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Abstract

The proliferation of Internet of Things (IoT) devices has led to a
surge in vulnerabilities, with traditional metrics like CVSS and
PoC exploits failing to fully explain exploitation patterns. To ad-
dress this, we leverage features from the-state-of-the-art prediction
model EPSS - such as CVSS, CWE, vendors, external references,
vulnerability age, and PoCs — and combine it with new features
derived from hacking communities. Our study of 23,373 IoT-related
CVEs and 25k posts from 25 hacking forums highlights the impor-
tance of including insights on attacker behavior from discussions
involving vulnerabilities. We identified 38 features with a p-value
< 0.05 that impact attackers’ selection of IoT vulnerabilities. We
use two metrics to evaluate our model with features from hacking
forums: McFadden’s pseudo R%, which showed a 21% improvement
in explaining variance, and the Brier score for prediction accuracy,
with a 17% improvement over EPSS. These results emphasize that
current state-of-the-art methods struggle to capture the distinct
nuances and complexity of IoT threats, and incorporating available
information such as insights into attacker behavior can enhance
the factors influencing the targeting of IoT vulnerability better.
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Security and privacy — Distributed systems security; Vulner-
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1 Introduction

In recent years, the proliferation of Internet of Things (IoT) de-
vices has brought about a corresponding surge in vulnerabilities,
amplifying the potential risk of exploitation. For example, accord-
ingly to VARIOT [43], the number of reported IoT vulnerabilities
increased from 772 in 2010 to over 3,253 by 2022. This escalation
in volume of IoT vulnerabilities necessitates a critical examination
of the current state-of-the-art mechanisms for predicting and un-
derstanding the factors that lead to exploitation. Since it is unlikely
that vendors and users have the time and resources to mitigate all
discovered vulnerabilities, it helps to focus on those that actually
will get exploited.

Previous research has shown the importance of using IoT-specific
features for understanding IoT targeting in the wild [1, 2, 10, 14,
46]. However, the collection of these IoT-specific features such as
device types [2, 10, 14, 18, 63] and number of exposed devices in
the internet [2, 14, 54] is labor-intensive and currently not scalable
and requiring manual work. Therefore, we want to support vendors
and users by improving our understanding of what factors make
certain IoT vulnerabilities targeted by attackers.

Since 2003, security practitioners have commonly relied on the
Common Vulnerability Scoring System (CVSS) public information
as a metric for predicting which vulnerabilities are more likely to
be targeted by attackers — even though the developers of CVSS
actually state it should not be used for this purpose [65]. Higher
CVSS scores are interpreted to mean that the vulnerability is more
likely to be exploited, hence more urgently needs to be patched. Yet,
empirical research has indicated CVSS is unable to predict attacks
in the wild [5, 19, 59]. Additionally, on average, 49% of real-world
exploits occur before CVSS scores are published [21].

Recognizing the limitations of vulnerability severity scores in
exploit prediction, others have explored alternative predictors such
as the availability of Proof of Concept (PoC) exploits in public.
Unfortunately, this feature has also been questioned as a reliable
predictor, as instances most vulnerabilities with PoC exploits never
manifest as real-world targets of attacks [4, 5]. Only 4.17% vulnera-
bilities get associated public exploits within 365 days [36]. Do most
attacks occur within that set of vulnerabilities with a PoC?

To fill this gap in understanding which vulnerabilities get at-
tacked in the wild within 30 days, Jacobs et al. introduced the
Exploit Prediction Scoring System (EPSS) [41]. It integrated infor-
mation from various sources such as CVSS scores, vulnerability
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features from the National Vulnerability Database (NVD), avail-
ability of PoC exploits, vulnerabilities used in offensive security
tools, and features derived from social media. At the time of writing,
111 vendors have integrated EPSS in their products, including IoT
vendors [29] and platforms such as Vulners [72] and Shodan [61].

While EPSS has shown promise in predicting exploitation for
the total set of CVEs, this set consists mostly of CVEs for general-
purpose IT systems. EPSS often assigns low scores to IoT vulnera-
bilities, even to those known to be exploited in the wild, such as
the ones included in CISA’s Known Exploited Vulnerabilities (KEV)
catalog [64]. For instance, CVE-2017-17215 was assigned an EPSS
score indicating a near-zero probability (0.05) of being exploited
in the wild within 30 days, starting from May 2021, which is the
earliest available score in EPSS. It took over three years for the score
to increase significantly, reaching 0.96 by April 2023. However, this
does not align with real-world findings, as this IoT vulnerability
was identified as one of the most frequently and consistently tar-
geted vulnerability over an extended period in multiple studies and
security reports conducted as early as January 2015, all the way up
to February 2024 [1, 2, 10, 24, 25, 38].

This indicates potential limitations in accurately assessing the
severity of IoT vulnerabilities. To raise awareness among vendors
and users of EPSS, we aim to reassess the effectiveness of features
like CVSS, PoC, and others used in EPSS, specifically for [oT-related
vulnerabilities. Any evaluation of EPSS is complicated, however,
because the EPSS is unavailable and not fully disclosed, even in its
peer-reviewed publications. Without access to the underlying data,
model, and source code, independent verification or explanation of
its findings is not possible.

We aim to better explain the targeting of IoT vulnerabilities over
EPSS by testing whether the inclusion of features from hacking
forums can improve the model performance. This extension builds
on work that showed black market or underground hacking fo-
rums provide information for predicting exploitation [9, 15, 60, 67].
This brings us to the central question for our paper: What factors
determine whether an IoT vulnerability is targeted?

We create a dataset of IoT vulnerabilities published between
January 2016 to June 2023 using VARIOT [43]. This results in a
set of 23,373 IoT-related CVEs affecting hardware, software, and
applications. Within this set, we need to distinguish between vul-
nerabilities that were observed to be targeted by attackers and those
that were not. We meticulously collected instances of vulnerabili-
ties that were observed to be targeted in the wild from seven data
sources: VirusTotal [69], CISA’s Known Exploited Vulnerabilities
(KEV) Catalog [23], VulnCheck’s Known Exploited Vulnerabilities
(KEV) [71], AttackerKb [13], Google Project Zero [35], IoTPOT [55],
and X-Pot [44] based honeypots.

