 0.4 1
0.2 4 —— Mean estimate 0.2 —— Mean estimate
=== H”() === H(Q)
0.0 0.0 -
T T T T
0 10 20 30 0 10 20
A A

Figure 3.5: Simulation results for the cube, n = 1000. Top left: H? is a gamma dis-
tribution. Top right: H is an exponential distribution. Bottom left: H is a lognormal
distribution. Bottom right: H is a lognormal distribution.

each of the corresponding distribution functions Gk has a Lebesgue density by Theorem
3.1.

Now that we covered the simulation of iid samples we discuss the computation of
estimators. For a given choice of n, H, and shape for the particles we generate a sample
of n observed (square root) section areas. The MLE H” is computed using the hybrid
ICM-EM algorithm. The computation of the MLE requires that we can evaluate gIS< in
given points. As mentioned before, there is typically no explicit expression for gi and
we use the Monte Carlo simulation scheme described jn section 2.4 for approximating gIS<
(recall Figure 3.2). For estimating H we compute H,(-,7,) as in (3.24), with 7, as in
(3.26). Throughout this section, we refer to this estimator simply as H,,. Note that for the
computation of 7, we require Gi, which is also not explicitly known. Hence, similarly
to gi we use a Monte-Carlo approximation of G?;. In this case, we use an empirical
distribution function based on the same sample used for approximating gIS<.

We perform repeated simulations as follows. For various choices of n we generate a
sample of n observed section areas. This is repeated 100 times for each choice of n, H,
and shape for the particles. Simulation results for the dodecahedron and cube are shown
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in figures 3.4 and 3.5 respectively. These results correspond to n = 1000. Each of the
blue lines corresponds to one of the 100 estimates, each estimate based on a different

|45 - HP||o | Hy — Hloo
n H mean error  (2.5%, 97.5%) mean error  (2.5%, 97.5%)

1000  Exponential 0.0577 (0.038, 0.076) 0.118 (0.064, 0.20 )
1000 Lognormal 0.0657 (0.045,0.10 ) 0.0924 (0.057, 0.18 )
2000 Exponential 0.0452 (0.032, 0.063) 0.0972 (0.054, 0.17 )
2000 Lognormal 0.0528 (0.034, 0.081) 0.0783 (0.044, 0.13 )
5000 Exponential 0.0318 (0.024, 0.045) 0.0687 (0.036, 0.14 )
5000 Lognormal 0.0380 (0.027, 0.054) 0.0586 (0.037, 0.097)
10000  Exponential 0.0260 (0.019, 0.035) 0.0578 (0.029, 0.12 )
10000 Lognormal 0.0298 (0.023, 0.040) 0.0478 (0.028, 0.086)

Table 3.1: Simulation results for the dodecahedron.

|A} - H? || |Hy — Hlloo
n H mean error  (2.5%, 97.5%) mean error (2.5%, 97.5%)

1000 Exponential  0.0647  (0.045,0.094)  0.134 (0.073, 0.23 )
1000 Lognormal  0.0794  (0.055,0.12 )  0.107 (0.062, 0.17 )
2000 Exponential  0.0509  (0.036,0.070)  0.107 (0.059, 0.19 )
2000 Lognormal  0.0630  (0.043,0.087)  0.0911  (0.050, 0.17 )
5000 Exponential  0.0394  (0.029,0.053)  0.0787  (0.043, 0.13 )
5000 Lognormal  0.0460  (0.033,0.059)  0.0672  (0.040, 0.11 )
10000 Exponential  0.0308  (0.022,0.042)  0.0620  (0.036, 0.096)
10000 Lognormal  0.0368  (0.028,0.047)  0.0544  (0.031, 0.091)

Table 3.2: Simulation results for the cube.

|45 - H”||o 1Hy — Hlloo
n H mean error  (2.5%, 97.5%) mean error  (2.5%, 97.5%)
1000  Exponential 0.0948 (0.062, 0.15 ) 0.197 (0.090, 0.39 )
1000 Lognormal 0.11 (0.078,0.15 ) 0.163 (0.091, 0.30 )

2000 Exponential 0.0792 (0.058,0.10 ) 0.153 (0.085, 0.28 )
2000 Lognormal 0.0930 (0.069, 0.13 ) 0.134 (0.082, 0.24 )
5000 Exponential 0.0602 (0.046, 0.080) 0.120 (0.061, 0.25 )
5000 Lognormal 0.0761 (0.058, 0.093) 0.0997 (0.068, 0.15 )
10000  Exponential 0.0514 (0.038, 0.064) 0.101 (0.054, 0.20 )
10000 Lognormal 0.0643 (0.048, 0.083) 0.0805 (0.059, 0.11 )

Table 3.3: Simulation results for the tetrahedron.
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ICM ICM-EM
n time (s) #iterations time (s) # iterations
1000 3.99 314 0.511 26.4
2000 27.6 502 2.42 30.7
5000 415 784 25.8 62.5

Table 3.4: Algorithms mean run-times and mean number of iterations.

sample of size n = 1000. The black line is the point-wise average of all estimates. Further
simulation results for the other shapes are summarized in Tables 3.1, 3.2 and 3.3. We
quantify the error of the estimate as the supremum distance between the true H? and H b
and similarly for the error of the estimates of H. The mean error is then the mean taken
over the 100 resulting errors of the estimates. For these 100 resulting errors, the 2.5% and
97.5% quantiles are also shown.

Let us discuss the content of Tables 3.1, 3.2, and 3.3. As expected, as n increases the
average error decreases, for all chosen shapes and size distributions, both for the estimates
of H and H”. Comparing the average supremum error for a fixed n, and a fixed size
distribution, it is clear that the errors are smallest for the dodecahedron, followed by the
cube and finally, the average error is largest for the tetrahedron. This is the case for both
the average errors for estimating H as well as H?. Note that estimating H instead of
H? increases the supremum error, and the corresponding mean supremum errors are also
larger. These larger errors are also evident in figures 3.4 and 3.5. We note that for some
practical applications, an estimate of H” may be sufficient.

Finally, we briefly touch upon the computational efficiency of the algorithms for com-
puting H2. We take for the shape of the particles the dodecahedron and for H the previ-
ously introduced lognormal distribution. In Table 3.4 the average run-times and iteration
counts of the ICM and ICM-EM algorithms are shown, averaged over 10 simulation runs.
The EM algorithm is not included in the table, in simulations it was several orders of
magnitude slower than the other algorithms. Clearly, ICM-EM is considerably faster than
ICM.

3.9 Concluding remarks

In this chapter we have studied a generalization of the classical Wicksell corpuscle prob-
lem, considering an arbitrary convex shape for the particles instead of spheres. In partic-
ular, for the problem of estimating the CDF H of the particle size distribution an identifi-
ability result is derived. We also obtain an inversion formula via the Mellin transform. A
nonparametric maximum likelihood estimator is proposed for the biased size distribution
HP’ and it is proven to be uniformly strongly consistent. Moreover, this estimator can be
computed efficiently in practice. In a simulation study the proposed estimators for H? and
H perform well for various choices of particle shapes and particle size distributions.
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3.10 Additional proofs

Proof of Lemma 3.2. The result follows almost immediately from theorem 7.8.2. in [48],
which is a Mellin inversion theorem. Suppose X ~ F; and Y ~ F,. By assumption, My
and My are analytic on St(e, 8), 0 < @ < B. Let ¢ € (@, 8), and assume Mx(c +it) =
My (c +it) forall t € R. Let x > 0, by theorem 7.8.2. from [48] we obtain:

_ 1 1 c+iT —s+1

Fi(x):==(Fi(x+) + Fi(x—)) = lim — -Mx(s) ds
2 T—o0 27Tl c—iT N

_ 1 1 c+iT —s+1

F>(x) := = (F2(x+) + F2(x—)) = lim —/ -My(s) ds.
2 T—o0 27Tl c—iT S

Here: F(x+) :=limy o F(x + h) and F(x—) := limy1 F(x + k). Note that for a continuity
point x of F, Fi(x) = F(x). Because CDFs are right continuous we obtain: F)(x) =
Fi(x+) and F>(x) = F>(x+). Hence, it is sufficient to show F; = F,. Because My (c+it) =
My (c+it) forall r € R:

—s+1

ds =0,

_ _ 1 c+iT
A = Fa) = im o [ (M) = My ()

which finishes the proof. O

Proof of Lemma 3.3. f¢ is upper semicontinuous, as it is given by a product, and a com-
position of an upper semicontinuous function and a continuous function. By Theorem 3.1,
gf( is non-decreasing on (0, 7x) for some 0 < 7x < v/@max. Choose M > +/amax large
enough such that e™™ < 7x. It now immediately follows that f.(z) = 0 for z € [M, o)
and f. is monotonically increasing on (—co, —M . It remains to show that f is of bounded
variation on [-M, M]. Let -M < z9 < z1 < -++ < Z; < M be an arbitrary partition of
[-M, M]. Then it follows:

DMfe@) = felzimn)l =
i=1

m
= D lek (e — g (e™)e ! + g (e™)e ! — gy (5 )e |
i=1

m m
<llgillo Y le¥ = e+ " g (%) - gi (5] (3.27)
i=1 i=1

S
< ”gK”ooe < o0,

M eMVO\/arTax (gIS( )
Note that the first sum in (3.27) telescopes. In the final step we use the fact that gi is
bounded and is of bounded variation on its support. Because the above computation holds
for arbitrary partitions of [-M, M] we find: Vf’IM (fe) < oo, which finishes the proof. O

Proof of Lemma 3.5. Because fo > 0 is a Lebesgue density, for every m € N there exists
a bounded continuous probability density function f* such that || f7* — fe|l;1 < 1/m (see
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Lemma 3.7 in section 3.10). Let m € N, then:

o = frlle, =/V Fezmx) = f(z = x) + 7 (2 = )d(Fy — Fx) (0)| dz

S/’/ fe(z=x) = f&"(z = x)d(Fy — Fx)(x)|dz

(3.28)

v f ’ [ = naer, - Fo o ez

Via the triangle inequality and Fubini, the first term in (3.28) is bounded by:

/“/ fe(z—x) = f'(z = x)dFy,(x)|dz

+/ ‘/ fe(z=x) = fI"(z - x)dFx(x)|dz

s//|fe(z—x)—fg"(z—x)|dzdF,,(x)
2

" .

+ / / ez —x) = F7(z = )| dedFx (x) < 2f7 = fellus <

The second term in (3.28) may be written as:

/ ' [ e =natr, - o)

with ¢, ,, and ¢,, defined as:

dz = ||90n,m - Qom”Ll»

gon,m(z)=/f6m(z—x)an(x), and ¢m(z)=/f£”(z—x)de(x).

Because fI" is a probability density, so are ¢,, and ¢, ,, for all n € N. By the continuity
of fI" and the weak convergence of F;, to Fx we obtain that ¢, , converges pointwise to
¢m as n — oo. By Scheffé’s Theorem pointwise convergence of probability densities to
another probability density implies that these densities also converge in L'. Combining
all results yields:

. .2 2
lim [/ = fylle, < lim — +{lopm = @mllp = —.
n—oo n—oo m m
Letting m — oo we obtain the desired result. O

Lemma 3.7. Let f be a Lebesgue density on R, for every € > 0 there exists a bounded
continuous probability density function g such that ||g — f|l;1 < &.

Proof. Recall that the space of compactly supported continuous functions is dense in L'.
For n € N choose a continuous, compactly supported and non-negative function g, such
that ||g, — fll1 < 1/(n+1). By the reverse triangle inequality:

1

lgnllLr = 1= Mlgnllr = 1AL < llgn = fllor < - (3.29)
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Define: &, = g./l|gnll;1. Note that by (3.29), ||g.|l;1 > 0. Hence, g, is a bounded and
continuous probability density function. Combining all results:

1
18n = fllLt =m/Ign(X)—f(X)+f(X)—IIgnllLl J(x)ldx
1

S _
llgnll Lt

1 1

ol Yt _ 2

n

1- L

n+l

(l1gn = fllpr + lgnllLr = - 11N L1)

Because this holds for all n € N we obtain the desired result. O
Proof of Lemma 3.6. We first note the following:

sup |Hp,(A) —H(Q)| = sup H(A) = H(t,). (3.30)

0<A<ty, 0<aA<ty,

Let us now assume A > t,,. By definition:

S Ldrb () [ LdHE () - [ LdHE (x) ;7 LdHP (x)

HA) - H,(1) = = = 3.31
(1) (1) I %de(x)[tn Lt () (3.31)
The numerator of (3.31) may be written as:
oo 1 b ( A 1 b A 1 b
/ —dH, (x) / —-dH (x)—/ —dH, (x)
t, X 0o X t, X
A 1 b ( | b © q Y
—/ —dH, (x) / —-dH (x)—/ —dH, (x)
t, X 0o X t, X
) ( 11 b b L
:/ —dH, (x) / —-d(H —Hn)(x)+/ —dH"(x)
o o ot (3.32)

-/ ! Larf o) ( i Cla - B+ /0 i }CdH’«x)) .

Recall: E(A) = [~ AdH(A) = 1/ [ (1/x)dH?(x). Plugging (3.32) back into (3.31)
yields:

H(A) - Hy(2) = E(A) ( / ! %d(Hb - HZ)(x)) +H(ty)

n

*1
~E(A)H,(2) ( / —d(H" - Hi’)(x)) — Hy(DH (1)
t, X
Therefore, we obtain the following bound:

sup |[H(A) — H,(4)| < 2E(A) sup + H(ty). (3.33)

Aty A>t,

A
/ Lt - w2 ()
t, X
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The integral in (3.33) may be computed via integration by parts:

A
/ Lot - w0
th X

sup =
A>t,
_|HRW -H"()  Hp () — HP (1) _/”(Hb(x)_Hb(x))dl
_/thn A In In " X
o, [HE () - HP (2 z
< o3Pz, 2D ”|+sup|Hsu>-Hhu>|-/ dl'
In Azt tn X
< S IHR — Hlls
<3—n = (3.34)

In

Note that the bound in (3.33) is greater than H(#,), by (3.30) this means that the bound
also holds when taking the supremum over A > 0 instead. Combining (3.33) and (3.34)
we finally obtain:

H? — H?||o
w +H(t,). (3.35)

n

|Hy — Hlloo < 6E(A)

Letting n go to infinity, H(¢,) converges to zero by the continuity of H. Using this and
the fact that (Hfj )ns1 converges uniformly to H? with rate ¢,, (by assumption) the RHS of
(3.35) converges to zero. O

3.11 Pseudo-code of algorithms

Algorithm 1 Expectation Maximization (EM)

Input: Observed order statistics: s1 < 53 < -+ < §y.
Output: The MLE A”.

1: k:=0

2 p W =L 1 LHep,

3: while Stopping criterion is not met do

, (k1) ._ 1 yn i (k) .o oS (ﬁ)i
¥ ;oo T il e gl pp with @iy =g ()5
5: k=k+1

6: end while .

7: Hg(sj) = Z{zl p} ) for j € {1,...,n}.

8: return H?
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Algorithm 2 Iterative Convex Minorant (ICM)

Input: A convex function ¢ : C; — R U {co}. (¥ with ¢(B8(?)) < co and € € (0, 1/2).
Output: A minimizer of ¢.

1: k:=0

2 0 =(L 2 Yec

3: while Stopping criterion is not met do

4: B =argmingcc Pk (y) > With ¢4 as in (3.22)

i if ¢(B) < p(BY)) +eVp(B)T (B~ X)) then

6: pr = p

7: else

8: A::l,s::%,z::ﬂ.

9: while ¢(z2) < ¢(8*) + (1 - )V (B*)7(z - BX) (D) or
¢(2) > p(BX)) +eVp(BX)T (2 - p) () do

10: if (I) then A := A+

11: if (I) then A := 1 —s

12: z:= % + (B - pw)

13: s:=3

14: end while

15: B = 7

16: k:=k+1

17: end while
18: return 8%
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Chapter 4

Stereological estimation of grain size
distributions in microstructures

4.1 Introduction

In this chapter, the statistical methodology proposed in chapter 3 is applied to polycrys-
talline materials, as well as mathematical models representing these materials. Polycrys-
talline materials, composed of multiple grains with distinct crystallographic orientations,
exhibit intricate microstructures that significantly influence their mechanical properties
[77]. Different types of microstructure-based simulations depend on proper estimation
and characterization of the microstructure [80]. For example, a thorough physical un-
derstanding of the underlying mechanisms behind phenomena such as local stress fields
[64], [49], fracture and damage initiation [24], [81], [102], shear banding [47], [93], [91],
and recrystallization nucleation [50], [103], [96] depends on the initial microstructure. In
addition to the microscale mechanical response, the macroscopic mechanical response,
such as the stress-strain curve and yield surface, also depends on the microstructure [4],
[10], [43], [90], [92], [98]. Therefore, accurate characterization of the microstructure of
polycrystalline materials is essential and has become a crucial part of materials science
research.

One of the critical microstructural features is the grain size distribution, which can
affect many mechanical responses [4], [112]. For example, at a macro scale, it can affect
the stress-strain curve. At a smaller scale, it can influence the stress and strain localiza-
tion [1], [93], impacting for instance damage evolution. However, direct 3D measurement
of the grain size distribution is costly and time-consuming [76]. Instead, more common
two-dimensional (2D) characterization techniques, such as light microscopy, Scanning
Electron Microscopy (SEM), and Electron Backscatter Diftraction (EBSD), are employed.
These 2D techniques provide only surface information, leaving part of the critical informa-
tion, like the 3D grain size distribution, unknown. This chapter aims to use 2D information
obtained from section areas to estimate the 3D grain size distribution, offering a more effi-
cient and accessible approach to microstructure characterization. Estimating the 3D grain
size distribution from 2D observations is a well-known stereological problem, originally
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addressed by [114], in the Wicksell corpuscle problem. In the Wicksell model, grains are
represented by spheres of varying size, randomly positioned in 3D space. Intersecting this
system of spheres with a plane results in a sample of observed circle radii, the distribution
of which is uniquely related to the distribution of the 3D sphere radii. However, when con-
sidering real microstructures, the assumption of (approximately) spherical grains is often
unrealistic. A more realistic approach is to generalize the Wicksell model, by replacing
spheres with another convex shape, such as a polyhedron, as was done in chapter 3. Such
a polyhedron then represents the typical grain shape. Instances of this polyhedron are ran-
domly scaled, -oriented and -positioned in 3D space. Intersecting this system with a plane
yields observed section profiles, the areas of which can be used to estimate the grain size
distribution.

Various estimation procedures have been developed for these stereological problems.
For spherical grains (Wicksell’s problem), the Saltykov method [83] is widely used, es-
timating the underlying radius distribution as a discrete histogram, requiring bin size
choices. Numerous variations of the Saltykov method exist, often differing in binning
strategies, inversion procedures, or the choice of parametric distributions [58], [21], [12].
Other methods extend these principles to non-spherical grains, such as cubes or other spe-
cific polyhedra [70], [59], [61], [116]. For a more elaborate overview of estimators in the
Wicksell problem we refer to [18].

The estimation procedure in chapter 3, offers a discrete distribution estimate for grain
size via non-parametric maximum likelihood estimation. This method, when the shape of
the 3D objects is known and fixed, is consistent, meaning that as the sample size increases,
the estimate converges to the true distribution. Unlike the Saltykov method, which typi-
cally uses a fixed number of bins, this new method implicitly optimizes the number and
size of bins through likelihood maximization, eliminating the need for manual binning.
The estimation method from chapter 3 was developed (and theoretically studied) from the
perspective of randomly placed, scaled and oriented particles in a 3D medium. In practice,
this type of procedures is commonly applied to space-filling structures, as often seen in
metal microstructures. As this estimation method works for arbitrary convex shapes, it
enables to investigate which of these shapes actually works best in specific situations with
space-filling structures.

In this chapter we estimate grain size distributions of various simulated- and real mi-
crostructures. We explore a range of grain shapes to assess how the chosen shape relates
to the estimation accuracy of the actual grain size distributions. In the simulation set-
ting, we consider Voronoi and the more general Laguerre-Voronoi diagrams as models for
metal microstructures. These diagrams provide realistic approximations of grain shapes
and distributions found in metals [72], making them ideal for studying the accuracy of 3D
grain size distribution estimates derived from 2D cross-sectional images. In fact, though
several theoretical properties of these models are known in the literature [62], [56], [40],
there are no explicit relations or estimators of the 3D volume distributions from the 2D
sections. Hence, applying the estimation procedure from chapter 3 in a simulation setting
can provide insights into the behavior of the estimator for the underlying model. The con-
tributions in this chapter are the following: i) we estimate the 3D grain size distribution
using a novel statistical estimation procedure; ii) we investigate the influence of assumed
grain shapes on the estimation of grain size distributions; iii) we conduct extensive sim-
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ulations using random 3D (Laguerre)-Voronoi microstructures and single planar sections
to estimate the underlying grain size distribution; and iv) we show that for the considered
microstructures, a few grain shape choices yield accurate estimates, providing a practical
procedure for selecting appropriate shapes for steel samples.

The outline of this chapter is as follows. In section 4.2 we describe the estimation
procedure used for obtaining the 3D grain size distributions. Furthermore, we illustrate the
methods used for the simulation of microstructures, as well as how cross sections are taken
of these simulated microstructures. In section 4.3, the simulation results for 100 Laguerre
Voronoi diagrams are presented. Estimates based on different shapes for the grains are
compared and in section 4.4 a heuristic of the choice of the best shape is discussed. In
section 4.5 the new estimation procedure is applied to real data. In this special case, the
results of the volume distribution estimation based on 2D real data can be compared with
the real 3D volume distribution obtained from 3D EBSD data. Final considerations and
conclusions are discussed in section 4.6 and 4.7.

4.2 Methods

In this section, we describe how we estimate grain size distributions (subsection 4.2.1)
using the methodology from chapter 3. Additionally, we describe the simulation procedure
of the microstructures and the process of obtaining cross sections from these simulations
(subsection 4.2.2).

4.2.1 Estimation of grain size distributions

Assume we have a sample of observed section areas: ap,as,...,da,, with n being the
sample size. This is assumed to be the sorted sample, meaning that: a; < ax < --- < a,.
We assume a particular 3D grain shape K C R?, representing the typical grain in the
microstructure at hand. Consider taking a random section of the chosen shape K, with
K scaled such that it has volume 1. The probability density function associated with the
square-root of the area of such a random section is denoted by gi. In principle gIS< becomes
known once the shape is chosen; in practice we use the simulation scheme from section
2.4 to obtain a very close approximation of this function. The estimation procedure can
be described by two steps. First, we estimate the biased size distribution, denoted by H?,
both for mathematical as well as computational convenience. This can be interpreted as
the distribution of the size of the typical grain which appears in the section plane. It is
well known that larger grains are more likely to be hit by the section plane, meaning that
larger grains are over represented in the plane section. Therefore, the actual grain size
distribution is different, and it is estimated in a second step via a de-biasing procedure.
Denote by H the size distribution function. Then, in step 1 we compute the estimator H”
for H?, as defined in (3.10). In step 2 we use H” to compute the estimator H,, for H, as
defined via equations (3.24) and (3.26). For more details on the estimators I:I;b, and H,, we
refer to chapter 3.

A grain with size 4 > 0 is up to a translation and rotation equal to AK. By 1K we mean
that K is scaled with a factor 1. As such, a grain with size A has volume: Volume(AK) =
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Figure 4.1: (a): Sphere. (b): Dodecahedron. (c): Kelvin cell/ Tetrakaidecahedron. (d)
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. The function gi for various shapes . The function gf( for various shapes
—— Sphere —— Cube
6 - Dodecahedron 6 - Octahedron
= —— Kelvin cell > —— Tetrahedron
Z 4 Z 4
9 5
A A \
2 A 2 4
0 0 -

T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
Square root section area Square root section area

Figure 4.2: The function gIS< for the shapes shown in Figure 4.1.

A3Volume(K) = A3. As a result, the size distribution is related to the volume distribution
function Fy via: Fy(x) = H(x'/?). Hence, we estimate Fy as: Fy(x) = H,(x'/?).
Additionally, the so-called biased volume distribution is given by F{(x) = H?(x'/?) and
may be estimated via £, (x) = H2(x'/3). For simulations, we consider the shapes shown
in Figure 4.1. For each shape K, we need the function gf( to carry out the estimation
procedure. For all the considered shapes the function gi is shown in Figure 4.2.

4.2.2 Simulation of random microstructures

We first describe the model chosen for our simulations. For studying the behavior of the
estimator described in the previous section we run simulations using Voronoi diagrams as
a mathematical model for microstructures. Voronoi diagrams and its generalizations are
often referred as the state of the art for modelling microstructures [72]. Given some convex
domain Q in 3D space, a Voronoi diagram divides €2 into so-called cells, which are convex
polyhedra. Given distinct points xp, . .., xy € Q and denoting by || - || the Euclidean norm,
the Voronoi diagram generated by these points has cells Cy, . .., Cn with:

Ci={xeQ:|lx—x <|lx—x;|l, forall j € {1,...,N}}.

In this chapter, we consider the Poisson-Voronoi diagram, meaning that the x;’s are a re-
alization of a homogeneous Poisson process @ on €. While Voronoi diagrams are attrac-
tive models for materials microstructures, the additional flexibility of its generalization,
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the Laguerre-Voronoi diagram, also referred as Laguerre diagram, allows to more accu-
rately model real microstructures. In [29] it was observed that geometric characteristics
of Laguerre diagrams were closer to geometric characteristics of real polycrystalline mi-
crostructures in comparison to Voronoi diagrams. In [55] and [57] Laguerre diagrams
were demonstrated to accurately model a foam microstructure. Moreover, [55] showed
that Laguerre diagrams provided a better representation of foams compared to various
types of Voronoi diagrams. The results in [28] indicate that Laguerre diagrams provide a
superior representation for sintered alumina than Voronoi diagrams. Additionally, [115]
demonstrated that Laguerre diagrams can accurately model two-phase composites.

Given some convex domain Q in 3D space, a Laguerre diagram also divides Q into
cells, which are convex polyhedra. Given distinct points xj,...,xy €  and weights:
wi,...,wn € R. A Laguerre diagram generated by these weighted points has cells
Ly,..., Ly with:

Li={xeQ:|lx—xi|I> —w; < |lx —x;]I* —wj, forall j € {1,...,N}}.

The Voronoi diagram is obtained if all weights are equal: w; = w, = --- = wy. Hence, in
order to describe how Laguerre diagrams are generated we need to specify how we choose
the weights. The Laguerre diagrams considered in this chapter can be considered a sneak
peek into part II of this thesis, where we will more thoroughly study a specific type of
random Laguerre diagrams. A Laguerre diagram with periodic boundary conditions may
be obtained by replacing the Euclidean distance || - || with a periodic distance.

We now describe the simulation setting. First, we define the domain as the unit cube
Q = [0,1] x [0,1] x [0,1]. We fix a number of grains N, and generate a Poisson
process conditioned on having N grains, that is equivalent to sample N uniformly dis-

tributed poings: X1, ...,xn in Q. We choose a volume distribution function Fy and sample
Vi,..., VN B Fy. Then, we set:
Vi
ri = b
N
Zi=1 Vi

Figure 4.3: Example of a 3D Laguerre-Voronoi diagram with periodic boundary condi-
tions, and a 2D planar section. Cells are colored according to their 3D volume.
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such that the r;’s represent the volume fractions. Using the algorithm proposed in [15]
(Algorithm 2), we generate a Laguerre diagram in Q with n grains such that grain i has
volume r;. This algorithm is initialized with generator points xi,...,xy. The final La-
guerre diagram is approximately centroidal, meaning that the generator point of each cell
is close to the center of mass of its cell.

Having generated a Laguerre diagram we take a random height z, sampled from the
uniform distribution on [0, 1], and intersect the diagram with a horizontal plane at height
z. Throughout, the diagrams we consider have periodic boundary conditions. If parts of a
cell appear in a section multiple times (due to periodic boundary conditions) the areas of
the parts are added together, and this sum is considered as a single observed area.

4.3 Simulation results

4.3.1 Laguerre diagrams

In this section, we apply the estimation procedure to randomly generated Laguerre dia-
grams. We apply the procedure described in subsection 4.2.2 100 times. By this we mean
that 100 times, a Laguerre diagram is generated, a planar section is taken, and estimates
of the grain volume distribution are computed under various shape assumptions.

For the following simulations we generate Laguerre diagrams with N = 50000 grains.
We choose for the volume distribution Fy a lognormal distribution with parameters oo =
0.4, u = —02/2. Each of the 100 runs generated a random sample of observed section
areas whose sample sizes are shown in the left panel of Figure 4.4.

The distribution of the observed section areas for one simulation is shown in the right
panel of Figure 4.4. For each of the shapes we consider, the simulation results are given in
Figures 4.5-4.6. Each blue line is an estimate corresponding to one of the 100 generated
samples of section areas.

Looking at the estimates of the volume distribution, the estimates corresponding to
the sphere and the tetrahedron are quite poor (Figures 4.5 (b) and 4.6 (f)). One may argue

Number of observed grains Observed section areas
12.5
150
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2 7.5 - 2 100
Q Q
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Figure 4.4: Left: Histogram of the number of observed grains for each of the 100 simula-
tions. Right: Histogram of the observed section areas from one simulation.
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Figure 4.5: Estimates of the biased volume distribution function (left) and estimates of the
volume distribution function (right), based on the sphere, dodecahedron and Kelvin cell.
The red dashed line represents F‘b, and Fy in the left and right panel respectively.
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Figure 4.6: Estimates of the biased volume distribution function (left) and estimates of the
volume distribution function (right), based on the octahedron, cube and tetrahedron. The
red dashed line represents F‘b, and Fy in the left and right panel respectively.
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and the L; error

are considered.

IFv = Fylle = sup [Fy (x) - Fy (x)|.
x>0

HR—HM:/IRm—HmW-
0

that a sphere is ‘too round’ to be a good representation of a typical grain shape and the
tetrahedron has ‘too sharp corners’ to be representative of a real grain. All other shapes
yield much better estimates, in particular the estimates corresponding to the octahedron
and the cube (Figures 4.6 (b) and 4.6 (d)) appear quite close to the true volume distribution.
The estimates corresponding to the biased volume distribution paint a similar, but slightly
different picture. Note in particular that the variance of the estimates is rather different for
each of the shapes. This variance is the smallest for the simulation results corresponding
to the sphere, and largest for the results corresponding to the tetrahedron (Figures 4.5 (a)
and 4.6 (e)).

In Tables 4.1-4.2 errors of the estimates in Figures 4.5 and 4.6 are shown. To be precise,
the supremum error

I1Fv = Fylle I1FE - Fylleo

Shape mean error  (2.5%, 97.5%) mean error  (2.5%, 97.5%)
sphere 0.391 (0.34 , 0.46) 0.196 0.17 , 0.22)
dodecahedron 0.167 0.13 , 0.21) 0.143 .12 , 0.17)
Kelvin cell 0.182 0.14 , 0.23) 0.146 0.12 , 0.17)
octahedron 0.154 (0.10 , 0.22) 0.118 (0.089, 0.16)
cube 0.134 (0.098, 0.17) 0.114 (0.081, 0.16)
tetrahedron 0.619 0.52 , 0.75) 0.345 (0.28 , 0.41)

Table 4.1: Mean supremum errors of estimates for the size- and biased size distribution
function with 2.5% and 97.5% quantiles based on 100 simulations.

|y = Fyllr, (x107)

IFL — FE|lL, (x1076)

Shape mean error  (2.5%, 97.5%) mean error  (2.5%, 97.5%)
sphere 7.52 (6.37, 8.97) 3.51 (3.11 , 4.01)
dodecahedron 2.11 (1.42, 2.91) 1.91 (1.57 , 2.33)
Kelvin cell 2.41 (1.56, 3.74) 1.93 (1.61 , 2.34)
octahedron 1.46 (1.07, 1.97) 1.20 (1.00 , 1.45)
cube 1.45 (1.02, 1.99) 1.10 (0.850, 1.42)
tetrahedron 7.08 (5.29, 9.41) 3.54 291, 4.15)

Table 4.2: Mean L errors of estimates for the size- and biased size distribution function
with 2.5% and 97.5% quantiles based on 100 simulations.
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The results in Tables 4.1-4.2 confirm what was found by the graphical inspection of
Figures 4.5 and 4.6. For the volume distribution function, both the supremum and the L,
error suggest that the cube and the octahedron are the best choice. What can be seen from
both tables is that the sphere, the canonically used shape, leads to inferior approximations.

4.4 The choice of grain shape

In the previous section we have observed that some choices of grain shape yield much
better results than other choices. We attempt to obtain a better understanding of why in
particular the cube and the octahedron are often a good choice when the true data gener-
ating mechanism is a centroidal Laguerre diagram. To obtain preliminary results without
making arbitrary choices on the distribution of weights, in this section Poisson-Voronoi
diagrams that are Laguerre diagrams with all weights equal are used.

