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Global distribution and dynamics of
muddy coasts

Romy Hulskamp 1,2, Arjen Luijendijk 1,2 , Bas van Maren1,2,3,
Antonio Moreno-Rodenas 1, Floris Calkoen 1,2, Etiënne Kras 1,
Stef Lhermitte 2,4 & Stefan Aarninkhof2

Muddy coasts provide ecological habitats, supply food and form a natural
coastal defence. Relative sea level rise, changing wave energy and human
interventions will increase the pressure on muddy coastal zones. For sustain-
able coastal management it is key to obtain information on the geomorphol-
ogy of and historical changes along muddy areas. So far, little is known about
the distribution and behaviour of muddy coasts at a global scale. In this study
we present a global scale assessment of the occurrence of muddy coasts and
rates of coastline change therein. We combine publicly available satellite
imagery and coastal geospatial datasets, to train an automated classification
method to identify muddy coasts. We find that 14% of the world’s ice-free
coastline is muddy, of which 60% is located in the tropics. Furthermore, the
majority of the world’s muddy coasts are eroding at rates exceeding 1m/yr
over the last three decades.

Coastal zones are vulnerable to flooding resulting from storms, or
coastline erosion resulting from a relative sediment deficit; the latter
caused by trapping of sediment in upstream reservoirs1,2 and
subsidence3. On the other hand, globally averaged deltas still experi-
ence net land growth over the past 30 years, largely due to larger
sediment loads resulting from deforestation4. However, in the next
decades, relative rise in sea level provides an increasingly large chal-
lenge for the maintenance of coastlines, because eustatic sea level rise
is increasing5,6 and many deltas are sinking due to groundwater
extraction3. On top of relative sea level rise and loss of sediment sup-
ply, many coastal areas will also experience increasing mean and
extreme coastal wave energy7 in the coming decades. Sustainable
management of these coastal areas therefore requires a thorough
understanding of the past and future coastline trends. One way of
advancing our understanding of coastline dynamics is by evaluating
coastline responseon aglobal scale, providing amethodology to relate
coastline dynamics to global changes. Such studies exist for sand-
dominated coastlines8,9 and for deltas on a more aggregated level4.
However, despite the global abundance of mud-dominated coastlines,

a global inventory of mud coast prevalence and dynamics does not
yet exist.

A muddy coast is here defined as a sedimentary-morphodynamic
type characterised primarily by fine-grained sedimentary deposits
(silts and clays) forming flat surfaces often (but not exclusively) asso-
ciated with broad tidal flats10. These coastal environments are usually
associated with rivers carrying a large sediment load, such as the
Amazon River, theMississippi River and the large Asian rivers draining
the Himalayas (notably the Yellow, Yangtze, Red, Mekong, Ayerwaddy,
Ganges-Brahmaputra and Indus). The existence of a muddy coast
requires a supply of mud exceeding its alongshore and cross-shore
dispersal rate. On their landward side most mud coasts are flanked by
salt marshes (in temperate regions) or mangroves (in the tropics).
These ecosystems offer ecological habitats, provide food, and form a
natural coastal defence against storms11. Mud coasts, especially in
combination with salt marshes or mangroves, therefore provide
important ecosystem services. To better understand the global dis-
tribution and the dynamics of mud coasts, we developed a metho-
dology to detect mud-dominated coasts and its dynamics.
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Muddy coastlines are more difficult to detect compared to sandy
coastlines because the contrast between land and (muddy) water is
less pronounced. Therefore we develop a hybrid machine learning
method combining classified multispectral satellite imagery with glo-
bal coastal geophysical datasets. Through supervised machine learn-
ing this methodology classifies coastlines into five coastal
geomorphological types: sandy coasts, muddy coasts, rocky coasts,
vegetated coasts and other. By sampling large amounts of training and
validationdata at both pixel (n = 3240) and transect level (n = 1868), we
were able to develop an algorithm that identifies muddy coasts with a
high accuracy.