Next, we set out to explore which features can help us distinguish
between targeted and non-targeted vulnerabilities. We identified
a lower-bound set of 848 targeted IoT-related CVEs. Subsequently,
we extracted features for explaining the targeted set. We extended
EPSS with features from the CrimeBB database [57], which contains
scrapes of 36 different hacker forums. We found 699 IoT-related
CVEs discussed in over 25k posts across 25 different forums, with
targeted IoT vulnerabilities being more frequently discussed than
non-targeted ones.
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Based on these features, we create a model and evaluate its
performance using the Brier score and McFadden’s pseudo R? score.
The Brier score measures prediction accuracy, while the R? score
assesses the overall fit of the model. We incorporate features from
hacker forum data, consolidated into a single ‘Engagement’ feature
using PCA. Our model’s McFadden’s R? score increased by 21%
with the inclusion of this feature, highlighting the value of hacker
forum data in explaining the variance in targeted IoT vulnerabilities.
Using the Brier score, our model, with 38 features (fewer than EPSS),
improves prediction accuracy by 17% over the EPSS model.

The main contributions of the paper are:

e We develop a theoretical model explaining why certain IoT
vulnerabilities are exploited, based on vulnerability, exploitabil-
ity, and hacking community factors.

e We analyze discussions across 36 hacker forums, identify-
ing 699 IoT-related CVEs mentioned in over 25,000 posts.
We find that targeted IoT vulnerabilities are discussed more
frequently than non-targeted ones, highlighting the influ-
ence of hacking forums on exploitation patterns and risk
assessment.

e We develop a logistic regression model that improves EPSS

prediction for IoT vulnerability exploitation by 17% by incor-

porating hacking forum features, which enhance the model’s
ability to explain variance in targeting by 21% and signifi-
cantly impact pre-exploitation risk assessment.

We publicly release the code for our exploit prediction model,

ensuring transparency and reproducibility *.

2 Related Work

Several studies have examined the relationship between CVSS
scores and exploit-related factors. Allodi et al. [4] found that using
CVSS alone to predict attacks is unreliable, comparable to random
selection. This inconsistencies in severity ratings is supported by
Wunder et al. [74]. Although the high CVSS scores do not reliably
correlate with exploits in the wild, and excluding CVSS had mini-
mal impact on results [19], only 9% of CVSS scores are available at
disclosure [59], and nearly half of exploits occurring before CVSS
publication [21].

On the other hand, the existence of PoC exploits was found to
be a better risk factor [5], but it is not always a reliable indication
of exploitation in the wild [4]. A 2020 study [39] found that a low
rate, only 5%, of known vulnerabilities are exploited in the wild,
consistent with prior research [1, 5, 10, 33, 51, 66, 73]. Yet, features
within PoC exploits can be valuable for estimating exploitation fre-
quency [2], predicting functional exploits [66], early exploitability
[37], or predicting exploits in the wild [39].

In the realm of exploit prediction in the wild, various method-
ologies have been explored. For example, Twitter discussions can
predict exploitation more accurately than CVSS [21] or PoC-based
approaches [59], and help estimate exploitability scores [66]. Other
studies have used vulnerability descriptions and online discussions
to predict exploitation over time [9, 41, 66] or early exploitability
of just disclosed vulnerabilities[37].

Previous studies have explored IoT-specific features to under-
stand IoT targeting in the wild [1, 2, 10, 14, 46]. However, collecting

Uhttps://doi.org/10.4121/69d111e7-30e6-4206-b27d- 22a5f4e33722
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these features, such as device types [2, 10, 11, 14, 18, 63] and the
number of exposed devices online [2, 14, 54], is labor-intensive, not
scalable, and requires manual effort. Since these features are not
readily available online to scale for our dataset of over 23k CVEs
and would require similar manual work from vendors and users,
we do not include them.

The most comprehensive approach is the Exploit Prediction
Scoring System (EPSS), a data-driven framework predicting if a
vulnerability will be exploited [40]. EPSS incorporates various data
sources including CVSS, vendor information, published exploit code,
and references to external websites discussing the vulnerability.
While achieving accurate exploitation estimates with a ROC AUC
of 0.838, they aimed to improve by adding data like social media
and vulnerability scans. In their subsequent version, EPSSv3, they
incorporated those additional variables besides more vulnerability
features such as CWE and age of vulnerability resulting in 82%
performance improvement over previous models, which enriched
the predictive capability of the model [41]. However, the lack of
full disclosure of the EPSS model hinders its replication and use by
others, preventing independent verification of its findings [64].

Our study advances beyond the state of the art by including
data from underground hacking forums, specifically for IoT vul-
nerabilities. While using vulnerability-related features and PoC
exploits as in [41], we expanded our approach by examining discus-
sions within underground hacking forums, specifically targeting
IoT vulnerabilities. For example, Tavabi et al. [67] found that dark
web discussions outperforms state-of-the-art methods in exploit
prediction and improved exploit prediction, with 14% of vulnera-
bilities mentioned being exploited. Data from dark web also had
the highest exploitation rate among four datasets used to predict
exploitation in the wild in [9]. Leveraging the CrimeBB dataset,
which comprises 36 different underground forums, Moreno-Vera et
al. [47] identified 1,498 unique CVEs discussed in these platforms,
highlighting the value of incorporating hacker-used platforms for
more accurate predictions of vulnerability targeting. This compre-
hensive approach, integrating insights from online discussions, and
underground forums, enhances our understanding and prediction
of cyber threats and exploitation activities [8, 15, 37, 59, 60].

3 Theoretical Model

To help answer what determines the targeting by attackers of IoT
vulnerabilities, we draw upon previous studies that have investi-
gated various factors and features influencing the selection of a
vulnerability as a target. For instance, some studies have explored
vulnerability features such as disclosure date [28, 41, 49], severity
metrics [5, 28, 41], software and hardware weaknesses, vendors,
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and label references to advisories, solutions, and tools [28, 41],
while others have examined the correlation between exploitation
in the wild and the presence of PoC exploits [5, 41, 49, 59]. Addi-
tionally, the relationship between discussions of vulnerabilities in
social media or underground forums and their exploitation in the
wild has also been explored [8, 15, 57, 59, 60, 66]. Our aim is to
consolidate these features from prior and recent studies into a com-
prehensive theoretical model. We develop a model to explain which
IoT vulnerabilities will be targeted (Figure 1). Our model shares
similarities with EPSS in integrating various factors that influence
the targeting of certain vulnerabilities. However, while we focus
exclusively on vulnerabilities within the IoT realm, EPSS adopts
a broader approach, including vulnerabilities across all domains.
Though our model draws inspiration from EPSS’s approach to inte-
grate factors derived from online sources to enhance vulnerability
analysis and prediction, it extends this by incorporating features
extracted from underground forums. Overall, our model consists
of three factors: vulnerability features, exploitability features and
hacking community features (see Figure 1).