4.4.1 Characterizing shape via sphericity

G}ven azshape with volume V and surface area S, the isoperimetric inequality states: S >
73 (6V)3. Equality holds if and only if the shape is a sphere. It may also be stated as:
among all shapes with a given surface area, a sphere has the maximum volume. In [111]
this was used to define sphericity as:

s (6V)F

= S

Then, ¥ = 1 for a sphere and for any other shape 0 < ¥ < 1. In [111] the sphericity
of quartz particles was studied. It is challenging to determine when two grains have ap-

proximately the same shape. One approach is to consider grains with approximately equal
sphericity as being close in shape. The use of sphericity is in any case arbitrary. Other

b4

Sphericity of a typical Voronoi cell

107 Shape Sphericity
81 Sphere 1
2 6 Dodecahedron 0.910
5 Kelvin cell 0.910
B4 Octahedron 0.846
2 Mean typical Voronoi cell  0.808
Cube 0.806
0 -
0.5 06 0.7 08 09 1.0 Tetrahedron 0.671
Sphericity

Figure 4.7:  Simulated distribution of  Table 4.3: Approximate sphericity of
sphericity of a typical Poisson-Voronoi cell, various convex shapes.
based on 10° Voronoi cells.
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shape parameters such as the number of facets or vertices are other reasonable choices. Be-
cause we apply the estimation procedure to space-filling microstructures, one may wonder
what is the average sphericity of a grain in such a microstructure. As previously men-
tioned, as an example we consider a Poisson-Voronoi diagram, where all weights are equal.
In [62] and [94] the sphericity has been used with other cell characteristics to describe the
Poisson-Voronoi and the more general Laguerre diagram, respectively. Via simulations,
we can generate Poisson-Voronoi cells and computing the sphericities of the individual
cells yields the distribution in Figure 4.7.

In Table 4.3 the sphericity of various convex shapes is given, as well as the esti-
mated mean sphericity of a typical Voronoi cell. Clearly, among all considered shapes
the sphericity of the cube is closest to the mean sphericity of a typical Voronoi cell.

4.4.2 Verifying the choice of grain shape using the disector

A classical stereological technique for estimating the expected number of grains per unit
volume Ny is called the disector [100]. It may also be used to estimate the mean grain
volume since E(V) = 1/Ny, for a space filling structure consisting of Ny cells in a unit
volume body. The disector allows for unbiased estimation of Ny without assumptions on
the grain shape. It requires two (close) parallel sections which are a known distance apart.
Ideally, we would like to guarantee that no grains are lost between section planes, such
that there are no grains between the two planes that we cannot observe. Let:

* Q7: the number of grains which are observed in the top section but not in the lower
section.

* (7 : the number of grains which are observed in the lower section but not in the top
section.

* A: the area of the observation window/ section plane.

 h: the distance between the section planes.

Estimates of volume distribution function
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Figure 4.8: Estimates of the volume distribution function of the cells of a Poisson-Voronoi
diagram based on different shapes.
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When counting grains in a section plane it is important to deal with edge effects, as bound-
ary grains are only partially observed. For obtaining an unbiased estimate, one may for
instance use the Gundersen frame or the associated point rule (see section 3.3.5 in [9]
and references therein) to determine which grains should be counted. Then, Ny may be
estimated via:

o _0T+0”

M=
Let us first proceed as before, we have various shapes we can consider to estimate the grain
volume distribution using a single section. The result of the simulation of one Poisson-
Voronoi diagram is shown in Figure 4.8. This particular realization of the Poisson-Voronoi
diagram has 78862 cells.
For each of the estimates we can also compute the mean volume. We have estimates
of the distribution function Fy denoted by Fy . Then, the mean volume corresponding to

Fy is given by:
/ xdFy (x).
0

In Table 4.4 the estimates for all the shapes previously considered are shown. In Figure 4.9
mean grain volume estimates of the Poisson-Voronoi diagram are shown. These estimates

Shape Estimated mean volume
Dodecahedron 9.959

Kelvin cell 9.621

Cube 12.35
Octahedron 12.35
Tetrahedron 16.20

Table 4.4: Estimated mean volume of the cells of a Poisson-Voronoi diagram correspond-
ing to the estimates shown in Figure 4.8 based on different shapes.

Estimates of mean grain volume
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Figure 4.9: Histogram of mean grain volume estimates of a Poisson-Voronoi diagram
obtained using the disector. The red line indicates the actual mean volume.
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are obtained using the disector method using 100 pairs of parallel section planes. The
actual mean volume (red line in Figure 4.9) is 12.68, which among the considered shapes,
is closest to mean grain volume estimates obtained using the cube and the octahedron.

In the context of this chapter, we propose the disector method not as a tool for select-
ing an appropriate grain shape, but rather as a diagnostic approach to validate the grain
shape assumptions made during the estimation process. In practice, one can take paral-
lel sectional planes from a steel sample and then apply the disector technique to estimate
the mean grain volume without any shape assumption. By comparing the estimated mean
volumes from both a shape assumption and the disector method, which should ideally be
close, one can validate whether a specific shape is a reasonable assumption for the given
sample.

4.5 Application to experimentally measured EBSD data

In this section, we investigate an experimentally measured microstructure obtained using
the Electron Backscatter Diffraction (EBSD) technique. The initial microstructure and
crystallographic texture of the material were measured across the thickness (ND - normal
direction) perpendicular to the rolling direction (RD). The EBSD scan area is 500 um
X 500 um. Standard metallographic techniques were used to prepare the specimen for
characterization. Analysis of the EBSD data was performed using TSL OIM software.
The material used in this study is Interstitial-Free (IF) steel. For this example, we have the
3D EBSD information available using the serial sectioning technique [76].

Following a standard postprocessing procedure, and discarding the small grains lo-
cated at grain boundaries, we obtained a sample of 1506 fully observed grains. A his-
togram of the observed section areas and a histogram of the observed grain diameters
((‘%)1/2) is shown in Figure 4.11.

001] 101]

Figure 4.10: Electron backscatter diffraction (EBSD) measurements of an IF steel sam-
ple. The figure shows the IPF color map parallel to the normal direction for a section of
500um X 500um.
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Figure 4.11: Left: Observed grain areas in 2D EBSD data set. Right: Observed grain
diameters in 2D EBSD data set.
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Figure 4.12: Estimates of the biased volume distribution function (left) and estimates of
the volume distribution function (right) based on different shapes.

For all the shapes considered, we estimate the volume distribution function. These es-
timates can be directly compared to the experimental volume distribution in the 3D EBSD
data set (Figure 4.12). From the comparison of the different shapes shown in Figure 4.12 as
in the Laguerre Voronoi simulation the cube and octahedron appear to be the best shapes.

4.6 Discussion

This chapter critically addresses the problem of estimating 3D grain size distributions
from 2D cross-sections, highlighting the importance of selecting an appropriate grain
shape when applying the estimation procedure to space-filling microstructures. Our find-
ings, supported by simulations using Laguerre Voronoi diagrams and a real-world data set,
demonstrate that the choice of grain shape significantly affects the accuracy of the stere-
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ological estimates. Notably, our results suggest that while traditional shapes like spheres
and tetrahedrons often provide poor estimates probably due to their geometric simplicity
or complexity, shapes such as cubes and octahedrons yield more reliable results.

The use of the disector method, not as a selection tool for grain shapes but as a di-
agnostic tool, has utility potential. It provides a baseline for validating the assumptions
made during the estimation process, ensuring that the chosen grain shape assumptions are
reasonable for the given sample.

While the study has provided valuable insights into estimating 3D grain size distri-
butions from 2D sections, there are natural challenges to be addressed in the future. One
is related to the fact that our estimation method is inspired by a model considering ‘ran-
domly sized and -oriented shapes randomly positioned in the 3D medium’ and applied
to space-filling structures. It is interesting to develop methods really based on models
(like Voronoi, Laguerre Voronoi or newly developed models such as generalized balanced
power diagrams [2]) leading to space-filling structures. In part II of this thesis we aim
to make some progress in this research direction by studying so-called Poisson-Laguerre
tessellations.

The assumption of isotropy in the grain structures is another issue. The models consid-
ered assume that the morphological properties of the grains are uniform in all directions,
which is often not the case in real-world materials. Many materials exhibit anisotropic
behavior due to directional cooling, applied stresses, or processing methods that align the
grains in particular orientations. Ignoring anisotropy can lead to significant deviations
between the estimated and actual grain size distributions.

As it comes to the simulated data, the use of periodic boundary conditions is a prac-
tical approach to manage computational boundaries. However, this assumption may not
accurately reflect the true edge conditions of real materials. In natural or manufactured ma-
terials, the boundary effects can significantly influence the microstructural features near
the edges, which are not captured by periodic boundary conditions. This can skew the
estimation of grain size distributions, especially for materials where edge effects are pro-
nounced.

Sphericity, as well as other shape parameters, may help in shedding some light on
why some shapes work better than others. However, in the current status, the estimation
procedure considered in this chapter does not incorporate grain shape information as an
input, instead it is specific for the assumed grain shape. As a future development, the
inclusion of shape parameters as an input of an estimation procedure must be explored.

Finally, both the sphericity and the disector method look promising but they need to
be validated using real data. Having sectional data and data on the 3D grain surface areas,
one can use the disector method and the sphericity measure as diagnostic tools to validate
the grain shape assumption made during the estimation process.

4.7 Concluding remarks

The results of this chapter highlight the necessity for sensible grain shape selection in the
estimation of 3D grain size distributions from 2D data. By using shapes that more accu-
rately represent the microstructural characteristics of the material, such as cubes and octa-
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hedrons, we achieved more accurate stereological estimates. Future work should focus on
enhancing these methodologies by integrating models that incorporate space-filling char-
acteristics, anisotropy and more realistic boundary conditions. Developing these advanced
models will enable more accurate and generally applicable tools in materials science, con-
tributing to the understanding and characterization of complex materials.
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Part 11

Poisson-Laguerre tessellations
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Chapter 5

Nonparametric inference for
Poisson-Laguerre tessellations

5.1 Introduction

In this part of the thesis we shift our focus towards tessellations, which may be used as
space-filling models for microstructures. Tessellations have proven to be useful in a wide
range of fields. For example, a Poisson-Voronoi tessellation may serve as a model for a
wireless network [7]. In cosmology, Voronoi tessellations can be used to describe the dis-
tribution of galaxies [104]. There are several generalizations of the Voronoi tessellation,
such as the Laguerre tessellation, which offers more flexibility compared to the Voronoi
model. In the field of materials science, Laguerre tessellations have been fitted to various
microstructures of materials. For instance, Laguerre tessellations were found to be accu-
rate models for foams [55], [57], sintered alumina [28] and composites [115]. As we have
established by now, a major challenge in this field is that in practice often only 2D micro-
scopic images of cross sections of the 3D microstructure can be obtained. By studying a
3D object via a 2D slice there is evidently a loss of information.

In this chapter, we focus on statistical inference for a particular class of random tessel-
lations known as Poisson-Laguerre tessellations. We do this both for the case where one
directly observes a tessellation as well as for the case where the observed tessellation is
obtained by intersecting a higher dimensional tessellation with a hyperplane. The latter
type of tessellation is often referred to as a sectional tessellation. A Laguerre tessellation
in R¥ is defined via a set of weighted points 7 = {(x1, 1), (x2, h2), . .. }, called generators.
Here, x; is a point in R¢ and h; > 0 its weight. Each generator corresponds to a set, which
is either a polytope or the empty set. This set is usually called a cell and we may also say
that a generator generates this cell. The non-empty cells form a tessellation, meaning that
these cells have disjoint interiors and the union of these cells equals RY. We refer to the
subset 7* C n of points which generate non-empty cells as the extreme points of 7. We
may write:

n":={(x.h) en:C((x,h),n) # 0}, (5.1

where C((x, h),n) denotes the cell associated with (x, #). A Poisson-Laguerre tessella-
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Figure 5.1: Left: A realization of a planar Poisson-Laguerre tessellation. Cells are colored
according to their area. Right: The corresponding realization of extreme points. Around
each point there is a circle with radius proportional to the weight of the point.

tion, which is a random tessellation, is obtained by taking 1 to be a Poisson (point) process
onR¥x (0, c0). The intensity measure of 7 is assumed to be of the form v4 X F. Here, v is
Lebesgue measure on R¢ and FF is a non-zero locally finite measure concentrated on (0, co).
An example of a realization of a Poisson-Laguerre tessellation, and the corresponding real-
ization of extreme points is shown in Figure 5.1. Random Laguerre tessellations generated
by an independently marked Poisson process were first studied in [54] and [56]. We mostly
follow the description of Poisson-Laguerre tessellations as given in [39]. Additionally, we
will also rely on the result from [39] which states that the sectional Poisson-Laguerre tes-
sellation is again a Poisson-Laguerre tessellation. The so-called S-Voronoi tessellation as
introduced in [40] may be seen as a parametric model for a Poisson-Laguerre tessellation.
In [41] it was shown that the sectional Poisson-Voronoi tessellation is in fact a S-Voronoi
tessellation.

Because tessellations are usually not directly observed in nature, typically the first step
towards statistical inference for tessellations is a reconstruction step. Such a reconstruc-
tion method is used to obtain a tessellation from an image, for details see section 9.10.1
in [18] and references therein. Therefore, when applying the methodology in this chapter
to real data, it needs to be combined with such a reconstruction method. It is important
to point out that the reconstruction methods used in [55], [57] and [95] reconstruct a La-
guerre tessellation along with the extreme points simultaneously. Effectively, statistical
inference for a Poisson-Laguerre tessellation is then reduced to statistical inference for
the point process n* as in (5.1). This appears to be the most common approach towards
statistical inference for random Laguerre tessellations, and this is also the approach we
take. For instance, in [94] a methodology is proposed for statistical inference for Laguerre
tessellations, where parametric models are considered for the underlying point process.
In [101], a Laguerre tessellation, along with the corresponding extreme points, is fitted to
real data. Furthermore, a statistical analysis is performed on this point process of extreme
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points.

Recall that the intensity measure of the underlying Poisson process 7 is assumed to be
of the form v4 X F. For z > 0 we define F(z) := F((0, z]), the distribution function of F.
Note that this distribution function is the only parameter in this model to be estimated. In
this chapter, we define nonparametric estimators for F. These estimators for F' depend on
both the observed Laguerre cells in a bounded observation window as well as the points
of n* in the same window. Here, it is important to realize that n* is not necessarily a
Poisson process, as it is a dependent thinning of n. The proposed estimators are proven
to be consistent as the observation window expands unboundedly to the whole of R¥.
Additionally, we consider the stereological setting where the observed Poisson-Laguerre
tessellation in R?~! is obtained by intersecting a Poisson-Laguerre tessellation in R? with
a hyperplane. Based on this observed sectional tessellation we introduce an estimator for
the distribution function corresponding to the Poisson process of the higher dimensional
tessellation.

This chapter is organized as follows. In section 5.2 we introduce necessary notation
and definitions. Then, the main mathematical object of interest, the Poisson-Laguerre
tessellation, is discussed in section 5.3. In section 5.4 we introduce our first estimator for
F, which is based on a thinning of the extreme points. To the best of our knowledge, no
estimators have been proposed in the context of Poisson-Laguerre tessellations as of yet. A
second estimator for F is introduced in section 5.5, which depends on all observed extreme
points, as well as the volumes of the corresponding Laguerre cells. In section 5.6 we
consider statistical inference for Poisson-Laguerre tessellations in a stereological setting.
In section 5.7 we perform a simulation study for the proposed estimators, to empirically
verify their behavior. Based on the estimates observed in the simulation study we provide
some intuition for their behavior in section 5.8. Finally, we conclude this chapter with a
discussion in section 5.9.

5.2 Preliminaries

In this section we introduce notation and various definitions which we need throughout
this chapter. Let v denote Lebesgue measure on R4, and o;_; Lebesgue measure on the
sphere S~! = {x € R : ||x|| = 1}, also known as the spherical measure. Given x € R¢
andr > 0, we write B(x,r) = {y e R? : |lx—y|| < r}and B(x,r) = {y e R¢ : ||x—y|| < r}
for the open and closed ball respectively, with radius r centered at x. We introduce the
following constant:

(SN

2r

)

We may also use the following fact: o4_; (Sd‘l) = dkg. Let A,B C R4, then the sum
of sets is defined as: A+ B = {a+b : a € A,b € B}. If x € R4, we also write:
A+x ={a+x:a € A}. Let F; denote the space of all (not necessarily bounded)
distribution functions on (0, c0).

We now introduce several definitions related to point processes. While these defini-
tions are valid for point processes in much more general spaces, in this chapter we only

Kd ‘= Vd (E(O, 1)) =

[S1IsW
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consider point processes on R4 x (0, 0). For more background on the theory of point
processes we refer to Appendix A and references therein. Suppose X = R? x (0, c0), and
let (Q, A, P) be a probability space. A measure u on X is locally finite if u(B) < oo for
all bounded B € B(X). Here, B(X) denotes the Borel o-algebra of X. Let N(X) denote
the space of locally finite counting measures (integer-valued measures) on X. We equip
N(X) with the usual o-algebra N (X)), which is the smallest o--algebra on N(X) such that
the mappings ¢ — u(B) are measurable for all B € B(X). A point process on X is a
random element i of (N(X), N(X)), that is a measurable mapping 1 : Q — N(X). The
intensity measure of a point process i on X is the measure A defined by A(B) := E(n(B)),
B € B(X).

Definition 5.1. Suppose A is a o-finite measure on X. A Poisson process with intensity
measure A is a point process 7 on X with the following two properties:

1. For every B € B(X), the random variable n(B) is Poisson distributed with mean
A(B).

2. For every m € N and pairwise disjoint sets By, ..., B, € B(X), the random vari-
ables n(By), ..., n(B,;,) are independent.

Let 6 denote the Dirac measure, hence for x € X and B € B(X): §.(B) = 1{x € B}.
A counting measure u on X is called simple if u({x}) < 1 for all x € X. As such, a
simple counting measure has no multiplicities. Similarly, a point process n7 on X is called
simple if P (n({x}) <1, Vx € X) = 1. Let N4(X) be the subset of N(X) containing all
simple measures. Define: N(X) := {ANN;(X) : A € N(X)}. Then, a simple point
process on X may be seen as a random element 1 of (N (X), N;(X)). If a point process
is simple it is common to identify the point process with its support, and view the point
process as a random set of discrete points in X. We may for example write x € n instead
of x € supp(n). It is common practice to switch between the interpretations of a simple
point process as a random counting measure or as a random set of points, depending on
whichever interpretation is more convenient. We will also do this throughout this chapter.
Enumerating the points of a simple point process in a measurable way we may write:

7(X)
n={x,x2,...}, and n= Z Oy,
i=1

For v € R let S, denote the shift operator. Suppose 7 = {(x1, h1), (x2,h2),...} is a
point process with x; € R¢ and h; > 0. Then, we define S,n = {(x; — v, hy), (x2 —
v, ), ...}. Additionally, for a deterministic set B C R x (0, 00) we define S, B :=
{(x +v,h) : (x,h) € B}. Note that in the random counting measure interpretation of a
point process, the definition is as follows: S,77(B) := (S, B), for B € B(R? x (0, c0)).
This is indeed consistent with the previous definition since S,7(B) = X; 6 (x;.n,) (SvB) =
22 O(x;—v,h;) (B). We call i stationary if S, n and n are equal in distribution for all v € RY.
Throughout this chapter, (W,),>; is a fixed convex averaging sequence. That is, each
W, c R? is convex and compact, and the sequence is increasing: W,, € W,,,;. Finally,
the sequence (W,),> expands unboundedly: sup{r > 0 : B(x,r) c W, forsomex €
W,} — ooasn — co.
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5.3 Poisson-Laguerre tessellations

In this section we describe the main mathematical object of interest in this chapter, the
Poisson-Laguerre tessellation. This random tessellation is a generalization of the well-
known Poisson-Voronoi tessellation, and was first studied in [54] and [56]. We will mostly
follow the description of the Poisson-Laguerre tessellation as given in [39], which is subtly
different. Let us start with the definition of a tessellation:

Definition 5.2. A tessellation of R is a countable collection T = {C; : i € N}, of sets
C; c R¥ (the cells of the tessellation) such that:

* int(C;) Nint(C;) = 0,if i # j.

* UienG; = R%

o T is locally finite: #{i € N : C; N B # 0} < oo for all bounded B € B(R9).
* Each C; is a compact and convex set with interior points.

Now, we introduce the Laguerre diagram. Let ¢ = {(x;, 4;)}ien, with x; € R? and
h; > 0. Assume moreover that x; # x; fori # j. The Laguerre cell associated with
(x, h) € ¢ is defined as:

C((x,h), @) ={y eRY: |ly—x|P+h < |ly—x'||*+ 1 forall (X', h') € p}. (5.2)

For i € N, the cell C((x;, h;), ¢) may be written as the intersection of half spaces:

Cllxi i), @) = [ {y e R 20v,) —xi) < il = b1+ by =i} (5.3)
JjeN

The Laguerre diagram generated by ¢ is the set of non-empty Laguerre cells, and is de-
noted by L(¢):

L(p) :={C((x,h),p) : (x,h) € pand C((x, h), ¢) # 0} .

A Laguerre diagram is not necessarily a tessellation, conditions on ¢ are needed to ensure
that L(¢) is locally finite and that all cells are bounded. Note that we consider a different
parameterization of Laguerre diagrams in this chapter, compared to the Laguerre diagrams
considered in chapter 4. Additionally, here we consider Laguerre diagrams in R instead
of Laguerre diagrams in bounded domains. As we will discuss in a moment, the random
Laguerre diagrams we consider are in fact tessellations. A Laguerre diagram has an inter-
esting interpretation as a crystallization process. From the definition of a Laguerre cell it
follows that:

x e C((xi,hi),g) = Tt >h :xeé(xi,\/t—h,-) andx¢UB(xj,,/(z—hj)+),

J#i

with (x), = max{x, 0}. Hence, we may consider the ball B;(¢) := B(x;, /(¢ — h;),) which
starts growing at time ¢ = h;. The ball initially grows fast, and then its growth slows down
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Figure 5.2: Visualization of the crystallization process. From left to right, the crystalliza-
tion process is shown at times ¢ = 60, t = 80, = 120 and ¢ = 280.

because the rate of increase of the function ¢t — +t — h; slows down (¢t > h;). If B; is
the first ball to hit a given point x € R?, then x € C((x;, h;), ). It is possible that x;
lies in another cell C((x;, h;), ), i # j and yet C((x;, h;), p) may be non-empty. It is
also possible that a pair (x;, h;) does not generate a cell, essentially because its ball starts
growing too late. A visualization of the crystallization process is given in Figure 5.2.

In the literature one can also find other parameterizations of Laguerre diagrams. For
instance, the parameterization in [54] can be obtained as follows. Let ¢ = {(x;, ;) }ien C
R4 x (0, 00), set h; = —ri2 for all i € N, and then consider the Laguerre diagram generated
by ¢ = {(x;, h;) }ien- The pair (x;, ;) is then often associated with the sphere centered at
x; with radius r;. Note that this choice leads to negative weights in our choice of parame-
terization. We would like to note that the weights are allowed to be negative, we consider
positive weights for mathematical convenience.

Throughout this chapter we assume that 77 is a Poisson process on R¢ x (0, co) with
intensity measure vy X F. Here, F is a locally finite measure concentrated on (0, co).
Because the measure v4 X F has no atoms, 7 is a simple point process. From proposition
3.6. in [39] it follows that L(7), the Laguerre diagram generated by the Poison process 7,
is with probability one a tessellation. We refer to L(7) as the Poisson-Laguerre tessellation
generated by 1. We do note that in the aforementioned paper it is additionally assumed that
F is absolutely continuous with respect to Lebesgue measure. However, this assumption
is not needed for L(n) to be a tessellation with probability one, as this is a straightforward
modification of the proofs given in [39].

For z > 0 we define:

F(z) :=F((0,z]). 5.4

Thereby, this monotone function F' is the only parameter in this model to be estimated.
Note that F is not necessarily bounded, it is bounded if and only if F is a finite measure.
If F is a finite measure one may define the constant A = lim,_,, F(z) and the probability
measure Q(-) = F(-)/A. The intensity measure of 7 is then given by Av; X Q, and n may
be seen as an independently marked homogeneous Poisson process on R¢ with mark space
(0, 00). Its intensity is given by A and Q represents its mark distribution. In view of the
crystallization process interpretation of a Laguerre diagram, we may also say that O, and
thereby F, describes the distribution of the arrival times of the generator points.

Remark 5.1. While we consider a Poisson process 1 on R¢ x (0, ), in the context of
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Poisson-Laguerre tessellations, also Poisson processes on R? x E have been considered
for other choices of E C R. For the purposes of this chapter we could also have considered
E = (a, ) for any choice of a € R, and have obtained analogous results. For the sake
of convenience we have chosen to take a = 0. However, the particular value of a does not
matter in practice. Note from the definition of the Laguerre cell that adding a fixed constant
¢ to all weights does not affect the cell. Analogously, replacing F by F, where F(z) =
F(z — ¢) does not affect the distribution of the resulting Poisson-Laguerre tessellation, as
it shifts the distribution of the arrival times by a constant. Hence, as a consequence, when
dealing with real data, one may always add a sufficiently large constant c to all observed
weights to ensure positivity of the weights. After all, the resulting weighted points may be
considered to be a realization from the same data generating mechanism, but now with F
as the underlying parameter.

In the introduction of this chapter we explained that we are interested in estimators
for F which depend on the observed Laguerre cells and the extreme points of 17, which we
denote by ¥, as defined in (5.1). To be precise, the estimators we propose for F depend on
the points of * in the observation window W,,, as well as the Laguerre cells corresponding
to these points of * in W,. Recall, (W,,),> is some fixed convex averaging sequence.
The reader may for example keep W,, = [—n,n]¢ in mind as an explicit example. Note
that the point process * may be seen as a (dependent) thinning of 7, and is not necessarily
a Poisson process. We conclude this section with a simulation example, with the purpose
of providing an intuitive understanding of Poisson-Laguerre tessellations.

Example 2. In Figure 5.1 a realization is shown of a planar Poisson-Laguerre tessellation
along with its realization of extreme points. The side length of the square observation
window is equal to 40. For this example we have taken F to be a discrete probability
measure on {1, 8, 10}. Specifically, F is defined as: F({1}) = 0.01, F({8}) = 0.04 and
E({10}) = 0.95. Hence, n may be seen as an independently marked homogeneous Poisson
process, with points in R? and marks in {1, 8, 10}. The homogeneous Poisson process has
intensity 1 and the marks are distributed according to F. Let us briefly discuss the image in
Figure 5.1 in view of the crystallization process interpretation. Given the choice of F, we
expect a small number of balls corresponding to points with weight & = 1, these balls start
growing early, and result in large cells. A larger number of points with weight 4 = 8 have
balls associated with them which start growing later, yielding cells which are a bit smaller.
Finally, a very large number of points with weight & = 10 will generate even smaller cells.

5.4 Inference via a dependent thinning

5.4.1 Definition of an estimator

In this section, we define our first estimator for F. This estimator only depends on points
(x, h) of n* with x € W,, and for which x is located in its own Laguerre cell. The estimator
is easy to compute, and the techniques used in this section will be important when we
define an estimator for F based on all points of 7 in W,, X (0, o). Recall from the previous
section that 77 is a Poisson process on R¢ x (0, ©), d > 2, with intensity measure v4 x F.
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We may also write: 7 = {(x1, k1), (x2, h2), ...}, withx; € R%, h; > 0. We start as follows,
let y € R?, and consider the following thinning of 7:

nY ={(x,h) en:x+yeC((x,h),n)}. (5.5)

In (5.2) we defined C((x, h),n), which denotes the Laguerre cell associated with the
weighted point (x,%) € n. Evidently, for every y € R%, ¥ only contains a subset of
points of n*. Hence, we have: ¥ c n* C 5. In particular, for y = 0 we obtain the set of
points of * which are contained within their own Laguerre cell. In the following lemma
we compute the intensity measure of 7”.

Lemma 5.1. Let B € B(RY), y € R? and 7 > 0, the intensity measure A of n¥ satisfies:

z llylI*+h d
A (Bx(o,z])zvd(B)/o exp(—xdfo ’ (112 + 5= 1) " aF (1) | dF ().

This intensity measure can be computed via the Mecke equation, which may for ex-
ample be found in Theorem 4.1 in [53]. The statement is as follows:

Theorem 5.3 (Mecke equation). Let A be a o-finite measure on a measurable space
(X, X) and let n be a point process on X. Then n is a Poisson process with intensity
measure N if and only if:

B (Z £, n)) - [ B¢ o) Adan.
Xen
for all non-negative measurable functions f : X x N(X) — [0, co].
Proof of Lemma 5.1. By definition, the intensity measure of 7” is given by:
AN (Bx(0,z]) =E(n”(Bx(0,z2]))
=E| D, 1g@logMi{x+yeC((h)m}|. (56
(x,h)en

We rewrite the final indicator function in (5.6) into a more convenient form. By the defi-
nition of a Laguerre cell, we obtain:

x+yeC((x,h),n) & |yl>+h—-H <|x+y-x'|]% forall (x',h") €p
> n(Axny) =0,

where we define the set Ay j y as:
Ay ={( 1) €RIx (0,00) : [y|I*+h =1 > |x+y-x'|*}.

Since 7 is a Poisson process, the random variable 17 (A j,.y) is Poisson distributed with
parameter E(n (Ax,n,y)). As a consequence, the probability that n (A 5,y) = 0 is given
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by:
P (1 (Ax.ny) =0) = exp (=E (1 (Ax,n.y)))

Iy 1P+
= exp —/Rd/o 1+ y =) <\/||y||2+h—t}dF(t)dx’)
Iy I*+h
= exp —/0 /Rdﬂ{nx’n < VIbIP+ =1} dx'dF ()

. (5.7)

WP g
= exp —Kd/ (Iy12+ 1= 1) dF )
0

Note that (5.7) does not depend on x. Using (5.7) and the Mecke equation, the expectation
in (5.6) can be computed as follows:

Bl > 1p(0)10()1{n (Acny) =0} =
(x,h)en

:/m/ 1p(x)1 o, (R)P (n (Ax,h,y) =0) dxdF(h) (5.8)
0 Jrd

[ [ 1oteamen (_Kd / " (i) oo

: lyl2+h g
vd(B)/O exp(—Kd/O (||y||2+h—t) dF(t))dF(h).

dxdF (h)

In (5.8) we used the fact that (x, k) € Ay p,y such thatn (Axny) = M+ Sxm) (Axny)-
O

Recall that 7, denotes the space of all (not necessarily bounded) distribution functions
on (0, ). Given the statement of Lemma 5.1 we focus on the case y = 0 and define for
F € #, the function G : [0, 00) — [0, c0) via:

z h d
Gr(2) :=/0 exp (—Kd'/o (h-1)2 dF(t)) dF(h). (5.9)

For functions G with F € ¥, as in (5.9) we obtain the following important identifiability
result:

Theorem 5.4. Let Fi|,F>» € ¥, R > 0. If GF,(z2) = Gp,(2) for all z € [0,R) then
Fi(z) = F2(2) for all z € [0, R). In particular, if GF, = GF, then F) = F;.

The key ingredient for the proof of this theorem is a variant of the Gronwall inequal-
ity. This inequality is in particular known for its applications in integral- and differential
equations. We refer to [74] for more variants of this inequality and their applications.
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Theorem 5.5 (Theorem 1.3.3. in [74]). Suppose u, a and B are measurable non-negative
functions on [0, o). Assume that « is non-decreasing. Assume for all 7 > 0: u,a,p €
L'([0, z]). Iffor all z > O the following holds:

u(z) < a(z) +B(z) AZ u(s)ds.

Then, for all z > 0:

u(z) < al(z) (1 + B(z) AZ exp (/Zﬁ(r)dr) ds) )

Note that if u, @ and B satisfy the conditions in Theorem 5.5 and 8 is non-decreasing,
then:

u(z) < a(z) (1+p(z)zexp (B(2)2)) . (5.10)

We need to point out that in [74] this theorem also includes the assumption that u, @ and 8
are continuous. However, as noted on p. 14 in the same reference, this assumption is not
needed.

Proof of Theorem 5.4. Let z > 0. For i € {1,2} note that the (Lebesgue-Stieltjes) mea-
sures associated with G, and F; are mutually absolutely continuous. The corresponding
Radon-Nikodym derivative is given by:

dGr,
dF,;

(2) = exp (—Kd /0 Y-t dFi(t)) .

Hence, we may also write:

z dF; z h d
Fi(Z):_/O' ﬁ(/’l)dGFl(h)Z./O' CXp(Kd'/O‘ (h—t)2 dF,(l))dGFI(h)

Via integration by parts we may write:

/Oz(z—t)%dFi(t) =0~F,~(z)—z%Fi(0>—/OZFf(”d((Z‘”%)(’)

d

= —/ZFi(t)(z—t)%—ldt. (5.11)
2 Jo

Moreover, the expression in (5.11) is a non-decreasing function of z. We now derive a
general upper bound for |F|(z) — F>(z2)|:

|Fi(z) = F2(2)| =

z h d
= ‘/ exp (Kd/ (h—1)2 dFl(t))dGFl(h)+
0 0

z h d
_/ exp (Kd/ (l’l—l‘)zsz(l)) dGFz(]’l)‘
0 0
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z h d h d
‘/Oexp(/(d‘/o (h—t)ZdFl(t))—exp(Kd‘/o (h—z‘)Zsz(t))del

z h a
/ exp (Kd / (h—r)zdm))d(cﬂ —GFZ)(h)‘.
0 0

<

+

(5.12)

Let us now consider the first term of (5.12). For 4 > 0 define:

h h
C(h) := max {exp (Kd '/0 (h- t)% dFl(t)) , exXp (Kd /0 (h- t)% sz(t))} .

