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Abstract
Memristor-based Computation-In-Memory (CIM) has emerged as a
compelling paradigm for designing energy-efficient neural network
hardware. However, memristors suffer from conductance variation
issue, which introduces computational errors in CIM hardware and
leads to a degraded inference accuracy. In this paper, we present a
hardware-aware quantization to mitigate the impact of conductance
variation on CIM-based neural networks. We achieve this using the
inherent characteristics of fixed-point arithmetic in CIM hardware.
By tuning the bit-precision of weights, we align the conductance
variation-induced errors with lower-order output bits. This reduces
their numerical impact on the fixed-point output. We further de-
crease the residual errors by selectively discarding bits with low
information and high error. This leads to error-free computations
and a high inference accuracy. Our proposed methodology achieves
5.6× correct operations per unit energy compared to the conven-
tional approach, while incurring very low hardware overheads.
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• Hardware→ Emerging architectures.
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1 Introduction
Neural networks are the cornerstone of modern artificial intelli-
gence (AI), capable of performing a wide range of cognitive tasks
without explicit programming [21]. Traditionally, these networks
are implemented on von Neumann architecture-based hardware
such as CPUs, GPUs, and specialized AI processors like TPUs [12,
13, 20]. However, the physical separation between memory and

processing units in these systems leads to poor energy efficiency,
known as the memory wall [5]. Computation-in-memory (CIM)
addresses this issue by integrating computation directly within the
memory units [9, 35]. This is achieved using emerging non-volatile
memory technologies called memristors, which offer high scala-
bility and fabrication compatibility with CMOS technology [32].
Deploying a neural network on CIM hardware starts with quantiz-
ing its weights and inputs into fixed-point format, for compatibility
with integer-based CIM arithmetic. These post-quantization values
are then mapped to CIM hardware components which perform raw
in-place calculations. Finally, the raw outputs undergo fixed-point
post-processing to obtain the final result. Despite its advantages,
CIM suffers from conductance variation nonideality, which causes
programmed memristor conductance to deviate from its intended
value [10]. This arises due to fabrication imperfections and inherent
stochastic nature of device physics. Conductance variation leads to
incorrect weight storage in memristors and causes each memristor
to contribute computational errors. The impact of these errors inten-
sifies during arithmetic post-processing and propagation through
subsequent layers, leading to a reduced neural network accuracy.

State-of-the-art techniques for conductance variation mitigation
can be grouped into four categories: i) on-chip training, ii) off-chip
training, iii) characterization-drivenmapping, iv) hardware compen-
sation. Firstly, on-chip training accommodates conductance varia-
tion impact by training the network directly on CIM chip [26, 27].
However, it is not scalable as each chip needs individual training.
Moreover, it suffers from high energy consumption and endurance
issues due to frequent write operations on memristors. Secondly,
off-chip training aims to account for conductance variation during
software training. This is done in three ways: (1) incorporating a
hardware-calibrated conductance variation model [7, 19], (2) inject-
ing computational noise based on hardware characterization [3, 41],
and (3) restricting weight values for mapping to low-variation con-
ductance states [15]. They all suffer from scalability issue. This is
because the first two need per-chip characterization and training,
while for the last one adds extra complexity to hyperparameter
tuning. Thirdly, works like [8, 40] use characterization informa-
tion to avoid mapping large weights to high-variation memristors.
However, they are not scalable due to the need for per-chip charac-
terization and cannot address errors accumulated from variations
in small weights. Lastly, some techniques [6, 17, 25] introduce ad-
ditional hardware components to mitigate conductance variation.
They suffer from energy and area overheads, while also increasing
the design complexity. Hence, there is a pressing need for a scalable
and low-overhead solution to mitigate conductance variation.

In this paper, we present a methodology that leverages fixed-
point quantization to overcome the impact of conductance variation.
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We begin by analyzing how fixed-point quantization in CIM hard-
ware affects computational errors caused by conductance variation.
Based on this analysis, we propose a two-step quantization strategy
for conductance variation mitigation. We first tune the weight quan-
tization format, so that the errors due to conductance variation get
aligned with lower-order output bits. This diminishes their numeric
significance and reduces their impact on layer outputs. Second, we
minimize the residual errors by strategically reducing the output
bit-size. This is achieved by discarding bits that contain low-value
information but high residual errors. Thus, we achieve significant
error reduction with minimal information loss, leading to high in-
ference accuracy. Our proposed approach is scalable, as it neither
impacts the training process nor requires hardware characteriza-
tion. Moreover, it incurs minimal design changes and hardware
overhead because it only affects binary bit patterns without altering
word lengths. Our key contributions are summarized as follows:

• An analysis of fixed-point quantization impact on conduc-
tance variation in CIM hardware.
• Aweight quantization tuning technique to reduce the impact
of conductance variation-induced errors.
• An approach to reduce the residual error while still main-
taining high accuracy.