Results
Global occurrence of muddy coasts
The hybrid coastal transect classificationmodel reaches an accuracy of
76.0%when classifying all five geomorphological types; the addition of
geospatial data to the multispectral classification improves the classi-
fication accuracy with 11.2%. Muddy coasts are more accurately clas-
sified compared to the average coastal type, with an accuracy of 86.5%.
The hybrid classifier clearly reveals several clusters of muddy coast-
lines corresponding to well known mud-dominated coastlines (Fig. 1).
In the American continent, themost prominentmud coastlines are the
Amazon-influenced coastlines12 and the Hudson Bay13. The most
extensive muddy coastline in Europe is theWadden Sea14, whereas the
mud-dominated coastlines of West Africa15 also clearly emerge. How-
ever, the most prominent mud-dominated coasts are observed in Asia
(particularly the Indian subcontinent, China and Indonesia). This can
be explained by the fact that this region receives about 70% of the
global suspended sediment load because its sediment yield is much
greater than other drainage basins16.

Global integration of these findings reveals that 14% of the world’s
ice-free coastline is muddy, of which 60% is located between 25◦N and
25◦S. The latter is in accordance with Flemming17 who estimated that
muddy coasts neighbouring mangrove systems in this region cover an
area of about 75%. The latitudinal distribution is consistent with the
distribution ofHayes18 and reflects the large suspended load carried by
tropical rivers16. The longitudinal distribution reflects the large

suspended load carried by rivers draining the Himalayan and South-
east Asian rivers, as well as the Amazon river.

Our analyses estimate a total of 91,400 km (95% CI
82,600−101,500 km) of muddy coastlines of which 39,700 km (95% CI
39,380 − 40,130 km) fall within themuddy areas previously reported in
a comprehensive literature survey by Flemming17.

Dynamics of muddy coasts vs. sandy coasts
Globally, sandy coastlines are relatively stable, with approximately as
much eroding beaches as accreting beaches8. Although the global
dynamics of undifferentiated coastlines (without distinguishing
between the coastline type) have been investigated4,9, a methodology
to differentiate between the dynamics of muddy coasts and sandy
coasts does not yet exist. This is important, because the processes
driving their long-term stability, the role of human interventions as
well as climate change, is very different for muddy coastlines than for
sandy coastlines. Many river deltas are mud-dominated and relatively
flat, and therefore constitute vast low-lying areaswhich are sensitive to
the delicate balance between sea level rise, land subsidence and
sedimentation19. To derive the historical changes of muddy coastlines,
we adopt the method of Luijendijk et al.8 for the period 1984–2016.
This methodology was developed and validated for sandy beaches,
requiring slight adaptations for application to mud-dominated coast-
lines (see Supplementary Material (SM)). After filtering the muddy
coastline transects for a minimum number of historic data points,
temporal coverage, potential ice coverage and outliers, 97.7% of the
mud coasts remain suitable for further analysis.

The analysis of coastline dynamics reveals that 40% of the world’s
muddy coasts are stable (absolute long-term change rates of <1m/year
over the period 1984–2016); 31% are persistently eroding, while 29%
are accreting (Table 1). About 7.8%of themuddy coasts exceed erosion
rates of more than 10m/year, while 8.8% are accreting at rates of more
than 10m/year. On a global scale, the world’s muddy coasts have
accreted 0.18m/year on average over the three decades of the study
period, i.e. a total gain of 579 km2 over this period. Muddy coastlines
are generallymore dynamic than sandy coasts, reflected inmuchmore
(very) extreme accretion and erosion. Rapid accretion rates can be

Fig. 1 | Global distribution of muddy coastlines derived from the hybrid clas-
sification model, with colours denoting the local percentage of mud (darker
brown implying more mud). The subplot on the right averages the relative
occurrence of muddy coastlines per latitudinal degree, with the dashed line
representing the distribution of muddy coastlines reported by Hayes18. The lower

subplot shows the relative occurrence ofmuddy coastlines per longitudinal degree.
The curved grey dashed lines in the main plot indicate the boundaries of the ice-
free coastlines considered in this analysis. The curved blue dashed lines represent
the Tropic of Cancer and the Tropic of Capricorn, the red dashed line indicates the
equator.

Article https://doi.org/10.1038/s41467-023-43819-6

Nature Communications |         (2023) 14:8259 2



explained by the the dominance of fine-grained suspended load in the
world’smajor river systems16; rapid erosion rates by the lowgradient of
mud-dominated coastal environments (resulting in large horizontal
erosion rates for a given vertical erosion rate).