Vulnerability features. Vulnerability features such as disclo-
sure date, CVSS metrics, software and hardware weaknesses, ven-
dors, and label references to advisories and other external websites
might predict which vulnerability is likely to be targeted by attack-
ers. Jacobs et al. [41] identified 30 influential features, including
count of references to external websites, vulnerability age, specific
vendors, and CVSS submetrics, as significant predictors of exploit
likelihood. Thus, we integrate vulnerability features into our model.

Exploitability features. The relationship between the existence
of PoC exploit code and exploitation in the wild has been studied
in previous work [5, 41, 49, 59]. Thus, we include it as feature.

Hacking community features. Discussions of vulnerabilities
on social media [21, 59, 66] and underground forums [8, 15, 60]
have been found to provide more accurate predictions of vulnera-
bility exploitation than vulnerability features or PoC exploits alone.
However, using Twitter feeds was not listed among the top 30 most
influential features in EPSS [41]. In fact, Tavabi et al. [67] found
that utilizing discussions from the dark web for exploit predic-
tion outperforms state-of-the-art methods, including social media
feeds. Thus, we incorporate hacking community features using
underground hacking forums to explain whether discussions of
IoT vulnerabilities on such platforms can increase the likelihood of
these vulnerabilities being targeted. For example, Moreno-Vera et
al. [48] identified 1,498 unique CVEs discussed within these under-
ground hacking forums, and Almukaynizi et al. [9] found that 14%
of vulnerabilities mentioned on the dark web and deepweb were
observed being exploited in the wild. This dataset had the high-
est rate of exploitation among the four datasets used in the study,
highlighting the value of incorporating hacker-used platforms for
discussions of vulnerabilities on underground forums.

4 Methodology

The focus, first, lays on gathering data on all IoT vulnerabilities
from January 2016 to June 2023, driven by the notable surge in at-
tacks on IoT devices following the 2016 release of the Mirai botnet
source code [12]. Next, we collect data on which subset of the vul-
nerabilities were targeted in the wild. We then distinguish between
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Table 1: Description of variables in the theoretical model.

Variable Description Count Type Data sources
CISA, Virustotal, IoTPOT, X-Pot
Targeted IoT vuln. List of IoT exploits in the wild 1 Binary AttackerKB, VulnCheck KEV

CVSSv3 metrics Measuring the impact and exploitability of a vulnerability

Google Project Zero
23 Multi-level NVD

CWE List of software and hardware weaknesses 111 Binary NVD
Vendor List names of affected vendors 212 Binary NVD
Age of vulnerability ~ Number of days from the CVE publication date until the day of the analysis 1 Numeric MITRE CVE list

References with labels Number of references with each of the reference labels 19  Numeric MITRE CVE list, NVD
PoC exploits Denote whether the PoC exploit is available or not 1 Binary Exploit-DB

Discussed Denote whether a certain IoT CVEs was discussed or not 1 Binary CrimeBB

#Forums Number of forums in which a particular IoT CVE was discussed 1 Numeric CrimeBB

#Boards Number of boards in which a particular IoT CVE was discussed 1 Numeric CrimeBB

#Threads Number of threads in which a particular IoT CVE was discussed 1 Numeric CrimeBB

#Posts Number of posts in threads in which a particular IoT CVE was discussed 1 Numeric CrimeBB

#Members Number of members involved in threads in which a particular IoT CVE was discussed 1 Numeric CrimeBB

targeted and non-targeted vulnerabilities based on observed attack
data. Subsequently, we gather features categorized into vulnera-
bility, exploitability, and hacking community, all listed in Figure 1.
Finally, we employ a regression model to assess the significance of
each feature in influencing IoT vulnerability targeting. This allows
for a deeper understanding of the threat landscape and facilitates
recommendations for enhancing the security of IoT systems.

4.1 Collecting IoT vulnerabilities

We identify targeted and non-targeted IoT vulnerabilities through
a two-step process. First, we collect IoT vulnerabilities from the
VARIoT dataset [68], covering vulnerabilities from January 2016 to
June 2023. Second, we determine which were targeted using seven
sources: (i) VirusTotal [69], (ii) CISA KEV [23], (iii) VulnCheck
KEV [71], (iv) AttackerKB [13], (v) Google Project Zero [35], and
honeypots such as (vi) IoTPOT [55] and (vii) X-Pot [44].

We then classify vulnerabilities by subtracting the targeted IoT
vulnerabilities from the full list, generating a separate set of non-
targeted vulnerabilities.

IoT vulnerabilities. We focus exclusively on IoT-specific CVEs
using VARIoT [43], which identifies IoT-related vulnerabilities based
on its broad definition: “an item (except a phone, PC, tablet, or data
center hardware) with network connectivity and data exchange
capabilities”[42]. While acknowledging VARIoT’s limitations in ac-
curately classifying IoT-related vulnerabilities, we find its compre-
hensive repository valuable for our research objectives, as demon-
strated in various studies [27, 58, 62].

From VARIoT, we collect all CVE-IDs published between January
2016 and June 2023 to align with the spread of the Mirai source code
in 2016 [12]. Some IoT vulnerabilities in VARIoT lack CVE-IDs from
NVD, often originating from other sources like CNVD. In line with
EPSS, we only include vulnerabilities with CVE-IDs. We identified
23,373 CVEs classified as IoT vulnerabilities in VARIoT.