Note that C is increasing. Since |e* — ¢”| < max{e*, e’} |x — y| for x, y > O the first term
in (5.12) is bounded by:

z h d h a
/0 exp (Kd/O (h—1)2 dFl(t))—exp (Kd/o (h-12 sz(t))
< ‘/OVZC(]’!)Kd
/ZC(h)Kd g
0

"ch:()/ / FL(1) = Fa(0)] (h— 1)1 dtdG s, ()

dGF, (h)

h d h d
[ a=0tarnw- [ th-nf ar|dnm
0 0

dGF, (h)

h d
/ (Fi(1) = Bx(0)) (h— 1) dt

I/\

de

i et / / \F1(1) - Fa(1)| didG, (h)

IA

de

= K2t 6n () / IFi(1) = Fa(0)] dr.

Via integration by parts, the second term of (5.12) is bounded by:

exp s [ (e 0% 90 (G () - G2+
z h a
/ (G]:l(/’l) —sz(h))d(exp (Kd/ (h—l‘)7 sz(t))) (h)’
0 0

<|GF (2) =GR (2)| exp (Kd‘/oz(z—t)‘zisz(f))"'

+

z h d
+ sup |G, (h) = Gy ()] /0 d(exp(xd /0 (h—r)zd&(r)))(h)

hel0,z]

< hsup |G, (h) — GF,(h)| 2exp (Kd/Z (z-0? sz(f)) .
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Combining all results, we obtain:
de 4_1 Z
|F1(2) — F2(2)] < TC(Z)ZZ Gr (2) |[F1(t) — Fa(¢)| de+
0

+ sup |Gp (h) — Gp,(h)|2exp (dez(z—t)?sz(t))~
hel0,z] 0

Applying Theorem 5.5 and (5.10) with u(z) = |F1(z) — F2(z)] yields:

|Fi(z) - F2(z)| < K(2) hsﬁ)p | |GF, (h) = G, (). (5.13)
Here, K(z) is given by:
K() = (1 + BLC()e o () exp (dzﬁC(z)z‘fGﬂ (z))) ~

-2 exp (Kdlz (z - t)% ng(t)) .

The statement of the theorem immediately follows from (5.13). O

Suppose we wish to estimate G, and we observe the extreme points of 7 within the
bounded observation window W,,, as well as their Laguerre cells. We define the following
unbiased estimator for G r:

1

én(Z) = va(W,) (x%len]lwn (X)L 0,1 (M) 1{x € C((x,h),n)}
1
" va(Wa) ! 1 h). 5.14
va(Wa) (x,%‘éno w0 0a %) ( )

In (5.14), n° represents the point process n” as in (5.5) with y = 0. Hence, G is a function
which we can estimate and which uniquely determines F, this motivates the following
definition:

Definition 5.6 (First inverse estimator of F'). Define 15“2 to be the unique function I:",? € Fy
which satisfies: Gro(z) = G,(z) forall z > 0, with G, as in (5.14).

Let us now discuss why F? is well-defined. Clearly, if there exists a function £ € 7
which satisfies Gpo(z) = Gn(z) for all z > 0 then it is unique by Theorem 5.4. Suppose
(x1, h), (x2, h2), . .., (xk, hy) is the sorted realization of the points of 770 withxy,...,x; €
W, and h; < hy < --- < hi. We may write:

. I
Gn(z2) = A ;]l{hi <z}

Set iy = 0 such that F,?(ho) = 0. Clearly, Gn is piecewise constant, with jump locations
at iy, ..., hg. Recall from the proof of Theorem 5.4 that the Lebesgue-Stieltjes measures
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associated with ﬁ 0and G £o are mutually absolutely continuous. As a consequence, if F 0
exists, it is necessarily also piecewise constant with the same jump locations as G o =

G . Therefore, if we can uniquely spec1fy the value of FO at hy,..., hy, existence and
uniqueness of £0 is established. Let i € {1, ..., k} then, for the F we are looking for:
G,(h) =

=G, (hi- 1)+/h exp (—Kd/ (h—1)2 dFO(t))dFO(h)

= Go(hiot) +exp —Kdz (hi = h;)? (Fo(h )= BO(h,_ 1)) (Fo(h) FO(hi- 1))

= Guthin e ka3 (1 - 1) (P8 = B3 hj-0) | (P () = Fhi-))
j=1

Since F(ho) = 0, F? is recursively defined via:
ki) = F3Chi-1) + (Guhi) = G(hi-n)) -

i ‘. X (5.15)
- eXp Kdz (hi - ]’lj)7 (F,?(hj) - F,?(hj_l)) .

Note that the RHS of (5.15) only depends on the values | 0(h ;) with j < i. So indeed,
(5.15) completely defines F;. %0 Moreover, this expression is also a convenient formula for
computing F in practice.

5.4.2 Consistency

In this section we show that F“,?, as in Definition 5.6, is a strongly consistent estimator
for F. A single realization of G, and ﬁ,? are shown in Figure 5.3. We present additional
simulation results in section 5.7. The first step to proving consistency is to show that the
estimator G, as in (5.14) for G is strongly consistent. For empirical estimators such as
G ., their consistency follows from a spatial ergodic theorem. From Proposition 13.4.1. in
[23], and the ergodicity of the Poisson process under consideration, we obtain:

Theorem 5.7 (Spatial ergodic theorem). Let i be a Poisson process on X = R x (0, o0)
with intensity measure vy X F. Here, F is a locally finite measure concentrated on (0, ).
Let g (¥, h) be a measurable non-negative function on N(X) % (0, 00). Then, for any convex
averaging sequence (Wy)n>1:

lim

Jm Vd(W) Z Lw, (x)g(Sx7, h) = / E(g (77+5(0,h),h))F(dh).

(x,h)en

We do note that Proposition 13.4.1 in [23] is phrased in the context that F is a finite
measure. However, like Theorem 12.2.IV in the same reference (another spatial ergodic
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Realization of G, Realization of £
1.00
0.75 A
W
R 0.50
0.25 A
0.00
T T T T
0.00 0.25 0.50 0.75 1.00 0.0 0.5 1.0 1.5
z z

Figure 5.3: Left: A realization of G,,. Right: The corresponding realization of FO. The
actual underlying F is equal to the CDF of a uniform distribution on (0, 1).

theorem), which is stated under the assumption that F is locally finite, the result remains
valid if F is locally finite. Besides the spatial ergodic theorem we also need the following
useful lemma for estimators of monotone functions:

Lemma 5.2. Let (F,),>1 be a random sequence of monotone functions on R, and let F be
a deterministic monotone function on R. If for all z € R: P(lim,— F;(2) = F(2)) = 1,
then: P(lim, .« F,(2) = F(2), VZ€R) = 1.

The proof of Lemma 5.2 is given in section 5.10. We obtain the following result:

Corollary 5.1. With probability one: lim,_c G, (2) = G (2) for all z > 0.

Proof. Let z > 0, by Lemma 5.2 it is sufficient to show that lim, . G,(z) = G (z)
almost surely. Using the same notation as in the proof of Lemma 5.1, note that 7(Ax 5.0) =
Sxn(Ao,n,0) for all (x, h) € i almost surely. As a consequence, G,(z) may be written as
follows:

~ 1
Gul@) = 75 (X%en T, ()1 (0.1 (W) 1{Sx17(Ag n0) = O}

Following the computation in the proof of Lemma 5.1, it is readily verified that applying
the spatial ergodic theorem with g(y, h) = 10,71 (h)1{¥y (Ao n,0) = 0} yields the result
with the desired limit. O

Finally, we need the following continuity result:

Lemma 5.3. Let (F,),>1 be a sequence of functions in ¥, and let F € ¥,. Let R > 0. If
lim, 00 F(2) = F(2) forall z € [0, R), then lim, e GF,(z) = Gr(z) forall z € [0, R).
In particular, if lim, o Fn(2) = F(2) for all z > 0, then lim,_,oc GF,(z) = Gr(2) for all
z2>0.
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The proof of Lemma 5.3 is given in section 5.10. Combining the previous results with
Theorem 5.4 we prove the following consistency result.

Theorem 5.8 (Consistency of £0). With probability one, lim,_,., F0(z) = F(z) for all
z20.

Proof. Let (Q, A, P) be a probability space supporting a Poisson process 17, with intensity
measure vg X F. By Corollary 5.1 there exists a set Qg € A with P(Qg) = 1 such that for
all w € Qy and z > 0 we have lim,, ., G,,(z;w) = Gr(z). Let w € Qp and z > 0, we
show that lim,, e FO(z; w) = F(2).

Pick M > Osuchthat F(z) < M. Forn € Nand h > 0, define: £, (h) = min{F(h; w),
M}. Then, (F),),>1 is a uniformly bounded sequence of monotone functions. Let (1;);51 C
(n)n>1 be an arbitrary subsequence. By Helly’s selection principle there exists a further
subsequence (nx)k>1 C (n;);>1 such that F,,, converges pointwise to some monotone
function F as k — oco. This implies that lim 0 £, (h; w) = limg_eo Fy, (h) = F(h) for
all h € [0, R) with R := sup{h > 0: F(h) < M}. By Lemma 5.3 we obtain:

klim énk (hw) = klirn GF,‘,’k(-;w)(h) =Gg(h) forall h € [0, R).

Because the whole sequence G, (h;w) converges to Gp(h) as n — oo, for h > 0, we
obtain Gr(h) = Gz (h) for all h € [0, R). Theorem 5.4 now yields F(h) = F(h) for all
h € [0,R), and since z € [0, R) we have in particular F(z) = F(z). As a consequence:
limg s e0 F",?k (z;w) = F(z). Because the initial subsequence was chosen arbitrarily, the
whole sequence converges: lim,_,o F0(z; w) = F(z). O

5.5 Inference via the volume-biased weight distribution

5.5.1 Definition of an estimator

In this section we define a second estimator for F', which depends on all points of " in
W, X (0, 00) as well as the volumes of the Laguerre cells corresponding to these points.
As such, this estimator depends on more data compared to the estimator in the previous
section. First, we present a result for Poisson-Laguerre tessellations in R¢, the estimator
itself is defined specifically for the planar case (d = 2). Suppose for now that F is a finite
measure, such that 7 may be interpreted as an independently marked homogeneous Poisson
process. Because F then determines the distribution of the weights (#-coordinates) of the
points of 1, a natural question is to ask how the distribution of the weights of the points of
n* is related to F. As it turns out, it is more tractable to study a biased or weighted version
of this distribution. We introduce the so-called volume-biased weight distribution in the
following definition, which is also well-defined if F is not a finite measure:

Definition 5.9 (volume-biased weight distribution). Let 7 be a Poisson process on R x
(0, 00), d > 2, with intensity measure v4 X F. Here, F is a locally finite measure concen-
trated on (0, o0). Let A € B(R), define the following probability measure:

FY(A) =B > @) La(h)va (C((x, h),m) |. (5.16)
(x,h)en
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Consider the Poisson-Laguerre tessellation generated by 7, then the interpretation of
FV is as follows. FV describes the distribution of the random weight associated with a ran-
domly chosen Laguerre cell, the probability of picking any given cell being proportional
to its volume. Because there is an infinite number of Laguerre cells in the tessellation, care
needs to be taken in making this statement precise. This can be done via Palm calculus
for marked point processes, see for instance chapter 3 in [86]. Note that the sum in (5.16)
effectively only sums over points (x, #) € n with a Laguerre cell C((x, i), n) of positive
volume. Hence, it can also be seen as a sum over points of r*. From its definition it is
not immediately obvious that F is a well-defined probability measure. Specifically, it is
not immediately evident that FV(R) = 1. We address this in the proof of the following
theorem, where we derive the CDF (Cumulative Distribution Function) associated with
FY.

Theorem 5.10. Let n be a Poisson process as in Definition 5.9, and let z > 0. Define
F(z) :=F((0,z]) and FY (z) := EV((0, z]), the distribution functions corresponding to F
and FY respectively. The measure FV is a probability measure and FV is given by:

Vi1 _ x ‘ _n4g
F'(z)=1 exp( d./o (z—-1) dF(t))+

dkg

+50 exp(—Kd/O (u—t)‘de(t))/o (u - h) 2~ 'dF (h)du.

Proof. By the translation invariance of Lebesgue measure and Fubini’s theorem, we may
write:

FY(2) =B > Lo a2y (h)va (C((x, h),n) = x)

(x,h)en

“B| 3 Loaw@loath [ 10 Clixm.n sy

(x,h)en
- / o114 (L (0.0 (M1 {x + y € C(Ge b))} |dy
(x, h)en
:/ y( 0,114 % (0, z])) (5.17)
R4

With ¥ as in (5.5). In Lemma 5.1 we computed the expectation in (5.17). Plugging in
this expression, and passing to polar coordinates by substituting y = r6, with » > 0 and
0 € S9! we obtain:

FY(2) = /R ) /0 “exp (-Kd /0 "y”2+h(||y||2+h—z)gdF(r))dF(h)dy
:dkd/OZ/OWexp (—Kd/0r2+h (r2+h—t)ng(t)) d-l4rdF(h)  (5.18)
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- &/Z/mexp (—Kd/u u-17 dF(t)) (w=h)*"dudF (k) (5.19)
2 0 h 0
N « . min{u,z} .
= dka exp (—Kd/ (u—1)2 dF(l‘)) / (u = h)>~'dF (h)du.
2 0 0 0
(5.20)

In (5.18) and (5.20) we apply Fubini’s theorem, and in (5.19) we substitute u = > + 1. We
can now write F¥ (z) as a sum of two integrals:

v _ dka [* _ AP o= it
F¥(z) = > /0. exp( Kd/O (u—1) dF(t))[) (u—h)27"dF(h)du+

d
, da
2

N . . (5.21)
exp (—deo (u—-1)% dF(t))/O (u - h)%~1dF (h)du.

The first integral of (5.21) can be calculated explicitly since the integrand has an explicit
primitive. The first term of (5.21) is given by:

[— exp (_deou (u — t)% dF(t))L =1-exp (—Kd/oz(z - t)ng(t)) .

Plugging this back into (5.21) yields the expression for FV as stated in the theorem.
Finally, via (5.20) we can show that lim,_,., FV(z) = 1. After all, the integrand in
(5.20) (considering the integral w.r.t. u) can be bounded from above using the inequality
min{u, z} < u. Via the dominated convergence theorem it follows that:

d ) u min{u,z}
lim FY(z) = & / exp (—Kd/ (u— t)% dF(t)) lim / (u - h)%_ldF(h)du
(o] u d u
- / exp —Kd/ (u—1)% dF (1) ﬁ/ (1 — h) 1 dF (h)du
0 0 2 Jo

= [—exp (—deou(u—t)‘z’dF(t))]o -1

The Stieltjes integrals in the expression for F¥ may be written as Lebesgue integrals
using integration by parts. For instance:

]

/Oz(z —N1dF()=0-F(z) - 21 F(0) - /OZ F(1)d ((z - t)%) 0

_d /ZF(I)(Z — )5 dr. (5.22)
0

2
As announced in the beginning of this section, we will now focus on the case d = 2, which
is important for practical applications. In that case, Theorem 5.10 and (5.22) yield the
following expression for FY.
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Corollary 5.2. Let 7 > 0, if d = 2 the CDF FV is given by:

V _ B B Z (9] B u
F'(2)=1 exp( ﬂ/o F(t)dt)+7rF(z)'/Z exp( ﬂ/o F(t)dt) du. (5.23)

Let us now introduce some convenient notation which will be used throughout this
section. For z > 0, F € ¥, and m > 0 we define:

V(z; F,m) :=1—exp (—n /Z F(t)dt) +7F(z) (m - /z exp (—n /u F(t)dt) du) .
0 0 0
mrg ::/0 exp (—ﬂ/o F(t)dt) du.

Note that if m = mp, then V(-;F,m) = FY, with FV as in (5.23). In other words,
V(-; F,m) is then the volume-biased weight distribution induced by F. We obtain the
following identifiability result:

Theorem S.11. Let Fi, F» € ¥y, letR > 0. Ifmp, = mp, andV (z; Fi,mp,) = V(z; F2, mp,)
forall z € [0, R), then Fi(z) = F»(z) for all z € [0, R). Consequently, if mp, = mp, and
V(-;Fi,mp) =V(-; F,mp,), then F| = F».

The proof of Theorem 5.11 as well as the proofs of most of the remaining lemmas in
this section are postponed to section 5.10. The techniques used for proving these results
are similar to the techniques used in section 5.4. We now define the following natural
estimator for the distribution function F":

1

-V —
Fn @)= va(Wy)

D w10z ()va (C((x, h),m)) . (5.24)
(x,h)en

Alternatively, the following estimator for F¥ may be defined:

Z(x,h)ery ]an (x)]l(o,z] (h)Vd (C((X, h)’ 77))

iV —
F(2) = Y emen Tw, () va (C((x, h),m))

(5.25)

Remark 5.2. Note that the estimators F,Y and FY for FV do not incorporate edge effects.
For instance, a Laguerre cell may be partially observed through the observation window
W,,, such that computation of the estimators requires information outside of the window.
In practice one could artificially shrink the observation window such that the estimators
can be computed based on this smaller window.

Similarly to £, we can define an inverse estimator for F using an estimator for F".
We choose to use F,Y for this purpose, since it satisfies lim,_,, F,Y (z) = 1, in general this
is not the case for . In view of Theorem 5.11 we need to keep in mind that the constant
mp is unknown. We can resolve this by first using £ to estimate . That is, we define:

My := m po :/ exp (—n/ F,?(t)dt) du. (5.26)
0 0

Finally, we define our second estimator for F as follows:
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Definition 5.12 (Second inverse estimator of F). Define F, to be the unique function
F, € ¥, which satisfies for all z > 0:

EY(z)=1-exp (—7r/0Z Fn(t)dt) +7F,(2) (n%,, - /Oz exp (—ﬂ/gu Fn(t)dt) du) ,

(5.27)
with ﬁ,Y as in (5.25) and 7, as in (5.26). That is, F,, is the unique function F, € F, which
satisfies for all z > 0: V(z; Fy,, i) = EY (2).

We again discuss why F), is well-defined. If there exists a function F,, € 7, which
satisfies V(z; F,,,mn) = FV(z) for all z > O then it is unique by Theorem 5.11. From
(5.27) we see that F,, cannot be the zero function. Moreover, we see that £, should satisfy
the following:

Z u
mg = lim exp —ﬂ/ F,(t)dt| du
"ozoe g 0
EY(z) = 1+exp (—7r /OZ Fn(t)dt)
=m, — lim _
Z—00 ﬂFn(Z)

= Hly.

The final equality follows from the fact that lim, ., £ (z) = 1 and lim,_, F,,(z) > 0,
since F), is non-zero. Therefore, £, necessarily satisfies:

EY(z)=1-exp (—ﬂ/z Fn(t)dt) +7F,(2) /ooexp (—n/u Fn(t)dt) du. (5.28)
0 z 0

Recall from (5.23) that this means that F,‘l/ is the volume-biased weight distribution in-
duced by F,. Suppose (x1, h1), (x2, h2), . . ., (Xm, hi) is the sorted realization of the points

of p* with xy,...,xx € Wyand hy < hy < -+ < hy. Clearly, F,Y(z) is piecewise con-
stant, with jump locations at Ay, . . ., h. In the proof of Theorem 5.11 we observe that the

Lebesgue-Stieltjes measures associated with £, and V(-; Fy,, i1,,) = V(-3 F,, mg ) = EY
are mutually absolutely continuous. As a consequence, F), is necessarily also piecewise
constant with the same jump locations as £Y. Therefore, we simply need to specify the
value of F,, at hl’; .., hg. Taking z = hy in (5.27), and using the fact that fg” EF,(1)dt =0
we can solve for F,,(h):

- _ EYV(m)
Fn(hl) = m (5.29)

In section 5.11 an explicit formula for 71, is given, which also shows that 1, > h;. Let
i €{2,...,k} then, via equation (5.19) from the proof of Theorem 5.10, it follows that for
the F,, we are looking for:

hi ) u
EY(hi)=FY(hi-)) +n / / exp (—n / F,,(t)dt) dudF, ()
hi_1 Jh 0

:I:“,Y(h,-_l)+7r/himexp (—n/ouﬁn(t)dt) du (F (hi) = Fu(hiz1)) .
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Hence,

o0 u AV L) — Av .
e / exp (—n / Fn(t)dt) du= I (hi) il (hi-1). (5.30)
h; 0 Fn(hi)_Fn(hi—l)

Equation (5.28) may be used to obtain an expression for I:“,Y (h;), plugging (5.30) into this
expression and solving for F), (h;) yields:

) A BY (h) - 1 +exp (—7r [ Fn(t)dt)
Fo(hi) = F,,(hi—1)

EY (hi1) =1 +exp (—77 fohi ﬁn(t)dt)
FY (h) = 1+ exp (<x 2024 (i = ) (Fahy) = Fu(hj-))

FY (hi1) = 1+ exp (= 23 (hi = hy) (Fa(hy) = Fu(hy0))
(5.31)

= ﬁn(hi—l)

Note that the RHS of (5.31) only depends on the values £, (h ;) with j < i. Hence, (5.29)
along with (5.31) completely defines F,. From (5.31) it is evident that ,, € F;, and this
expression may be used to compute £, in practice.

5.5.2 Consistency

In this section we show that £}, as in Definition 5.12, is a strongly consistent estimator
for F. We start with a Lemma which implies that 1, is a strongly consistent estimator for
meg.

Lemma5.4. Let (Fy,),>1 be a sequence in T, andlet F € Fy be non-zero. Iflimy,_,c Fj,(2)
= F(z) forall 7 > 0, then lim, oo, mf, = mp.

Next, we show that £¥ and £ are strongly consistent and uniformly strongly consis-
tent estimators of FV respectively.

Lemma 5.5. With probability one, lim, .« FY (z) = FY (2) for all z > 0. Additionally,
with probability one we have lim,_, ||EY — FV || = 0. Here, FY and FY are given by
(5.24) and (5.25) respectively.

Proof. We first show that with probability one, lim, . FY (z) = FV(z) forall z > 0. Let
z > 0, by Lemma 5.2 it is sufficient to show that lim, ., FY (z) = FY(z) almost surely.
Again, we apply the spatial ergodic theorem (Theorem 5.7). This can be done since for all
(x, h) € nwehave: C((x, h),n)—x = C((0, h), Syn). Hence, by the translation invariance
of Lebesgue measure, F¥ (z) may be written as:

F(2) = D T, (010,21 ()va (C((0, h), Sxm)) .

va(Wy) (x.men

So indeed, the spatial ergodic theorem yields lim,, . FY (z) = FV (z) almost surely. Simi-
larly, we may argue that lim,, e, F,Y (00) = 1 almost surely. Since F,‘l/(z) =FEY(2)/FY (),
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we obtain via the continuous mapping theorem that lim,, ., £ (z) = FY(z) almost surely.
The uniform strong consistency follows from repeating the steps in the proof of the
Glivenko-Cantelli theorem. O

We need one more lemma before we prove the consistency result for F,,.

Lemma 5.6. Let (F,), > be a sequence in ¥+, and let F € F,. Let (m,,),>1 be a sequence
in (0, ) and let m > 0. If lim,,_,o, F,(z) = F(2) for all z > 0 and lim,,_,o, m,, = m, then
limy, 0 V(z; Fp,my) = V(z; F,m) forall z > 0.

Theorem 5.13 (Consistency of F,,). With probability one, lim,_, F,,(z) = F(z) for all
z20.

Proof. Let (Q, A, P) be a probability space supporting a Poisson process 1, with intensity
measure v, X F. By Lemma 5.4 and Lemma 5.5 there exists a set Qy € A with P(Qg) =
1 such that for all w € Qp and z > 0 we have lim, o £ (z;w) = V(z; F,mp) and
limy, 0 7itp (w) = mp. Let w € Qo and z > 0, we show that lim,, e £, (z; w) = F(2).

Pick M > Osuchthat F(z) < M. Forn € Nand i > 0, define: F,,(h) = min{F, (h;w),
M}. Then, (F,),>1 is a uniformly bounded sequence of monotone functions. Let (1;);>1 C
(n)n>1 be an arbitrary subsequence. By Helly’s selection principle there exists a further
subsequence (nK)k=1 € (ng);>1 such that Fnk converges pointwise to some monotone
function F as k — co. This implies that limy_, Fnk (h; w) = limg_0 Fy, (h) = F(h) for
all h € [0,R) with R := sup{h > 0 : F(h) < M}. By Lemma 5.6 we obtain along this
subsequence:

kli_r& Ey (h) = kli_r)rgo V(h; Ey, (-, w), iy, (w)) = V(h; F,mp) forall h e [0,R).

Because the whole sequence F,Y(h;a)) converges to V(h; F,mp) as n — oo, for h >
0, we obtain V(h; F,mr) = V(h; F,my) for all h € [0,R). Theorem 5.11 now yields
F(h) = F(h) for all h € [0, R), since z € [0, R), we have in particular F(z) = F(z). As
a consequence: limg_,co Fnk (z; w) = F(z). Because the initial subsequence was chosen
arbitrarily, the whole sequence converges: lim; e F(z;w) = F(2). O

Remark 5.3 (Density estimation). For many practical applications it is reasonable to
assume F is absolutely continuous with respect to Lebesgue measure and has a density f.
One could then define estimators for f via kernel smoothing. Let k be a symmetric kernel,
7> 0 and z € R, then we may define:

f?j(z)=/ —k( . )dFO(t) and  f,(z) = /Ow—k( )dF 0. (532

In the classical context of kernel density estimation it is well-known which choices of the
bandwidth parameter T lead to consistent and/ or optimal rates of convergence, see for in-
stance chapter 24 in [109]. We also refer to [36] for various examples of density estimators
obtained via smoothing of estimators of distribution functions. In our setting it is not yet
clear which choices of T lead to consistent estimators, because much of the behavior of the
estimators F, and F,? is unknown. In practice one can still apply the density estimators
in (5.32) by manually choosing a value for T, being careful to take a value which does not
lead to under- or oversmoothing.
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Figure 5.4: A realization of a 3D Poisson-Laguerre tessellation and a corresponding 2D
sectional Poisson-Laguerre tessellation. Cells are colored according to their 3D volume.

5.6 Stereology

In this section we study a special type of Poisson-Laguerre tessellations, namely sectional
Poisson-Laguerre tessellations. By this we mean that we intersect a Poisson-Laguerre
tessellation with a hyperplane, and we consider the resulting tessellation in this hyperplane.
In Theorem 4.1. in [39] it was shown that intersecting a Poisson-Laguerre tessellation in
R with a hyperplane, yields a tessellation in this hyperplane which is again a Poisson-
Laguerre tessellation. Because our parameterization is subtly different to the setting in
[39] we derive the intensity measure of the Poisson process corresponding to the sectional
Poisson-Laguerre tessellation, for which we also use a different argument.

Suppose we observe the extreme points and the corresponding cells, of a Poisson-
Laguerre tessellation L(n) in R4~ through the observation window W,,. The underlying
Poisson process 77 has intensity measure v4_; X F, where F is a locally finite measure con-
centrated on (0, o). Hence, we may use any of the estimators in the previous two sections
to estimate F(z) = F((0, z]). Throughout this section, we assume that F,, is a piecewise
constant, strongly consistent estimator for F. Now, this Poisson-Laguerre tessellation in
R?-1 is the sectional tessellation corresponding to a Poisson-Laguerre tessellation L(¥)
in R?. The Poisson process ¥ of this higher-dimensional tessellation has intensity mea-
sure v4 X H, where H is a locally finite measure concentrated on (0, o0). For z > 0 define:
H(z) := H((0,z]). In this section, we show how F is related to H, and how a consis-
tent estimator for F' can be used to obtain a (locally) consistent estimator for H. Thereby,
we have a solution to the stereological problem. First, we need the following lemma for
obtaining an expression for F' in this stereological setting:

Lemma 5.7. Let ¢ € R4 x (0, ) be an at most countable set. Let 6 € S~ and s € R.
Define the hyperplane T := {y € R? : (0, y) = s}. For (x,h) € ¢, withx € R and h > 0
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let:

x'i=x-(0,x)—5)0
B o= h+|lx = x||> = h+ ((6,x) - 5)%.

Note that x’ € T and define ¢’ = {(x’,h’) : (x,h) € ¢}. Then, for all (x,h) € ¢:
C((x,h), ) NT =C"((x', 1), ¢") with:

C'( 1), ¢)={yeT:|ly-x|?+h <|ly-x|*+hforall (¥,h) € ¢'}.
Proof. Lety € T and (x, h) € ¢, then a direct computation yields:
" = yII* = [lx = 11> = 246, x) = $)x = 3,0) + ((0,x) = 5)” =[x =y = I/ + h.
Since ||x” = y||> + i’ = ||x — y||* + h, the claim follows. o

This lemma describes the set of weighted points which generates a sectional Laguerre
diagram. We now apply this to the Poisson-Laguerre tessellation generated by the Poisson
process . Because a Poisson-Laguerre tessellation is stationary and isotropic the choice
of hyperplane does not affect the distribution of the sectional tessellation. For x € R¢
write: x = (X1, X2, - .., Xg). We choose the hyperplane x; = 0 which corresponds to taking
0 =(0,...,0,1) € S and s = 0 in Lemma 5.7. In view of Lemma 5.7 consider the
function which maps a pair (x, #) € ¥ to the corresponding (x’, #”). Hence, this function
is given by (xq,...,Xg,h) — (X1,...,Xg-1,0,h + xi). Naturally, the d-th component
of the resulting vector is always zero. We identify the hyperplane x; = 0 with R¢~! and
therefore we consider the function 7 : R? x (0, 00) — R4~! x (0, c0) which is defined
via: T7(x,h) = (X{,...,Xq-1, 1 + xz). Hence, the point process 1 := 7(W) generates the
sectional tessellation. By the mapping theorem (see Theorem 5.1 in [53])  is again a
Poisson process on R4~! x (0, c0) with intensity measure: E(¥(77'(-))). Let B ¢ R¢"!
be a Borel set and let z > 0. Note that i + xi, < zifandonlyif # < zand x4 €

[-Vz = h,Vz = h]. As aresult:
r(x,h) € Bx (0,7] & x € Bx [—«/z A h] and h < z. (5.33)
Via the Campbell formula and (5.33) we find:
E (‘P(T_I(B x (0, z]))) = / /°° 1{r(x,h) € Bx (0,z]}dH(h)dx
rd Jo
- / /Z ]l{x € Bx [—«/Z R h]}dH(h)dx
R4 Jo
=Vd-1 (3)2/ Vz — ]’ldH(/’l)
0

Hence, we obtain:

F(z) = Z/OZVz—hdH(h).



106 Chapter 5. Nonparametric inference for Poisson-Laguerre tessellations

Let us discuss some properties of this function F'. First of all, F is not a bounded function.
Indeed, choose zp > 0 such that H(zg) > 0, and let z > z¢, via integration by parts we
observe:

\/_dh> / H(h) \/_dh>H(z()) «/Z (5.34)

It immediately follows that lim,_,., F(z) = co. Another property of F is that it is absolutely
continuous, and has a Lebesgue density f given by:

F(2) —/ H(h)

£(2) = / —dH(z)

Indeed, via Fubini’s theorem we can verify that f is a density of F:

/Ozf(s)dszfozfos ‘/%dH(t)ds
L=

= Z/Z Vz —tdH(t) = F(2).
0

dsdH (1)
-1

It is possible to express H in terms of F, because this is an Abel integral equation. For a
direct derivation of the inversion formula see for example [99]. Here, we simply show that
the following expression is indeed an inversion formula for H(z):

h ozl =l s

//ﬂ — mdth(s)

=// La—w b audns) (5.35)
0o Jo T
— H(2). (5.36)

dH(s)dt

In (5.35) we substituted u = (¢ — s)/(z — s). Finally, (5.36) follows from the fact that
the inner integral in (5.35) is equal to one, since this integral represents the Beta function
evaluated in (1/2, 1/2). A plugin estimator for H(z) is therefore given by:

H,(z) = dF, (1),

wh =

where F), is a piecewise constant, strongly consistent estimator for F. This estimator is
however rather ill-behaved. While H is a monotone function, H,, is not. Because F,, is
piecewise constant, H,, is decreasing between jump locations of F,,. Moreover, if zg is a
jump location of F,,, then lim, Lzo Hn(2) = oo. Therefore, we use isotonization to obtain
an estimator for H which is monotone, and show that it is consistent. We note that our
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estimator is similarly defined as the isotonic estimator in [35]. For the remainder of this
section, let k = k(n) be the number of jump locations of F,. Let hy, hy, ..., hi with
0 < hy < hy <--- < hi < oo be the jump locations of F,,. In order to introduce the
isotonic estimator we define for z > 0:

U,(2) := /OZHn(t)dt = %/OZ Vz = tdF, (). (5.37)

Choose (a large) M > 0 and write zp; := min{hy, M}. Let U,Iy be the greatest convex
minorant of U, on [0, zps]. That is, UM is the greatest convex function on [0, z57] which
lies below U,,. Then, define:

AM () = {U’j’w '@ ifze0zu) (5.38)

UMl(z)  if 2> 2u,

where UM 4 UM" denote the left- and right-derivative of UM respectively. The reason
we cannot simply extend the definition of UM to the whole of [0, ) is due to the fact
that U,, is concave on [/, o). As a result, the greatest convex minorant of U,, on [0, co)
is the zero function. Because of the convexity of UM on [0, zps], HY is guaranteed to
be non-decreasing, and is referred to as an isotonic estimator. Analogously to (5.37) we
define for z > O:

U(z) = /OZH(t)dt = %/OZ Vz — tdF(¢). (5.39)

Note that U" (z) = H(z), so indeed, the right-derivative of UM is a natural choice for an
estimator of H. In the next theorem we prove consistency of M. Currently, it is not
known whether H,, := H,’ is a globally consistent estimator.