Mapping of muddy areas experiencing rapid accretion and ero-
sion reveals several erosion and sedimentation clusters (Fig. 2).
Coastline changesmaybe the result of changes in the sediment load1,2,4

(i.e. expansion of a high natural sediment load or a more recent
increase resulting from deforestation4) and subsidence3.

Coastline change is most pronounced in South, Southeast and
East Asia, representing 57% of all land globally gained by river deltas
but also where 61% of all deltaic land loss occurs4. Areas at higher
latitude as well as along China’s coastline are typically expanding. The
expansion of China’s coastline is the result of the large sediment loads
carried by the Yellow and Yangtze rivers (carrying the second and
fourth largest sediment load20 in combination with large-scale land
reclamations (over 5000 km2 since the year 200021)). The expansion of
muddy coasts in North America’s Hudson Bay is likely the result of
isostatic rebound leading to sea level fall22; the expansion in Europe is
related to land reclamations23. Many coastlines at lower latitudes
experience erosion (North America, Pakistan, India) or alternate
between erosion and sedimentation (the Amazon coastline, Indonesia,
Bangladesh). Erosionalong the Pakistancoastline is primarily drivenby

a reduction of the sediment load of the Indus (95%24). The alternating
patterns of erosion and accretion along the northeast coast of South
America reflect the natural migration cycles of mud banks12,25.

Two out of the five areas with strongest erosion rates are located
in Bangladesh (Table 2), where stretches of 13–29 km long muddy
coasts have eroded on average between 31.0 and 50.7m/yr over the
study period. The world’s longest muddy coastal stretch suffering
severe erosion is located at PulauBeruit inMalaysiawhereweobserved
a 40 km stretch of muddy coast with a mean erosion rate of
19.3m/year. The largest accretive hot spot is in Indonesia, North
Sumatra along the straits of Malacca, at the river mouth of the Rokan
River,where a stretch of 17 kmofmuddy coast has accretedon average
37.6m/yr. Not only the mudflats seem to have accreted, but also the
(mangrove) forest/vegetation has expanded seaward. It is noteworthy
that at the north east coast of South America large erosion and
accreting hot spots alternate. The Guyana current transports Amazo-
nian sediments (mainlymud sediments) along the north coast of Brazil
into French Guyana and Suriname26, where mudbanks migrate west-
ward and constantly change shape and orientation due to the com-
bined action of waves and currents27.

From a continental perspective, Africa, Oceania and South
America are continents subject to net erosion (−0.14m/year, −0.44m/
year and −0.76m/year, respectively) whereas the other three con-
tinents accrete on average (table in Fig. 2). The continents in the
northern hemisphere all accrete on averagewhile the continents in the
southern hemisphere are, on average, eroding.

Methods
Our hybrid coastal transect classification model (Fig. 3) maps the
output of a multispectral pixel-based classifier and global geospatial
data on a global coastal transect system8. These cross-shore transects
are 1500m long and placed perpendicular to the 2016 global Open-
StreetMap (OSM) coastline (https://planet.osm.org/). The spacing of
each transect decreases from approximately 500m close to the
equator to 200m close to the poles (66.5°N and 66.5°S), resulting in a
total of 1.8 million transects. In the following sections, we will first
explain the pixel-based classification and combination with global
datasets into the hybrid classifier, followed by a validation of this
methodology.

Table 1 | Chronic coastline dynamics classification scheme

Dynamic class Rate Sandy
coasts (%)

Muddy coasts (%)

Very extreme
accretion

>10m/yr 1.6 8.8

Extreme accretion 5 to 10m/yr 1.8 5.4

Severe accretion 3 to 5m/yr 2.3 4.3

Intense accretion 1 to 3m/yr 10.1 10.7

Stable −1 to 1m/yr 69.7 40.3

Intense erosion −1 to −3 m/yr 9.8 12.2

Severe erosion −3 to −5 m/yr 1.9 4.8

Extreme erosion −5 to −10 m/yr 1.5 5.7

Very extreme erosion <−10 m/yr 1.2 7.8

Fig. 2 | Global hot spots of muddy coast erosion and accretion; the orange
(blue) circles indicate erosion (accretion) for the four relevant coastline
dynamic classifications (see legend). The bar plots to the right and at the bottom

present the relative occurrenceof eroding (accreting)muddy coastlines per degree
latitude and longitude, respectively.
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Table 2 | World’s largest erosive and accretive muddy coast hot spots