Simulation results show that our proposed approach provides 5.6×
correct operations per unit energy compared to the conventional
approach, with very small overheads.

The rest of this paper is organized as follows: Section 2 presents
the basics of CIM. The proposed quantization approach is described
in Section 3, followed by simulation results in Section 4. Finally,
Section 5 concludes the paper.

2 Computation-In-Memory (CIM) Paradigm for
Neural Networks

2.1 CIM Architecture
Vector-matrix multiplication (VMM) operations account for over
70% of the computations in neural networks [36]. Computation-in-
memory (CIM) performs in-situ data processing to achieve energy-
efficient VMM operations compared to traditional von Neumann
hardware [1, 34, 38]. Fig. 1 shows the mapping of a VMM oper-
ation between neural network layers to a CIM hardware. It uses
memory elements known as memristors, which store data in the
form of conductance. They are organized in a grid-like structure
known as a crossbar. It operates in the analog domain and interfaces
with other digital components in the system using data converter
circuits, such as digital-to-analog converters (DACs) and analog-to-
digital converters (ADCs). Network weights are stored as memristor
conductances (G) in the crossbar, while the inputs are applied as
voltages (V) using DACs. The resulting current through each con-
ductance is equivalent to element-wisemultiplication of voltage and
conductance, as per Ohm’s law. The currents from conductances
in the same column accumulate according to Kirchhoff’s law. Each
resulting output current (I) represents a multiply-and-accumulate
operation in the analog domain. The output currents across all
columns then collectively represent one VMM operation. These
analog VMM outputs are converted to digital outputs using ADCs
and then sent to other system components for further processing.

Figure 1: CIM-based vector-matrix multiplication operation
in neural network.

2.2 CIM Arithmetic
2.2.1 Fixed-point Numbers. CIM hardware supports integer arith-
metic, while neural network weights and inputs are typically repre-
sented as real numbers. To bridge this gap, fixed-point representa-
tion is used. It can be specified as (WL, FL), where it expresses a real
number as WL-bit 2’s complement binary number with an implicit
radix point separating FL fractional bits. This is shown in Fig. 2a.
Thus, hardware treats fixed-point number as an integer with im-
plicit scaling factor. It is processed using integer arithmetic, coupled
with scaling factor recovery via downscaling (right-shifting) the
final output. Thus, fixed-point format facilitates processing of real
valued neural network using integer-based CIM hardware.

Converting a real-valued weight or input to fixed-point involves
two key steps: i) Upscaling by 2FL and retaining the integer part, and
ii) Converting this integer to a 2’s complement binary format, with
clipping if it exceeds theWL-bit limit. An example of this conversion
process is shown in Fig. 2b. Quantization loss during fixed-point
conversion can be minimized through a careful selection of WL and
FL, without affecting network accuracy. After the conversion, the
arithmetic operations on fixed-point operands can be carried out
as follows. Operands with same (WL, FL) format can be added or
subtracted directly, while those with different formats must first be
converted to a common format. Operands can be multiplied directly
regardless of (WL, FL) formats. The WL and FL of the product are
is the sum of WLs and FLs of the operands, respectively.

(a) Representation structure.

(b) An example of conversion process.

Figure 2: Fixed-point number format.
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Figure 3: Bit-slicing in CIM hardware.

2.2.2 Bit-slicing Technique. CIM hardware cannot directly meet
the bit-size desired for fixed-point weights and inputs. This limi-
tation arises as the bit capacity of memristors is usually less than
that desired for fixed-point weights. Additionally, fixed-point layer
inputs and outputs require high-resolution data converters (DACs
and ADCs), that are costly in terms of energy and area. To address
this, a technique called bit-slicing is employed [1, 2, 14, 16, 34].
It involves breaking down full-precision weights and inputs into
smaller chunks called slices, as shown in Fig. 3. Weight slices are
mapped to conductances in adjacent crossbar columns, while input
slices are applied to crossbar at different timesteps. The resulting
column currents represent a partial VMM operation for that spe-
cific timestep. These partial VMM outputs are converted to digital
domain by ADCs. As the ADCs are typically shared across multiple
columns due to their large pitch size, sample and hold circuits pre-
serve the column outputs till served by an ADC. The ADC outputs
undergo shift-and-add operations to account for weight slicing.
An additional round of shift-and-add operations then merges the
current timestep output with that of the previous timestep, to ac-
count for input slicing. The final full-precision fixed-point output
is obtained by repeating this process till the last timestep of input.