Targeted IoT vulnerabilities. To identify targeted IoT vul-
nerabilities, we use VARIoT s comprehensive CVE list and cross-
reference it with seven different data sources. Of course, not all
attacks are observed in our datasets, or in any datasets, meaning
our data provides a lower bound set of targeted CVEs. Additionally,
the time frame covered by some datasets does not encompass the
entire period from January 2016 to December 2024, during which
we collected IoT vulnerabilities.
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First, we employed a VirusTotal search query for binaries tagged
with a CVE-ID in our VARIoT dataset (tag:cve-) [70]. We found 526
instances out of 23,373 total CVEs. This count, however, could be
impacted by VirusTotal’s search constraints, limited to vulnerabili-
ties targeted within 90 days from our search date. Second, we use
the KEV Catalog. This list includes 1,026 CVEs. There is an overlap
of 218 CVEs with the 23,373 CVEs that were classified as IoT by
VARIOT. The third source was VulnCheck’s Known Exploited Vul-
nerabilities (KEV) [71]. This list includes 3,089 with 426 overlapping
CVEs that were classified as IoT by VARIoT. This makes VulnCheck
KEV the source with the highest number of IoT CVEs exploited
in the wild among our datasets. Next, we used the 23K CVEs to
fetch data via cURL and then scraped AttackerKB [13] to collect
CVEs tagged as “Exploited in the Wild”. We identified 312 out of
23,373 total IoT CVEs. For the fifth source, we leverage Google
Project Zero [35], which provides a public list of 325 zero-day CVEs
exploited in the wild. Of these, 45 IoT CVEs overlapped with the
23K CVEs in VARIoT. The last two datasets are both from honey-
pots, IoTPOT [55] and X-Pot [44]. We gathered a list of targeted
vulnerabilities and then identified which of these vulnerabilities
overlapped with out set of VARIoT CVEs. In IoTPOT logs, collected
from September 2018 to September 2021, we observed 21 targeted
IoT CVEs. In X-Pot logs, collected from July 2019 - October 2023,
we identified 114 targeted IoT vulnerabilities.

We identify 848 unique targeted IoT vulnerabilities within these
seven datasets. Thus, we treat the remaining 22,525 CVEs out of
the total set of 23,373 CVEs as non-targeted IoT vulnerabilities.

4.2 Collecting Explanatory Factors

To assess the influence of the explanatory factors in the theoretical
model (section 3), we identify and gather features that can serve as
proxies for those factors. In this section, we outline the process of
collecting these features, which are summarized in Table 1.
Vulnerability features. We use the NVD [50] dataset to collect
five vulnerability features following the methodology used in [41].
CVSSv3 metrics: Given our dataset’s focus on IoT vulnerabilities
from 2016 onward, we use CVSSv3 [31] to derive base metrics, split
into exploitability and impact. Exploitability includes five compo-
nents: attack vector, attack complexity, privileges required, user
interaction, and scope. Impact covers confidentiality, integrity, and
availability. Except for 33 CVEs lacking NVD scores, we applied one-
hot encoding to all sub-metrics, resulting in 22 variables. We also
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include the overall CVSSv3 base score as a single binary variable,
representing the combined score of these sub-metrics.

CWE: We collected the Common Weakness Enumeration (CWE),
a list of software and hardware weakness types that can become
vulnerabilities [53]. We collect 240 different CWE for 23,317 CVEs.
The remaining 95 CVEs lacked CWE assignments due to being
unavailable or private. We created binary variables for the 111 CWE
categories associated with 10 or more vulnerabilities for modeling
(see section 7).

Vendor: As some vendors might be more attractive to attackers
than others, we use the Common Platform Enumeration (CPE) from
NVD to extract only the vendor name(s). We collect vendors for
all but 88 CVEs due to the CVEs being marked as "RESERVED"
or "REJECT". We did not alter or fix any typos or misspellings
within the records. Out of 1,423 unique vendors we found, only
212 vendors with 10 or more CVEs are included in our model, as
including vendors with fewer CVEs did not improve performance,
according to [40]. Then, we created a binary variable for each
vendor and added a feature to measure the total number of vendors
per CVE to evaluate whether CVEs affecting more vendors are more
likely to be targeted.

Age: The age of a vulnerability may affect its likelihood of ex-
ploitation. To test whether older vulnerabilities might be less appeal-
ing to attackers due to reduced vulnerable population [41] within
the IoT realm, we used the publish date from MITRE [52] to calcu-
late the age — the number of days between the publish date and
our feature extraction date. We collected the publish dates for all
vulnerabilities but 56 that were marked "RESERVED" or "REJECT".

References: We measure level of activity and analysis related
to vulnerabilities in [41] by quantifying the number of references
linked to each CVE in MITRE CVE list [52], excluding 423 CVEs
marked as “RESERVED,” “REJECT;” or those without an assigned
label to the hyperlink. Furthermore, also collect the unique refer-
ence labels assigned to these CVEs listed by NVD, such as Third
Party Advisory, Vendor Advisory, and VDB Entry. We identify 18
distinct labels, which we use as binary features.

Exploitability features. We use the exploit database Exploit-
DB [30] to collect PoC availability. While other sources such as
Metasploit [45] and GitHub [34] also host PoC exploits, Exploit-DB
remains one of the best coverage source for PoC exploits [39].

PoC availability: We evaluate the exploitability risk of vulnera-
bilities based on their availability. We only identify PoC exploits
for 890 (3.8%) out of the 23,373 CVEs, indicating a relatively limited
presence of publicly available exploits for these vulnerabilities.

Hacking community features. To analyze IoT vulnerability
discussions on underground forums, we use the 2023 CrimeBB
dataset [57], provided by the Cambridge Cybercrime Centre [20].
It includes 36 forums in English, Russian, and Spanish; however,
“Hackers Armies” was unavailable, leaving 35 forums in our anal-
ysis. These forums serve as platforms for exchanging ideas and
participating in various activities, some of which are illegal. They
follow a structured format with boards covering topics from hack-
ing to marketplaces (see Appendix Table 7). Each board contains
threads on specific subjects, composed of posts by members. We
extract six features from these discussions:

Discussed: To measure whether an IoT vulnerability was dis-
cussed within the underground forums, we match post content
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with CVE-IDs from our dataset. For this matching, we allow for
variations in capitalization.

Number of forums: We assess the popularity of a vulnerability
across the forums by counting the number of forums in which the
IoT vulnerability was discussed.

Number of boards: We count how many boards discussed specific
IoT CVEs to understand the range of topics and interests they span.
In total, these vulnerabilities appeared on 122 boards across 25
forums.