Areal change rate (m2/yr) Mean change rate (m/yr) Length of section (km)

Erosive hot spot muddy coasts

Charfasson, Bangladesh −889,316 −31.0 29

Pulau Beruit, Malaysia −772,125 −19.3 40

Johanna Maria, Suriname −767,178 −55.1 14

Ilha de Maracá, Brazil −747,625 −37.4 20

Sandwip Island, Bangladesh −655,014 −50.7 13

Accretive hot spot muddy coasts

Sinaboi, Indonesia 657,375 37.6 17

Ðông Hung, Tiên Lãng, Vietnam 541,975 41.4 13

Viên An, Ngoc Hien District, Vietnam 489,038 41.2 12

Huian, Quanzhou, China 406,894 26.4 15

North Coast of Friesland, Netherlands 263,347 13.0 20

Fig. 3 | Theworkflow followed for classifying the global coastline using a global
transect system, pixel-based multispectral classification and long-term
shoreline changes resulting in global covering data. (1) shows the shore-normal
Global Transect System used; (2) shows the steps from Sentinel-2 images to

supervised image classification; (3) presents other coastal geospatial datasets used
in the hybrid model; (4) presents the steps from the hybrid transect classifier to
global distribution ofmuddy coasts; and (5) shows the steps in computing dynamic
coastline changes and upscaling to global scale.
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Pixel-based multispectral classifier
The pixel-based multispectral image classifier uses freely available
Sentinel-2 (S2) multispectral global Top of Atmosphere (TOA) images
(https://scihub.copernicus.eu/), to classify coastal-cover and -use of
the global coastal area. The S2Multispectral Instrument (MSI) samples
thirteen spectral bands: visible and near infrared (NIR) at a spatial
resolution of 10m, red edge (RE) and short wave infrared (SWIR) at
20m, and atmospheric bands at 60m. Thewater vapour band (B9) and
cirrus band (B10) are excluded from the analysis as these bands are
most sensitive to moisture in the atmosphere.

First, we created a 1-year composite of the 2020 Sentinel 2 TOA
reflectance imagery. This was computed by extracting the 15% per-
centile from each pixel temporal distribution, following the method
described in Donchyts et al.28 and Hagenaars et al.29. This composite
image averages the effect of short timescale changes (e.g., wave and
vegetation seasonality, tides, and spurious clouds).

As a next step, subsections of the global pixel distribution are
calibrated. For this purpose the global coastal area was divided into
~24,000 squareboxes of 20 × 20 km. In total, 75 of these24,000boxes,
representing different coastal environments on the six continents
(excluding Antarctica), were selected for training. In total 3240 train-
ing data points (pixels) were manually selected and labelled with a
coastal class through visual inspection of the RGB 2020 S2 composite
TOA images. The training data consisted of seven clearly distinguish-
able coastal classes: (1) sandy beaches, (2) mudflats, (3) clear water, (4)
turbid (brown) water, (5) green vegetation, (6) dry vegetation, and (7)
other (containing clouds, snow, buildings and all other indefinable
points). An optimised30 random forest31 ensemble classifier, imple-
mented in the Google Earth Engine platform32 as SmileRandomForest,
was trained to the spectral reflectance properties of 3,240 labelled
points. The algorithm was implemented using fifteen decision-trees,
while other parameters, such as the bagging fraction, were left as
default. When trained, the algorithm is able to assign a class label (i.e.
sand, mud, water, turbid water, vegetation, dry vegetation, other) to
each of the pixels in the multispectral satellite imagery. The global
multispectral image classifier is verified and validated using sediment
samples in a Dutch estuary, which is discussed in Section Performance.

Global coastal geospatial data
In parallel to the multispectral classifier, we also analysed the physical
geospatial characteristicsusing global coastal datasets.We selected six
freely available coastal geophysical datasets that represents different
characteristics (Table 3).