Theorem 5.14 (Consistency of HM). Let M > 0 and let HM be as in (5.38). Let z €
[0, M), then with probability one:

H(z-) < liminf AM (z) < limsup AM (z) < H(z).
n—oo

n—oo
In particular, if 7 is a continuity point of H: lim, ., HY (z) = H(z) almost surely.

Proof. Letz € [0, M). Because F,, is piecewise constant and a consistent estimator of the
unbounded function F (recall equation (5.34)), it follows that lim, e Ag () = oo almost
surely. Let (Q, A, P) be a probability space supporting a Poisson process 77, with intensity
measure vq—; X F. Choose Qp € A with P(Qy) = 1 such that for all w € Q, we have
limy, 00 Ak (n) (W) = o0 and lim,_,e Fyy(h;w) = F(h) for all h > 0. For the remainder
of the proof, let w € Qg and take n sufficiently large such that /() (w) > M. Note how
U,, and U depend on F, and F respectively, see (5.37) and (5.39). As a consequence, the
pointwise convergence of F,,(-;w) to F implies: lim,, e Uy (x;w) = U(x) for all x > 0.
Note that U is non-decreasing and continuous, therefore the convergence is also uniform
on [0, M]. That is, lim,—co SUpycfo pr) [Un(x; @) = U(x)| = 0. Because U is defined as
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the integral of a non-decreasing function, it is convex. A variant of Marshall’s lemma (the
convex analogue of 7.2.3. on p. 329 in [79]) directly yields:

sup |U,11V1(x;a)) - U(x)| < sup |Up(x;w)—Ux)].
xe[0,M] xe[0,M]

Therefore, we also have limy,—co SUPc [0, 1] |U,ILVI (x;w) — U(x)| = 0. Take 6 > 0 such that
7+ < M. Then, for each 0 < h < & we have by the convexity of UM :

UM (z;0) = UM (z - h; w)

UM(z;0) = UM (z+ h;w)
p )

< UM (z;0) < UM (z;0) < ;

By using limy, e SUP ¢ [0, p1] |U,’l"’ (xw) - U(x)| = 0, the following holds:

U(z)-U(z-h v b ,
% < liminf UM (z;w) < limsup UM (z;w) < w
n—oo oo

The result follows from letting / | 0 and by recognizing that U'(z) = H(z—) and U" (z) =
H(z). o

Remark 5.4. By choosing M > 0 very large, the estimators H,, := I-AI;’[’ and I—AI,I:’I will
in practice often coincide, since we will typically observe hy < M. Therefore, in the
remainder of this chapter we will only consider computational aspects and simulation
performance of the estimator H,.

We now show that computing the isotonic estimator H,, is equivalent to solving an iso-
tonic regression problem. This is achieved via the following lemma, which is a straight-
forward modification of Lemma 2 in [35].

Lemma 5.8. Let M > 0, and let ¢ be an a.e. continuous non-negative function on [0, M.
Define the function ®, for z > 0 as:

(z) = /0 "o ().

Let @ be the greatest convex minorant of ® on [0, M]. Let ®*" be the right-derivative of
d*, then:

M M M
[ em-veracs [Cew-orwyes [ @ -umpe,
for all functions \ in the set:
Far = {y : [0, M] — [0, ) : ¢ is non-decreasing and right-continuous} .

We use Lemma 5.8 to show that A,, may be interpreted as the L>-projection of H,, on
the space of monotone functions. Recall that &y, Ay, . . ., hi are the unique jump locations
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of F,,. Additionally, let iy = 0. Define H, to be the piece-wise constant function on
[0, Ax) which is given by:

~ Up(hisv1) — Un(hy)
Hn = )
@ hiy1 — h;

For z € [0, ht], let: Un(2) = [§ Hu(1)dr. Then, U, (k) = Un(hy) foralli € {0,1,...,k}.
While U, is concave between successive jump locations (due to the square root), U, is
linear between successive jump locations. As a consequence, U,, and U, have the same
greatest convex minorant. Hence, H,,(z) = Uy" (z) = U" (2), for z € [0, hy). Finally, by
taking ¢ = H, (and ¢ = H,)and M = hy in Lemma 5.8 we see that:

€ [hi, hiv1), i€4{0,1,...,k—1}.

hi
= arg mm/ (H(x) — Hy(x))*dx = argmin/ (H(x) — Hy(x))*dx.  (5.40)
Heﬁk Heﬁk 0

Because H,, is piece-wise constant, in (5.40) we may even minimize over all functions
in 5, which are also piece-wise constant with jump locations at hy, k3, . .., hx. Hence,
H,, is piece-wise constant and when solving the minimization problem in (5.40) we only
seek to determine the values H,, attains at these jump locations. Let y; = H,(h;), and
w; = hjy1 — h;. Then, by setting B = (H,(h),Hy(ha), ..., Hy(hi_1)), (5.40) may be
written as:

p = argmin Z(ﬂ, i) wi, (5.41)
BeC o
where the closed convex cone C, is givenby: C, == {8 e Rk : 0 < B < B < <
Bk-1}- Finally, observe that H,(hi) = Hy(hi-1). The optimization problem in (5.41)
is indeed an isotonic regression problem. We note that implementations for solving this
problem are widely available. In Figure 5.5 a realization of H,, and the corresponding
realization of H,, is shown.

Realizations of H,, and H,,

1.00

0.75

0.50

H(z)

0.25

0.00

Figure 5.5: A comparison of the plugin estimator H,, and the isotonic estimator H,,. The
actual underlying H is equal to the CDF of a uniform distribution on (0, 1).
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5.7 Simulations

In previous sections we have derived consistent estimators for the distribution function
corresponding to the underlying Poisson process 7, both in the direct setting (R¢) and
in the stereological setting (R¢~!). Additionally, we have shown how to compute these
estimators. In this section we perform some simulations such that we can assess their per-
formance. We note that edge effects which occur in practice, were not taken into account
for the simulations in this section. We discuss practical issues arising from edge effects
in section 5.9. For the simulations we compute Laguerre tessellations using the Voro++
software [82]. For the estimators F,? and F,, we focus on the case d = 2. Let M > 0 and
z = 0, we consider the following choices for the underlying F.

Fil(zM)=z-1{z<M}+M -1{z > M} (5.42)
F2(z2) =0.01-1{z > 1} +0.04 - 1{z = 8} + 0.95 - 1{z = 10}. (5.43)
Note that F> corresponds to the F' in Example 2. For both choices of F it is simple to

simulate a corresponding Poisson process, because these Poisson processes can be recog-
nized as independently marked homogeneous Poisson processes. Throughout this section

Realizations of £0 Realizations of £
1.00 4 3 1 o
L
0.75 ;
~ ~ 24
) s
=, 0.50 I
l -
0.25 - —— Mean estimate —— Mean estimate
--= F --- F
0.00 T T 0 T T T
0.0 0.5 1.0 0 1 2 3
Zz Z
Realizations of F, Realizations of F,,
1.00 3 e —
=t
0.75
. 21 ;
X Ci
, 0.50 I
, 14 .
0.25 - —— Mean estimate —— Mean estimate
--= F --- F
0.00 T T 0 T T T
0.0 0.5 1.0 0 1 2 3
z Z

Figure 5.6: Simulation results for 13",(3 and F,, where F is given by (5.42), with M = 1
(Left) and M = 3 (Right).
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we write P,, := E(n°(W, x (0, c)). We choose a square observation window W,, such that

» = 1000. In words, we choose a square W,, with an area such that the expected number
of observed points of ° in W,, is equal to 1000. First, we consider F; as the underlying
truth. For M = 1 and M = 3 we repeat the simulation procedure with this F' 100 times,
such that we obtain 100 realizations of F ,? and Fn for each value of M. For each estimator,
and each choice of M, we also compute the pointwise average of all realizations. The re-
sults are shown in Figure 5.6. A blue line is a realization of an estimator, a black line is a
pointwise average. We can clearly see that estimates of F(z) for z close to zero are much
more accurate than estimates of F(z) for large values of z. This is especially evident for
the results corresponding to M = 3. This is not too surprising in view of the crystallization
interpretation of a Laguerre tessellation as described in section 5.3. We expect that points
with large weights are less likely to generate non-empty cells. As a result we sample points
with large weights less often, which makes estimation of F(z) for large values of z more
difficult. This also means that we expect that the accuracy of an estimate of F' near zero
is much more important if we wish to use this estimate to simulate a Poisson-Laguerre
tessellation which is similar to the observed tessellation. From Figure 5.6 it is not very
clear whether there are significant differences between F,? and Fn, though it does seem
that £ ,? performs slightly better on average when z is large.

Now, we consider F, as the underlying truth. For this choice of F we only observe
points with weights in the set {1, 8, 10}. As a result, realizations of £ and F,, will only
have jumps at these values. We can therefore easily quantify the error of F}; 20 by computing
F(z) — F%(z) for z € {1,8,10}. Of course, we can do the same for £,,. Again, we repeat
the simulation procedure 100 times. This time however, we also repeat this for multiple
choices of observation windows. We choose W,, such that P,, is equal to 500, 1000, 2000
or 5000. The simulation results are shown in Tables 5.1 and 5.2. This table contains the
mean over all 100 absolute errors for each choice of W,, and for each choice of z. We also

F(1) - F)(1) F(8) - F)(8) F(10) - £(10)
P, mean(|-]) (2.5%, 97.5%) mean (|-|) (2.5%, 97.5%) mean (|-])  (2.5%, 97.5%)
500 0.00284  (-0.0057,0.0052) 0.00734 (-0.018 ,0.018 ) 0.0430 (-0.11 ,0.10 )
1000  0.00197 (-0.0042,0.0046)  0.004 24 (-0.010 ,0.0099) 0.0327 (—0.065, 0.091)

2000 0.00145  (-0.0034,0.0029) 0.00349  (-0.0079,0.0081) 0.0192 (=0.042, 0.046)
5000 0.000845 (-0.0019,0.0020) 0.00206  (-0.0046,0.0052) 0.0146 (-0.030, 0.031)

Table 5.1: Simulation results for F,? , where F is given by (5.43).

F(1) = Fp(1) F(8) — Fu(8) F(10) - F,,(10)
P, mean(|-|) (2.5%, 97.5%) mean (|- |) (2.5%, 97.5%) mean (|-])  (2.5%, 97.5%)
500 0.00294  (-0.0069,0.0057) 0.00762 (-0.019 ,0.017 ) 0.386 (=19, 0.47)
1000 0.00198 (—0.0039,0.0050)  0.00442  (-0.010 ,0.010 ) 0.267 (-1.1 , 0.33)

2000 0.00151 (=0.0037,0.0031)  0.00354  (-0.0074,0.0083) 0.170 (-0.61, 0.25)
5000 0.000885 (-0.0020,0.0020) 0.00213  (-0.0048,0.0045) 0.107 (-=0.30, 0.21)

Table 5.2: Simulation results for £,,, where F is given by (5.43).
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Realizations of H,, Realizations of H,,
1.00 - 3 - ] ~
//
,/
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_ _ 2 =
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Figure 5.7: Simulation results for A, where H is given by (5.42), with M = 1 (Left) and
M =3 (Right).

include the 2.5% and 97.5% quantiles of these 100 errors. We can see that at z = 1 and
z = 8 the performance of the estimators I:“,? and F, is quite similar. However, at z = 10
it is clear that ﬁ,? performs much better. This is somewhat surprising, after all, ), takes
into account more information than £°. We do not yet know whether the difference in
performance is due to differences in numerical stability of the inversion procedures or due
to different rates of convergence of the estimators. We also should point out that for a
single realization of £, corresponding to P, = 500 we observed a numerical overflow.
That is, we observed: £,(10) < F,(8). It may therefore be of future interest to study
whether there are more numerically stable ways to compute £,.

Finally, we show some simulation results for H,. In the previous simulations we ob-
served that F,‘f performs better than F),. Therefore, we compute H,, via F, = I:“,(,) We
consider d = 3 such that we observe a 2D sectional tessellation. We take the underlying
H equal to F| as in (5.42). Again, we choose W), such that P,, = 1000 and perform 100
repeated simulations for both M = 1 and M = 3. The results are shown in Figure 5.7. As
expected, in the stereological setting we observe a bigger variance in realizations of H,,
compared to the realizations shown in Figure 5.6. Overall, all estimators seem to perform
satisfactorily.

5.8 Connection to the Boolean model

In the previous section we observed that estimates of F(z) for large values of z can be
quite inaccurate. We attempt to gain some additional insight in this phenomenon, and
try to understand how the behavior of F(z) for large values of z influences the resulting
Poisson-Laguerre tessellation. This insight is achieved via a connection between Poisson-
Laguerre tessellations and the Boolean model, a classical model in stochastic geometry,
which is well-studied. A Boolean model may be described as follows. Let ¢ be an inde-
pendently marked homogeneous Poisson process on R¢ with mark space (0, c0). Writing
W = {(x1,71), (x2,72), ...} with x; € R? and r; > 0, the union set Ugx,ryeyB(x,r) is a
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Boolean model with spherical grains. For more details on the Boolean model we refer to
[86] and [18].

Recall the interpretation of a Laguerre tessellation as a crystallic growth process. Then,
we may interpret F as the distribution of the arrival times of generator points. Intuitively,
we can understand that the behavior of F(z) for large values of z has less influence com-
pared to the behavior of F(z) for small values of z. After all, we associate generator points
with late arrival times with large values of z. In order to better understand the behavior
of the crystallic growth process, we may look at the so-called coverage process and its
coverage function, as defined below:

Definition 5.15. For ¢ € R, define the random closed set Z(¢) as:

== B(x,m).

(x,h)en:h<t

We refer to Z(t) as the coverage process. For a bounded W € B(R?), with vg(W) > 0,
define the coverage function Kr : R — [0, 1] via:

1
Kp(t) = Vd(W)E(Vd(—‘(t) nw)).

Note that E(¢) represents the union of all balls in the crystallic growth process at time
t. Also observe that Z(¢) only depends on the restriction of 5 to R¢ x (0,¢], and this re-
striction is an independently marked homogeneous Poisson process. The key insight is
that Z(¢) is an instance of a Boolean model. If F(z) = 0 then E(¢) = @ almost surely.
Now consider F(t) > 0. Suppose Z ~ F((0,¢] N -)/F(t), then the distribution func-
tion of Vi — Z is given by G(z) = 1 — (F(t — z2)/F(t)) for z € [0, vt]. Hence, letting
v = {(x1,r1), (x2,72), ...} be an independently marked homogeneous Poisson process
on R? with intensity F(¢), and mark distribution function G on the mark space [0, V7],
the random closed set Uy )e wE(x, r) is a Boolean model which is equal in distribution
to Z(¢). The coverage function Kr describes the expected fraction of a set covered by the
coverage process at a given time. As a consequence, known results of the Boolean model
yield the following, (see section 9.3 in [86], or equations 3.4 and 3.15 in [18]):

Theorem 5.16. The definition of K does not depend on the choice of W, and for t € R,
Kr(t) is given by:

Kr(r) = 1 —exp (—Kd /Ot(z - h)‘z’dF(h)) : (5.44)

Moreover, for any convex averaging sequence (Wy),>1 we have with probability one:

- va(E@) N Wa) _
AR

Proof. As noted previously, the result follows from known results of the Boolean model.
We derive the expression for K (t) for the sake of completeness. Let y € R? and note
that:

yEE(l) & |x—yll > Vi—h forall (x,h) € N (RY x (0,1]) & n(A,(1)) =0,
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with:

Ay (1) = {(x,h) eRYx (0,1] : [lx — y|| < \/t—h}.

Because 7 is a Poisson process, we may compute:
P(y ¢ E(1)) =P(n(Ay(1)) =0)
t
= exp (—/ / 1{|lx - y|| < Vi - h}dF(h)dx)
RY JO

= exp (—deot(z - h)?dF(h)) .

Note that this probability does not depend on y. Via Fubini we obtain the result:

Kr(t) = ﬁE ( /W 1{ye E(r)}dy)
1 _
- /WE(n{y € (1)) dy
1 =
- /W P(0 € 2(1))dy
=1-P(0 ¢ E(r)).

]

Remark 5.5. If F is instead a locally finite measure concentrated on (ty, ) for some
to € R, then in the expression for Kg(t) in Theorem 5.16 one may replace the 0 as the
lower integration bound by t.

In view of the limit result in Theorem 5.16, we may in some sense interpret Ky () as the
actual fraction of R? covered by the coverage process, not just the expected fraction in some
region. Suppose that F is an approximation of the function F. This function F satisfies
F(t) = F(¢t) for all t € [0,T] for some T > 0. Moreover, suppose that on the interval
(T, ), F is a poor approximation of F. If Kp(T) is large, say Kx(T) = 0.9, then that
means that 90% of space is already covered by the coverage process at time 7. Weighted
generators with weights larger than 7', can only contribute to Laguerre cells which cover at
most 10% of the whole space. Of course, the balls associated with weights smaller than T
will continue growing and therefore it is likely that if the weighted generators with weights
larger than T produce a Laguerre cell, those cells will cover far less than 10% of space. As
a consequence, if one simulates a Poisson-Laguerre tessellation with either F or with F' as
the underlying distribution function, it is likely that the effect on the resulting tessellation
is rather small.

Based on the previous observations, the coverage function Kr may be useful to de-
termine in which part of the domain of F estimation is hard. Let us now discuss the
simulation results of section 5.7 in this context. The simulation results corresponding to
the F in (5.42) with M = 3 yielded estimates of F(z) which were rather inaccurate for
large values of z. For this F' we have for r € [0, M]: Kp(t) =1 —exp (—nt2/2). Note that
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Kr (1) = 0.79, which explains that the estimates corresponding to M = 1 were quite accu-
rate. Meanwhile, if M = 3, then Kg(1.22) ~ 0.9, Kr(1.39) ~ 0.95 and K¢ (1.72) ~ 0.99.
This does explain why estimation of F(z) is very hard for large values of z if M = 3. All
things considered, the estimates of F seem rather well-behaved for z € [0, 1.72].

In future research it may be of interest to study whether this connection between
Poisson-Laguerre tessellations and the Boolean model can provide additional insights.

5.9 Discussion

In this chapter we have defined two estimators for the distribution function F, which de-
scribes the distribution of the arrival times of the generators. For these estimators we
have established their consistency, and studied their performance in simulations. We have
also considered statistical inference in a stereological setting. When computing the pro-
posed estimators in practice, one has to deal with edge effects, and we now briefly discuss
some of the challenges caused by this phenomenon. Throughout this chapter, all points
of n* in W, X (0, 00) are considered to be known, as well as the Laguerre cells corre-
sponding to these points. In practice it is often the case that some of the cells near the
boundary of W,, are only partially observed. Then, one could follow the suggestion in
Remark 5.2 and compute the estimator based on a smaller window W, c W,. Here,
one should choose W, c W, as large as possible such that C((x, h),n) < W, for all
(x,h) € " N (W, x(0,00)). The estimator of interest can then be computed, replacing
W, by W, in the definition of the estimator.

In a practical setting, a Laguerre tessellation may have been fitted to some image data
using a reconstruction algorithm. It could be the case that a generator point in the observa-
tion window cannot be reconstructed because its cell is located outside of the observation
window. Because there are various ways of reconstructing Laguerre tessellations and their
extreme points, detailed simulations which consider the constraints induced by those re-
construction methods are out of the scope of this chapter. We believe it will be useful
to perform those kinds of simulations in future research, to better understand how well
the estimators perform when all practical considerations are taken into account. For now,
it should also be possible to mitigate these edge effects caused by the reconstruction ap-
proach by computing the estimators based on a smaller observation window W, ¢ W,,.
We address some of the challenges associated with the weighted generators in the next
chapter.

Besides challenges arising from edge effects we also would like to discuss a few pos-
sible directions which may be pursued in future research. There are various important
properties of the estimators £ and F,, which are still unknown. For instance, at present
we do not know which of the estimators £ 0 or F,, should in general be preferred in prac-
tice. Hence, it may be of interest to study the rates of convergence of these estimators.
Another important challenge for future research is the derivation of the asymptotic distri-
butions of F| 0 and F,,. Knowledge of these asymptotic distributions is essential for deriving
(asymptotic) confidence intervals for FS and F},. This information may then also be used
to determine guidelines for required observation window sizes.
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5.10 Additional proofs

Proof of Lemma 5.2. Let (Q, A, P) be a probability space supporting the sequence (Fy,)n>1.
For z € R, there exists by assumption a set Q, € A be such that lim,,_,«, F,,(z; w) = F(z)
forallw € Q, andP(Q;) = 1. Let D := {z € R: z € Q or z is a discontinuity point of F'}.
Because monotone functions have at most countably many discontinuity points and be-
cause the rationals are countable it follows that D is countable. Letting Q' := N,cpQ, we
obtain P(Q’) = 1. Let z € R and w € Q’, we show that lim,,_,o, F,(z;w) = F(z). Ifz7 € Q
or if 7z is a discontinuity point of F, then the result is immediate. Suppose that z € R\ Q
is a continuity point of F. For m € N choose §,, > 0 such that |[F(z) — F(x)| < 1/m
whenever |z — x| < 6,,,. Choose 7, s, € Qsuchthatr,, <z <s,, and |r,, — z| < 6,, and
|$m — 2| < 0. By the monotonicity of each Fj,, and since w € Q' we have for all m € N:

F(rm) = lim F(rpiw) < im Fy(z30) < HmFy (smsw) = F(sm).
Due to the choice of r,, and s,,, we obtain:
—% < F(rm) = F(2) < lim Fy(z;0) = F(2) < F(sm) = F(2) < %
The result now follows since |lim,, o F,,(z; w) — F(2)| < 1/m for all m € N. m]

Proof of Lemma 5.3. Let R > 0 and assume lim,, ., F,(z) = F(z) for all z € [0, R). Fix
z € [0, R). We introduce the following shorthand notation, for 4 € [0, z]:

h h
dn(h) = / (h —1)%dF, (1), and () := / (h—1)%dF (7).
0 0
The triangle inequality yields the following bound:
|GF,(z) -GF(2)| <

< /Ozexp (—Kd/Oh(h—t)‘z’an(t)) —exp (—Kd/Oh(h—t)‘z’dF(t))dF,,(h) +
z h .
+ ‘/0 exp( Kd/O (h t)2dF(t)) d(F, F)(h)'
< h:Fo]?z] lexp (—kapn(h)) — exp (—kap(h))| Fn(2)+
. (5.45)
ol [ e (-rao(m a, —F)(h)’.
0

Let us consider the first term of (5.45). Fix h € [0, z]. Since F, converges pointwise to
Fon [0,z] and t — (h — t)%]l{h > t} is continuous and bounded on [0, z] it follows
that lim,,_,o, ¢, (h) = ¢(h). Hence, the sequence of monotone functions exp (—kg¢,(-))
converges pointwise to the monotone function exp (—k4¢(-)) on [0,z]. Because ¢ is
(absolutely) continuous, the limit function exp (—k4¢( -)) is continuous. The convergence
is therefore uniform on [0, z], and we obtain:

lim = sup |exp (=ka¢n(h)) —exp (=ka¢(h))| Fu(z) = 0-F(z) = 0.

"% hel0,2]
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Let us now consider the second term of (5.45). Because exp (—kg¢( -)) is continuous and
bounded, it immediately follows from the pointwise convergence of F,, to F on [0, z] that
this second term vanishes as n — oco. This proves that lim, . GF,(z) = Gr(z). The
proof remains valid when R = co. O

Proof of Theorem 5.11. Let z > 0. For i € {1,2} write FI.V = V(-;F;,mp,). From
equation (5.19) it can be seen that the (Lebesgue-Stieltjes) measures associated with Fl.v
and F; are mutually absolutely continuous. The corresponding Radon-Nikodym derivative

is given by:
dF V o0 u
— ()= 71'/ exp (—ﬂ/ F,-(t)dt) du =: p;(2).
dF; z 0

Hence, we may also write:

e [C9F v = [ L qpv
Fi(z) = /0 v (AR (0 = /0 S AEY ).

Since mp, < oo (this is shown in the proof of Lemma 5.4) we have p;(0) < co and from
its definition it is clear that p; is a decreasing function. Because x — 1/x is Lipschitz on
(¢, o) for ¢ > 0 with Lipschitz constant 1/c¢? we have for 4 € [0, z]:

1 1 1 1
MO0 < max{m, W} |p1(h) = p2(h)| < C(h) |p1(h) = p2(h)].

Here we have defined C(h) := max{1/p1(h)?, 1/p2(h)?}, which is increasing. As a con-
sequence, we obtain the following upper bound for |F|(z) — F>(z)|:

Z 1 1 V 1 V_ ,
/Opl(h) pz(h) Fr(n)+ /p(h) (Fy —F))(h)

1
<c@ [ - pailar! o+ [ ———«FY—@@MW
0 o p2(h)
(5.46)
We consider the two terms in (5.46) separately. The first term of (5.46) is bounded by:

7rC(z)/0 ‘/0 exp (—n/o Fl(t)dt) —exp (—ﬂ/o Fz(t)dt) du
z h u u
exp (—n/ F (t)dt) —exp (—n/ Fz(t)dt) du
0 0

The first term of (5.47) is equal to ﬂ'C(Z)FIV(Z) |mF1 - mp2| and the second term of (5.47)

is bounded by:
exp (—n/ F (t)dt) — exp (—n/ Fz(t)dt)
0 0

nC(z)/OZ/Oh

z h u
2 _ %
< 712C(z) /0 /0 /0 |F\(1) — F>(1)| drdudFY (h) (5.48)

|F1(2) - F2(2)| =

dF) (h)+

(5.47)
dr) (h).

dudF)’ (h)

s#amﬂknlﬂﬂm—BMML
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In (5.48) we used the fact |e™ —e™Y| < |x — y| for x, y > 0. Via the integration by parts
formula, the second term of (5.46) is bounded by:

‘(FV@ R @) - [ A m - R ma( s o)
\%4 \4 \%4 \4
< Gl O-R Gl s 700l [Ca( o) o)
2

< sup |FV(h) FV(h)|
P2(2) nefo,z]

Collecting all results, we obtain:
Z
|F1(2) = F2(2)| < nC(2)F) (2) |mp, — mp,| +ﬂ2C(z)F1V(Z)Z/ |F1(t) = F>(1)| dt+
0

—— sup |FV(h) Fv(h)|
Pz(Z) hel0,z]

Applying Theorem 5.5 and (5.10) yields:

IF1(2) - F2(2)] < K(2) [nC()F) (2) |mp, — mp,| + sup. IFV(h) Ey (h)]].

T
(5.49)
Here, K(z) is given by:
K(2) = (1 + 712C(Z)F1V(z)z2 exp (712C(Z)F1V(Z)Z2))
The statement of the theorem immediately follows from (5.49). O

Proof of Lemma 5.4. We first note that we may assume without loss of generality that
(Fn)n>1 is a sequence of functions not containing the zero function. Indeed, we could
take an arbitrary subsequence (n;);>1 C (n),>1, and then use the pointwise convergence
of F, to F to choose a further subsequence (nx)k>1 C (n7);>1 such that (Fy, )r>1 is a
sequence which does not contain the zero function. If we then show limy_,o, m Fnp =MF
then the whole sequence also converges: lim,_,o mp, = mr.

We introduce the following notation, for u > 0 let:

pn(u) :=exp (—n ‘/Ou F,L(t)dt) , pu) :=exp (—n ‘/Ou F(t)dt) .

X

Via the inequality |e ™™ — e™Y| < |x — y| for x, ¥ > 0 and (5.22) we obtain the following
upper bound for |p, (u) — p(u)|:

|pn(u) —p(u)| <n =n (5.50)

/u F(t) — F,(t)dt
0

/0 N = DAF - F) (1)
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Due to the pointwise convergence of F), to F' we obtain that p,, converges pointwise to p
as n — oco. The triangle inequality yields:

I, — mp| < /0 () — )] du + / pn() = p()ldu.  (5.51)

The first term of (5.51) vanishes as n — oo. Indeed, p,, converges pointwise to p as n —
oo, and since |p, (1) — p(u)| < 1 the dominated convergence theorem may be applied. The
dominated convergence theorem can also be used to show that the second term of (5.51)
vanishes as n — oco. We now show which dominating function g may be used. Choose
z > 0 large enough such that F(z) > 0 and set ¢ := F(z). We show that mp < co:

mg =/Zp(u)du+/mp(u)du
0 z
< z+exp (—n/zF(t)dt)/ooexp (—n/uF(t)dt) du
0 z z
Sz+/mexp(—7rc/udt)duzz+$. (5.52)

Choose N € N large enough such that F,(z) > ¢/2 for all n > N. This can be done since
F,, converges pointwise to F. Applying the same bound as in (5.52) yields |p,(u)| <
exp (—mc(u —z)/2) for all u > z and all » > N. Hence, we may define the dominating
function g : [z, 00) — [0, c0) as:

g(u) := p(u) + max {ke{rflaxN} pi(u),exp (—ﬂ%(u - z))} .

.....

Note that mp < oo and mp, < ocoforall k € {1,..., N} by (5.52), applied to F and Fy
respectively. As a consequence, g is integrable on [z, o). Because |p, (u) — p(u)| < g(u)
for all u > z the proof is finished. O

Proof of Lemma 5.6. Let z > 0, we readily obtain the following bound:

|V(Z;Fnsmn) - V(Z;F’ m)| <

exp (—71 ‘/OZ F(t)dt) — exp (—n /OZ F,,(t)dt)
m— /Ozexp (—Jr'/OuF(t)dt) du
/OZ exp (—ﬂ /Ou Fn(t)dt) —exp (—ﬂ /OM F(t)dt) du )

(5.53)

+

+7|F(2) = Fu(2)] +

+nF,(z) (Imn —-m|+

Each of the three terms of (5.53) vanishes as n — oo, and each of the terms appearing
here also appear in the proof of Lemma 5.4. The fact that the first term vanishes follows
from (5.50). The second term vanishes due to the pointwise convergence of F,, to F. The
third term vanishes since lim,_,«, F,,(z) = F(z), lim, o m, = m, and by using the same
argument as for the first term in (5.51). m]
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5.11 Computational formula

First of all, note that:

hy u oo u
iy = / exp (—n/ F,?(t)dt) du + / exp (—7‘1’/ F,?(t)dt) du (5.54)
0 0 hy 0

The first integral of (5.54) is equal to &1, since F",? is zero on [0, h1). Let gy > hy, viaa
direct computation we obtain:

Rpes1 u-
/ exp (—n/ F,?(t)dt) du =
hy 0

k+1

= Z / exp ( /0 F,?(t)dt) du
k+1 hioi R hi w o
= Z exp (—n/o F,?(t)dt) /h 1 exp (—ﬂ /h” F,(l)(t)dt) du

2 i

= zexp (_n-/ohi_l ﬁ‘,?(l)dt) /h,.hj exp (—ﬂ'(u - hifl)ﬁr?(hifl)) du
k+1
= 2. Xp(—ﬂZFO(h Y(hj—hj- 1))m( — exp (—ﬂﬁ,?(hi_l)(hi —hi_l))).

Letting hj,; — co we obtain:

k
R R 1
= *exp(‘”ZFff(”f)(hf "ﬁ-”) SN

J=1

+

-

Il
38}

12

exp(—ﬂZF (hj)(hj — hj 1))m( —exp (—nﬁ,?(hi_l)(hi—hi_l))).
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Chapter 6

Inverting Poisson-Laguerre tessellations

6.1 Introduction

In this chapter we continue studying Poisson-Laguerre tessellations. We address an issue
with random Laguerre tessellations that as far as we know has not yet been addressed in
the literature. Resolving this issue is an essential step for being able to perform statis-
tical inference on Poisson-Laguerre tessellations in practice. This issue is related to the
weighted generator points used for defining a Laguerre tessellation.

Recall, that like the Laguerre tessellation, a Voronoi tessellation is defined via a set
of points, referred to as the generators, and each generator corresponds to a cell in the
tessellation. For Laguerre tessellations, the generators also carry a weight. As opposed
to generators in the Voronoi model, not all generators will necessarily generate a cell in
the Laguerre setting. That is, the cell corresponding to some weighted generator may be
the empty set. For Voronoi- and Laguerre tessellations, algorithms have been developed
for computing the cells in the tessellation for a given set of (weighted) generator points,
see for instance [71] and [6]. Additionally, in the case of the Voronoi tessellation it is
known how to perform the inverse process. That is, given some description of the cells
of a Voronoi tessellation it is possible to retrieve the generator points used to obtain this
Voronoi tessellation. We refer to [87] for an algorithm to perform this procedure. In the
case of Laguerre tessellations it is not possible to uniquely determine the set of weighted
generator points used to obtain a given Laguerre tessellation. More specifically, in [27] it
was shown via simulations that multiple configurations of weighted points may result in the
same Laguerre tessellation, meaning that Laguerre tessellations are overparameterized. In
Figure 6.1 two configurations of weighted generators are shown which yield the same La-
guerre tessellation. The circle around each generator point has radius equal to the weight
of this generator. To the best of our knowledge there is no known result which presents
a characterization of all configurations of weighted points which yield the same Laguerre
tessellation. The process of retrieving (weighted) generators from a given Voronoi- or La-
guerre tessellation is referred to as inverting the Voronoi- or Laguerre tessellation, which
explains the title of this chapter.