Number of threads: Counting distinct threads discussing each
IoT vulnerability helps quantify its activity level. We identified 735
unique threads discussing IoT-related vulnerabilities.

Number of posts: Assuming more active discussion indicates
higher risk of real-world targeting, we count posts in threads men-
tioning IoT CVEs. We found 25,782 posts, including both specific
and general discussions involving IoT CVEs.

Number of members: To measure engagement level around IoT
vulnerabilities, we counted distinct members involved in related
discussions, using the same method as for post counts. A total of
5,129 users participated in threads specifically about or generally
on IoT CVEs.

Similar to EPSS, we did not perform experiments to add or filter
out intentional misinformation or automated posts in underground
forum discussions. However, prior research [9, 59] shows that the
introduction of misinformation had minimal impact on exploit
prediction accuracy. The work in [9] demonstrated that exploit
prediction models remain robust against adversarial noise in discus-
sions from underground forums, where structural barriers such as
account verification, skill demonstrations, and reputation systems
make large-scale data poisoning far more difficult, compared to so-
cial media platforms like Twitter/X. Even if substantial noise would
be added (e.g., 20% noise in testing data), this leads to minimal
degradation in performance (AUC scores above 0.87). In [59], the
authors indicate that adversaries can manipulate public platforms
like Twitter/X to poison classifiers, but the impact on precision is
limited, with a drop to only around 20% under the most sophisti-
cated attack scenarios. In sum the impact is limited. We would also
like to note that the main impact of misinformation would be to
increase the false positive rate: more CVEs are being discussed on
the forums, and hence some might be predicted as higher risk, yet
in reality they will not actually be attacked. A somewhat higher
false positive rate does not directly undermine the model’s utility,
as prioritization remains valuable for defenders. Out of thousands
of CVEs, the model predicts a small subset as likely to be exploited.
Even if the latter set would double in size because of false positives,
it still helps defenders to prioritize a small fraction of a total set of
thousands.

5 Vulnerability and Exploitability

In this section, we present the findings of vulnerability character-
istics and their PoC exploit code among both targeted and non-
targeted IoT vulnerabilities.
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Figure 3: Targeted and non-Targeted IoT vulnerabilities
within each CVSS base score.

5.1 Vulnerability features

CVSSv3 metrics. The CVSS base score, ranging from 0 to 10, is
derived from Exploitability and Impact metrics, assessing how easily
a vulnerability can be exploited and its potential consequences [31].

Analyzing targeting CVEs rates per CVSS score (Figure 2), 15.38%
of CVEs with a score of 10 were targeted, but lower scores also saw
targeting, indicating a weak correlation between score and target-
ing. Attackers often choose lower-scored vulnerabilities, despite
many high-severity, with scores 9 and 10, remaining unused.

In fact, in absolute numbers, the attackers have chosen many
more vulnerabilities with low scores, as we can see in Figure 3.
Figure 3 shows the proportion of targeted and non-targeted IoT
vulnerabilities for each CVSS base score. While higher CVSS scores
(e.g., 9 and 7) account for a significant share of targeted vulnerabil-
ities, lower-scored vulnerabilities (e.g., 5 and 6) are also targeted.
For example, 20% of the total targeted vulnerabilities have a CVSS
base score of 5 or 6. Also, many high-severity vulnerabilities remain
untargeted. Only about 1% of total targeted vulnerabilities have a
base score of 10, while the largest subset (32%) has a base score of 9.
The average base score for targeted CVEs is 7.5, only slightly higher
than 6.9 for nontargeted CVEs. This indicates that adversaries do
not solely focus on high-severity vulnerabilities but may also target
medium-severity ones, likely considering other factors such as ease
of exploitation, availability of PoC exploits, and real-world impact.
In short, this suggests that CVSS has weak predictive power, in line
with earlier research [6].

Examining the distribution of IoT vulnerabilities within CVSS
sub-metrics (Figure 4), we begin with exploitation metrics (left).
The majority of targeted CVEs can be remotely exploited, with
67.15% using the network as the attack vector (AV:N). This poten-
tially impacts attack complexity, as nearly 94% exhibit low attack
complexity (AC:L), while 66.2% require no privileges (PR:N), and
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vulnerabilities. It is unclear whether this is because experts are not
reliable in rating these features, or the features themselves are not
that relevant to attacker’s targeting decision.

Common Weakness Enumeration (CWE). The hardware and
software weaknesses in vulnerable systems are categorized using
the CWE framework. Among our 23k IoT-related vulnerabilities,
we identified 240 CWE categories, with four—CWE-178, CWE-782,
CWE-917, and CWE-1336—appearing only in targeted CVEs. All
were observed once except CWE-917, which appeared in three
vulnerabilities. This may reflect their rarity rather than attacker
preference.

We found 88 CWE categories in both targeted and non-targeted
CVEs, with the top 20 distributions shown in Figure 5. Among
these, CWE-78 (OS Command Injection) was the most common
in targeted CVEs (13.6%), aligning with prior research identifying
it as a key infection vector [1, 2, 10]. CWE-787 (Out-of-Bounds
Write) ranked second (9.16%) and was also the most frequent in
non-targeted CVEs for nearly 10%.

In sum, like CVSS scores, CWE categories provide only a weak
signal of attacker preference. To put it differently, a random selec-
tion of vulnerabilities would yield a similar CWE distribution to
that for the observations of targeted vulnerabilities.

Vendors. Examining the associations between vendors and
CVEs, we found only 280 out of 1,423 vendors were linked to tar-
geted CVEs, while 1,143 remained untargeted. Figure 6 shows that
vendors with more CVEs tend to have more targeted vulnerabilities.
For instance, Apple and Cisco lead with 145 and 110 targeted CVEs,
respectively, while 45 vendors have only one targeted CVE.

On average, these 280 vendors have 5.9 targeted CVEs (SD =
15.5). Among untargeted vendors, Qualcomm has the most with
507 CVEs, followed by IBM with 254. In short, we see a linear
relationship — more CVEs overall will result in more targeted CVEs
- with quite some variance.

In addition, targeted CVEs also tend to be associated with more
vendors—1.9 per CVE on average, compared to 1.2 for non-targeted
ones. This suggests vendor involvement could influence attacker
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Figure 5: The top 20 CWE categories among targeted and
non-targeted IoT vulnerabilities, ordered by CWE the with
highest number of vulnerabilities.

selection. Perhaps more vendors per CVE indicates a larger install
base of vulnerable systems.