The Multi-Error-Removed Improved-Terrain Digital Elevation
Model (MERIT DEM)33 provides indirect information on the coastal
environment. A high and variable bed level represents a rocky coast,
while a low (variable) coastal topographic relief is usually related to a
river delta and therefore to a supply of sediment to the coasts. Mud is
most abundant in areas with high temperature and high rainfall and
therefore the humid tropics18. However, mud coasts occur globally
because of the large variability in mechanisms driving sediment pro-
duction (relief, climate, and rock type in the river basin) and settling
(energetic conditions in the receivingbasin). Climatological conditions
are extracted from the WorldClim V1 Bioclim dataset34. The largest

expanses of muddy shorelines are associated either with tropical
mangrove systems or temperate salt marshes17. The presence of
mangrove forests is obtained from the Global Mangrove Forests
Distribution35. Tidal flats are common in sediment-rich environments
where the tidal range is large relative to the typical wave height36. Tidal
flats may range from sand-dominated to mud-dominated, but are
typically a combination withmud-dominated upper flats coarsening in
the seaward direction. The occurrence of tidal flats can be estimated
from global tidal flat ecosystem maps11 and the Global Surface Water
(GSW) dataset37, which can be interpreted as the intertidal area where
dry and wet areas alternate (transition zone). Since the tidal range is a
strong indicator for tidal flats occurrence, we include a global tidal
dataset (the Deltares Global Tide and Surge Model38 (GTSM)).

The coastal geospatial data for elevation, mangroves, tidal flat
width and transition zone width is extracted every 10m along the
transects (same spatial resolution as the S2 pixels). A number of scalars
are subsequently computed per transect. The elevation data per
transect is converted into a maximum bed level and a variance along
the profile. The Global Mangrove Forests Distribution dataset is used
to determine whether a transect crosses mangrove forests (True/
False), independent of the amount of mangroves. The intertidal area
dataset is used to compute the tidal flat width along each transect. A
water probability profile is drawn along each transect using the GSW
dataset, fromwhich the width of the transition zone of land to water is
calculated; this transition zone is bounded by 5% to 95% water prob-
ability in order to remove the (nearly) converging start and end of the
profile. The resolution of the temperature and tidal range data is
coarser than the resolution of transects, and therefore the tempera-
ture and the tidal range data is interpolated using a nearest neighbour
interpolation technique. Per transect themaximum temperature of the
warmest month and the minimum temperature of the coldest month
are extracted from the temperature dataset. The tidal range is calcu-
lated per transect by subtracting the mean lower low water from the
mean higher high water. Finally, the longitude and latitude of each
transect is defined by the coordinates at the centroid of that transect.

The hybrid transect classifier: detection of muddy coasts
Both the spectral reflectance properties of land type at pixel level
provided by the multispectral satellite images and the physical geos-
patial characteristics collected with the global coastal geospatial
datasets are subsequently integrated into a hybrid transect classifier.
The principle of the hybrid transect classifier is illustrated with two
examples located in Madagascar and in Suriname, see Fig. 4. The left-
hand panels of the figure depict the 2020 S2 composite TOA image,
with five transects each classified by the multispectral image classifier.
From the classified transects we obtained seven scalars representing
the presence of the seven coastal classes along each transect. The
right-hand panels of the figure provide indicators from the coastal
geospatial datasets in combinationwith the results of themultispectral
classifier. This visualisation allows for an intuitive, contextual inspec-
tion of the available information per coastal transect.

In order to train the hybrid coastal transect classificationmodel to
identify muddy coasts at global scale, we created a training dataset
consisting of 1868 manually labelled transects. These transects are