2.3 Memristor Device Technology
Memristor, also called resistive random access memory (RRAM), is
a non-volatile memory device that stores data in the form of conduc-
tance. It is made up of an oxide material sandwiched between two
metal electrodes [4, 33], as shown in Fig. 4. Memristor conductance
can be modulated by creating and disrupting a conductive filament

Figure 4: Resistive random access memory (RRAM) device.

(a) Concept illustration. (b) Measurements in [30].

Figure 5: Conductance variation in memristors.

(CF) composed of oxygen vacancies within the oxide layer. Its con-
ductance is high when CF connects the electrodes (logic 1), while a
disrupted CF leads to low conductance (logic 0). The SET process
achieves a high conductance state through a high electric field that
forces oxygen ions to drift toward one electrode. This leaves behind
vacant oxygen sites in oxide layer, which form CF to increase its
conductivity. The RESET process leads to low conductance state
using an electric field with polarity opposite to that in SET process.
This causes oxygen ions to migrate back into the oxide layer. These
ions combine with oxygen vacancies to disrupt the CF, reducing the
conductivity of oxide layer. Moreover, a single RRAM device can
store multiple bits by exhibiting incremental conductance states
via partial SET/RESET processes [22].

2.4 Conductance Variation
The programmed conductance of an RRAM memristor deviates
from its target value due to the stochastic nature of filament cre-
ation and fabrication imperfections such as variable oxide thick-
ness [8]. This phenomenon is known as conductance variation,
shown in Fig. 5. Consequently, when a neural network model is
deployed for inference on CIM hardware, the actual memristor
conductance (G+ΔG) deviates from the expected conductance (G),
as illustrated in Fig. 6. This gives rise to deviation (ΔI) from its ideal
current contribution (I). These current deviations get accumulated
via Kirchhoff’s law and introduce errors in the output. Such erro-
neous computations then propagate through neural network layers
and reduce the inference accuracy on CIM hardware. This under-
mines the benefits of CIM, as energy-efficient computations are of
no value if they are functionally incorrect. In this paper, we improve

Figure 6: Impact of conductance variation on the accuracy of
CIM-based neural network.
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the accuracy of memristor-based neural network architectures in
the presence of conductance variation.

3 Proposed Quantization Methodology
3.1 Overview
Fig. 7 shows the operation of a CIM-based neural network layer. It
involves two distinct quantization phases. The first phase, denoted
as q1, converts inputs and weights to fixed-point format. These
values then are mapped to CIM hardware, which performs vector-
matrix multiplication (VMM) to generate the full-precision output.
Directly feeding this output to the next layer is not desirable. This
is because it leads to progressively higher output bit-sizes in sub-
sequent layers, increasing the hardware resource required by the
network. Moreover, neural networks can maintain good accuracy
with lower bit precision outputs as they inherently tolerate impre-
cise computations. Hence, a second quantization phase, denoted as
q2, is employed to reduce the bit precision of the layer output.

In the conventional approach [11, 34, 39], q1 focuses solely on
minimizing quantization loss and does not address conductance
variation. The q2 phase then discards lower-order bits from the
layer output to reduce its bit precision. However, the discarded
bits contribute very little to overall conductance variation-induced
error, due to their lower numeric significance. Consequently, the
resulting low-precision outputs still retains significant errors from
conductance variation. As a result, the low-precision outputs still
retain significant errors from conductance variation. These errors
propagate through subsequent layers, leading to degradation of
inference accuracy on CIM hardware.