Age. The age of a vulnerability could potentially influence its
likelihood of being exploited. We measure the age by the number of
days between the vulnerability published date and the time of our
feature extraction. The overall average age of all IoT vulnerabilities
included in this study is 1,430.5 days.

For targeted vulnerabilities, the average age is slightly lower at
about 1,393 days, compared to 1,432 days for non-targeted ones.

While the age of a vulnerability may influence its likelihood
of being targeted, there is no significant difference in the aver-
age age between targeted and non-targeted CVEs. Despite slight
variations, both categories exhibit a wide range of ages, indicating
that age alone may is not clear factor for targeting within the IoT
vulnerability landscape.

References. The results presented in Table 2 shows the distri-
bution of all 18 reference labels across IoT vulnerabilities. Both
targeted and non-targeted CVEs share the top five labels, but these
labels appear more frequently in targeted CVEs, except for “Vendor
Advisory”, which shows only a slight increase. This suggests that
targeted vulnerabilities receive more vendor attention.

This observation is further emphasized by the fact that the “Patch”
label appears twice as often in targeted CVEs, and “Exploit” label
is present in 38.06% of targeted CVEs compared to 18.65% in non-
targeted CVEs. Causality might be reversed here: because these
CVEs are targeted in the wild, vendors might feel more pressure to
develop patches and the attacks might trigger the release of public
PoC exploit code available. This can only be resolved by looking at
whether a label predates the attacks or the other way around.
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Figure 6: Relationship between targeted and non-targeted
CVEs vs. total CVEs per vendor.

Other labels, like “US Gov. Resource”, “Mailing List”, “Mitiga-
tion”, “Release Notes”, and “Issue Tracking”, are more common
in targeted CVEs, though many labels show little difference com-
pared to non-targeted ones. These commonalities suggest many
similarities across both targeted and non-targeted CVEs within the
IoT landscape. A final difference to observe the average count of
labels per CVE for targeted versus non-targeted vulnerabilities. For
targeted CVEs, this stands at 3, compared to 2.1 for non-targeted
CVEs. Both groups share the same range, with a maximum of 10
labels per CVE and a minimum of 1. This supports the idea that
the number of references plays a role in exploitation likelihood,
aligning with EPSS research [41].

5.2 Exploitability features

We looked at the presence of PoC exploits to see if it can explain
attackers’ decision on targeting certain vulnerabilities. We found
public PoC exploits for only 890 IoT vulnerabilities out of the total
23,373. This aligns with earlier work which found that around 4%
of vulnerabilities get associated public exploits within a year [36].

Only 169 (18.9%) of the PoC exploits were associated with tar-
geted CVEs, while the majority 721 (81%) pertained to non-targeted
CVEs. This means that out of the 848 targeted vulnerabilities, only
19.9% have public PoC exploits. This reinforces findings from prior
research indicating that the existence of PoC exploits is not the
main driver of attacker’s selection of vulnerabilities. It seems that
most develop their own exploit code or at least get it from another
source than PoC exploits being published [4, 5].



ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam  Arwa Abdulkarim Al Alsadi, Mathew Vermeer, Takayuki Sasaki, Katsunari Yoshioka, Michel Van Eeten, and Carlos Ganan

Table 2: Summary of total reference labels in targeted and
non-targeted vulnerability.

Reference label Non-targeted Targeted

Vendor Advisory 15, 842(71.63%) 554(66.51%)
Third Party Advisory 11, 822(53.45%) 608(72.99%)
VDB Entry 5,566(25.17%)  299(35.89%)
Exploit 4,124(18.65%)  317(38.06%)
Patch 2,907(13.14%)  214(25.69%)
US Gov. Resource 1,693(7.65%) 81(9.72%)
Mailing List 1,265(5.72%)  146(17.53%)
Mitigation 878(3.97%) 65(7.80%)
Release Notes 756(3.42%) 67(8.04%)
Broken Link 670(3.03%) 39(4.68%)
Technical Description 528(2.39%) 21(2.52%)
Issue Tracking 421(1.90%) 74(8.88%)
Product 251(1.13%) 13(1.56%)
Permissions Required 232(1.05%) 8(0.96%)
Not Applicable 154(0.70%) 19(2.28%)
Press/Media Coverage 21(0.09%) 7(0.84%)
URL Repurposed 4(0.02%) 2(0.24%)
Tool Signature 2(0.01%) 1(0.12%)

6 Hacking Community

Analyzing posts from the CrimeBB dataset, we identified discus-
sions about IoT vulnerabilities and their potential exploitation
within the hacking forums. Our analysis uncovered over 25k posts
discussing 699 unique IoT vulnerabilities, as summarized in Table 3.
We observed that the discussions that mention IoT vulnerabili-
ties within these underground hacking forums primarily focused
on a wide range of exploit-related subjects. Notably, there was a
substantial presence of inquiries regarding PoC exploits for certain
IoT vulnerabilities, as well as requests for help or hiring to exploit
such vulnerabilities with marketplace sections dedicated to buying,
selling, or exchanging hacking-related products and services. Other
discussions involved shared exploit kits, scripts, and tutorials. The
forums also featured discussions on security advisories and attack
news, including vulnerabilities utilized in zero-day exploits and ran-
somware attacks. It is evident that these forums serve as significant
hubs for discussing IoT vulnerabilities and potential exploits.

6.1 IoT vulnerabilities in hacking forums

We used post content to identify IoT vulnerabilities discussed in
CrimeBB using their CVE-ID (see Section 4.2). These discussions
covered 699 unique IoT vulnerabilities, of which 222 were targeted.
These vulnerabilities were discussed in 25 different forums, as de-
tailed in Table 3. In total, 93 boards, 735 threads, 25,760 posts, and
5,101 members were involved in these discussions.

We found 93 different boards discussing IoT CVEs. Interestingly,
while “hack-forums” was not the forum with the highest number
of discussed IoT CVEs, it was the forum with the highest number
of 25 different boards, suggesting a significant diversity of IoT
vulnerabilities discussed across various boards compared to other
forums. Following closely behind is the “xss-forum” with nearly a
similar number of boards, totaling 24.