Table 3 | Overview of global coastal geospatial datasets used in this study

Coastal data type Coastal geospatial dataset Spatial resolution Reference

Elevation MERIT Digital Elevation Model 90m Yamazaki
et al.33

Temperature WorldClim V1 Bioclim Dataset 1000m Hijmans et al.34

Mangroves Global Mangrove Forests Distribution, 2000 30m Giri et al.35

Tidal flat width Global Intertidal Change Dataset 30m Murray et al.11

Transition zone width Global Surface Water dataset 30m Pekel et al.37

Tidal range Deltares Global Tide and Surge Model 5000m Verlaan et al.38
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randomly distributed around the globe and capture different coastal
environments under different conditions. The training transects are
labelled (by one of the authors) by visual inspection of S2 TOA com-
posite RGB images of 2020 along with available high-resolution
satellite/aerial imagery (google earth). Five coastal types were defined:
(1) sandy coasts (a clear strip of sandy sediment at the coastline is
visible on the satellite image); (2) muddy coasts (an exposed tidal flat/
mudbank is visible on the satellite image); (3) rocky coasts (large rocky
features/cliffs are visible on the satellite image); (4) vegetated coasts
(vegetation covers the coastline and no sediment/beach is visible
between water and land); and (5) other (all indefinable coasts, includ-
ing coasts coveredwith ice/snow, anthropogenic structures that shape
the coastline such as harbours and dykes). The transect training
dataset consisted of 442 transects associated to each of the four
coastal types (i.e. sandy coasts, muddy coast, rocky coast and vege-
tated coast) whereas 100 transects were categorised as other.

The processed information of the labelled training transects
provides a vector, which entries are individual coastal features (i.e. the
presence of sand pixels along the transect or the maximum elevation
of the topographic profile, etc.). The model consisted (similarly to the
pixel land-type classification) as a SmileRandomForest algorithm. The
output of the classifier assigned each transect a predicted label with
the corresponding coastal type (i.e. sandy coast, muddy coast, rocky
coast, vegetated coast, other) that best matched the observed coastal
characteristics of the transect. With this classifier all global coastal
transects were classified into a certain coastal type.

Performance
Training and accuracy. Training and testing of both the pixel land-
type classifier and the hybrid coastal type transect classifier were done
in an analogous manner. First, the manually labelled series were

randomly split in a training and testing dataset (75% and 25% respec-
tively), the random forest classifier was trained and its performance
evaluated on the test set bymeans of the overall accuracy and f1-score.
This split was performed randomly 100 times in order to describe the
variability induced by possible biases in the training-test split. Addi-
tionally, subsets of the training dataset of different lengths were used
to test the influence of the training data size (see Fig. 5a).

The overall accuracy of the satellite image pixel classification
model reached 83.2% for all training points, with the 95% confidence
intervals at ±2.5%. The f1-score strongly varies with the coastal class,
with water and sand being more accurately resolved than vegetation,
mud, or turbid water.

The satellite image pixel classification predictions, along with
extracted geospatial datasets at the transect level are used as input for
the coastal type transect classifier (i.e. hybrid model). The transect
coastal type classifier achieved an accuracy of 76.0% as a mean of all
classes. The f1-scores reveal that muddy coast transects are classified
most accurately (86.5%; see Fig. 5a). It should be noted that the addi-
tion of the geospatial data increased the performance of the transect
classifier by 11.2% compared with using information from the multi-
spectral satellite imagery alone (see SM).

The relative importance of features (in the fitted transect classi-
fication random forestmodel)was computed using themeandecrease
in impurity method39. Figure 5b provides the mean and standard
deviation of the importance feature when drawing 100 random splits
of the training-testing dataset (75% and 25% respectively). The hybrid
transect classifier uses a total of seventeen features of which the three
most important originate from themultispectral classifier (water, sand
and mud) whereas the following three in order of importance (max-
imum elevation, elevation variance and transition zone width) are
based on the geospatial datasets (Fig. 5b).

Fig. 4 | Two examples showing the principle of the hybrid transect classifier.
Upper panels a and b: Madagascar; bottom panels c and d: Suriname. Left-hand
panels a and c: 2020 S2 composite TOA images with five transects (1500m in
length) each classified by the multispectral image classifier. Colours indicate the
multispectral pixel classification. Right-hand panelsb and d: transect profiles of the
orangemarked transect fromthe left-handpanel. Thehorizontal axis is thedistance
[m] along the transect, where 0m is the landward end and 1500m the seaward end.