In the literature, various instances of random Laguerre tessellations have been studied,
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Figure 6.1: Example highlighting the overparameterization of a Laguerre tessellation

see [54], [39] and [95]. These random Laguerre tessellations are obtained by taking the
weighted generator points to be a realization of a (marked) point process. The fact that
it is not possible to uniquely recover the weighted generator points of a given Laguerre
tessellation is somewhat disappointing in the context of statistical inference for random
Laguerre tessellations. This being the case because the usual approach to performing
statistical inference for random Laguerre tessellations is to consider the point process of
weighted generators corresponding to observed cells to be known, and to then use these
points to estimate the parameter(s) of the underlying point process model. This approach
is for instance taken in [95] as well as in chapter 5.

In this chapter we first study general Laguerre tessellations, and then we shift our focus
towards Poisson-Laguerre tessellations. For general Laguerre tessellations, we show that
under a set of commonly satisfied regularity conditions it is possible to fully characterize
all configurations of weighted generator points which yield the same Laguerre tessella-
tion. A Poisson-Laguerre tessellation in R is obtained by taking the weighted generators
to be a realization of a Poisson process on R? x E for some set E C R. As in chapter 5,
in this chapter we also consider the choice E = (0, c0), and we assume that the intensity
measure of the underlying Poisson process 1 has intensity measure v; X F. Here, v is
Lebesgue measure on R and F is a locally finite measure on (0, c0). While a Poisson-
Laguerre tessellation is a tessellation of R?, in many practical settings it is common to
take a so-called observation window W ¢ R<, and to only observe a part of the tessel-
lation through this window. We provide sufficient conditions for consistently inverting
the observed Poisson-Laguerre tessellation, as the observation window expands unbound-
edly to the whole space. This essentially means that while it is in general not possible to
uniquely determine the weighted generator points of a Laguerre tessellation, if one ob-
serves a Poisson-Laguerre tessellation one can get a closer and closer approximation of
the original weighted generator points corresponding to observed cells as one observes
the Poisson-Laguerre tessellation through observation windows of increasing sizes.

Taking these results into account, we are interested in whether the estimators for F(z) =



6.2. Preliminaries 123

F((0,z]), z = 0, as proposed in Chapter 5 still perform well if these estimators are com-
puted based on our proposed approximation of the generator points instead of the true
generator points. That is, we want to know if it is possible to estimate F, when we only
rely on the cells of the tessellation which are (partially) observed through the observa-
tion window, without prior knowledge of the generators. We address this question via a
simulation study.

In a practical context, it is often the case that one does not actually have Laguerre
tessellation data. Instead, one may have some image data, for example a microscopic
image of a materials microstructure. Then, one may fit a Laguerre tessellation to this
image data. We refer to [3] and references therein for an overview of methods which can
fit a unique Laguerre tessellation to image data. Typically, these procedures also provide a
configuration of weighted generators which generate the fitted Laguerre tessellation. If one
has a Laguerre tessellation without a corresponding configuration of weighted generators,
then algorithm 1 in [27] may be used to obtain such a configuration. Once this fitting
procedure is performed one may apply the methodology proposed in this chapter, to obtain
a specific configuration of the weighted generators which is suitable for statistical analysis.
This approach will especially be sensible if the image data at hand may approximately be
considered a realization of a Poisson-Laguerre tessellation.

This chapter is organized as follows. In section 6.2 we introduce necessary notation
and definitions. We present a characterization of the overparameterization of Laguerre
tessellations in section 6.3. Inspired by this result we propose a method for inverting a
Poisson-Laguerre tessellation in section 6.4. Sufficient conditions for consistent inversion
of Poisson-Laguerre tessellations are given in section 6.5. Then, we perform some simula-
tions in section 6.6. Here, we apply the proposed inversion procedure and use the resulting
approximation of the weighted generators to compute estimates of F. Finally, we provide
some conclusions in section 6.7.

6.2 Preliminaries

In this section we introduce necessary notation and definitions. As in the previous chap-
ter we focus on Poisson-Laguerre tessellations, and therefore we also need the notation
and definitions as used in chapter 5. We refer the reader to sections 5.2 and 5.3 for a re-
minder of those concepts. In this chapter we do need some additional definitions, which
are introduced below.

Let P c R be a full-dimensional polytope. A subset F of P is called a face of P if
either F' = 0, F = P or if there exists a supporting hyperplane H of P such that F = PN H.
H is a supporting hyperplane of P if H N P # ( and if P is contained in only one of the
closed half spaces bounded by H. Note that each face of a convex polytope is again a
convex polytope. A k-dimensional face of P is called a k-face. Let X (P) denote the set
of all k-faces of P. Usually, O-faces are called vertices, 1-faces edges and (d — 1)-faces
facets. A tessellation 7' = {C; : i € N} is called face-to-face if the intersection of any two
cells C; and C; is either empty or a k-face (k < d — 1) of both cells. This condition may
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be written as:
d-1
cnciel | (9’<(c,~) myk(ci)) U {0} foralli# j.
k=0

If moreover every k-face is contained in the boundary of exactly d — k + 1 cells (k =
0,...,d — 1), then the tessellation is called normal. Let ¢ = {(x;, #;) }ien C RY x R. We
say that ¢ satisfies the regularity conditions if:

1. conv{x; : (x;, h;) € ¢} =R,

2. Only finitely many (x;, h;) € ¢ satisfy ||x; — y||> + h; < t for any y € R and any
teR.

We say that the points of ¢ are in general position if:
1. A (k — 1)-dimensional affine subspace contains at most k x;’s (k =2,...,d).
2. Atmost d + 1 points (x, 1) € ¢ satisfy |[x — y||> + h =t forany y e R?, t € R.

If ¢ satisfies the regularity conditions, then the Laguerre diagram generated by ¢ is a face-
to-face tessellation. If the points of ¢ are also in general position, then all cells of this
Laguerre tessellation have dimension d and this tessellation is normal. The aforemen-
tioned results can be found in [54].

Throughout, 7 is a Poisson process on R9 x (0, o) with intensity measure v xF. Here,
F is a locally finite measure concentrated on (0, o). In [39] it was shown that with prob-
ability one 7 satisfies the regularity conditions and its points are in general position. As a
consequence, L(n) is with probability one a tessellation, which is known as the Poisson-
Laguerre tessellation. One may define the distribution function F(z) = F((0, z]) forz > 0.
Consistent estimators for F' were introduced in chapter 5.

In this chapter we will also use the following notation. As shown in Lemma 5.1, for
x,y €RYand h > 0wehavey € C((x,h),n) —x & n(Axny) =0, with:

Ay ={( 1) € RTx (0,00) : IyI*+h =1 > |lx+y - x||*}. 6.1)

Moreover,

lyll2+h g
P (y € C((x, h),7) - x) = exp (—Kd/O (||y||2 +h- t) aF () |. (6.2)

For deterministic (x, 1) € R? x R, the set C((x, h),n) is a so-called random closed set.
Let 7(RY) denote the system of closed subsets of R?. F(R?) denotes the o-algebra on
F(R?) which is generated by all families 7X = {F € F(R?) : FNK = 0}, K € k<.
Here, K denotes the space of convex bodies in R4, and a convex body is a convex and
compact set with non-empty interior. Then, a random closed set is a random element of
(F(RY), F(RY)). Robbins’ theorem states that for any random closed set X ¢ R and
p € N we have:

E (vq(X)?P) =‘/Rd~~‘/Rd]Pj(y1,...,yp € X)dy;...dyp. (6.3)
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Robbin’s theorem is essentially Fubini’s theorem in the context of random closed sets. We
refer to [66] for more details on random closed sets and Robbins’ theorem. From the proof
of Theorem 5.10 in chapter 5 we recall that for any x € R¥:

/ E (va(C((x, h).m))) dF () =

(9]

1l
—.

(y € C((x, h),n) —x)dydF(h)

d

L
00 iy I2+h 5
Lol [ (P +n-1)
0 R4

DI

dF(t)) dydF (h)

Il
—

(6.4)

6.3 The overparameterization of Laguerre tessellations

For a Laguerre tessellation it can be seen from the definition of a Laguerre cell that trans-
forming all weights h; via h; +— h; + z for a fixed z € R does not change the tessellation.
In [27] it was shown via simulations that there also exist various other choices of gener-
ator points and weights which generate the same Laguerre tessellation. However, to the
best of our knowledge there is no explicit characterization of the class of all configura-
tions of points and weights which yield the same Laguerre tessellation. In this section, we
obtain such a characterization for a class of Laguerre tessellations generated by weighted
points satisfying commonly used regularity conditions. The following lemma from [63]
highlights a large class of generator points and weights which result in the same Laguerre
tessellation.

Lemma 6.1 (Proposition 6 in [63]). Let 7 ¢ N and ¢ = {(xi, hi)}iesr € R xR. Let
A1>0,ceR%andz € R. Fori € I define:

X, = Ax +c

B, = Ak — A= Dl 1* = 20x;, ¢) + 2.

Sety = {(x, h))}ic1. Then, L(p) = L(). In fact, C((x;, h;), ¢) = C((x], hi), ) for all
iel.

Remark 6.1. If we exclude the case A = 1 in Lemma 6.1, then x; and h; may be written
in the following form:

X =Ax )+

B = Ak — A= Dlx; = ' ||* + 2/,

for some ¢’ € RY and 77 € R. This form highlights in particular how each weight h}
depends on the distance of x; to ¢'.

Remark 6.2. Lemma 6.1 was used to construct the example in Figure 6.1.
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In order to prove a converse of Lemma 6.1 we need some additional assumptions. For
instance, from the crystallic growth interpretation of a Laguerre tessellation as described in
section 5.3, we see that one can always add a weighted point to a configuration of weighted
points with a sufficiently large weight such that this weighted point will generate an empty
cell. After all, the cell corresponding to this weighted point will essentially “’start growing
too late”. As such, we can at best characterize the class of weighted points which generate
the same Laguerre tessellation, when restricting ourselves to the weighted points corre-
sponding to the non-empty cells. In the theorem below we present such a characterization.

Theorem 6.1. Let ¢ = {(x;,hi)}ien € R X R, d > 2. Assume that ¢ satisfies the
regularity conditions and the points of ¢ are in general position. Let y C R% X R be a
countable set of distinct points. Assume that C((x, h), @) # 0 for each (x,h) € ¢ and
C((x,h),¥) # 0 for each (x, h) € Y. Then, L(¢) = L(Y) if and only if = {(x], h})}ien
with:

X =Axi+c¢

R o= Al + A4 = D)l ||1* +24¢xi, ¢) + 2,
Jor some A >0, c € R and 7 € R.

Proof. Leti € N. If x] and h! are as in the statement of the theorem then L(¢) = L(y) by
Lemma 6.1. Now it remains to show the converse. Hence, we assume L(¢) = L(i). Note
that the points of ¢ can always be relabeled in such a way that we obtain C((x;, &;), ¢) =
C((x},h}),y) for all i € N. Throughout this proof we write C; = C((x;, h;),¢) and
C! = C((x},h}),¥) for i € N. Hence it remains to show that if C; = C] for all i € N,
then x7 and h! are as in the statement of the theorem. Choose i, j € N with i # j such that
C;NC; # 0. Since the Laguerre tessellation L(¢) is a normal face-to-face tessellation, C;

and C; share a facet. By (5.3) this facet is contained within the supporting hyperplane:
Hij = {x e R? : 2(x,x; —x;) = i ll* = ;11> = hj + I}

We now seek conditions such that s generates the same Laguerre cells. If so, we neces-
sarily have H;; = H; : with:

H]; = {x € R? : 2(x, x] - x}}) = | II* = <} 11> = I} + I},

this being the case because H] . still needs to be a supporting hyperplane of C; and C ;
Note that the normal vectors of H;; and H] ; are given by x; — x; and x; — x;. respectively.
As a result there exists a 4;; # 0 such that: x] — x;. = A;j(x; — x;). Now take another
k € N, with k # i and k # j such that C;, C; and Cy share a vertex. Due to normality of
the Laguerre tessellation such a k exists. As a result, C; and Cy share a facet and C; and
Cy share a facet. Arguing as before, there exists A;x # 0 and 4 # 0 such that:

xl{—x} :/lij(xi—xj) (65)
X, —xp = i (xi — xg) (6.6)

x;- =X = Aje(xj —xp). (6.7)
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Suppose that 4;x # A;;, we show that this leads to a contradiction. Equation (6.5) may
be written as: A;;x; = A;;x; +x; — x’;. Subtracting (6.7) from (6.6) yields: x] — x’;

’ s . . ! J
Aik(xi —xx) — Ajr(x; — xx). Combining these two expressions yields:

Ajjxi = Aijxj + Ak (X = xk) = i (x; = xx).

By solving for x; we obtain:

oo o Ak Ak (A= i)
b FIPR T h A P T

This means that x; is a linear combination of x; and x, and therefore these three points are
collinear. This is in contradiction with the assumption that the points of ¢ are in general
position. Hence, A;x = A;j. By symmetry: 4 = A;; = A;x = 4;i. Because the Laguerre
tessellation is a face-to-face tessellation we can iteratively consider neighboring cells such
that we eventually find:

x; —x} =A(x; —x;) forall i, j € N. (6.8)

Fixi € N, and let j € N. Choose ¢ € R such that x; = Ax; + ¢. From (6.8) we now
obtain that also x} = Axj + c. Hence, xl’. = Ax; + c for all i € N. We will argue that
A > 0 at the end of this proof. Now, we need to determine weights h’l s h’z, --- € R such
that the weighted points ¢ := {(x], h}) };cw. generate the same Laguerre cells. Consider
once again j # i such that C; N C; # 0. Following the notation for H;; and H; ; as before,
plugging in x; = Ax; + ¢ we obtain:

Hi; = {x e RY : 2(x, A(x; — x7)) = 2|l > + 22¢xi, ) — 22|y |[* = 24(xj, €) — By + b}
It is now evident that H;; = H : if and only if:

Rl +220xi,€) = Pl |2 = 245, €) = I+ by = A (il = b |2 =y + |
= - =21 (hi = (A= Dl |* = 2(xs, c>) -4 (hj — (A= Dlx;I1* = 2¢x;, C>)
& h] - h;- =A(fi = fi)» (6.9)

with f; = h; — (1 = 1)||x;]|> = 2(x;, ¢). Analogous to (6.8) we may argue that (6.9) holds
foralli,j € N. Fixi € Nand let j € N, then choose z € R such that 4} = Af; + z. From
(6.9) we now obtain that also h} = Af; + z. Hence, for all i € N we have:

R = Afi + 2= Ah; = A = D)||x;]]> = 22, ¢) + 2.

This is precisely the form of h; as in the statement of the theorem. Finally, we conclude
that we must have 4 > 0. This is the case because for i, j € N with C; N C; # 0 the
supporting hyperplane H;; also defines a half space containing C;, recall (5.3). Similarly,
the half space induced by the supporting hyperplane Hj; contains C;. In order to have
C; = C] for all i € N we need not only to preserve these supporting hyperplanes but also
the orientation of the corresponding half spaces, which requires 4 > 0. After all, choosing
A < 0 will flip the orientation of each half space. O
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6.4 Inverting Poisson-Laguerre tessellations via weighted
least-squares

In view of Theorem 6.1 it is evident that whenever one observes a (random) Laguerre
tessellation through a bounded window it is unfortunately not possible to exactly recon-
struct the original set of of weighted generators corresponding to the observed cells. How-
ever, we can already intuitively understand that in many cases some configurations of the
weighted points are more likely than others. Consider for example Figure 6.1. If one is
given the information that the original generator points are uniformly distributed within
the observation window, then the configuration in the left panel seems far more likely than
the configuration in the right panel. This suggests that it may still be possible to get very
close to the original configuration, even though exact reconstruction is not possible.

We now turn our attention towards Poisson-Laguerre tessellations. Recall that n is a
Poisson process on R x (0, c0) with intensity measure v, X F. Suppose we observe the
Poisson-Laguerre tessellation L(#n) through a bounded observation window W,,, where
(Wp)n>1 18 a convex averaging sequence. In view of algorithm 1 in [27] we may assume
that we have a configuration of weighted generators corresponding to the (partially) ob-
served cells of the tessellation. Because we are in some sense interested in the “best”
configuration of the weighted generators, and because all configurations are related to the
original configuration via the form presented in Theorem 6.1, it does not matter which
configuration we start with. As such we consider it to be of no loss of generality that we
observe weighted generator points of n* up to a deterministic transformation of the form
presented in Theorem 6.1. As in chapter 5, " denotes the extreme points of 77, and is given
by:

n"={(x,h) €n:C((x,h),n) # 0}.

Hence, we consider the following. For all points (x, #) € n* with x € W,, we assume
that the Laguerre cells corresponding to these points are observed. Additionally, the orig-
inal points (elements of *) themselves are considered to be known up to a transformation
of the form in Theorem 6.1. Specifically, suppose that 19 > 0, ¢co € R?, and define the
function fy : R x R — R X R via:

x co 1 1 (1 5y 2 co
ot = (5= S e (31 = 5 e )

We do not consider the additive constant z in Theorem 6.1. We do this because the dis-
tribution of a Poisson-Laguerre tessellation is invariant under shifts of the distribution
function F(z) = F((0, z]). As such, we cannot do better than estimating F up to a shift.

For any point (x, &) € n* with x € W), we observe fy(x, h) instead of (x, i) but 1y and
co are considered to be unknown. Define: WS = /IL(,W” - fl—?] We wish to estimate 1o and
co. For this purpose we define the following criterion function 7}, : R x R? — [0, c0) via:

Tw(d,¢) = Ly (x) lAx + ¢ = yl*dy

va(Wn) 5t ) C((x.h). fo(m)

1 X co
= Tw, (x) /l(———)+c—y
va(Wn) (X%U " L o

2

dy  (6.10)

C((x,h),m)
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Note that while 7,, contains a sum over elements of 1 (or fy(77)), only elements from n*
(or fo(n*)) contribute to this sum. Intuitively, we believe that this criterion function is
asymptotically minimized when taking A and ¢ such that A(x/2y — co/Ao) + ¢ = x which
corresponds to 4 = Ag and ¢ = cg. That is, given the transformation fy we are interested in
finding the inverse transformation. First, we compute the expected value of 7;,(4, c¢). To
this end, we need some additional notation. Let y € R and define the probability density
function pg : R? — [0, oo] via:

pr) = [ ew (—Kd I " (e en—1) aro

The fact that p is a probability density function follows from (6.4).

dF (h).

Lemma 6.2. Forall y € R\ {0}: pp(y) < 1/(xallyll*). Additionally, for all q € N:
Ja 1919 E(y)dy < co.

The proof of Lemma 6.2 is given in section 6.8. Lemma 6.2 ensures that the expected
value of T;,(4, ¢), as given in the next lemma, is finite.

Lemma 6.3. Let 1 > 0 and ¢ € RY, then:
1 A /lC()

——1)x+c—-—
Ao Ao

E(Th(4,¢0)) = AR

2
dx + /Rl IyII?pr(y)dy.

And in particular:

E(T(.e) = le=coll + [ I3IPpr()dy.

Proof. Substituting = y — x, and then writing y instead of ¥ in (6.10) we obtain:

Tn(/LC) =
1 A /lC() 2
- T, () (-1)s-2erenf o
Vd(Wn) (x%]en C((x,h),m)-x Ao Ao
2
| Sl 1)
B Lw, (x ——lx=——=+c—y| T{y € C((x,n),n) - x}d
va(W,) Z w, (x) 2 [\ 20 T y|| Hy € C((x, h),n) —x}dy

(x,h)en

Note that C((x, h),n) = C((x,h),n + dx,,). Hence, via the Mecke equation (Theorem
5.3) and Fubini we obtain:

E(T,(4,¢)) =
— 1 i_ _@ _ 2 o0 )

= va(W,) '/n‘/Rd (/10 1))6 o +c—-Yy [) P(y € C((x,h),n) —x)dF(h)dydx
_ ! A _Ac ~ 2

- va(Wy) ,/n_/R:d (/10 l)x o +c—y|| pr(y)dydx




130 Chapter 6. Inverting Poisson-Laguerre tessellations
1

1 deo |
AN (——l)x—/l—0+c (/]R pF(y)dy)dx+
2 A /lCo
Vd(w)</ ( 1) o +cdx/ pr(y>dy>
+ i o e [ IRery.

Because the probability density function p is symmetric around 0 and because
/Rd [¥llpr(y)dy < oo by Lemma 6.2, it follows that /Rd ypr(y)dy = 0. As aconsequence:

( A | ) /IC()
Ao Ao

E(Tw(4,0)) =

2
va(Wy) /Rd Iyll“pF(y)dy.

]

Remark 6.3. By considering any non-empty cell C((x, h),n) with (x,h) €e nand x € W,
to be fully observed we do not incorporate edge effects. We discuss this issue in section
6.6.

6.4.1 Definition and computation of an estimator

From its expression, it is evident that the function (4, ¢) +— E (T;,(4, ¢)) attains its global
minimum in (Ao, ¢g). This inspires the definition of the following estimators for 1o and
Co-
(Ap,ép) = argmin T, (4,¢).
(A,c)eRxR4

Applying this inversion procedure in practice means the following. For 1 € R,¢ € R¢
define f(-;4,¢) : R*! — R? x R via:

F((x,h); A, ¢) = (Ax + ¢, Ah — A(2 = D)||x]|* = 2A(x, c)).
Then, the inversion procedure boils down to computing the following point process:

i = F(fom); Aus E0) N (W X (0, 00)), (6.11)

which may be considered an approximation of n* N (W,, x (0, )). Let us provide some
further motivation for estimating (g, co) by minimizing 7,,. We intuitively expect that for
a point (x, h) € n*, x should be quite close to the center of its cell C((x, h),n). Suppose
that we consider for the center of a cell its centroid, also known as center of mass. We will
now show that minimizing 7, corresponds to minimizing the sum of the volume weighted
squared distances of each generator to the center of mass of its cell. For a Borel set K ¢ R¢
of positive volume its centroid c¢(K) is defined as:

1
c(K) = 2K /dex.
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The following equation highlights a convenient property of c(K), for a € R¢ we have:

/K e — afPdx = /K e = c(K)|Pdx + va(K)la - c(K)IP- 6.12)

Note that the LHS of (6.12) is minimized by a = ¢(K). In words, the centroid minimizes
the integrated squared distance to a given set. Let us introduce the following notation, for
the volume and the centroid corresponding to the Laguerre cell associated with (x, 4):

van = va(C((x, h),m),  cxn = c(C((x, h),n))

Suppose that (x”, h’) = fy(x, h) for (x, h) € n*, because the function fy does not affect the
resulting Laguerre tessellation we have:

v = va(C(( 1), fo(m)) = va(C((x, h),m) = v

Similarly we also have ¢,/ = cx,n. We will frequently use this when we switch from sum-
ming over elements from 7 to summing over elements from fy(77), or vice-versa. Through-
out, we will set ¢ , = 0 whenever v, j, = 0. Applying (6.12) to the definition of 7, we
obtain:

T.(1,¢c) =

1

2
" va(W, Y, Lk (/ Iy = cxnlPdy +vien [|2x + ¢ = e )
va(Wn) (x,h)efo(n) C((x,h),fo(n))

X Co
Al———|+c—
(/10 /10) €7 Gk

2)
As such, we have written T}, as the sum of two terms, and only the second term depends
on A and ¢. Therefore, we also have:

1
T, (x / ly = cenlPdy + v
va (W) 2, )(c«x,m,n)y T

(x,h)en

A, . 1 2
(/ln, Cn) = argmin m Z ]].WS(X)Vx,h H/lx +c— Cx,h” . (613)
(Ae)eRoked VAT (o pyefo ()

So indeed, (A, ¢,) minimizes the sum of volume weighted squared distances of the gen-
erators to the centers of mass of their cells. From its expression, we can see that 7}, is a
convex function. As a consequence, we can obtain (A,,, ¢,) by computing the critical point
of T,, (indeed, there is only one critical point). Taking the partial derivatives of T,, w.r.t. 4
and c yields:

[")Tn /1, . 2
a(/l o) _ 2 ]lw,‘} (X)Van (/l||x||2 + <c - Cx,h,x>)
va(Wy) (x,h) e fo(n)
IMa(dc) _ 2
g va(Wp) Z Lyo(x)va,n (Ax+c=cxn).

(x,h)€fo(m)
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Setting these partial derivatives equal to zero and solving for A4 and ¢ yields a unique
solution, which is given by:

Z(x.h)efy(n) ﬂwg (X)vx,n{Cx,n>x) B Z(x.h)efy(n) lw}l (X)Vx.nCxn Lx,hyefy(n) HWS (X) v, nx
P 2 (x,h)efy(n) Lo (X)Vx,n Z(x,h)efy(n) Tyo (X)van > Lx,hyesy(n) Lo (X)Vx,n
n =
2
Z(x.h)efy(n) Lyo (xX)vx,nllx|I? Z(x.m)efy(n) Ly (X)vx,nx

2(x,h)efy(n) ﬂwg (X)vx,n Z(x,h)efy(n) 1W3 (X)Vx,n

A

_ Zamenom Lwg@vencen o Deemesn Lwy ()vanx

n=

Z(xnyefo(n) Lwo () Van " Temeson Lwe (D ven
(6.14)

Or, if we write fo(7) N (WO X R) = {(x1, 1), ..., (X, hun)} and ¢; = Cx; pys Vi = Vi oy
then A,, may be written more compactly as:

( o Vi(Ci,Xi>) _ <Z,’~Zl Vici N ViXi >

i Xt vi Lihvi? N v
n- o e 112 m (12
i=1 Vi [1x: || _ Zizl ViXi
Z;’Zl Vi Z:ﬁl Vi

(2 vi) (2 videnxiy) = (T vici, S0 vixi)
(2 vi) (2 villal?) = [, vesil
Similarly, ¢,, may be written as:

L X ViCi A Xt ViXg

Cnp = .
" Zﬁl Vi " 27;1 Vi

In order for 1, to be well-defined we need to verify that the denominator in its definition is
not equal to zero. Whenever x1, . . ., x,,, are distinct points, we have by Jensen’s inequality:
2
H Dty ViX; - > vill

Z:Zl Vi 2:21 Vi

Because xp,...,x, are distinct points with probability one, A, is almost surely well-
defined. As is frequently the case with least-squares estimators, these can often be com-
puted via an explicit formula such as (6.14) or by solving a system of linear equations. In
this case, note that we may write:

vl + e =il
Z:'Zl Vi
Here, X is a (d + 1) X (d + 1) matrix which is given by the following block matrix:
Dt ViXi
la ( Z?lil Vi )
(z::l vix; )T o villxall?

T N m .
i=1 Vi i=1 Vi

=pTXp-2u"B+K.

X =
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Each vector is to be interpreted as a column-vector and 87 denotes the transpose of 8.
The matrix I, is the unit matrix in R4*¢. Finally, u and S are vectors in R+ and K is a
constant, these are given by:

Yt vici m 2
_ v (€] k= 2= villcill
u= X vilenxi) |° B= 1’ - mo,.
"o i=1 Vi
i=1

Then, (1, ¢,) may be computed by solving the linear system X = u for 8. In simulations
this was observed to be more numerically stable compared to using (6.14).

6.4.2 Limiting behavior of the criterion function

As a first important step towards understanding how (A,,, ¢,) may behave as n — oo, we
study how the criterion function 7;, behaves as n — oo. Before we can determine the
limiting behavior of 7,,, we need two lemmas which allow us to control the sizes of the
Laguerre cells that are summed over in the definition of 7},.

Lemma 6.4. Letr > 0 and ¢ = {(x;, hi)}iew € R¢ x R. Let (x,h) € ¢. Define the
following set:

Dx,hz{(x’,h’) ERIXR: I <r2+h, |x—x| <r+\/r2+h—h’}.

Then, if (¢ \ {(x,h)}) N Dy, = O we have B(x,r) C C((x, h), ¢).

Proof. Suppose (¢ \ {(x,h)}) N Dy, = 0. Lety € B(x,r), it remains to show that
Ix = ylIZ+h < ||x" = y||>+ & forall (x’,h') € ¢\ {(x,h)}. Let (x", ') € ¢\ {(x,h)}.
If i’ < r? + h then by assumption ||x — x’|| > r + Vr2 + h — h’. As a consequence of this
fact and ||x — y|| < r we obtain:

’ 2 2
lx=ylP+h=h" < rP+h=h" < (lx=x'| =r)* < (ly =&l + lx =yl = )* < " =y[*.

So indeed, ||x — y||> + & < ||x” — y||*> + /. Tt remains to consider the case h’ > r* + h. In
that case we also obtain the desired result:

lx=yl?+h<rP+h<h <|x’ —y|>+H.
O

The lemma below is essentially an intermediate result obtained in the proof of Propo-
sition 3.1 in [30]. For the sake of completeness, the proof is presented in section 6.8.

Lemma 6.5. Let z > 0, R > 2vZ and ¢ = {(x;, hi)}iew © RY x (0,z]. Let (x,h) €

¢. Suppose that J € N, and Cy, . ..,Cy are convex cones with non-empty interiors with

UJ.ZIC = RY. Additionally, assume these convex cones have disjoint interiors and satisfy

(u,v) > %||u|| - |[v| whenever u,v € C;. Define the following sets for j € {1,...,J}:
Byj = ((B(x,R)\ B(x,2v2)) N (C; +x)) x (0,2].

IfoN By ; #0forall je{l,...,J}then C((x,h),¢) C B(x,R).
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In the theorem below we show that 7;, almost surely converges pointwise to a function
T. Note that the integral in the definition of 7 is finite by Lemma 6.2.

Theorem 6.2. Let A > 0 and ¢ € RY, then with probability one we have :

lle = coll* + fa IIPPF(dy  if 2= 29
(o.¢]

lim T,,(4,¢c) =T(4,¢) := .
n—oo otherwise.

The proof of Theorem 6.2 is given in section 6.8. In the remainder of this section we
derive a few additional limit results, which we need later.

Lemma 6.6. Forn € N define:

1
D, = Tw, (X)vx.n (6.15)
" Vd(Wn) (x%:en ¥
1
B, = Tw, (X)vs,n (Cx.n —X) . (6.16)
va(Wy) (x%:en W ( )

Then, with probability one: lim,,_,o, D, = 1, and lim,, . B;, =0

Proof. The fact that lim,,_,o, D, = 1 almost surely, was shown in the proof of Lemma 5.5
as we have D,, = FY (). Let ¢ € R, we may write:

Tu(do.0) = s D dw, () v = co+ ¢ = ylPdy
va(Wan) (44 C((xh).m)
1
= Z ]an(x)(vx,hllc—c()Hz+2<c—co,/ x—ydy>+
va(Wn) (45 C((x.h).m)

+ / ||x—y||2dy)
C((x,h),n)
= D,|lc = coll* = 2{c = co, Bu) + Ty (Ao, co)-

Indeed, note that for any (x, k) € *:

/ y - xdy = / vy = v (€06 ). m) = %) = Vi (Cxn - ).
C((x,h),n) C((x,h),n)-x
AS a Consequence:

1
(c=co.Ba) = 5 (Dnllc — ol + T (Ao, co) = T (Ao, c)) . 6.17)

By Theorem 6.2, and since lim,_,., D, = 1 almost surely, we obtain via the continuous
mapping theorem the following almost sure limit:

n—oo

. 1
im (¢ = 0.8 = (e =col?+ [ I1Poray = e =col? = [ biPpr )y

=0.
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Keeping in mind that this holds for any ¢ € R?, we may for instance take ¢ = cq + e i
where e; with j € {1,...,d} is the j-th standard unit basis vector of R¢. Taking this ¢ we
observe that the j-th component of B,, converges to 0 almost surely. Because this holds
forany j € {1,...,d}, lim, . B,, = 0 almost surely. O

For any ¢ € R?, let 1,(c) = argmin, T,,(1,c). Note that A — T, (4, c) is convex.
Recalling that the partial derivatives of 7,, were derived in section 6.4.1, a straightforward
computation yields:

Eemesotn Lwg()van (exn = c.x)

An(c) = (6.18)
S emyesotm Lwo v X117
Computing the partial second derivative of 7,, w.r.t. A yields:
8T, (1, ¢) 2
(;/12 = 52V D Ay ovanlixl? = 2M,. (6.19)
A em)eto ()

From this, it immediately follows that for any ¢ € R, T,,(-,¢c) is strongly convex with
parameter 2M,,. Recall that a function f : R?Y — R is strongly convex with parameter
m > 0 if for all x, y € R¥:

FG) 2 f@)+ V(). =20+ Slly =P

Observe that if x* is the global minimizer of f, then:

Iy =21 < 2 (F0) - 7). (6.20)

A sufficient condition for f : R — R to be strongly convex with parameter m > 0 is
that f is twice differentiable and f"’(x) > m for all x € R. We now show that the strong
convexity parameter of 7,,( -, ¢) diverges to infinity as n — oo:

Lemma 6.7. With probability one, lim,,_,.o M,, = co. Here, M,, is as in (6.19).