The predominant IoT vulnerability identified across 16 boards
was CVE-2016-5195, a targeted vulnerability also known as Dirty
COW, a Linux kernel vulnerability allowing attackers to gain write
access to read-only memory mappings, potentially leading to privi-
lege escalation.
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The variation in thread activity highlights the dynamic nature
of discussions surrounding IoT vulnerabilities. For instance, the
“xss-forum” forum exhibited the highest number with 215 unique
threads, indicating a significant focus on IoT vulnerabilities within
that community.

Forums with the highest volume of posts do not always feature
the most discussions on IoT vulnerabilities, e.g., despite “hack-
forums" including over 42 million posts, only 1,021 were related to
IoT vulnerabilities, with just 55 focusing on specific CVE(s) (Table 7).
In fact, the “antichat” forum led with 19,202 posts on IoT-related
CVEs, with a total volume of posts exceeding 2.6 million. “safe-sky-
hacks” had only one post discussing an IoT CVE. CVE-2018-10561
(a vulnerability in the DSL-2640B router) garnered the highest total
posts at 8,078, in both specific and general discussions, while CVE-
2022-40684 had the most specific posts at 115, noted as targeted.

But when looking at forums discussing specific IoT CVEs in
Table 3, only 11 out of the 25 forums exhibited such discussions.
Among these, the “breached” forum showed the highest number
of posts, with a total of 158 posts. Interestingly, while general dis-
cussions were prevalent across all forums except for one, namely
“cracked” where all 47 posts were exclusively linked to specific [oT
CVE, it’s noteworthy that “antichat” forum recorded the highest
number of posts addressing IoT CVEs within general threads. Nev-
ertheless, despite that, “antichat” forum did not feature any posts
within threads focusing on specific IoT vulnerabilities.

We analyzed forum posts mentioning IoT vulnerability using
their CVE-IDs to shed light on the extent of discussions. The “xss-
forum” had the most posts, with CVE-2020-1472 (critical vulnera-
bility in Microsoft’s Netlogon) and CVE-2018-13379 (critical vul-
nerability found in Fortinet FortiOS SSL VPN) being mentioned 27
times each. Both were observed as targeted in our dataset.

A total of 5,101 individuals participated in threads discussing IoT
vulnerabilities using their CVE-IDs. Of these, 345 were involved in
threads dedicated to specific IoT CVEs, while the remaining 4,756
contributed to general discussions. This correlates the volume of
posts with the number of participants, with forums having more
posts also attracting more members. For instance, “xss-forum” led
in both post volume and member engagement.

6.2 Targeted vs non-targeted hacking
discussions

The distribution across forums where IoT vulnerability discussions
took place made it apparent that among the 25 forums, 13 of them
predominantly focused on targeted CVEs over non-targeted ones
(see Table 3). Conversely, 10 forums showcased a greater inclina-
tion toward non-targeted vulnerabilities while the remaining two
forums exhibited an equal number of posts discussing both targeted
and non-targeted vulnerabilities. Among these forums, “undercode”
emerges as the most active in discussing IoT vulnerabilities, with a
total of 289 IoT vulnerabilities, including the highest number of tar-
geted vulnerabilities at 121. That was also reflected in the number
of threads. Regarding the most observed IoT vulnerabilities across
forums, CVE-2017-5754 (Meltdown, hardware vulnerability affect-
ing modern microprocessors [26, 56]) and CVE-2017-5715 (Spectre
Variant 2, vulnerability that exploits speculative execution in mod-
ern microprocessors [26, 56]) were the most prevalent, appearing
in 9 forums and were also identified as targeted vulnerabilities.
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Table 3: Summary of forums discussed IoT vulnerabilities.

Forum #Boards #Threads #Posts #Members #CVEs

Specific General Total Specific General Total Targeted Total
antichat 4 67 0 19202 19202 0 2287 2287 60 135
blackhatworld 2 3 0 11 11 0 9 9 4 5
breached 10 21 158 817 975 151 596 747 13 16
cracked 1 1 47 0 47 47 0 47 1 1
dread 1 1 0 2 2 0 2 2 4 4
elhacker 7 71 10 120 130 6 35 41 45 139
forum-team 3 4 0 9 9 0 4 4 3 9
freehacks 1 1 0 2 2 0 2 2 4 5
garage-for-hackers 1 2 1 1 2 1 1 2 2 2
greysec 2 4 3 41 44 2 20 22 2 4
hack-forums 25 73 55 1021 1076 37 472 509 38 78
ifud 1 1 0 9 9 0 8 8 1 2
kernelmode 1 2 0 13 13 0 6 6 0 2
lolzteam 5 8 0 59 59 0 41 41 7 15
offensive-community 2 2 1 1 2 1 1 2 2 3
probiv 6 59 0 342 342 0 26 26 27 99
raidforums 8 20 11 788 799 10 529 539 18 31
runion 2 2 0 224 224 0 93 93 3 4
safe-sky-hacks 1 1 0 1 1 0 1 1 1 1
torum 4 5 0 16 16 0 11 11 9 12
undercOde 6 163 8 172 180 5 23 28 121 289
unknowncheats 3 6 5 100 105 4 61 65 5
v3rmillion 1 2 0 5 5 0 5 5 2
xss-forum 24 215 154 2340 2494 81 599 680 103 255
zismo 1 1 0 33 33 0 18 18 1 1
Total (unique) 93 735 453 25308 25760 345 4824 5101 699 222

Table 4: Distribution of hacking community features per IoT CVE, split between targeted CVEs/non-targeted CVEs.

#Forum #Boards #Threads #Posts #Members
Total Specific General Total Specific General
Average 2057\323 5.59\10.75 15\2.25 7061660 16\3 6901658 153.24\93.48 12\2.08 143.24\91.8
Min. 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\1
Max. 121\168 117\158 12\26 12,828\14,519 140\25 12,828\14,519 1,646\1,444 133\18 1,646\1,444

Posts in threads
CVE-ID
Exploit date

CVE-2022-229651 ©
CVE-2022-305251 @
CVE-2022-39952 1 X
CVE-2022-41800 1
CVE-2021-41773 A
CVE-2021-34527 4
CVE-2021-30858 -
CVE-2020-11022 4
CVE-2020-11023 4
CVE-2020-1472
CVE-2020-24587 A X
CVE-2020-9934 x
CVE-2020-5902 A ®
CVE-2019-1663 A
CVE-2019-3914
CVE-2018-4443 A ® X
CVE-2017-17106 4 ° X
CVE-2016-5195 A
CVE-2016-1001 A
CVE-2016-8735 A ° X
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Figure 7: Top 10 IoT CVEs for both the longest and shortest
time-to-exploit after post discussing CVE-ID, number of days
between the first discussion mentioning the CVE-ID and
its first observed exploitation in the wild, ordered by CVE
publication year. The @ highlights posts mentioning CVE-
IDs.