The left y-axis represents the elevation [m] above mean sea level to which the
elevationprofile and the tidal rangeare related, the right y-axis represents thewater
probability [%]. The multispectral image classification is shown at 0m elevation in
the graphs with coloured dots referring to the coastal class of each pixel along the
transect. The tidal range is plotted as a horizontal shaded bar, the transition zone is
plotted as a vertical shaded bar.
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The way the classifier is influenced by similar coastal types is
visualised in a confusionmatrix (see Supplementary Fig. 3). The coastal
type that interferes most with muddy coasts are vegetated coasts:
although 92 transects (78%) classified as mud coasts were correctly
classified, thirteen transects (11%) were in reality vegetated (and seven
sandy (6%)). This is probably because the geospatial characteristics of
these coasts are very similar,with the exceptionof (sometimesnarrow)
mud banks visible onmultispectral images. However, 95% of the actual
muddy transects were correctly identified by the classifier.

The typical physical geospatial features show differences for the
different coastal environments (see Supplementary Fig. 4). Sandy
coastlines, for instance, have a larger maximum elevation and nar-
rower transition zone compared to a muddy coastline. These features
can therefore be used to optimise the classification. To this end the
density distribution of the muddy, sandy, rocky and vegetated coasts
are visualised against the geospatial features using the 1,868 labelled
training transects (see Supplementary Fig. 4). Muddy coasts generally
present a low maximum elevation profile, with a narrow density dis-
tribution and a peak at 5m. The spread of maximum elevation
becomes progressively larger for sandy coasts (with a peak at 10m),
vegetated coasts and rocky coasts. Muddy coasts have the widest
transition zones, often occupying half the length of the transect. The
transition zone width is much narrower for the sandy coasts, rocky
coasts and vegetated coasts.

Validation. The pixel-based image classification, that fed into the
transect classification, has been validated against in-situ sediment
observations of sediment grain size distribution in the Dutch Wadden
Sea (the Sediment Atlas (https://puc.overheid.nl/rijkswaterstaat/doc/
PUC_43681_31/)); see SM for details.

An additional benchmark of the performance of our classifier for
muddy coastal transect detection was performed using an indepen-
dent labelled dataset. To this effect, we utilised the Eurosion coastal
typology40. This consisted of 4317 coastal transects, which are classi-
fied as muddy coastline including tidal flat, salt marsh along coasts in
the UK, France and Germany, with a total length of 6936 km. Given the
discrepancy in classes, we evaluated the performance of the classifier
in terms of true positives (TP/(TP + FN)). When computing the recall
over this validation set (N = 4376), we find that the classifier has 82%
sensitivity, indicating themodel’s accurate detection ofmuddy coasts.
See SM for more details.

Also, we conducted a qualitative comparison of the spatial dis-
tribution of our muddy areas predicted by our model using a detailed
literature survey on the occurrence of muddy coasts along the world’s
coastline. The key source of information is the book Muddy Coasts of
the World: Processes, Deposits and Function; specifically, Chapter 6:
Geographic distribution of muddy coasts17. In this chapter a detailed
description is presented (of more than 100 pages) on the occurrence
of muddy coasts and muddy systems following a stepwise approach
along the entire world’s coastline, based on an extensive literature
survey.

Following relevant statements in Flemming17, we manually drew
polygons around the described areas (SM). This resulted in an exclu-
sive digital map of muddy coasts described by Flemming17, which was
used to qualitatively compare our model-predicted map of the global
distribution of muddy coasts (Supplementary Fig. 6). Based on the
descriptions by Flemming (2002)17, which vary in the level of detail
depending on the availability of references, a total of 143 polygons of
varying dimensions have been drawn by the authors. Forty-six (46) of
the 143 are associated to areas smaller than 50km or not covered by
the global coastal transect system; which can be explained by inland
lakes, lagoons, etc. This yields 97 polygons in which significant pre-
sence of muddy coasts have been reported by Flemming (2002)17; see
Supplementary Fig. 7. In 95 of the 97 polygons we also predicted
muddy transects. In fact, in 89 of the 97 polygons we foundmore than
5% of muddy transects. This high agreement (92%) indicates that the
model canwell predictmuddy transects at allmuddy coastal regions in
the world previously reported in literature, which can be explained by
the global spreading of training locations. More details can be found
in the SM.