To address this challenge, our proposed approach first analyzes
how fixed-point quantization in CIM hardware affects conductance
variation-induced errors. Using this analysis, we develop a two-step
quantization strategy for mitigating these errors. First, we tune the
weight quantization in q1 phase to align conductance variation-
induced errors with lower-order output bits. This reduces numeric

Figure 7: Overview of the conventional and proposed quanti-
zation approaches for CIM-based neural network layers.

significance of these errors, suppressing their impact on CIM arith-
metic. Next, the q2 phase reduces the residual impact of these errors
by discarding bits with low information and high error content.
Thus, our approach achieves significant error reduction with mini-
mal information loss. This results in a high inference accuracy on
CIM hardware. We will now discuss the implementation details of
this approach in upcoming subsection.

3.2 Quantization Strategy
We start with analyzing the impact of CIM hardware’s fixed-point
arithmetic on computational errors due to conductance variation. In
a CIM crossbar, column current represents a multiply-accumulate
operation between conductances (weight slices) and voltages (input
slices). Conductance variation introduces additional error current
in crossbar column. This analog error propagates through ADC
and digital post-processing stages, to produce the full-precision
error in the form of a binary integer. The numeric impact of this
error in fixed-point format can be quantified as E÷2FL, where E
denotes the integer digital error and FL indicates output fraction
length. Moreover, the higher-order output bits of this error are
less impacted by the output fraction length, as they are positioned
beyond the implicit radix point.

We derive the following key insights from this analysis:

• A higher output fraction length can suppress the impact
of conductance variation-induced errors on CIM hardware.
This is shown in Fig. 8a.
• Residual error can still persist despite high output fraction
length and is mainly governed by higher-order bits, as de-
picted in Fig 8b.

Thus, a quantization strategy must maximize the output fraction
length and reduce the residual errors to mitigate conductance varia-
tion. Output fraction length can be optimized in q1 phase, it depends
on fixed-point formats of inputs and weights. The q2 phase can
handle residual errors, as truncation can be leveraged to discard

(a) The impact of output fraction length on post-processed error.

(b) The dependence of residual error to higher-order bits.

Figure 8: Examples illustrating how the CIM fixed-point
arithmetic affects errors induced by conductance variation.
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them. Upcoming subsections will detail how the q1 and q2 phases
achieve these objectives.

3.3 Quantization Phase q1
In this phase, our goal is to maximize the output fraction length to
reduce the impact of conductance variation. Achieving this directly
is challenging, because the output fraction length depends on both
weight and input fraction lengths. Hence, we indirectly achieve this
by maximizing the fraction length of weights or inputs. However,
dealing with input fraction length is difficult and less scalable, due
to the broad input data distribution across various deployment
environments. In contrast, adjusting the weight fraction length is
more manageable and scalable, as weights typically remain static
after training. Hence, we decide to maximize the weight fraction
length (denoted as WFL) in this phase.

To maximize WFL, we have to examine its impact on CIM hard-
ware. A small WFL leads to a shorter fractional part in the output,
which may not effectively suppress conductance variation errors.
However, it accommodates a broader range of weight values and
provides enough integer bits to correctly capture full precision
layer output. Thus, a small WFL offers limited error suppression
but maintains good arithmetic precision. In contrast, a large WFL
increases the fractional part of the output, enhancing the suppres-
sion of conductance variation errors. But this comes at the cost of
representing a narrower range of weight values and insufficient
integer bits to capture the full precision layer output. Hence, a
large WFL delivers better error suppression but provides poor arith-
metic precision. However, achieving high inference accuracy on
CIM hardware requires both effective error suppression and good
arithmetic precision. Although extreme WFL values are suboptimal
for this purpose, an optimal balance can be found at the interme-
diate values WFL values through design space exploration. This
exploration must be performed in conjunction with the q2 phase,
otherwise bit truncation in q2 can negate the benefits of an opti-
mal WFL. The next subsection will first present q2 implementation,
followed by a unified design space exploration for both phases.

3.4 Quantization Phase q2
In this phase, we aim to minimize the residual errors in higher-
order bits of the layer output while reducing its bit-size. This can
be achieved by leveraging two key insights. Firstly, position of a bit
does not necessarily reflect its information content. This is because
the output bit width is determined at design time to accommodate
the maximum output. However, run-time output often falls short of
this maximum and leads to underutilized higher-order bits. These
positions are filled by sign extension bits in 2’s complement format,
which do not contain any new information. In contrast, lower-
order bits can hold significant information when working with
small inputs, as most weights have magnitudes less than 1. Hence,
it is better to discard a mix of higher and lower-order bits, unlike the
conventional approach which only discards lower-order bits [11,
34, 39]. Secondly, higher-order output bits are the major source of
residual error as discussed in Section 3.2. Thus, discarding more
higher-order bits decreases the residual error. We combine these
findings to infer that minimizing residual error requires maximizing
the removal of higher-order bits containing less information.