Proof. Let (Q, A,P) be a probability space supporting the Poisson process 77. As in the
proof of Theorem 6.2 it is sufficient to show that for all M > 0 there exists a Qp; € A
with P(Qjs) = 1 such that for all w € Qp;: liminf, . M, (w) > M. Let M > 0. Choose
Qp € A with P(Qpy) = 1 such that for all w € Qp: L(n(w)) is a tessellation and
lim,, 0 D, (w) = 1. Such a Q; exists by Lemma 6.6 and the fact that Poisson-Laguerre
tessellations are well-defined. Let w € Q,/, then we may write M, (w) as:

1 X Ce 2
My(w) = ——— Ly, () (@) || - =
vaWa) (yentio) o Ao
2
1 X co X Cco
- 1 . = -2 il - 2 < VM +
va(Wy,) Z W, (%)Y (@) Ao Ao {/10 Ao }
(xmen(-:w)

6.21)
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2
d

We consider (6.21) and (6.22) separately. Note that the following expression is an upper
bound for (6.21):

1
va(Wy)

X co

Ao Ao

X co

Ao Ao

+

Ly, (X)v,n(w)
(xh)en(-w)

>m}

6.22)

M
va(Wy)

Tw, nBcoaom) X)Vxn(w) | (6.23)
(x,h)en(-;w)

For sufficiently large n, W,, N B(co, AoM) = B(cg, 1oM). Hence, for such n, the term in
brackets in (6.23) does not depend on n. Because the tessellation L(r(w)) is locally finite
and has cells of finite volume, this term is finite. Because v4(W,,) — oo asn — oo we see
that (6.21) vanishes. For (6.22) we obtain the following lower bound:

2
1 X co X <o
—V (W) ]an(x)vx,h(a)) H/l__/l_ ]].{ /l__/l_ > VM}
AT (e nyen(-w) 0“0 0 4o
1 X o
D M — 1 MI1S||— - —|| < VM ;. (6.24
> n(w) Vd(Wn) W, (x)vx,h(w) : 1 Ll = } (6.24)

(x,h)en(-;w)

By the choice of Q,, the first term of (6.24) converges to M as n — oo, while the second
term of (6.24) vanishes, as n — co. The fact that the second term of (6.24) vanishes can
be shown via the same argument as used for (6.21). Hence: liminf, . M, (w) > M. O

As a consequence we find that a strongly consistent estimator for 1o can be obtained
even if we do not optimize for c.

Corollary 6.1. Let ¢ € R?, then with probability one: 1im,_. 1,(c) = Ag.

Proof. Applying (6.20) to the function T}, (-, c¢), and taking into account that 7,(-, c) is
non-negative, we obtain:

Tn(do,€)

0= (@ < 5 (1220, = Tu(ha(e). ) < 7250

(6.25)

By Lemma (6.7), Theorem 6.2 and the continuous mapping theorem we obtain that the
RHS of (6.25) vanishes almost surely, which yields the result. O
6.5 Consistency of the inversion procedure

In the previous section we obtained various limit results, which we will need in this sec-
tion for proving consistency of the inversion procedure. That is, we will show that under
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reasonable conditions the proposed estimator (A,,, ¢,,) for (1o, ¢o) is consistent. Forn € N
define the following random vector:

1
An =S g@, Ly, (x)va(C(x. h).m)x. (6.26)

That is, A,, may be seen as a weighted average of the generators corresponding to non-
empty cells, the weights being the volumes of the cells. One might argue that for a proper
weighted average we should divide A,, by D,,, with D,, as in (6.15). However, by Lemma
6.6 we know that D, converges to 1 almost surely as n — oo. Hence, when studying the
behavior of A, as n — oo, it is not needed to divide A, by D,, because this normalization
will not lead to a different limit of A,,, if it exists in some sense of stochastic convergence.
As a first observation, the expected value of A, is the centroid of W,;:

1
Vd(Wn) Vd(Wn) W,

This follows from the Mecke equation and (6.4). As it turns out, the behavior of A, is
essential for obtaining a consistency result for (1, ¢,), as is highlighted by the theorem
below.

E(A,) =

/ /oo E(vq(C(x, h),n))dF(h)xdx = xdx = c(Wy,).
. JO

Theorem 6.3 (Consistent inversion).

1. If the sequence (A,),>1 is uniformly tight, then:

lim (A, é) = (Ao, co)-

n—oo
2. If the random variable sup, .1 || Al is almost surely finite, then:

lim (14, ¢n) = (A0, o).
n—oo

Proof. Let A,, B, and D,, be as in (6.26), (6.16) and (6.15) respectively. For n € N
observe that:

1
ﬂWn (x)v hCx,h = B,,L +An.
va(Wy) (x%:en e

Let 4,,(0) and M,, be as in (6.18) and (6.19) respectively. We may write A, (recall (6.14))
as follows:

~ Dnm Z(X,h)efo(ﬂ) ]lW,? (x)vx,h<cx,hvx> - <Bn + Ay, An>

n=

Do (53077 Zemesson wg (vnlell?) = 14,11
Dnm Z(x,h)(:‘f()(n) ]IW,(,) () Vx,n{Cx,n>X) = ||An||2 — (Bn, An>

Do (577 Zewmenotn Lwgvenllrll?)

Do (57577 Zeemeron Twg Kvanllxl?)

Du (577875 Zemenon Lug@vealixl?) = 14alP
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| Anll> + (B, An) 1

DaM, | — [A
D, M,

= /in(o) -

By Corollary 6.1 we have lim, . 4,(0) = Ay almost surely. Suppose condition 1 of
the theorem is satisfied. By the uniform tightness of A,, and since lim,_,., B,, = 0 al-
most surely by Lemma 6.6, we obtain that ||A,||> + (B, A,,) is uniformly tight. Because
lim,, 0o M, = co almost surely this yields:

Anll* + (B, A
lim M E 0 and

m 2
n—eo D, M, n—eo 1 _ JA112
D, M,

e

1. 6.27)

Here we also used the rule which is often written as op(1)Op(1) = op(1) in stochastic
o notation. Hence, via the continuous mapping theorem we obtain lim,_,. 4, = Ag in
probability. If condition 2 of the theorem is satisfied then the limits in (6.27) become

almost sure limits, yielding lim;,—,. 4, = A¢ almost surely. We now consider ¢, (recall
(6.14)), which may be written as follows:

~ Zemesop Two(VenCon o ienyefyn Lwo (K)vanx

n=

A

2 ehyefo(n) Lwo (XD v n "X e fo(n) Lyyo(x)va,n

(&
_ Z“()c,h)eﬂ Lw, (X)vxnCxn 4 Z(x,h)en Tw, (X)v.c.n (/lio - /l_g)

Z(x,h)en ILW,, (x)vx,h " Z(x,h)eq Ian (x)vx,h

~ Zemen Iw, v (cxn—x) 1 Smen Iw, @)venx A,

= +—(/lo—/in) + —Cp.
2 nyen Lw, (X)vn Ao Zenyen Iw, ()ven Ao
B, 1 <~ An Ay
LG TR I i L 6.28
D, /10( 0~ 4n) D, t 2, (6.28)

By Lemma 6.6, lim,,,o B,,/D,, = 0 almost surely. If condition 1 of the theorem is satis-

A

fied, then lim,,—,o, 4, = g in probability. Hence,

here was also used that lim,,—, D, = 1 almost surely by Lemma 6.6. As a consequence,
the second term of (6.28) vanishes when taking the limit in probability (op(1)Op(1) =
op(1)), since A, is uniformly tight. Via the continuous mapping theorem we obtain

lim;, 0 €, = co in probability. If condition 2 of the theorem is satisfied, then lim,, o 4, =
Ao almost surely. Via similar arguments we obtain lim, .« ¢, = co almost surely. m]

It seems necessary that some conditions on (c¢(W,,)),>1 need to be imposed for any
of the two conditions in Theorem 6.3 to hold. As is commonly done we may for instance
choose a convex averaging sequence (W,),>1 which is centered at the origin. That is,
we may take W,, such that c¢(W,) = O for all n € N. Obviously, if A, then converges
almost surely to 0, this would imply condition 2 in Theorem 6.3. While we do not know
if A, converges in general, we will now highlight via an example why the almost sure
convergence of A, to 0 should not necessarily be expected, especially if d = 2.
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Example 3. The vector A, may essentially be seen as a weighted average of Poisson
points, the weights being the volumes of the Laguerre cells. Let us now consider what
happens if we consider the arithmetic mean of Poisson points instead. Suppose ¢ is a
homogeneous Poisson process on R¢ with intensity 1. For convenience, we take W, =
[-1n'/d, In'/4]4 That is, W, is the centered cube of volume v4(W,) = n. Then, we

define: |

A, = Tw, (x)x.

va(Wn) );//

Of course, for an actual arithmetic mean we should normalize with ¢ (W,,) instead of
va(W,). However, by the spatial ergodic theorem lim,,—, ¥ (W,,) /v4(W,,) = 1 with prob-
ability one. So this normalization will not lead to a different limit of A,,, if it exists in
some sense of stochastic convergence. Let ¢ € R¢, it can be shown (the proof is given in
section 6.8) that the characteristic function of A,, satisfies:

||t||2> e

exp | =5 ifd=2

lim gz, (1) =1"" -

n—oo 1 ifd > 3.

By Levy’s continuity theorem this implies the following limit in distribution:

o [N(0hn) ifd=2

lim A, =

n—oo 0 ifd > 3.

Here, N (O, 1—1212) denotes the multivariate normal distribution on R? with mean 0 and
covariance matrix 1—1212, I being the 2 x 2 identity matrix. Recall that convergence in
distribution to a constant implies convergence in probability to the same constant. So if
d > 3 the convergence also holds in probability. Additionally, the L?-norm reveals that

A,, also converges to 0 in L if d > 3:

B (14,117) =

120"

Again, the proof of this statement is presented in section 6.8. The L?-norm highlights that
the rate of convergence of A,, to 0 is faster in higher dimensions.

While the characteristic function of A,, as in Example 3 is tractable, this does not
appear to be the case for A,. Still, for A,, knowledge of its L?>-norm is sufficient for
deriving uniform tightness of A,, via Markov’s inequality. Therefore, we derive an upper
bound for the L?-norm of A,. In order to compute this bound we need several results
which are stated below. The proofs of these statements are given in section 6.8.

Proposition 6.1. Let x € R, h > 0 and p € N. We have the following inequalities:

o0 r2+h d
E (va(C((x, h),m)P) Spdngo exp (—Kd/O (r2+h—t)2 dF(t))r”d‘ldr

< p' .
= F(h)r

Here, we set p!/F(h)P = co if F(h) = 0.
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For proving Proposition 6.1 we use a similar technique as was used in Proposition 2.3
in [73] to derive a bound on the second moment of the volume of a typical Poisson-Voronoi
cell. While the second inequality in Proposition 6.1 provides a finite bound for large values
of h it is not yet clear whether the p-th moment is finite for all 2z > 0. We show this in the
lemma below.

Lemma 6.8. Let p € N. There exists a constant 0 < ), < oo such that for all x € RY and
h >0, we have E (va(C((x, h),n))?) < ap.

Theorem 6.4. Let p € N. There exists a constant 0 < 8, < oo such that for all x € RY:
[ Eutcismamarm < p,.
Lemma 6.9. Let x,xy € RY, then:

./0./0 E (va(C((x1,11), 11 + 8 (xy.10)))Va (C((x2, 12), 11 + S (xy 1)) AF (h1)dF (h2) < 4.

We set W,, = naW forn € N, where W ¢ R is a convex body satisfying v4(W) =1
and c¢(W) = 0. Via a direct computation we may write:

E (I14al?) = o D (va(Clr byl |+

W 2E
va(Wy) (x.myen

1
+———F > Tw, (x1,%2)va(C 1, he)m)va(C(xa, o), )y, 62 |
Vd(Wn) 2
(x1,h1),(x2,h2) €(17)%

(6.29)

Here, (n)i denotes the set of all distinct pairs of points of . That is, if (x1, k1), (x2, h2) €
(n)i, then (xy, hy) # (x2, hp). Via the Mecke equation and Theorem 6.4 the first term of
(6.29) is bounded from above by:

1

B 2 tw e iR =

(x,h)en

5 [ [ B (e m?) ar o

BT e
n W,

< [i;‘/ diam(W,,)%dx
n

n

IA

_ Bodiam(W)?

2
n'-a

(6.30)



6.5. Consistency of the inversion procedure 141

Here we also used: diam(W,,) = n'/4diam(W). Notice that this upper bound is similar to
the L2-norm of A,,. In the case of A, the cross-terms vanish, due to independence. If this
is also the case for A,, this would mean the second expectation in (6.29) is equal to zero.
Define the function ¢ : R x R? — [0, o) via:

P(x1,x2) =

‘/0 ./o E (va(C((x1,71),1 + 6 (xy,10)))Va(C((x2, h2), 11 + S (x,,ny))) AF (h1)dF (hy).
Then, via the multivariate Mecke equation (Theorem 4.4 in [53]) the second term in (6.29)
is given by:

1
—2/ / ¢(x1,x2)(x1, x2)dxdxs. (6.31)
= Jw, JW,

By Lemma 6.9 we know that |¢(x;, x2)| < 4. Taking this into account and by applying the
Cauchy-Schwarz inequality, we obtain the following upper bound for (6.31):

1
—2/ ¢(x1,x2)x1, x2)dx dxz
n n Wn

4
= _2/ / |(x1,x2)| dxydxy < diam(W)24nd |
n 0 o W

Combining this expression with (6.30) yields:

Bodiam(W)?

. 2
——+ diam(W)?4nd . (6.32)
n d

B (14017) <
Unfortunately, the RHS of (6.32) is not uniformly bounded in . It does yield E(||A,||*) <
oo for each n € N which we will need later. Currently, it seems that deriving a tight
upper bound for E (||An||2) is hard in general. However, under certain assumptions on
FF it becomes possible to obtain a bound of order O(n~**/4). To prove this, we require
the notion of stabilization, which is often used in stochastic geometry for deriving laws of
large numbers and central limit theorems, we refer to [88] for an overview. In the context
of Poisson-Laguerre tessellations stabilization techniques were used in [30] for proving
asymptotic normality of estimators of geometric characteristics of cells.

Theorem 6.5. [Propositions 3.1 and 3.2 in [30]] Suppose F is concentrated on (0, M) for
some M > 0, and let (x,h) € R? x (0, M). There exists a random variable Ry (1) > 0
(the radius of stabilization) such that:

1. With probability one, for all (x’,h") € R¢ x (0, M), with ||x — x’|| > Rx(n):
C((x,h),n)=C ((x, h),n+ 6(x’,h’)) .

2. With probability one: B
C((-x7 h), 77) - B(xa Rx(n))

3. The random variable R, (n) has exponentially decaying tails. That is, there exists
constants c1, cy > 0 such that for all r > 0:

P(Rx(n) > 1) <cre .
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4. The distribution of Rx(n) does not depend on x. Additionally, Ry (n+ 6y) = Rx(n)
and Ry(n+6,) < Ry (1) for all x’ € R,

Additionally, we recall the Poincaré inequality, which is useful for deriving bounds of
the variance of so-called Poisson functionals if one can control the influence of inserting
an additional point into the point process.

Lemma 6.10 (Poincaré inequality, Theorem 18.7 in [53]). Suppose n is a Poisson process
on the measurable space (X, X) with o-finite intensity measure A. Suppose f : N(X) —
R satisfies B(f (17)?) < oo, then:

Var(7m) < | B (D2 0)) A,

with Dy f(n) = f(n+6x) — f(n), forx € X.

Proposition 6.10 and Theorem 6.5 may be used to prove the theorem below. The proof
of Theorem 6.6 is given in section 6.8.

Theorem 6.6. Let A, be as in (6.26) with W,, = néWfor neN, where W c R isa
convex body satisfying vg4(W) = 1 and c(W) = 0. IfF is concentrated on (0, M) for some
M > 0, then there exists a constant 0 <y < oo such that for all n € N:

Y
B (llal?) < L.
n-d

As a consequence, lim, o A, = 0in L? ford > 3. If d > 2, the sequence (Ap)ns1 is
uniformly tight.

Theorem 6.6 guarantees consistency of the inversion procedure for a large class of
choices for F. Whether the inversion procedure is consistent for all locally finite measures
F on (0, c0) is an open problem.

Remark 6.4. In general, if one does not wish to assume a uniform upper bound for the
weights, it is not clear whether there is still a way to apply stabilization techniques. In the
recent paper [13] a different technique, called region-stabilization, is used in the context
of Poisson-Laguerre tessellations for deriving central limit theorems. Here, various para-
metric models are considered with unbounded weights. Perhaps similar techniques can be
used to derive a bound for E(||A,||?) without assuming an upper bound for the weights.

6.6 Simulations

In this section we perform various simulations to empirically study the behavior of the
estimator (A,,, ¢,,) proposed in this chapter. We also consider a variant of (A, én), which
takes into account edge effects. By computing these estimators, we effectively invert the
observed Poisson-Laguerre tessellations. Keeping in mind the main motivation for in-
verting Poisson-Laguerre tessellations, we then study how well the function F' can be
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estimated if the original weighted generators are unknown. That is, first we observe a
Poisson-Laguerre tessellation through a bounded window and apply the inversion proce-
dure. Then, we compute a variant of the estimator ﬁ,? (recall Definition 5.6 in chapter
5) for F, which is based on the weighted generator points obtained via the inversion pro-
cedure instead of the actual weighted generators. For all simulations we simulate planar
(d = 2) Poisson-Laguerre tessellations.

6.6.1 Estimation of 1y and ¢

Recall the definition of (A,,¢,) as a solution to the weighted least squares problem in
(6.13). Then, (A, ¢,) minimizes a function which cannot actually be computed in prac-
tice. After all, when a Poisson-Laguerre tessellation is observed through a window W,,,
the cells at the boundary of the window are only partially observed and therefore their
volumes and centroids cannot be computed. Therefore, we also consider the following
estimator for (A, co):

o o ’
() = argmin — L 57 (. fon) € Wadvs |+ = vl
(eyeRxrd VdiWn) (v

Because (1, ¢,) depends on less information compared to (A, é,), it is to be expected
that its performance will be slightly worse. Loosely speaking, (1,,, &,) is based on informa-
tion contained in W,, and we expect (1,,, &,) to behave like (A,,, ¢,) if (A,,, ¢,) is computed
based on a smaller observation window W, c W, instead of W,,. While (/in, ¢,,) cannot be
computed in practice, this is not an issue in a simulation setting, where we can effectively
also observe cells outside of W,,.

For the simulations in this section we simulate Poisson-Laguerre tessellations in R?
with the following choices for the underlying function F, with z > 0:

Fi(z)=z-1{z<1}+1{z > 1} (6.33)
Fr(z) =0.01 - 1{z > 1} +0.04 - 1{z > 8} +0.95 - 1{z > 10}. (6.34)

Note that we also considered these choices for F in section 5.7. For both choices of F it
is simple to simulate a corresponding Poisson process, because these Poisson processes
can be recognized as independently marked homogeneous Poisson processes. As before,
we write P, := E(n°(W,, x (0, ©)), and we choose a square observation window W,, such
that P,, = 1000. In words, we choose a square W,, with an area such that the expected
number of observed points of 1 in W, is equal to 1000. Recall that ° = {(x,h) € n :
x € C((x, h),n)}. For each choice of F and P,,, 100 Laguerre tessellations are simulated,
yielding 100 realizations of (A, €,) and (/in, ¢n). For the sake of convenience we take
Ao = 1 and ¢y = 0. The results of these simulations are summarized in Tables 6.1-6.4. In
these tables the average absolute errors are shown, as well as the 2.5% and 97.5% quantiles
of these absolute errors.

Let us now discuss the contents of these tables. For one, it can be seen that the estimates
of 1g and ¢( corresponding to F are more accurate compared to estimates corresponding
to F,. A Poisson-Laguerre tessellation with F; as the underlying distribution function



144 Chapter 6. Inverting Poisson-Laguerre tessellations

|/in_/10| ”En _COH
P, mean (2.5%, 97.5%) mean (2.5%, 97.5%)

500 0.000766 (0.000066 ,0.0015 ) 0.021 (0.0036,0.042 )
1000  0.000 334 (0.000017 ,0.00073) 0.0120 (0.0020,0.024 )
2000 0.000 143 (0.000009 6,0.00029) 0.00675 (0.0010,0.013 )
5000 0.0000617 (0.000025 ,0.00011) 0.00433 (0.0013,0.0077)

Table 6.1: Estimates of 1g and c¢( obtained with edge correction, the underlying F is given
by (6.33).

|4, — A0l ll¢n = coll
P, mean (2.5%, 97.5%) mean (2.5%, 97.5%)
500 0.000386 (0.000026 ,0.0012 ) 0.0113 (0.00091,0.035 )
1000  0.000 138 (0.000012 ,0.00037 ) 0.00553 (0.00080,0.013 )

2000 0.0000718 (0.0000021,0.00018 ) 0.00348 (0.00065,0.0082)
5000 0.0000179 (0.0000016,0.000047) 0.00146 (0.00023,0.0037)

Table 6.2: Estimates of Ap and c( obtained without edge correction, the underlying F is
given by (6.33).

|4 — Aol lén = coll
P, mean (2.5%, 97.5%) mean (2.5%, 97.5%)

500 0.00126 (0.000077 ,0.0039 ) 0.0450 (0.0058 ,0.14 )
1000  0.000489 (0.000030 ,0.0014 ) 0.0222 (0.0037 ,0.062 )
2000 0.000239 (0.0000075,0.00074) 0.0137 (0.0023 ,0.043 )
5000 0.0000869 (0.0000029,0.00027) 0.00735 (0.00091,0.022 )

Table 6.3: Estimates of 1( and ¢ obtained with edge correction, the underlying F is given
by (6.34).

|20 — A0 llén = coll
P, mean (2.5%, 97.5%) mean (2.5%, 97.5%)
500 0.000937 (0.000047 ,0.0029 ) 0.0339 (0.0042 ,0.11 )
1000 0.000414 (0.000013 ,0.0010 ) 0.0194 (0.0019 ,0.045 )

2000 0.000 158 (0.000013 ,0.00046 ) 0.0104 (0.0011 ,0.028 )
5000 0.0000487 (0.0000024,0.00015 ) 0.00439 (0.00055,0.011 )

Table 6.4: Estimates of Ao and ¢( obtained without edge correction, the underlying F is
given by (6.34).
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A
g0
g’ﬁ!{l e

Figure 6.2: Realizations of Poisson-Laguerre tessellations with F; (Left) and F; (Right) as
the underlying distribution function. Black points and black circles represent the original
weighted generators (17%), red points and red dashed circles represent weighted generators
(1) obtained via the estimator (A, én), see (6.11).

will have mostly cells of similar sizes. If F; is the underlying distribution function then a
corresponding Poisson-Laguerre tessellation will have a few large cells, a larger number
of medium sized cells and a lot of small cells. Perhaps estimation of (1y, cg) is more
difficult when there is more variation in the cell sizes. As anticipated we can also see that
the estimator (1, ¢,) yields larger mean absolute errors compared to (A,,, ¢,). Finally, it
should be noted that the errors corresponding to estimates of A are far smaller compared
to the errors corresponding to estimates of cg. This is perhaps caused by the rather extreme
behavior of the criterion function 7,, as n — oo if 2 # Ao (Theorem 6.2). Overall, both
estimation procedures appear to yield rather close estimates of 1o and co. Indeed, the
errors are sufficiently small that visualizing both the original configuration of generators
as well as the generators obtained via any of the two inversion procedures ((,, ¢,) and
(A, ¢,)) we see that these points appear to overlap. This is shown in Figure 6.2. Here,
the circle radii represent the weights corresponding to the generators. For visualization
purposes the circle radii for the realization corresponding to F, were normalized (divided
by 10). When looking very closely, one can see that the weights of the original generators
are slightly different than the weights of the weighted generators obtained via the inversion
procedure.

6.6.2 Estimation of F

In this section we essentially investigate whether it is possible to estimate F, if the only
available information is a region of a Poisson-Laguerre tessellation observed through a
bounded observation window W,,. That is, the underlying weighted generators are consid-
ered to be unknown. This also means that cells at the boundary of the window are only
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partially observed. The simulations in this section may be seen as a continuation of the
previous section, as the same choices for F are considered, and the estimates of F are
computed based on weighted generators obtained via the inversion procedure defined via
(An, Cn).

Let 77;, denote the configuration of weighted generators obtained via the inversion pro-
cedure defined via (/T,,, Cn), recall (6.11). Then, 7j;, may be seen as an approximation of
n* N (W, xR). Write %, = {(&1, 1), ..., B> )}, with iy < iy < -+ < hy,. Then,
analogously to the estimator F,(l) for F as defined in chapter 5, we now define the estimator
F? for F as follows. For z > 0 define:

1
va(Wy)

G(z) = D Tw, Lo ()I{E € C((5 ), ;) (6.35)

(£.h)ens

This is essentially an adaptation of the estimator Gn for G as defined in (5.14) in chapter
5. We define the estimator FC as a piece-wise constant distribution function with jump lo-

cations at le e, fzm. Hence, we only need to specify the values F,?(fzi) fori € {1,...,m}.
Let ig < hy and set F2 (o) = 0. Fori € {1,...,m}, the function F? is recursively defined
via:

(i) = FY(hi-1) + (G (ko) = Go(hiy)) -
i—1

cexp|ka . (hi = hy)
j=1

As such, we now have an estimator FC for F which can be computed if the weighted gen-
erators of the (partially) observed cells are a priori unknown. We compare the obtained
estimates to realizations of F 0. which can be computed if the weighted generators of the
(partially) observed cells are considered known. Then, we can see whether not knowing the
generators has a noticeable effect on the resulting estimates. We should mention that for
the obtained realizations of F? it was needed to apply a shift. Recall that the distribution of
a Poisson-Laguerre tessellation is not affected by shifts of the underlying distribution func-
tion. As such, if two estimates of F are equal op to a shift, these estimates are considered
equally accurate. Hence, to each realization of F a shift was applied which essentially
minimizes the average distance to the true function F. The results of these simulations are
shown in Figure 6.3.

First, consider the estimates corresponding to Fy. Visually, it appears as if FC yields
estimates which are smoothed versions of £0. Overall, both estimators appear to yield
accurate estimates. The estimator F appears to be less accurate in the left and right tail
of F, and it is very accurate in the middle of its support (z close to 0.5). Meanwhile,
realizations of £ are very accurate for z close to 0 and slowly become more inaccurate as
z becomes larger. The estimates corresponding to F» paint a rather different picture. While
both estimators appear to provide accurate estimates of F for say z < 9.5, the estimates
obtained via F0 become very inaccurate for larger values of z. Some of these realizations
of F ,? have an upper bound which is much too large to fit in the frame of the plot.

[N\

o (636)
(RO = ESGhy0) |-
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1.00 9 —— Mean estimate 1.00 1 —— Mean estimate
0.75 0.75
S S
= 0.50 + = 0.50 -
0.25 + 0.25 1
0.00 + 0.00 +
T T T T T T T T T T T T T T
00 0.2 04 06 08 1.0 1.2 00 0.2 04 06 08 1.0 1.2
Z Z
Realizations of F,? (unknown) Realizations of F,? (known)
1.6 - 1.6
—— Mean estimate —— Mean estimate
124 -== F 124 === F
0.8 0.8
R S
0.4 0.4
0.0 0.0
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Z Z

Figure 6.3: Realizations of the estimators F? (left panel, weighted generators are unknown)
and F? (right panel, weighted generators are considered known). In the upper panel F is
given by (6.33), in the lower panel F is given by (6.34). In these simulations, P,, = 1000.

Recall the coverage function as defined in section 5.8. This function essentially de-
scribes how the crystallic growth process behaves on average over time. Besides being
useful for determining in which regions estimation of F is difficult, it is also an interesting
summary statistic. Therefore, instead of directly comparing estimates of F, we compare
the coverage functions induced by the estimates to the coverage function induced by the
underlying F. Recall that for a given distribution function F, the coverage function Ky
is given by (5.44). The coverage functions corresponding to the estimates of F in Figure
6.3 are shown in Figure 6.4. We can clearly see that if F; is the underlying distribution
function, then the coverage functions of the obtained estimates of F| are very close to
the actual coverage function. Meanwhile, if F, is the underlying distribution function,
the coverage functions induced by the obtained estimates show a significantly larger vari-
ance. This holds for coverage functions corresponding to both F? and 13",?. Curiously, the
coverage functions corresponding to F ,? appear to match the true coverage function rather
closely for ¢ > 10. That is, while the realizations of F* provide a rather poor estimate of
F, for large values of z, this barely affects the coverage function in the same regime.

Because K, (10) = 0.41, we would not expect estimation of F»(z) to be difficult for
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Coverage functions (unknown) Coverage functions (known)

coverage fraction
coverage fraction

0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6

Coverage functions (known)

coverage fraction
coverage fraction

Figure 6.4: Realizations of the coverage functions corresponding to F,? (left panel,
weighted generators are unknown) and ﬁ,? (right panel, weighted generators are consid-
ered known). In the upper panel F is given by (6.33), in the lower panel F is given by
(6.34). In these simulations, P, = 1000.

z close to 10. Indeed, this is also reflected by the fact that £ 2 performs very well in this
region. Therefore, we may wonder whether combining the inversion procedure proposed
in this chapter and the estimation procedure from chapter 5, leads to a consistent estimator.
Perhaps consistency can only be obtained under certain conditions. If the estimator F°
does turn out to be consistent, then it would be very useful to know how important the
behavior of F ,(l)(z) is for large values of z. The simulations in this section suggest that its
behavior barely affects the corresponding coverage function. However, we do not know
how the distribution of a Poisson-Laguerre tessellation is affected by taking either F;, or
a realization of £V as the underlying distribution function.

6.7 Concluding remarks

In this chapter we derived an inversion procedure for Poisson-Laguerre tessellations. The
main motivation for wanting to retrieve the weighted generators of the observed cells is for
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their use in statistical inference, as in chapter 5. We obtained various theoretical results
and provided conditions for the inversion procedure to be consistent. In simulations we
observed that the inversion procedure yields a very close approximation of the original
weighted generators. Additionally, we have shown how these weighted generators may
be used to estimate the distribution function F. It is however evident that if there is no
prior knowledge of the original weighted generators, the resulting estimates of F are less
accurate compared to when estimates of F can be computed based on the original weighted
generators. Whether the estimators for F' based on weighted generators obtained via the
inversion procedure are in general consistent is an important open problem.

6.8 Additional proofs

Proof of Lemma 6.2. Let y € R4 \ {0}, by (6.48) we have:

yI12+h
2 [—
[ (wren—s)

Via this inequality we obtain:

Pr(Y) = /0 Cexp (—xd /0 e (112 + 1) ar (o
< [ exp (~warlyI) arch

F(e0) J
= [ exp (calyl)
F(0)

B Kdulynd (exp (a0 1y1) = exp (ks - F(oo) - 1))

1
S
Kallyll

ol

dF (1) > F(h)|ly|l¢.

dF (h)

Here, we substituted u = F(h). Let ¢ € N, then substituting y = r6, with » > 0 and
0 € S9! we obtain:

oo Iyl 4
[otepeear= [ it [Cep|-a [ (bl 4n-1) " ar )
R4 R4 0 0
) ) r2+h %
=de/ / exp —Kd/ (r2+h—t) dF (1)
0 0 0

This expression is very similar to an expression which appears in the proof of Theorem
6.4. Indeed, if we were to set ¢ = (p — 1)d, p € N, then the proof of Theorem 6.4
yields /Rd I¥||4pr(y)dy < co. Because Theorem 6.4 holds for any d, p € N we may
simply choose p sufficiently large such that ¢ < (p — 1)d and then we obtain the result via

dF (h)dy

ra*=1drdF (h).
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Holder’s inequality:

(p-d

q
Loy < ([ 1o vpema) T <.

]

Proof of Lemma 6.5. Assume ¢oNBy  # Oforallk € {1,...,J}. Lety € C((x, h), ¢)—x,
then also y € C; for some j € {1,...,J}. Choose x; € ¢ N By ;. Then, 2/z < ||lx; —x|| <
Randx; —x € C;j. Because y € C((x, h), ¢) —x and x; € ¢ we have:

I+ 7 < ey =x = Y12+ g = Dl = 2l + 1P = 24x; = 2, 9) + hy

Using 2v/z < ||x; — x|| we now obtain:
2 2 5 2
2 —x,y) < lxj=xlI"+hj—h <|lx; —x||"+z < Z||xj — x| (6.37)

Because y € Cj, x; —x € C; we have by the definition of C;:

3 4 (xj—x,y)
Pi— X, < - . — . = -
Gy =x3) < Gl =l ol = Il < 35—
Combining this with (6.37) we obtain the desired result:

4 -xy) 5l =P
3T =2l " 6 Tl =l

Iyl < <|lxj —xll < R.