In summary, the data shows to correlate closely to actual coastal
muddy areas to thebestof our ability acrossdifferent tests by showing:

1. An accuracy of 86.5% when validating against a global manually
curated labelled dataset provided by the authors, using robustmetrics
that account for test-training size and spatial autocorrelation errors.

2. A recall of 82% when validating against the Eurosion 2004
manually labelled dataset (labelling conducted in 2002 by local geo-
logical surveys) for muddy coastlines in NW Europe.

3. A good degree of similarity with the Flemming reportedworld’s
muddy areas, by identifying a large majority of reported muddy area
concentrations (a qualitative metric related to the model’s true
positive rate).

Fig. 5 | Performanceof thehybrid transect classifier and importanceof theused
features. Left-hand panel a: overall accuracy for hybrid transect classifier when
validating against the coastal transect types of sandy, muddy, rocky and vegetated
coasts. The number of used training transects is on the x-axis and the accuracy (f1-
score) on the y-axis. The solid line represents the mean accuracy, the shaded area
represents the 95th percentile of the accuracy. Right-hand panel b: importance of

features (calculated as the mean decrease in impurity method) used in the hybrid
transect classifier in descending order. The bars represent the mean of the
importance for each feature originating from the multispectral satellite images
(blue) and the coastal geospatial datasets (orange). The black lines represent the
standard deviation of the importance of each feature.
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Dynamic coastline detection
Shorelines have been detected from Landsat imagery using the
coastline detection algorithms of Hagenaars et al.29 and the
ShorelineMonitor8 at a global scale. First, yearly Top of Atmosphere
reflectance composites were generated for the period 1984 − 2016,
which were subsequently used to estimate an accurate surface water
mask using dynamic thresholding method described in Donchyts
et al.28. Yearly composite images generated by the 15% reflectance
percentiles per pixel were analysed to determine global shoreline
positions, resulting in the removal of clouds and shadows. This
approach is comparable to how Hansen et al.41 generates composite
images. The use of the composite images significantly decreases the
influence of the tidal stage on the detected shoreline positions and
averages out seasonal variability in wave and beach characteristics.
This dataset on long-term shoreline changes at the global transect
system (so for all coastal types) is publicly available at Shor-
elineMonitor. Combining the classification of all global coastal trans-
ects processed in this study, we correlated the classified muddy
transects with long-term shoreline changes in the ShorelineMonitor
dataset8. To avoid unrealistic coastline change rates we applied similar
filters as in Luijendijk et al.8 to allmuddy transects. Themuddy transect
data is filtered on the number of Satellite Derived Shoreline (SDS)
annual data points and the temporal coverage per transect. Transects
with possible ice coverage are discarded. In addition, the thresholds
for accretion and erosion classes have been increased to 1m/year to
focus on the more dynamic muddy shorelines. In other words, only
muddy coasts showing shoreline changes of > 33m in 33 years are
considered in the analyses. Outliers in the SDS are excluded from the
linear regression.

The performance of the linear regression method, used to quan-
tify long-term coastline change rates, in capturing trends of chronic
muddy coastline change, is validated using three case studies/regions
(SM). In addition, the uncertainty bandwidth, which can be considered
as a proxy for the representativeness of the linear regression method
to express the long-term change rates, is analysed for the muddy
transects. This analysis showed that the uncertainties are of the same
order of magnitude as for the coastline dynamics of sandy coasts
presented in Luijendijk et al.8. Evenmore, the stronger change rates of
the muddy transects are more accurate in terms of confidence inter-
vals. We therefore conclude that the adaption of the long-term
coastline changes for muddy coasts is justified. Details can be found
in the SM.

Data availability
The authorsdeclare that all data supporting thefindings of this study is
available within the paper and in the SourceData which is archived in a
Zenodo digital repository: https://doi.org/10.5281/zenodo.7582197.
The data includes the QGIS visualisation, predicted coastal classes at
global transects, the manually drawn Flemming (2002) polygons, the
transect classification training dataset and the pixel land-type classifi-
cation training dataset for Sentinel 2.

Code availability
The code to run the pixel-based multispectral image classifier in this
study is archived in a Zenodo digital repository: https://doi.org/10.
5281/zenodo.7582197.
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