To determine the optimal number of higher-order bits to be
discarded, we start by defining full precision output word length as

𝑂WL = 𝐴WL +𝑊WL + 𝑙𝑜𝑔2𝑅 (1)

where AWL and WWL denote word lengths of input activations and
weights respectively, while R denotes the number of crossbar rows.
The total number of output bits to discard is given by

𝐷 = 𝑂WL −𝑂RWL = 𝐷H + 𝐷L (2)

where ORWL denotes the desired reduced output word length, DH
denotes higher-order bits discarded from the integer part and DL
denotes lower-order bits discarded from the fractional part. This
gives us the number of higher-order bits to be discarded as

𝐷H = 𝐴WL +𝑊WL + 𝑙𝑜𝑔2𝑅 −𝑂RWL − 𝐷L (3)

Thus, we end up with two optimization variables, DH here and WFL
from q1 phase. We can optimize them both through a single design
space exploration by setting𝑂RWL = 𝐴WL and 𝐷F =𝑊 FL to obtain

𝐷H =𝑊WL + 𝑙𝑜𝑔2𝑅 −𝑊 FL (4)

Since R and WWL are design time constants, determining optimal
WFL via design space exploration suffices to determine DH using
Eq. 4. This approach is also quite intuitive. A small WFL leads to a
small fraction part in the output and leaves more bits for the integer
part. This creates more sign extension bits at higher-order positions,
thereby allowing more higher-order bits to be discarded. This is
corroborated by Eq. 4, which shows that a small WFL leads to a
high DH. Conversely, a large WFL leads to small integer part in the
output. This reduces the number of sign extension bits and permits
fewer higher-order bits to be discarded. This also is consistent with
Eq. 4, where a large WFL corresponds to a lower DH.

We now present Algorithm 1 which determines optimal WFL,
thereby indirectly determining DH. It is provided with fixed-point

Algorithm 1: Determining optimal weight fraction length
and number of higher-order output bits to discard, for high
inference accuracy on CIM hardware.
input :Neural network (NN), CIM architecture (CimA),

Input data (A), Input fixed-point format (AWL, AFL),
Weight word length (WWL), Weight fraction length
list (List_WFL), accuracy threshold (Accth)

output :Weight fraction length (WFL), Number of
discardable higher-order bits in layer output (DH)

1 HW_acc_database← ∅;
2 for FL in List_WFL do
3 DH = WWL + log2R - FL;
4 Wq = fxp_quant(W, WWL, FL);
5 Aq = fxp_quant(A, AWL, AFL);
6 fxp_acc← fxp_sim(NN, Wq, Aq, FL, DH);
7 if fxp_acc > Accth then
8 HW_acc← HW_sim(CimA, Wq, Aq, FL, DH);
9 HW_acc_database.insert(Hw_acc, FL, DH);

10 WFL, DH← maximum_accuracy(HW_acc_database);
11 return WFL, DH;
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format of network inputs, weight word length, an accuracy thresh-
old, and a list of potential WFL values. It is also equipped with
details of neural network structure and CIM system architecture,
to estimate ideal fixed-point accuracy and CIM hardware accuracy,
respectively. For each value in the list of potential WFL values, we
quantize the inputs as well as the weights and also calculate the
corresponding DH value from Eq. 4. We then estimate the ideal
fixed-point accuracy using these values. If it is above the predefined
threshold, we proceed to estimate the CIM hardware accuracy. The
resulting hardware accuracy value is stored in a database along
with its corresponding WFL and DH. Finally, we select the WFL and
DH corresponding to highest CIM accuracy as optimal values.

3.5 Hardware Design Considerations
Our proposed approach requires minimal design changes at hard-
ware level. In the q1 phase, it only modifies the fractional length of
weights without altering the word length. Despite the new fraction
length, fixed-point value still appears as an integer with unchanged
word length to the hardware, due to implicit nature of radix point.
Hence, no hardware modifications are needed for the q1 phase.
Moving to the q2 phase, we need configurable truncation logic
rather than a fixed implementation. This is because the truncation
bit positions depend on the weight fractional length. Implementing
this requires only an offset register and multiplexing logic, lead-
ing to a very minor design change. Moreover, the offset register
can be configured post-fabrication to adapt to various workloads
or networks. Hence, our quantization method provides seamless
integration with existing hardware architectures.