Indeed, C((x, h),¢) —x € B(O,R) &= C((x,h), ) C B(x,R). o

Proof of Theorem 6.2. First, consider the case 1 = 1y. Equation (6.10) may be written as:

1
To(do,¢) = — / Il = co +c = yll*dy
vaWn) (4=t Je(tomy.m
1 / 2
= ||C_CO_}’|| dy
va(Wa) (4=t JC((emym-x
1 / 2
= — ”C_CO_)’” dy
va(Wn) C((0.h),5x7)

(x,h)en

Applying the spatial ergodic theorem (Theorem 5.7), T, (1o, ¢) converges almost surely to
its expected value (see Lemma 6.3). Now, consider the case 4 # 4y. Let (Q, A, P) be a
probability space supporting the Poisson process 7. In order to show that lim,,_,o, 7, (4, ¢) =
oo almost surely, it is sufficient to show that for all M > 0 there exists a Qp; € A with
P(Qps) = 1 such that for all w € Qpy: liminf, o 7, (4, c;w) > M. Indeed, setting
Qp = NprenQpr, we have P(Qg) = 1 and lim,, 0 7, (4, ¢; w) = oo for all w € Q. Let
M > 0. We need some additional notation before we choose £,,. Pick z > 0 such that
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F(z) > 0. Take R > 0 large enough such that R > 2+/z. Take r > 0 small enough such
that r + Vr? + z < 24/z. One may for instance take r = \/z/_3 For any (x, h) € R x (0, o)
let the set D, 5, be as in Lemma 6.4 and the sets By ;, j € {1,...,/} as in Lemma 6.5.
For (x, h) € R? x (0, o) define the following event:

Oxn = {n(Dxn \{(x,1)}) =0,7(Bxj) >0 Vje{l,....,J}}.

Note that D, , N By ; = @ forall j € {1,...,J}. Additionally, the B, ;’s have disjoint
interiors and therefore we have:

J
P(Ox1) =P(Dss \ {(x, ))}) = 0) [ [P (n(Bx.) > 0).
Jj=1

We will now argue that P(Oy ») = P(O¢.n) = @ > 0, where « is a constant which does
not depend on A. Note that proving this implies the following:

/ ) P(0o.)dF(h) > aF(z) > 0. (6.38)
0

Since (vg XF)({(x, h)}) = 0 we have P(7(Dx n \ {(x, h)}) =0) =P(n(Dx.n) =0), which
may be computed as:

P(n(Dy.,) =0) =exp / / {|lx—x|| <r+Vr2+h - W}F(K )dx')

0

exp

O

(
. exp( ka reNren-n) dF(h'))
( -« [ m)ddm'))
= exp (—KdF(r2 +2) (z + \/r2_+z)d) > 0.
Letj € {1,...,J}, then:
P (n(Bx,j) > 0) = 1 =P (n(By,j) = 0)

=1-exp (-F(z)va ((B(x,R) \ B(x,24/2)) N (C; +x)))
=1 —exp (—=F(2)va ((B(0,R) \ B(0,2y2)) N C;)) > 0

So indeed, there exists some @ > 0 such that for all 2z € [0, z] we have P(Ox ) =
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P(Oo,n) = @ > 0. We now use the event O j, to obtain a lower bound for 7}, (4, ¢):

T,(1,¢) >
2
A Ac
_V(W) Z ]an(x)]l(Oz(h)Vxh (/1 1)x_/l_0+c_(cxh_x)
d (xmen 0 0
1 2 Aco 2
> 1w (x)1 h)v — —1|lx——+c—(cep—x)|| 1{O
A (X%EU W, ()L 0.1 (M)Vcn ( T ) 2, e (Con =] 10w}
5 _Kar > 1w, (01 (h)”( A 1) A0 4 e~ (cxn —x) 211{0 }
= n . - i - h — ’h .
vaWy) At “H O g 0 * *

The final inequality follows from the fact that if the event O, j occurs then B(x,r) C
C((x,h),n), hence v, 5 > kgr?. Let N > 0 be large enough such that:

2 (N = llcol tre
kar | == 1=l = llc = coll =R| | B(Oon)dF(h) > M.
0

Choose Qs € A with P(Q,7) = 1 such that for all w € Qy, the following two properties
hold:

1
lim
noe va (W)

L, ()L (0.0 (L0 (@)} = / “B(O01)dF(h)
(x,hyen(-;w) 0

n(B(0,N) x (0, z]; w) < oo

Such a set exists by the spatial ergodic theorem (Theorem 5.7) and by the fact that a Poisson
random variable with a finite rate parameter is almost surely finite. Suppose (x, k) €
n, |lx|| > N and the event O, j occurs such that C((x, h),n) € B(x,R) and therefore
llcx,n — x|l < R. Then, we claim that the following holds:

A N -
——1 x—ﬂ+c—(cxh ol = Xl = e—col =R, (6.39)
Ao Ao
We will now verify this claim.
Pl Aco Aco — Agc + Ag(cx,n — X)
SR | P U )= — A=A |x - ’ .
H(/lo )x 2 e (Cx,p —X) |4 = Aol - |lx ( 11

(6.40)

Consider the term in brackets in the RHS of (6.40), we obtain the following upper bound
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on its norm:

/lC() - /106 + /10(st]1 - x)

(Il2co = Aocll + Ao |Jex.n — x|))

-2 " A= 20l
1
< (IlAco = Aocoll + [[doco = Aocl| + A R)
|4 = 0]
1
< = (|4 = Aolllcoll + Aollc = coll + AR)
|4 = o]
< Jleoll + =22 (jle = coll + R).
h |5 C—C
ol + =l 0

Note that for x,y € R? with |[x|| > N > K > ||y|| we have by the reverse triangle
inequality: [lx — y|| > |llx]l = lIylll = lIx]l = llyll > N — K. Applying this to the RHS of
(6.40) we obtain the inequality in (6.39):

(i—l) —@+c—(cxh—x)

Ao Ao
1 Ao
> — A=A [N - + - +R
2+ 0|( (||CO|| oy e =eol )))
N —leoll
==, M-l =lle-coll =R
As a consequence, we may write (where B(0, N) = R4 \ B(0, N)):
T.(1,¢) >
d 2
Kqr A Aco
> 1 5 c(x)1 M= -1]x-=24+c- - 1{o
Vd(W")(th)e, W,,nB(0,N) (x) (0,z]( )H(/lo )x 1 ¢ = (cx.n =%)|| 1{Ox 1}
Jhen
sy (L. () |4 A e 1100
5 X ——1|x——+c—(cxn—=x
Vd(Wn)(xh)E WaB(0.N) (021 Ao Ao wh wh
Jhen
Kkar? N~ llcoll ’
> 05 20 Bwesome @z (W) | = =5 1= Aol = lle = coll = R 1{Ox}
(x,h)en
2
kqrd A Aco
3 Lo W[ & =1)x =22 40— (cxn —1)|| 1{O«
+o 2 Bwansom Tz )H( T )x 2 He (=0 1O
(x,h)en
(6.41)
We now consider the two terms in (6.41) separately. The first term may be written as:
d 2
Kar N — |lcol|
(MR-l -R) Y tw teamtomb 642
va(Wy) Ao
(x.h)en
kar®_ (N = Jleoll ’
- =0l =lle=col =R| D" T, nz0.m) ® L0, (MI{O 4}
Vd(Wn) Ao (x.men

(6.43)
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By the choice of €, the expression in (6.42) converges for all w € Qpy to:

N —|lc
Kdrd( ol

2 z
<ol ) gt~ e — coll - R) / P(Oo)dF(h).
0 0

The expression in (6.43) converges for all w € Qy; to 0, since we have:

2

kar® (N = Jleoll
0< =20l = lle = coll = R| D Tw,nco.n) (L0, (W1{O01)
va(Wy) Ao e
N = lleol 2 n((Wa 0 B0, N)) X (0,2])

d
< kar | ———— |4 = ol = llc = coll = R)
( Ao va(Wy)
Indeed, for sufficiently large n we have W,, N B(0, N) = B(0, N) and since n(B(0, N) x
(0,z];w) < oo for all w € Qypy, the fact that v4(W,)) — o0 as n — oo yields the con-
vergence to zero. A similar argument may be used to show that the second term of (6.41)
converges to zero, this follows from the following inequalities:

d 2

Kdr A Aco
< y, oz Lo (M ||[2= = 1)x= 2L 4 ¢ = (ern —0)|| 1{O

Vd(Wn)(th)e WonB(0.8) ()L 0,21 ( )H(ﬂo )x o e (cxn —x)|| 1{Ox.n}

hyen
2 -
< kgrd A N sl = Aol g) 1(Wa 0 B(O.N)) x (0.2])
Ao Ao va(Wy)

Hence, combining all results, we have for all w € Q:

z

2
N _ 4
liminf 7, (4, ¢; w) > kard (# |4 = 20| = llc = coll - R) / P(0q.;)dF (h) > M.
n—o0 0 0

]

Proof of Proposition 6.1. We start with proving the first inequality in the proposition for
p = 2. Note that: vg(C((x, h),n)) = vq(C((x, h),n) — x) by the translation invariance of
Lebesgue measure. For y € R recall that y € C((x, h),n) —x & n(Ax,n,y) =0 with
Ay, n,y asin (6.1). By (6.3) we now obtain:

ECaCnmm)) = [ [ B (1A =0 n(Arn,) = 0) i dy,.

(6.44)
Instead of integrating over (R¢)” we may also integrate over the union of all sets of the
form:

Cr={01-syp) € RO lyq Il < Hlyall < - < Iy, I}

where I = (iy,i2,...,ip) is a permutation of (1,2,...,p). Note that the integrand in
(6.44) is symmetric in yy,...,y,. Hence, when integrating over any set C; the result is
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the same for every choice of 1. Because there are p! permutations of (1,2, ..., p), we may
write:

E (va(C((x, h),n)") =

=p!/--~/CP(n(Ax,h,yl)=0,...,n(Ax,h,yp)=0)dy1...dyp
Sp!/~~-/P(U(Ax,h,yp)=0)dy1...dyp
C
lypll2+h a
:p!/..-/exp(—Kd/ (Iypl? + 1 =1) " dF (o)
C 0

The final equality follows from (6.2) and C is given by:

dy;...dy,. (6.45)

C={Gn - yp) € ®RDP yill < llyall < - < Hlypll} -

Next, we substitute y; = r;0; with r; > 0 and ; € s4-1fori e {1,...,p}. Then (6.45) is
given by:

o] p r n
P!(de)p/ / / / tp(rp)rfl_l ---rz_ldrl...drp
0 0 0 0
oo p r3 rn
:pg(dkd)p/O () (/0 /0 /0 r;’—l...rg—ldrl...dr,,_l)dr,,, (6.46)

with:

r12)+h %
¢(rp) = exp _Kd/ (rj +h- t) dF (1)
0

The integral in brackets in (6.46) may be computed as:

/rp /rs/*rz del d—ld q 1 dp-1
réheer ri...dr,_. = ———r .
0 o Jo ! P P (p—Dlar-1'7

Plugging this back into (6.46) we obtain the first inequality of the proposition:

12J+h d

E (va(C((x, h),m)?) < des./o exp (—Kd‘/o (rf) +h- t)7 dF (1)

pd-1
rp drp.

(6.47)

In the case p = 1 (6.3) may be used to show that (6.47) becomes an equality as none of the
techniques used to obtain an upper bound for the case p > 2 need to be used. Consider
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the second inequality for general p € N. Via integration by parts, we obtain:

r2+h d ri+h d
p 2 2 d p 2 771
ro+h—t dF(t):—/ ro+h—t F(t)dt
/0 ( P ) 2 Jo ( P )

= F(h)re. (6.48)

We now plug this lower bound into (6.47) and assume F (k) > 0:

E (va(C((x, h),m)P) < pd«!; '/Owexp (—KdF(h)rZ) rﬁd_ldrp

— p a —u pfld
F(h)l’L e u u

__r
~ F(hypr’

Here, we substituted u = «4F (h)rg. The resulting integral may be recognized as the
Gamma function evaluated in p. O

Proof of Lemma 6.8. We derive the result by showing that the first upper bound in the

statement of Proposition 6.1 is finite. Choose z > 1 sufficiently large such that z —/z > 1
and F(z) > 0.

E (va(C((x,h),n))")
z oo r2+h 4
< deS/O rPa=1qr +pd/<5/ exp —Kd‘/o (r2 +h- t) dF (1) | rP4-1dr
z
00 r2+h g
= kP24 4+ pdk? / exp (—Kd / <r2 +h— t) dF(t)) P14y, (6.49)
z 0

Via integration by parts, we obtain:

r2+h % d r2+h 1
/ (r2 +h- t) dF (1) = = / (r2 +h- t) F(r)dr
0 2 Jo
41

2
d re+h ) d
> E/Z (r +h—t) F(z)dt

2
d re+h d_q
ZF(Z)E/ (rz+h—t)2 dr
z

=F()(r*+h- z)%

(S
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> F(2)(rP-2)%
= F@)(r -V i(r+v2)*

> F(z)r%.

Plugging this back into (6.49) and substituting u = Kdr% F (z) as in the proof of Proposition
6.1 yields:

E (va(C((x,h),n)P) < K‘Zzpd + pdi!) / exp (—KdF(Z)V%) rPa=14r
Zz

(o]
d _
<«kPzPl 4 KsZpd +pd/<il7 / exp (—KdF(z)rT) rPa=14r
0

d
!
_  P_pd p: _.
=K ,Z + = 0p.

]

Proof of Theorem 6.4. For p = 1 the result follows from (6.4). For the remainder of the
proof consider p > 2. Choose z > 0 large enough such that F(z) > 0. Let 0 < ), <
be as Lemma 6.8. Using the second statement of Proposition 6.1 we may write:

Z

/ E (va(C((x. h),m)?) dF (h) < / apdF () + / E (va(C((x. h),n)?) dF (h)
0 0 z

< a,F(2) + / TP arn

F(h)P
F() p!
=apF(z) + / —pdu (6.50)
F(z) U
p! 1 1
= F —
oo+ (e
p! .
< CL’I,F(Z) + W = ﬁp.
In (6.50) we substituted u = F(h). O

Proof of Lemma 6.9. Let hy, hy > 0 and define the following two half spaces:

Hi={yeR?:|lx; = y|*+ 1 < llx2 = ylI* + ha}
Hy={yeR:|lxa—y|*+ho < [lx; = yII* + 1 }.

Additionally, let H; = H; x (0,00) and H, = H, x (0,0). The sets H; and H, have
disjoint interiors, they only intersect at their boundaries. Because E(17(H; N H,)) = 0,
we have n(H; N H,) = 0 almost surely. As a consequence, the Poisson processes ng,
and npy, are independent. Here, ny, and 17y, denote the restrictions of 7 to H, and H,
respectively. Note that C((x1,/1),1 + 0 (xy.ny)) € C((x1,h1), M, + 6(xy.hy)). Because
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np, and g, are independent, the random variables v4(C((x1, h1),1p, + 0(xy,1,))) and
va(C((x2, hy), Mg, + O(x,,n,))) are also independent. As a consequence:

E (Vd(C((Xl, hl)’ n+ 6(X2,h2)))vd(c((x2’ h2)’ n+ 6()(1,}1])))) <
<E (Vd(C((Xu h1),ng, +0(x2.m0)))va(C((x2, h2), g, +5(x1,h|))))
= B (va(C(Gr1, ) ng, + 8D B (va(C (2, b2 mg, +8xm)) - (651)

We will now derive a bound for the first expectation in (6.51). By definition of the Laguerre
cell, note that C((x1, ~1), 1, +6(x3.ny)) = C((x1, h1),mg,) NH}. Let Xy be the orthogonal
projection of x| onto H;. Then, forall y € H;: ||x; — y|| < ||x1 — y||. Therefore, we obtain
the following inclusion:

c ((xl, hl),nH]) NHy={y € H :lxi—yIP+hi < [IX' = yIP+ K V(< 1) €ng, }
c{yeH & —ylP+h <X = y|*+H V(' B) eny }
- c((xl,hl),nﬁl) N H.
Hence,
E (vd (c ((xl,hl),r]ﬁl +5(XZ,,,2)))) =E (vd (C ((xl,hl),nﬁl) N Hl))
SE(vd(C((Xl,hl),nHl)mHl)). (6.52)

Write:
Beny={(',h') € R* x (0,00) : lx = y|* + 1 > |lx = x'||* + '}

Then, y € C((x,h),n7) & n(Bxp,y) = 0. Via (6.3) we now compute the expectation
in (6.52) as follows:

E(Vd (C ((fl,hl)’fml) ﬁHl)) = /de(y € C((il’hl)ﬂhf]l) mHl)dy

= /Hl P(y eC ((fl,hl),ﬂﬁ]))dy
- / B (ma, (Be,m.») = 0) dy (6.53)
H,

Because np, (Bz,,1,,y) is Poisson distributed we can compute the probability of it being
Zero as:

F (UHI (Bxl,hl,y) = 0) =

:exp(—// ]l{||)?1—x'||2+t<||i1—y||2+h1}dF(t)dx’)
H; JO

I%1=y 11+
—exp|- [ [ {160 =) < VIR =3P+ 1] dF ()
H; JO
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Io-ylPe
= exp —/0 va (B ()El,\/||)21—y||2+h1 —t)ﬂHl)dF(t) (6.54)

Because x| € Hj, if we consider the volume of the intersection of the half space H; and
the ball centered at x| as in (6.54), it follows that the volume of that intersection is at least
half the volume of said ball. Hence:

kg (IR a
P (ma, (Bsim.y) =0) < exp —7/0 (1% = yI2+ 11 = 1) " aF ()]

Plugging this bound back into (6.53) we obtain:
E(Vd (C ((J?l,hl),ﬂﬁ,) ﬁHl)) <

151-y |2+ 4
< / exp(—K—" / (||x1—y||2+h1—r)zdF(w)dy
Rd 2 0
lullP+hy 4
:/ exp(—%j/ (||u||2+h1—t)2dF(t) du
R4 0

The final equality follows from substituting # = y — ;. Note that the bound in (6.55) does
not depend on xi, xp and hy. By symmetry, replacing 4 with h, in (6.55) serves as an
upper bound for the second expectation in (6.51). We now conclude:

(6.55)

/0 /0 B (va(C((e1s 1) + S ny i))Va (C (62, o), 11+ 6 ey iy ) AF () AF ()

w0 wy [l 4
< / /exp ——/ (||u||2+h—t) dF (1)
0 R‘l 2 0

=22,

2
dudF(h))

The fact that the final integral equals 2 follows from (6.4) by substituting F' = F/2. O

Proof of Example 3. Let t € RY, and let A, ; denote the j-th component of A,, j €
{1,....d}. Because the marginals of the points of a homogeneous Poisson process are
independent, the characteristic function of A,, satisfies:

d
¢©4,(1) =E (exp (i(t, An))) = | | E (exp (it;An5))
j=1

Fix m € N, and let Uy,...,U, i Unif (W,,). Then, conditional on ¢ (W,) = m, the

restriction of ¢ to W, is equal in distribution to 3", (5U, Moreover each U; is equal in
distribution to the vector (V;.1,...,V;.q)T withV;1,...,V;. a~ Umf(—lnl/d 1nlldy Via
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the law of total expectation we may now compute:

E (exp (it;An,;)) ZE exp (itjAn,j) [0 (Wy) = m) P(¢(W,,) = m)

> 1 & nme™"
:ZE exp(ltj;ZVk,j)) o
m=0 k=1
% t;\" nMe"
= Z LAZRE ey )
n m
m=0

Here, we used the fact that the characteristic function of a sum of independent random
variables is simply the product of their individual characteristic functions. Plugging in the
characteristic function of Vi | and expressing the sine in terms of its Taylor series centered
at zero we obtain for ¢; # 0:

E (exp (it;An,;)) = exp -

7 -3
=exp|- =~ +o0 -
24n'-a n-a)

2
t]

- . 5 +0(n3_3))
24n'-a

Taking the product of the marginal characteristic functions and letting n — oo, we obtain

the desired result:
exp (—M) ifd=2
lim ¢z (1) = #
=00 1 ifd > 3.

= exp

Via similar techniques, the L?-norm of A, may be computed as:

B (I14a12) :ﬁgE gjzzwwn B (y(W,) = m)
:%i Z||U||2+Z S up| e
m=0 J=1 k=1,k#j
Ly ’”“+i i BB | e
m=0 j=1 k=1,k#j
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1 & [mdna\ nme™m
EZ( 12 ) m!
m=0
1 na R
212 Zmﬁ
m=
_d
12n1_%'
O

Proof of Theorem 6.6. For j € {1,...,d},let A, ; denote the j-th component of the ran-
dom vector A,. Because E(A,) = 0 we may write:

d
B(I14nl?) =B (A2, + 42, +- -+ A2 ) = ]Z:; Var(An ). (6.56)

We will apply Lemma 6.10 to Var(A,, ;) for each j. The fact that E(Ai’j) < oo follows

from (6.32). Fix j € {1,...,d} and set f(n) = A, ;. Let (x',h’) € RY x (0, M). For
(x, h) € glet Ry(n) be as in Theorem 6.5, via property 1 in Theorem 6.5 we may write:

46 nry) =
1

= D A @)va(CCx b+ 6 y)x
Vd(Wn) (x,h)€n+S(xr nry

= mﬂwn X )va(C((x', 1), m)x"+
1
* Vd(Wn)

DT M, ()va(C((x 1), + 6w m)))x
(x,h)en

- mnm v (C( 1))+

+ —vd(IWn) (x%:en]lwn ) L{llx = x|l < Re(m)}va((C(x, h), 1 + 6 (x 1)) X
+ vd(IW,,) (x%len]lwn ) L{]lx = x|l > Re()}va(C((x, h),n))x.

Similarly, we may write:

1) = <x%e,,ﬂw" (L =l > Re(m)}va(C(Cr. h).m)xe
1

¥ va(Wn) (x%len]lwn(xnl{”x = X[l £ Re(m)}va(C((x, h),m))x.
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Using these expressions for f(n + (. 7)) and f(77) we derive an upper bound for
|D (5 1y f (). Taking into account that ||x|| < diam(W)n'/¢, we obtain:

|D e nry ()| <

1
<~ Lw, ()va(C 1), m) X1+

+ l Z II‘WnﬂE(x’,RX(I]))(x) in(C((X, h)? 77)) - Vd(C((.X', h)?’] + 6(x’,h’)))| ”x”

" (¥men
< L g O va( € )+
n - d
.\ dlalln_(fV) D0 A, @I =Xl < Re(m)}va(C((x, h), ).
nl-a

(x,h)en

Here, we also used the fact: C((x, h),n7 + 6 n)) C C((x,h),7n). Note that this upper
bound does not depend on j. Via Lemma 6.10 and (6.56) we obtain:

—diam(W)Zd M ’ ’ ’ ’ ’
B (I4.0F) < =2 ( /R /0 Lw, (B (va(C(( 1), m)?) dF (W )dx
M 2
-x' x Jh), dF (hW)dx’|.
+/R"-/(; E(((X%:EU]IW,,(X)]I{HX X' € Re(m)}va(C((x, h) ;7))) F() )
(6.57)

We now separately determine upper bounds for both of the integrals appearing in (6.57).
For the first integral we obtain the following:

M
[, ] w0 (atctaawym?) arane < [, 0)paax = pon.
R4 JO R4

(6.58)
Here, 3, is as in Theorem 6.4. Let (n)i denotes the set of all distinct pairs of points of
n. Thatis, if (x, 1), (x2, hy) € (n)i, then (x1, hy) # (x2, hy). Now, consider the second
integral in (6.57). Expanding the square and applying Fubini, we obtain:

M 2
L[ E(( >, tw WL X1 £ R () )dF(h’)dx’

(x,h)en

M
:/Rd/O E( Z Lw, () L{]lx = x| SRx(n)}Vd(C((x,h),n))z)dF(h’)dx’+

(x,h)en
M
+// E
R4 Jo

“I{llx = x| < R, () }va(C((x1, 7)) va(C((x2, h2), 1))

> T, (x1) L, () L{ [t = x'[| < Ry, ()}
(x1,h1).(x2,h) € ()2

dF (h)dx’
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> w0 [ W=l < R va € h>,n>)2)

(x,h)en

= F(M)E(

+ F(M)E( Y twtw ) [ -l < Ry )

(x1,h1), (x2,h2) €(17)2

{2 =2l < sz(n)}dX'Vd(C((Xhh1),77))Vd(C((Xz,hz)J7)))

: F(M)xdE( S L, R ) va (€G3, ), n))z) (659
(x,h)en
+F(M)E Z Lw, (x1) 1w, (x2)va(B(x1, Ry, (1)) N B(x2, Ry, (1)))-
(x1,h1),(x2,h2) €(1)2

va(C((x1, h1),m)va(C((x2, ha), 77)))-

(6.60)
An upper bound for the term in (6.59) may be computed via the Mecke equation as follows:

F(M)KdE( > 11w,,(x>Rx(n)"vd<B(x,Rx(n)))z)s

(x,h)en

SF(M)KZE( > ]an(x)Rx(n)3d)

(x,h)en
M
=00 [ [ 1w GRG0, 0P (s

< F(M)*CE (Ro(n)3d) n 6.61)

Here, we also used point 4 of Theorem 6.5. Because R((7) has exponentially decaying
tails by point 3 of Theorem 6.5, all of its moments are finite, hence E(Ry(17)3¢) < oo.
Next, we consider the term in (6.60). This term may be computed via the multivariate
Mecke equation (Theorem 4.4 in [53]). By also using points 2 and 4 of Theorem 6.5 we
obtain:

F(M)E Z Tw, (x1)Lw, (x2)va(B(x1, Ry, (1) N B(x2, Ry, (1))
(x1.71).(x2,h2)€(n)2

va(C((x1, k1), m)va(C((x2, h2), 1))
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< F(M)IGE > Lw, (x1) 1w, (x2)va(B(x1, Ry, () 0 B(x2, Ry, (m))-

(x1,h1).(x2,h) € ()2

- Ry, (m)“Ry, (n)")

-rond [

: Rx1 (77 + 6)(2)de2 (77 + 5)61 )d

gF(M)-”Kj/ / E
‘/Vn Wn

Vd(g(xlv RX] (TI + 6)(2)) N B(x29 sz(r] + 6)61)))

dF (hy)dx;dF (hy)dx,

va(B(x1, Ry, (1) N B(x2, R, (1)) Ry, () R, 17)? |dxydixa

(6.62)

Note that for any x;,x, € R¥:

va(B(x1, Ry, () N B(x2, Ry, () = va(B(x1, Ry, (1) N B(x2, Ry, (1)))-
“I{llxr = x2ll < Ry, () + Ry, (1)}

As a consequence, (6.62) may be written as:

F(M)%@/ /WE

~L{llx1 = x2ll £ Ry, (1) + RxZ(U)})dxldxz

= F(M)*«3 / / E
Wn Wll

“I{llxr = x2ll < Ry (1) + Ry () }U{ Ry, () < RxZ(n)})dX1dX2+

va(B(x1, Ry, (1) N B(x2, Ry, (1)) Ry (1) Ry ()

Vd (B(xl’ Rx1 (77)) N B(XZ’ sz (n)))Rxl (Tl)dez (ﬂ)d'

(6.63)

+F(M)3K3/ / E(Vd(g(xl,Rm(n))mE(XZ,sz(n)))Rxl(n)dez(n)d'
B (6.64)

“I{llxr = x2ll < Ry (17) + Ry () }U{ R, (1) > sz(n)})dxlde

We now derive an upper bound for the expression in (6.63), the obtained upper bound will
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also hold for (6.64) by symmetry in x; and x,. The following is an upper bound for (6.63):

F(M)*« /W /W E(vd(éocz,RXZ(n>)>Rx2(n>2"11{||xl—xznSZRXQ(U)}
- 1{Ry,(n) < Ry, (n)})dxldxz

< F(M)*i / E(RX2(n)3d / 1{[lx; — x2l < 2Rx2(77)}dxl)dx2
W, R4

n

= F(M)*i529E(Ro(7)*")n. (6.65)
Plugging (6.58), (6.61) and (6.65) back into (6.57) yields the desired result.

diam(W)2d

2
nl-a

B (14,I?) < (B2+ FOD2GE (Ro(m) ™) + F (M) 2™ 1E (Ro(m)* ) )

]
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Chapter 7

Conclusion

In this thesis we have studied mathematical models which may describe materials mi-
crostructures, and we have developed statistical methodology for estimating the parame-
ter(s) of these models in a stereological setting. In particular, we considered a class of
particle processes with particles of the same known shape in part I of this thesis, and we
studied Poisson-Laguerre tessellations in part II of this thesis. In both cases the under-
lying parameter of interest is a distribution function. For these distribution functions we
derived nonparametric estimators, proved strong consistency, addressed computational as-
pects and studied their performance in simulations. As such, our methodology contributes
novel estimation procedures, as consistent estimators did not yet exist within some of the
models we studied. We would like to note that the particle processes in part I are more
flexible compared to the commonly considered Wicksell model, and Laguerre tessella-
tions provide additional flexibility over the more commonly considered Voronoi tessella-
tions. As such, we provide materials scientists with statistical tools for models which may
describe real materials microstructures more accurately compared to previously studied
models.

There is still a wide range of interesting future research directions which can be pur-
sued. From the statistical point of view, the asymptotic distributions of our estimators
are especially of interest. In the case of the nonparametric maximum likelihood estimator
proposed in chapter 3, studying its asymptotic behavior is difficult due to its implicit defi-
nition. Meanwhile, the asymptotic behavior of the estimators in chapter 5 is challenging to
study due to dependence between observations. Results on these asymptotic distributions
may then be used to construct asymptotic confidence intervals for these estimators. These
confidence intervals may then for instance be used to determine guidelines for required
sample sizes. Another research direction is to attempt proving (strong) consistency of the
inversion method proposed in chapter 6 without assuming an upper bound for the weights.
A related important problem is to study whether applying the estimators for F' from chap-
ter 5 to weighted generators obtained via the inversion procedure from chapter 6, yields
consistent estimators for F'. Finally, one may be interested in adapting the methodology in
this thesis to incorporate edge effects. For the models studied in this thesis we only con-
sidered edge effects in observations to a limited extent, perhaps more sophisticated edge
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correction techniques can be developed, to ensure minimal loss of information.

From the application point of view there are also a number of interesting research ques-
tions. First of all, it would be of interest to apply the estimation procedure we introduced for
Poisson-Laguerre tessellations to real materials data. Then, one can study whether the ob-
tained estimates of the distribution function F (or H) lead to simulated Poisson-Laguerre
tessellations which are similar to the real 2D (or 3D) materials data. It is evident that
the models considered in this thesis are more flexible compared to for instance Wicksell’s
model or the Poisson-Voronoi tessellation. However, there are still various properties of
real materials which cannot be accurately described by the models studied in this thesis.
More advanced models are needed to describe for instance materials microstructures with
non-convex grains or anisotropy. A possible approach that could be taken here is to study
a further generalization of the Laguerre tessellation, known as the generalized balanced
power diagram. Here, it is again needed to choose an appropriate underlying point process
model, a natural starting point would be to consider a Poisson process. Alternatively, one
may consider studying random Laguerre tessellations generated by point processes other
than the Poisson process.
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Appendix A

Mathematical background

In this appendix we introduce definitions from the theory of point processes and stochas-
tic geometry, these definitions provide a formal background for the models studied in
this thesis. The presentation in this appendix is far from complete and we refer the inter-
ested reader to [22], [23], [86] and [53] for further background reading. Throughout, let
(Q, A, P) be a probability space supporting all considered random elements.

A.1 Point processes

While one may think of a point process as a random set of points, a point process is often
defined as a random counting measure. Let X be a complete separable metric space, e.g.
X = R?. A measure u on X is locally finite if u(B) < oo for all bounded B € B(X).
Here, B(X) denotes the Borel o-algebra of X. Let N(X) denote the space of locally finite
counting measures (integer-valued measures) on X. We equip N(X) with the usual o-
algebra NV (X), which is the smallest o--algebra on N(X) such that the mappings u +— u(B)
are measurable for all B € 8(X).

Definition A.1 (Point process). A point process on X is a random element n of (N(X),
N (X)), that is a measurable mapping 1 : Q — N(X).

For any B € B(X), the random variable n(B) represents the number of points of 5
in B. The analogue of the first moment of a random variable for a point process is the
so-called intensity measure. This measure describes the expected number of points of the
point process in a given region.

Definition A.2 (Intensity measure). Let 77 be a point process on X. The intensity measure
A of 7 is the measure defined via A(B) = E(n(B)) for B € 8(X).

The intensity measure is sometimes called the first order moment measure, there are
also higher order moment measures, which we will not discuss here. If one wishes to study
a point process as a random set of points, care needs to be taken. A point process 1 as
defined above may have multiplicities, that is, there may be duplicates of points. Formally
this means that with a positive probability one may observe a realization of 5 satisfying
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n({x}) > 1 for some x € X. It becomes possible to switch between the interpretations of
a point process as a random counting measure or as a random set of points if one restricts
oneself to point processes without multiplicities, which are called simple point processes.
Let 6 denote the Dirac measure, hence for x € X and B € B(X): §.(B) = 1{x € B}. A
counting measure y on X is called simple if u({x}) < 1 for all x € X. As such, a simple
counting measure has no multiplicities. Similarly, a point process 17 on X is called simple
if P(np({x}) <1, Vx € X) = 1. Let Ny(X) be the subset of N(X) containing all simple
measures. Define: N(X) := {A NNy(X) : A € N(X)}. Then, a simple point process
on X may be seen as a random element 77 of (N (X), N;(X)). Let us now formalize what
is meant by a random set, or more specifically, a random closed set. Let ¥ (R“) denote
the system of closed subsets of R?. F(RY) denotes the o-algebra on ¥ (R¢) which is
generated by all families X = {F € F(RY) : FNK = 0}, K € K?. Recall that K¢
denotes the space of convex bodies in R, and a convex body is a convex and compact set
with non-empty interior. The definition of a random closed set in R¢ is as follows:

Definition A.3 (Random closed set). A random closed set in R¢ is a random element X
of (F(RY), F(R%)), that is a measurable mapping X : Q — F(R?).

Forx € R4 r > 0let B(x,r) = {y € R? : |lx — y|| < r} denote the closed ball
with radius r, centered at x. As an example of a random closed set, let Q be a probability
measure on (0, o) and draw R ~ Q, then the random ball B(0, R) is a random closed set.
The following theorem highlights how one can switch between the two interpretations of
a point process:

Theorem A.4 (Theorem 2.5. in [11]). If 7 is a point process on X, then supp n is a
random closed set. On the other hand, if X is a locally finite random closed set (that is
card(X N B) < oo almost surely for bounded B € B(X)) thenn(-) = card(X N -) is a
simple point process on X.

Throughout this thesis we only consider simple point processes, and therefore we may
switch between the two interpretations of a point process as needed. By corollary 1.6.12.
from [8] we may even enumerate the points of a simple point process 7 on X, and write:

7(X)
n={x;,x,...} and n= Z Ox;-
i=1

As an example of the flexibility obtained by considering a simple point process as a random
counting measure or a random closed set, consider the following. Let f : X — R be a
measurable function, then the following notations are equivalent:

> 6= [ feomtan.

Xen

The Campbell formula allows for computing expectations of these kinds of random vari-
ables obtained by summing over points of the point process:
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Theorem A.5 (Campbell formula). Let i be a simple point process on X with intensity
measure A. Let f : X — R be a measurable function satisfying f > Oor/X | f(x)|A(dx) <

oo, then:
E(Z f(x)) - [ s,

xen

Arguably the most important point process is the Poisson process, which is defined as
follows:

Definition A.6 (Poisson process). Suppose A is a o-finite measure on X. A Poisson pro-
cess with intensity measure A is a point process 17 on X with the following two properties:

1. For every B € B(X), the random variable n(B) is Poisson distributed with mean
A(B).

2. For every m € N and pairwise disjoint sets By, ..., B, € 8(X), the random vari-
ables n(By), . ..,n(B,,) are independent.

If 5 is a Poisson process on X = R% and A = Avy with 2 > 0 and v, Lebesgue
measure on R, then 7 is referred to as the homogeneous Poisson process with intensity
A. A Poisson process is parameterized via its intensity measure, as two Poisson processes
with the same intensity measure are equal in distribution. A Poisson process is a simple
point process if and only if its intensity measure A has no atoms. That is, A({x}) = 0 for
all x € X. The following Theorem highlights how one can simulate a Poisson process:

Theorem A.7 (Proposition 3.8 in [53]). Let n be a Poisson process on X with intensity
measure A. Suppose 0 < A(X) < oo, then 11 is equal in distribution to the following point

process:
K
S
i=1
iid

where X1, Xo, ... ~ A(+)/A(X) and independently of the X;’s: k ~ Poisson(A(X)).

If A(X) = oo one can still simulate the restriction of this Poisson process to a subset
B c X with B € 8(X) and 0 < A(B) < oo. This is the case, because this restriction is a
Poisson process on B, with intensity measure A(B N -).

A point process on R< is stationary if its behavior is the same in every region. More
formally, for v € R? let S, denote the shift operator. Suppose n = {x|,x3,...} is a
simple point process on R4. Then, we define Syn = {x; —v,xp —v,...}. Additionally,
for a deterministic set B ¢ R¢ we define S,B := {x +v : x € B}. Note that in the
random counting measure interpretation of a point process, the definition is as follows:
Syn(B) =1 (S,B), for B € B(RY). This is indeed consistent with the previous definition
since S,17(B) = X, 0x,(SyB) = ; 0x,—v(B). We call i stationary if S, 7 and n are equal
in distribution for all v € R?. The homogeneous Poisson process on R¢ is an example of
a stationary point process. The intensity measure of a stationary point process on R< is
given by v, for some 4 > 0. We then refer to A as the intensity of this stationary point
process.
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The Poisson process is frequently used as a building block for defining more com-
plicated models. Those models are often tractable thanks to the attractive independence
properties of the Poisson process. However, many interesting models arise when one does
introduce dependence into the model. We will illustrate this via the Mecke equation:

Theorem A.8 (Mecke equation). Let A be a o-finite measure on X and let n be a point
process on X. Then 1 is a Poisson process with intensity measure A if and only if:

E(Zf(m)) - [ B¢ s Adan.

XEN
for all non-negative measurable functions f : X x N(X) — [0, co].

Besides being an interesting characterization of the Poisson process, the Mecke equa-
tion has computational value. Recall the statistics considered in the Campbell formula.
There, we consider statistics which sum over f(x) for all x € 5. As such, each point x
contributes to this sum, and each contribution only depends on x, not on the other points.
In the Mecke equation, we consider a sum where each contribution not only depends on
x but also on all other points of the point process. As a consequence, the Mecke equa-
tion may for example be used for studying models which involve a dependent thinning, as
highlighted in the example below. A thinning of a point process 7 is a point process which
is obtained by removing points from 7 according to some possibly random rule.

Example 4 (Matérn I hard-core point process). Let 17 be a homogeneous Poisson process
on R? with intensity A > 0 and fix » > 0. A Matérn I hard-core point process ¢ is obtained
as a thinning of 1 as follows. A point x € i belongs to ¢ if and only if no other point of 5
is within distance r of x. That is, we may write: = {x e g : |[x—y|| > rVy e n\ {x}}. It
is readily observed that y is also given by ¢ = {x € 57 : 5(B(x,r)) = 1}. Let B € B(R9),
the intensity measure of ¢ is given by:

E(y (B)) = E( > ]lB(x))

XEY

E (Z 1p(x)1 {17 (B(x, r)) = 1})

xen

/1/ P ((n+6x) (B(x,r)) =1)dx (Mecke equation)
B

24/31@(77 (B(x, 7)) = 0) dx.

Here, we used: (7 +64)(B(x,r)) =1 & n(B(x,r)) = 0 for all x € R%. Because 7
is a Poisson process, 17(B(x, r)) is Poisson distributed with mean Avg(B(x,7)) = Akgr¢
for any x € R4, Here, k; denotes the volume of the unit ball in R. Hence, we obtain
P (7(B(x,r)) = 0) = exp (—Akqr?). As a consequence:

E (¢ (B)) = Aexp (—/lkdrd) va(B).
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Because 7 is stationary, so is ¢, and ¢ has intensity A exp (—/lkdrd ).

A Matérn I hard-core process is called a dependent thinning because the probability
that a given point of the original Poisson process is removed, depends on the locations
of other points in the point process. For independent thinnings of point processes, the
probability that a point is removed does not depend on other points in the point process. An
independent thinning of a Poisson process is again a Poisson process, but with a different
intensity measure than the original Poisson process.

A.2 Marked point processes

An important class of point processes are the so-called marked point processes. Effec-
tively, given a point process one may wish to assign a mark or a label to each point. For
example, a point process on R? may represent the locations of the centers of the balls in the
Wicksell corpuscle problem. We may then assign to each point a random radius, thereby
completely describing a random spatial system of balls. In this example, these radii live in
the space (0, co) which is referred to as the mark space. Formally, a marked point process
is defined as follows:

Definition A.9 (Marked point process). A marked point process in R¢ with mark space
M is a simple point process 7 on RY x M with intensity measure A satisfying:

A(C xM) < oo, for all compact C € B(R?).

Suppose that 17 = {x1,x2, ... } is a homogeneous Poisson process on R with intensity
A > 0. Let Q be a probability measure on some mark space M and draw m, ma, . .. i 0
independently of . Then, define the marked point process my = {(x1, m1), (x2,m3),... }.
More specifically, my is a so-called independently marked point process as the marks are
independent of the point locations. In fact, iy is again a Poisson process on the space
R9xM with intensity measure AvyxQ. As it turns out, this intensity measure is the general
form for all stationary marked point processes (even if the marking is not independent):

Theorem A.10 (Theorem 3.5.1. in [86]). Let n be a stationary marked point process on
R with mark space M and intensity measure A # 0, then:

A=Avgx0,
with 0 < A < oo and Q a probability measure on M.

That being said, we have not yet defined what stationarity means in the context of
marked point processes. The notion of stationarity can be adapted to the marked context
by only considering shifts with respect to the spatial coordinate. That is, for v € R¢ let S,
again denote the shift operator. Suppose n = {(x1,my), (x2,m2), ...} is a marked point
process with x; € R? and m; € M. Then, we define S,n := {(x;—v,m}), (xa—v,m2), ... }.
The marked point process 71 is called stationary if 7 and S5 are equal in distribution for
allv e RY,
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The distribution Q in Theorem A.10 is also referred to as the mark distribution, and
A > 0 represents the intensity. Let 7 and A be as in Theorem A.10, let B € B(R9) with
va(B) > 0 and A € B(M). Then, a direct application of Campbell’s formula yields the
following:

1
0(4) = 3—7B (x%ler;]lB(X)]lA(m) : (A1)

Because the behavior of a stationary marked point process is the same in every region of
R4, this expression for Q(A) does not depend on the choice of the region B. Drawing from
Q corresponds to picking the mark of a point uniformly at random from all points in the
region B. Because B can be made as large as possible, loosely speaking Q describes the
distribution of a random mark, when picking a marked point uniformly at random from all
points. Mark distributions of the form (A.1) are examples of so-called Palm distributions.

A.3 Particle processes and random tessellations

While we may intuitively tend to think of point processes on X = R¢, in stochastic geome-
try, many interesting models are described as point processes on other spaces. Let C’(R9)
denote the system of non-empty compact sets in R?. One may for instance equip C’(R%)
with the Hausdorff metric to obtain a complete separable metric space.

Definition A.11 (Particle process). A particle process is a point process on X = C’(R9).

In a particle process X = {K1, K>, ... }, each ’point” K; in X is a non-empty compact
set, which we call a particle instead of a point. A particle process X = {K1,K»,...} is
called stationary if X is equal in distribution to §,X = {K; —v, K, —v, ...} forall v € R?,

Suppose 77 is an independently marked homogeneous Poisson process on R? with mark
space (0,00). We may write n = {(x1,71), (x2,72),...} with x; € R3> and r; > 0.
A particle process describing a random spatial system of balls may then be defined via
X = {B(x1,71), B(x2,72), ... }. This specific type of particle process, which is essentially
defined by first taking a point process {xi,x2,...} on R?, and then inserting particles
centered at the x;’s is also referred to as a germ-grain process.

For other types of particle processes it is often still useful to assign a unique center to
each particle, this may for example be the center of mass of each particle. Let ¢(K) denote
the center of K € C’'(R?). If X = {K;, K>, ...} is a particle process of interest, then it is
sometimes more convenient to instead study the marked point process n = {(¢(K), K —
c(K)) : K € X}, which is a marked point process on R¢ with mark space C’(R9). If X
is a stationary particle process, then 7 is also stationary and the mark distribution of 7 is
referred to as the grain distribution, or the distribution of the typical grain. Because the
grain distribution is a probability measure on C’(R¢), it is the distribution of a random
closed set, which is concentrated on C’(R¢). Note that the distribution of the typical
grain depends on the choice of center function. Depending on the context, it may be
the case that one specific choice of the center function is the most natural. A type of
particle process which deserves its own name is the class of random tessellations or random
mosaics. Tessellations and random tessellations are respectively defined as follows:
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Definition A.12 (Tessellation). A tessellation of R is a countable collection T = {C; :
i € N}, of sets C; C R4 (the cells of the tessellation) such that:

* int(C;) Nint(C;) = 0,if i # j.

* UienG; = R%.

s T is locally finite: #{i € N : C; N B # 0} < o for all bounded B € B(R%).
* Each C; is a compact and convex set with interior points.

Definition A.13 (Random tessellation). A random tessellation is a particle process which
is with probability one a tessellation.

The points” of a random tessellation are not called particles, but cells. A classical
random tessellation model is the Poisson-Voronoi tessellation, which is constructed as
follows. Suppose 77 is a homogeneous Poisson process on R¢ with intensity A > 0. Then,
the Voronoi cell associated with x € 1 is a random polytope, which is given by:

Clx,m) ={y e R : |lx = yll < [I¥" = y|| forall x" € n}.

The collection V() = {C(x,n) : x € n} of all cells is a random tessellation, called the
Poisson-Voronoi tessellation. In this context, 7 may also be called the point process of
generator points. There is a significant research interest in studying properties of the so-
called typical cell of the Poisson-Voronoi tessellation. Viewing a random tessellation as
a particle process, the distribution of the typical grain is instead called the distribution
of the typical cell. Intuitively, the typical Poisson-Voronoi cell may be thought of as the
distribution of the cell which is obtained by picking a cell at random from the Poisson-
Voronoi tessellation and centering it at the origin. This can be made precise via a Palm
distribution. Formally, one may associate V (n7) with the marked point process:

¥ ={(xClx,n) -x) :xen}. (A2)

Indeed, in this context it is natural to assign the center x to the Voronoi cell C(x, 7). Given
an individual Voronoi cell its is in general not possible to determine its generator x, mean-
ing that the centering is not obtained via a function ¢ : C’(R?) — R¢. In this case, the
underlying center function is an example of a so-called generalized center function. The
point process i is a stationary marked point process on R¢ with mark space C’(R?) and
intensity A. The distribution of the typical Poisson-Voronoi cell is defined as the mark
distribution of ¢. Because the shape of a Voronoi cell C(x, 77) not only depends on x but
also depends on other points in 7, ¢ is not an independently marked point process. A
well-known result is the following stochastic representation of the typical cell:

Theorem A.14. Let Q denote the distribution of the typical Poisson-Voronoi cell, corre-
sponding to a homogeneous Poisson process 1 on R%. Then, C(0,1) ~ Q.

That is, the Voronoi cell with O as its generator is a random closed set which is equal in
distribution to the typical Poisson-Voronoi cell. This result can be proven via the Mecke
equation, as shown below.
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Proof of Theorem A.14. Let A € B(C’'(R?)) and B € B(R%) with v4(B) > 0. Let 1 > 0
denote the intensity of n7. From the definition of the Voronoi cell it can be seen that for
x € R%: C(x,n) = C(x,n + ;). From the definition of the shift operator one can see:
C(x,n) —x = C(0,Sxn). Lety = {(x1, K1), (x2,K3),...} be as in (A.2), applying the
Mecke equation to (A.1) yields:

1
0(A) = 1Bl 2, ns(x)ﬂA(K))

(x.K)ey

1
= B)E(; L5 (0)L(Cx.1) —x))

1
= — / P(C (x,n+6yx) —x € A) Adx (Mecke equation)
Ava(B) Jp

1
Ava(B)

1 / . .
=—— [ P(C(0,n) € A) Adx (stationarity of
0B Sy (C(0,n) € A) y of i)

/P(C (0, S,1) € A) Adx
B

=P (C(0,n) € A).
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Appendix B

The stereological integral equation

In this appendix we present an alternative way of deriving the stereological integral equa-
tion (3.3) in Chapter 3. Here, we describe the random system of particles via a stationary
particle process, which we intersect with a fixed (deterministic) plane. For an introduction
to the terminology used in this appendix we refer to Appendix A. For this derivation we
also occasionally require some results obtained in Chapter 2.

First, we introduce some notation such that we can describe the particle process of
interest. Let p denote the unique rotation invariant probability measure on SO(3), also
known as the Haar measure. Suppose that H is a probability measure on (0, c0), and for
A > 0 we denote its CDF by H(A1) := H((0, A]). As in Chapter 3 we assume that H has a
finite first moment:

E(A) = /Ooo/ldH(/l) < oo

Due to technical reasons, we additionally need to assume that E(A®) < co. That is, by
Theorem 4.1.2. in [86], the particle process we are about to define is only well-defined
under this assumption as it ensures local finiteness of the intensity measure of the particle
process.

We now fix a common shape for the particles by taking a fixed convex body K € K.
Draw M ~ p, and independently draw A ~ H. Let Q be the probability measure on %>
induced by the random closed set C := AMK. In words, by drawing from Q, we obtain
a randomly rotated and randomly scaled version of K. Let n be a stationary marked point
process on R? with mark space %>, mark distribution Q and intensity Ny > 0. Then, we
may write 7 = {(x1,Cy), (x2,C2),...} withx; € R? and C; € K>. Hence, the intensity
measure of 7 is given by Ny vz X Q.

This means that the particle process X = {x; + C1,x3 + C,, . .. } describes the random
spatial system of particles. For x € R3, we write x = (X, X2,X3). We now intersect X
with the plane T = {(x;,X2,x3) € R? : x3 = 0} and study the areas of the particles of X
which are hit by 7. Let 7 be the marked point process which is obtained as follows. For
any (x, C) € n with (C +x) N T # (O we project x onto T, which we denote by x7, and as
a mark corresponding to this projected point we take the area A = v, ((C +x) N T). We
identify T with R? such that x7 = (x;,X») and 57 is a marked point process on R? with
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marks in (0, c0). Because 7 is stationary, so is 7. Note that we may write:
nr ={(xr,v2((C+x)NT)): (x,C) €n, (C+x)NT # 0}.

Let F4 denote the CDF of the mark distribution of n7 and let N4 denote the intensity of
nr. Via the Campbell formula we obtain for a > 0:

NaFa(a) =B >\ T @)l (A)
(x1,A)€nT

=E Z Ljo1p (1, x2) L ((C+x) NT) < a}L{(C+x) NT # 0}
(x,C)en
= NV./O ./50(3) /]R3 Lo ((x1, x2)) L{v2((AmK +x) N T) < a}
-1{(AmK +x) N T # 0}dxp(dm)dH ().

Recall the notation for a hyperplane Ty s = {x € R? : (8,x) = s} for 6 € S47!, s € R.
Then, for the hyperplane T we have T = Ty o with 6 = (0,0, 1). By (2.20) and (2.26) we
have for any x € R*, m € SO(3) and A > 0:

(AmK +x) NTo0 = (AmMK N Ty _x;) +x = (m (AK N T,y _y,)) +x.

Using the translation- and rotation invariance of Lebesgue measure we obtain:

NaFa(a) = NV/ / / Lioap((x1,x2) 1 {v2 (AK N T,y _y,) < a}
0 Jso@) Jr3
K O Tyirg_y, # Ohdrp(dm)dH(1)
= NV/ / /]l {Vz (/lK N Tngyz) < a} 1{AK N Tyre, # 0}
0 Jso@) Jr
dzp(dm)dH(A).

In the final equality we substituted z = —x3. Now, we need that fact that if M ~ p then
also MT ~ p. Additionally, if M ~ p, then for any fixed 6 € S>: M6 ~ Unif(S?). For our
purposes, this means that we have for all bounded integrable functions g : S — R:

1
/SO<3> gmpldm) = en /Sz g(u)or> (du).

Hence, setting u = m” 6 we obtain:

NaFa(a) = %/0 /SZ /Rn [ (AKNT,,) <a} 1{AK NT, . # 0}dzdudH ()

= &/ (/ /11 {v2(AK N T, ;) < a} L{AK N T, ; # 0}dzdu | dH ().
27 Jo s2Jr

(B.1)
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The double integral in brackets in equation (B.1) may be recognized to be equal to
Gk (a)u([AK]) (see also Section 2.2). Recall that u([AK]) = 27b(AK) = 2n1b(K),
such that:

NaFa(a) = Nyb(K) /O " Gak (a)AdH(Q). (B.2)

Letting a — oo, and applying the dominated convergence theorem, we obtain the well-
known stereological equation:

Na = Nvl:7 = NVE(K)/ AdH(1) = Nyb(K)E(A). (B.3)
0
Combining (B.2) and (B.3) yields the desired expression:

1 0 1 0 a
Fa@) = 505 /0 Gax (@IH(D) = o /0 GK(E)/ldH(/l).

The final equality follows from point 2 of Lemma 2.2.

If one considers the point process of particle centers marked with the particle sizes
restricted to the subset of particles which are hit by the section plane, then deriving the in-
tensity measure of this point process will show that the size distribution of particles which
are hit by the section plane is given by the length-biased version of H. This computa-
tion involves similar techniques as those used above. Due to the properties of the Poisson
process, if 17 is an independently marked Poisson process, then so is 7.
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Summary

In this thesis we develop statistical methodology for stereological estimation problems
which in particular appear in the field of materials science. We study mathematical mod-
els which may describe materials microstructures, and we develop statistical methods for
estimating the parameter(s) of these models in a stereological setting. That is, typically
we consider a 3D model, and instead of directly observing data generated by this model
we only observe a 2D planar section. In many cases we even consider (d — 1)-dimensional
sections of a d-dimensional model (d = 2,3,...), because it turns out this is often not
more complicated than the d = 3 case. In order to formally define and study these mod-
els we mainly rely on concepts from stochastic geometry and point process theory. This
thesis is divided into two parts. In part I we consider a model of randomly positioned
and -oriented particles of the same shape, but varying in size, and in part II we consider a
space-filling model by studying a random tessellation (mosaic). In these models, the parti-
cles of a particle process, or the cells of a random tessellation, may represent the so-called
grains of a materials microstructure.

In part I we study a model describing a system of 3D particles, a particle process.
Here, each particle has the same known shape, but the particles do not have the same size.
Then, the system of particles is intersected with a plane and the areas of the observed 2D
section profiles are used to estimate the 3D particle size distribution. The estimation prob-
lem we consider here can be seen as a generalization of the classical Wicksell corpuscle
problem. Because we consider general convex shapes for the particles instead of the ball
(as in Wicksell’s corpuscle problem), this model is more flexible, and therefore has the
potential to more accurately describe real materials microstructures.

In order to deal with this estimation problem we first study areas of random sections of
a fixed convex body in chapter 2. We show that for a large class of convex bodies, the so-
called section area / volume distribution is absolutely continuous with respect to Lebesgue
measure. Via this result we define a nonparametric likelihood-based estimator for the 3D
particle size distribution in chapter 3. We prove strong consistency of this estimator, dis-
cuss computational aspects, and we perform a simulation study to empirically study its
behavior. Additionally, we show that this estimator can be computed efficiently and we
observe that the estimator performs well for a range of particle shapes and underlying 3D
particle size distributions. Note that consistent estimators have not yet been derived before
in this context. Having introduced this methodology we apply it to a real materials mi-
crostructure, and to some commonly considered models for materials microstructures in
chapter 4. That is, we empirically investigate how well we can estimate the 3D grain vol-
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ume distribution in these (simulated) microstructures via our estimation procedure. Here,
we focus in particular on the choice of the assumed grain shape. In the model used for
defining an estimator for the 3D particle size distribution the common shape of the parti-
cles is assumed to be known. Therefore, in practice one needs to choose this shape. We
observe that a few choices of the grain shape tend to yield the most accurate estimates.
We also provide some recommendations on how the estimation procedure may be used in
practice by materials scientists.

In part II of this thesis we study another model, the so-called Poisson-Laguerre tes-
sellation. This model is a generalization of the classical Poisson-Voronoi tessellation. At
the heart of this model lies a Poisson point process which is used for defining the random
cells of the tessellation. Loosely speaking, this point process describes a homogeneous
pattern of points in space, and each point carries a randomly assigned weight. In this con-
text the points are often called generators. The Poisson-Laguerre tessellation may also be
described via a crystallic growth process, and then each weight can also be interpreted
as the time at which a cell corresponding to a weighted generator point starts growing.
The parameter in this model is a distribution function F', which effectively describes the
distribution of the weights, or the distribution of the growth times / arrival times of cells.

In chapter 5 we define nonparametric estimators for this distribution function F.
Throughout, only the point process of weighted generators corresponding to observed cells
are assumed to be known. As a consequence of dependency in the model, this observed
point process is no longer a Poisson point process. We develop statistical methodology
for Poisson-Laguerre tessellations in two settings. First, we consider a setting with di-
rect observations. This means that we directly observe a d-dimensional region of the d-
dimensional tessellation. Then, we consider a stereological setting. This means that we
only observe a 2D section of a 3D Poisson-Laguerre tessellation. In both settings we derive
estimators for the underlying distribution function, which we prove to be strongly consis-
tent as the so-called observation window tends to the whole space. Consistent estimators
of the parameter(s) of a Poisson-Laguerre tessellation have not yet been derived before. In
a simulation study we observe that the estimators perform satisfactorily for various choices
of the underlying distribution function F.

In chapter 6 we study an issue associated with statistical inference for random Laguerre
tessellations which seems to often be ignored in the literature. That is, for an observed
Laguerre tessellation it is in general not possible to uniquely determine the weighted gen-
erators of the observed cells. In chapter 6 we characterize the class of all configurations of
weighted generators leading to the same Laguerre tessellation, under a set of commonly
satisfied regularity conditions. Then, we propose a method to asymptotically obtain a
close approximation of the original weighted generators of an observed Poisson-Laguerre
tessellation. We conclude the chapter by investigating how well the statistical methodol-
ogy from chapter 5 performs when it is applied to these approximated weighted generator
points instead of the true weighted generators. That is, we study via simulations whether
we can still estimate F', when only the observed cells of the tessellation are considered
known, without prior knowledge of the weighted generators. Here, we see that overall the
estimation procedure still performs well, but the obtained estimates do behave somewhat
differently compared to the estimates obtained in the simulation study in chapter 5.
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Samenvatting

In dit proefschrift richten wij ons op het ontwikkelen van statistische methodologie voor
stereologische schattingsproblemen. Deze schattingsproblemen zijn onder andere relevant
voor het vakgebied materiaalkunde. We onderzoeken wiskundige modellen die gebruikt
kunnen worden voor het beschrijven van microstructuren van materialen, en we introdu-
ceren statistische methoden voor het schatten van de parameter(s) van deze modellen in
een stereologische context. Dit betekent dat we data gegenereerd door een gegeven 3D
model niet direct observeren, in plaats daarvan zien we alleen een 2D doorsnede. In veel
gevallen kijken we naar (d — 1)-dimensionale doorsneden van d-dimensionale modellen
(d=2,3,...),omdat dit wiskundig gezien niet ingewikkelder is dan de d = 3 setting. Om
deze wiskundige modellen formeel te kunnen definiéren en bestuderen maken we gebruik
van concepten uit de stochastische meetkunde en puntprocestheorie. Dit proefschrift be-
staat uit twee delen. In deel I bestuderen we een model voor willekeurig geplaatste en
georiénteerde deeltjes van dezelfde vorm, maar verschillend in grootte. In deel II bestu-
deren we een ruimte-vullend model, omdat we ons hier bezighouden met willekeurige
tessellaties (ook wel bekend als mozaieken of betegelingen). In deze modellen kunnen de
deeltjes van een deeltjesproces of de cellen van een willekeurige tessellatie de zogeheten
korrels in de microstructuur van een materiaal beschrijven.

In deel I bestuderen we een model voor een stelsel van 3D deeltjes, een deeltjesproces.
Elk deeltje heeft dezelfde vorm, maar deze deeltjes hebben verschillende groottes. Dit
stelsel van deeltjes doorsnijden we met een vlak, en de oppervlaktes van de 2D deeltjes
die we observeren in de doorsnede gebruiken we om de verdeling van de groottes van de
3D deeltjes te schatten. Dit schattingsprobleem is een veralgemenisering van het Wicksell-
probleem. Omdat de deeltjes in ons model een convexe vorm naar keuze kunnen hebben in
plaats van dat deze bolvormig zijn (zoals in het Wicksell-probleem), is dit model flexibeler,
en daarmee geeft dit model potentieel een betere beschrijving van de microstructuur van
een echt materiaal.

Om dit schattingsprobleem aan te kunnen pakken bestuderen we in hoofdstuk 2 eerst
oppervlaktes van willekeurige doorsneden van een gegeven convex lichaam. We laten zien
dat voor een grote klasse van convexe lichamen, de zogeheten doorsnede oppervlaktever-
deling absoluut continu is ten opzichte van de Lebesgue-maat. Dit resultaat gebruiken we
in hoofdstuk 3 om met behulp van de likelihoodfunctie een niet-parametrische schatter te
definiéren voor de verdeling van de groottes van de 3D deeltjes. We tonen aan dat deze
schatter sterk consistent is, we laten zien hoe de schatter te berekenen is, en we voeren Si-
mulaties uit om op empirische wijze het gedrag van de schatter te bestuderen. Consistente
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schatters bestonden voorheen nog niet in deze context. We laten zien dat onze schatter op
een efficiénte manier berekend kan worden en we observeren dat de schatter goed presteert
voor verscheidene keuzes voor de vorm van de 3D deeltjes en hun grootte-verdeling. Na
het introduceren en bestuderen van de schattingsmethode passen we deze in hoofdstuk 4
toe op de microstructuur van een staal, en op een aantal gesimuleerde microstructuren. Dit
houdt in dat we op empirische wijze onderzoeken hoe accuraat de verdeling van volumes
van de korrels in deze microstructuren geschat kunnen worden via onze schattingsme-
thode. We focussen hier met name op de keuze van de onderliggende korrelvorm. In het
model dat we hebben gebruikt voor het definiéren van een schatter voor de verdeling van
de groottes van de 3D deeltjes, is de gedeelde vorm van alle deeltjes aangenomen als be-
kend. Daarom is het in de praktijk nodig om deze vorm te kiezen. Uit de resultaten blijkt
dat een paar keuzes voor de korrelvorm leiden tot de meest accurate schattingen. We geven
ook enkele aanbevelingen voor het gebruik van onze schattingsmethode in de praktijk, in
de context van materiaalkunde.

In deel IT van dit proefschrift onderzoeken we een ander model, de zogenaamde Poisson-
Laguerre tessellatie. Dit model is een veralgemenisering van de klassieke Poisson-Voronoi
tessellatie. De kern van dit model is een Poisson-puntproces dat wordt gebruikt om de
willekeurige cellen van de tessellatie te beschrijven. Het komt er ongeveer op neer dat dit
puntproces een homogeen patroon van punten in de ruimte beschrijft, en bij elk punt hoort
een willekeurig gewicht. In deze setting worden de punten vaak generatoren genoemd. De
Poisson-Laguerre tessellatie kan ook worden beschreven via een kristallisatieproces, dan
kan ieder gewicht worden gezien als het tijdstip waarop de corresponderende cel begint
met groeien. De parameter in dit model is een verdelingsfunctie F', die praktisch gezien de
verdeling van de gewichten beschrijft, ofwel de verdeling van de groeitijden van de cellen.

In hoofdstuk 5 defini€ren we niet-parametrische schatters voor deze verdelingsfunctie
F. In deze context nemen we aan dat alleen het puntproces van de gewogen generatoren
die horen bij geobserveerde cellen bekend zijn. Als gevolg van de athankelijkheden in het
model is dit geobserveerde puntproces geen Poisson-puntproces. We ontwikkelen statisti-
sche methodologie voor twee verschillende gevallen. Ten eerste beschouwen we de situa-
tie waarbij we directe observaties hebben. Dit betekent dat we een d-dimensionaal gebied
van het d-dimensionale model observeren. Ten tweede beschouwen we een stereologi-
sche setting. Dit houdt in dat we alleen een 2D doorsnede van een 3D Poisson-Laguerre
tessellatie observeren. In beide gevallen leiden we schatters af voor de onderliggende ver-
delingsfunctie, en laten we zien dat deze schatters sterk consistent zijn als het zogeheten
observatie-raam groeit naar de hele ruimte. Consistente schatters voor de parameter(s) van
een Poisson-Laguerre tessellatie waren nog niet eerder afgeleid. Via simulaties zien we
dat de schatters naar behoren presteren voor verschillende keuzes van de onderliggende
verdelingsfunctie F.

In hoofdstuk 6 bestuderen we een probleem dat gepaard gaat met het schatten van de
parameter(s) van willekeurige Laguerre tessellaties. Het lijkt erop dat dit probleem in
de literatuur meestal achterwege wordt gelaten. Het probleem is namelijk dat het voor
een geobserveerde Laguerre tessellatie niet mogelijk is om op unieke wijze de gewogen
generatoren van de geobserveerde cellen te achterhalen. In hoofdstuk 6 geven we een ka-
rakterisering van de klasse van alle mogelijke configuraties van gewogen generatoren die
leiden tot dezelfde Laguerre tessellatie, onder een aantal voorwaarden die vaak worden
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vervuld. Vervolgens stellen we een methode voor om in de limiet een goede benadering
te krijgen van de originele gewogen generatoren van een geobserveerde Poisson-Laguerre
tessellatie. Aan het einde van het hoofdstuk onderzoeken we hoe de statistische methodo-
logie uit hoofdstuk 5 werkt als deze wordt toegepast op deze benadering van de gewogen
generatoren in plaats van de echte gewogen generatoren. In feite onderzoeken we via si-
mulaties of het mogelijk is om F te schatten wanneer alleen de geobserveerde cellen van
de tessellatie als bekend worden beschouwd, zonder kennis van de gewogen generatoren
aan te nemen. We zien dat de schattingsmethode in deze setting nog steeds leidt tot goede
resultaten, al vertonen de resulterende schattingen wel een aantal afwijkende kenmerken
ten opzichte van de schattingen die we hebben verkregen via simulaties in hoofdstuk 5.
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