4 Simulation Results
4.1 Setup
We have developed a Python-based framework to simulate the
neural network inference on CIM hardware. It leverages in-situ
multiply-accumulate (IMA) unit described in [1, 34]. The energy
and area data for various IMA components is acquired from [34].
To obtain power and area for the modified truncation logic required
by our quantization approach, we performed RTL synthesis using
Cadence Genus with TSMC 40nm technology. Our simulations
consider memristors with 2-bit capacity. The memristor device
parameters and conductance variation data are obtained from [31],
which presents experimental results on real RRAM devices. We
consider the following three datasets for evaluation:
• Street view house numbers (SVHN) [28]: It contains real-
world images of house numbers taken from Google Street
View, presenting 10 classes for digits 0 to 9.
• CIFAR-10 [23]: It contains 10 different classes such as air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck.
• CIFAR-100 [23]: It has 100 classes that can be grouped
into 20 superclasses. We consider its classification with 100
classes, as it is a complex task involving similar yet distinct
inputs.

We evaluate these datasets by one-to-one mapping with three dis-
tinct neural networks Alexnet [24], VGG [37], and ResNet [18]. We
need to modify these networks as their original versions target

224×224 images, while our datasets contain 32×32 images. These
modified networks are described as follows. (Here, nCm denotes n
convolution filters of size m with ReLU, standalone numbers indi-
cate neurons in fully connected layers with ReLU (no ReLU in the
last layer), Residual denotes a cascade of nCm blocks as described
in [18] and MP represents maxpooling.)

• Modified Alexnet for SVHN: Image ⇒ 32c5 ⇒ MP ⇒
32c3⇒ MP⇒ 64c3⇒ 64c3⇒ 128c3⇒ MP⇒ flatten⇒
256⇒ 128⇒ 64⇒ 10.
• Modified VGG for CIFAR-10: Image ⇒ 64c3 ⇒ MP ⇒
128c3⇒MP⇒ 256c3⇒ 256c3⇒MP⇒ 512c3⇒ 512c3⇒
MP⇒ flatten⇒ 512⇒ 512⇒ 10.
• Modified ResNet for CIFAR-100: Image⇒ 64c3⇒ 128c3
⇒MP⇒ Residual (128c3, 128c3)⇒ 256c3⇒MP⇒ 512c3
⇒MP⇒ Residual (512c3, 512c3)⇒MP⇒ flatten⇒ 100

We first train these networks using PyTorch [29] in software (in
a hardware-unaware manner). We achieve floating point baseline
accuracy of 91.65% for SVHN, 88.88% for CIFAR-10 and 66.73% for
CIFAR-100. Trained weights are fed into our Python framework. It
first quantizes weights to 8 bits and activations to 16 bits, and then
evaluates hardware inference accuracy.

4.2 Neural Network Accuracy
In this experiment, we determine the optimal number of fractional
bits for the modified AlexNet network on the SVHN dataset. This
analysis also indirectly gives us the number of high-order bits to be
discarded from the full precision output, as detailed in Section 3.4.
We apply the methodology in Algorithm 1 to explore weight frac-
tional lengths (WFL) ranging from 6 to 11 bits. This results in the
following fixed-point formats for weights: (8,6), (8,7), (8,8), (8,9),
(8,10), (8,11), and (8,12). When WFL exceeds the word length in a
fixed-point format, its fractional part includes implicit zeros after
the radix point. For instance, a fixed-point number in (8,9) format
is represented as 0.0bbbbbbbb, where ’b’ denotes a variable bit.

Figure 9: Determining optimal weight fraction length for
high CIM inference accuracy. WL denotes word length, while
FL denotes fraction length of weights.
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(a) Modified VGG with CIFAR-10. (b) Modified ResNet with CIFAR-100.

Figure 10: Demonstrating the scalability of proposed quantization approach using complex datasets and neural networks. WL
denotes word length of weights, while FL denote fraction length of weights.

The ideal fixed-point accuracy (red bars) for various WFL values
is shown in Fig. 9. Accuracy remains high as WFL increases from 6
to 9. This is because these fixed-point formats effectively represent
weights and provide sufficient numeric precision to capture layer
inputs and outputs. Accuracy even improves slightly within this
range due to reduced quantization loss (1 ÷ 2WFL ). However, it
begins to decline beyond a WFL of 9 bits. This occurs because fixed-
point formats with higher WFL cannot represent weights effectively
and fail to provide adequate precision to capture layer input/output.

The CIM hardware accuracy across these formats (green bars)
is also shown in Fig. 9. With a WFL of 6 bits, q1 fails to suppress
errors effectively due to the small WFL. This leaves behind excessive
residual errors that q2 cannot handle, leading to low accuracy. The
accuracy improves with increasing WFL, reaching its peak at WFL
of 9 bits. This is because a higher WFL allows q1 to suppress the
errors more effectively. This enables q2 to handle the residual errors
more adeptly, resulting in nearly error-free outputs. Formats with
WFL greater than 9 bits show good error reduction. However, their
hardware accuracy is hampered due to insufficient precision for
representing quantized weights and capturing layer inputs/outputs.
Thus, WFL = 9, corresponding to the weight format (8,9), emerges
as the best choice for optimal hardware accuracy.

4.3 Scalability
We evaluate the scalability of our approach by applying it to a
modified VGG on CIFAR-10 and a modified ResNet on CIFAR-100.
Using Algorithm 1 again, we aim to determine the optimal WFL
for high CIM accuracy. This leads to design space exploration with
WFL values from 6 to 11, corresponding to fixed-point formats: (8,6),
(8,7), (8,8), (8,9), (8,10), and (8,11).

Figure 10 shows that both networks maintain high fixed-point
accuracy up to a WFL of 9. This is due to effective weight represen-
tation and adequate numeric precision in these formats. It declines
for formats with WFL beyond 9 bits, due to reduced effectiveness
in weight representation and inadequate numeric precision. CIM
hardware accuracy improves with increasing WFL from 6 to 9 bits,

thanks to superior error suppression with larger WFL. However,
increasing WFL beyond 9 bits does not benefit from good error
suppression, as the inadequate numeric precision outweighs this
benefit. Thus, a WFL of 9 i.e. weight fixed-point format (8,9) is the
optimal choice for both networks. This demonstrates the scalabil-
ity of our approach, as the trends, insights and effectiveness from
Section 4.2 all have successfully extended to these more complex
datasets and networks.

4.4 Hardware Performance Evaluation
Table 1 compares the hardware performance of our proposed quan-
tization approach with conventional quantization approach in CIM
architectures [11, 34, 39]. As detailed in Section 3.5, we only require
a minor change in the output truncation logic design to adjust the
truncated bit positions based on WFL. RTL synthesis results for
configurable truncation logic show that it consumes just 109 𝜇W
power and occupies 343 𝜇m2 area. Consequently, its overall impact
on IMA metrics is minimal, with only a 1.2% increase in energy
consumption and a 6.3% increase in area as inferred from Table 1
Thus, our approach incurs very small overheads.

The total energy consumption does not reflect its share used for
performing correct computations. To address this, we introduce a
new metric called “correct operations per unit energy". It is defined

Table 1: Hardware metrics per in-situ multiply-accumulate
unit for conventional and proposed quantization approaches.
Hardware accuracy and GOP/J data are for SVHN dataset.

Metric Conventional approach [11, 34, 39] Proposed approach

Hardware accuracy (%) 15.94 89.97
Energy (pJ) 3738 3782

Area (𝜇m2) 21765 23137
Correct operations per
unit energy (GOP/J) 43.7 243.6

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 10, 2025.



ICCAD’24, October 27–31, 2024, New Jersey, USA Diware et al.

as the ratio of correct operations to total energy consumption, ex-
pressed in the unit Giga operations per joule (GOP/J). The correct
operations are calculated by multiplying hardware accuracy (as a
fraction) with the total number of operations. Our proposed ap-
proach achieves 5.6× correct operations per unit energy compared
to the conventional approach, highlighting its effectiveness.

5 Conclusions
We presented a quantization methodology for CIM-based neural
networks to achieve high accuracy in the presence of conductance
variation. This was achieved by tuning fraction length of weights
to suppress errors due to conductance variation. The residual error
was reduced by discarding bits containing significant error but less
information content. This resulted in error-free computations and
a high inference accuracy on CIM hardware. Our proposed quanti-
zation approach achieved 5.6× correct operations per unit energy
compared to the conventional quantization approach, with very low
overheads. This can facilitate effective deployment of CIM-based
neural networks in resource-constrained edge-AI environments.
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