We measured the number of forums, boards, threads, posts and
members per IoT vulnerability in Table 4. Overall, targeted vulnera-
bilities show higher averages compared to non-targeted ones across
all features in the hacking community. For instance, the average
number of forums per targeted IoT vulnerability is 20.57, which
decreases to 5.59 at the board level and further drops to 1.5 at the
thread level. Conversely, the average number of forums, boards
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and threads per non-targeted CVE are 32.3, 10.75, and 2.25, respec-
tively. Similarly, targeted vulnerabilities received more posts on
average, 706 compared to 660 for non-targeted ones, with specific
targeted vulnerabilities garnering more discussion than general
ones with 16 posts compared to 3 for non-targeted ones. Moreover,
discussions on targeted vulnerabilities involved 153.24 members on
average, which drops to 93.48 for non-targeted ones, with specific
targeted vulnerabilities attracting more participants than general
discussions, involving 12 members, which is around three times
the number of participants engaged in non-targeted discussions
that stands at 2.08 members.

6.3 Time to exploit in the wild

We measure “Time to Exploit” as the number of days between the
first discussion of an IoT-related CVE in hacking forums and its
first observed exploitation in the wild. To reduce false positives,
we exclude posts that did not explicitly mention the CVE-ID in the
same thread. However, Figure 7 presents both cases for the Top 10
IoT CVEs with the longest and shortest time-to-exploit, where @
highlights posts mentioning CVE-IDs, and @ highlights posts in
the same thread. Due to missing or unclear exploit dates in some
sources, we relied on five datasets: AttackerKB, VulnCheck KEV,
Google Zero Project, IoTPOT, and X-Pot. Among 222 discussed and
targeted IoT CVEs, 159 had available exploit dates. Of these, 78
(49.05%) were discussed before or on the same day as their first ex-
ploitation, while 81 were discussed afterward. The time gap between
discussion and exploitation varies, with an average time-to-exploit
of 482.6 days. The shortest time-to-exploit is zero days, exploitation
occurred on the same day as forum discussion, were observed in
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Table 5: Brier score and R%AF scores for all models.

; 2
Model Brier score R}
No Engagement feature 0.031 0.183
Include Engagement feature  0.028 0.222
EPSS scores 0.035 -0.157

seven cases all for CVEs published between 2020 and 2022. The
longest time-to-exploit is 2,240 days (CVE-2016-8735, an Apache
Tomcat vulnerability). Notably, CVEs with the shortest time-to-
exploit had just 1-5 posts mentioning their CVE-ID, while those
with the longest delays were mentioned only once, except for three
cases appearing up to four times. These findings underscore the
importance of monitoring hacking forums for early warnings on
IoT vulnerabilities, allowing organizations to identify and mitigate
threats before widespread exploitation.

7 Explaining exploitation
7.1 Model and feature selection

In the first version of EPSS, Jacobs et al. use logistic regression to
build an exploit prediction system [40], showing that the features
used share a somewhat linear relationship. EPSSv2 and EPSSv3
adopt the more complex XGBoost model [22] to capture non-linear
relationships [41], sacrificing interpretability for improved predic-
tive accuracy.

Our goal is to analyze and explain the factors influencing whether
an IoT vulnerability is targeted by attackers, without relying on
time-based patterns. To avoid added complexities, we use cross-
sectional data, capturing targeting information at any given point.
By choosing a logistic regression model, we can easily make pre-
dictions while also clearly identifying which features contribute to
those predictions, allowing us to both predict vulnerability target-
ing and explain the significance of the influencing factors.

Upon further investigation of our potential feature set, we find a
collection of linearly dependent features. Including such features
in a model can introduce multicollinearity into the eventual model,
undermining the statistical significance of the other features [3],
leading to an overfitted model. We exclude the eight linearly de-
pendent features from the dataset. That leaves a set of 365 features
with which to fit the model.

Jacobs et al. [40] use elastic net regularization (among other
methods) to condense their collection of 3, 587 features down to 16
though. We aim to reproduce as much as the original methodology
to maintain a level of comparability, and to be able to accurately
judge the value of the additional hacking community features. Thus,
we similarly use elastic net regularization for our feature selection.

We first split the dataset features into two groups: (1) hacking
community features and (2) all other features. We use two feature
selection methods, both applying elastic net regularization to select
the most important features in (2). The first method trains a model
using only the regularized features from (2), serving as a control.
The second method adds these steps: (i) perform PCA on the hacking
features, (ii) select the principal component (PC) with the highest
variance, (iii) add this PC to the dataset, and (iv) train the model
with the updated dataset.

PCA helps summarize many correlated features [16] while retain-
ing key information, making it useful for our analysis. We select the
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most significant PC, labeled Engagement, to simplify further analy-
sis. This PC accounts for 64% of the variance in hacking community
features. As in [40], we tune the hyperparameters by performing a
grid search for the o and A that minimize the Bayesian Information
Criteria (BIC). We find the following optimal values: & = 0.3 and
A = 0.005. The regularization selects 93 features (see Figure 8).

7.2 Model evaluation

We split our dataset into a training and testing set using a split of
0.33. After regularization and PCA processing, we fit two logistic
regression models using the training set according to the different
feature selection approaches described in subsection 7.1. For each
approach, we then use each model to estimate the probability that
an IoT vulnerability in the test set will be targeted by malicious
actors. To evaluate model performance, we compute several metrics:
the Brier score and McFadden’s pseudo R? (Ri/IF) score (see Table 5
for the full list of metrics). We also calculate the models’ Brier
score andRJZVIF score performance improvement (PI) as a percentage
increase (see [75].)

The Brier score measures the mean square error of probabilistic
predictions, i.e., how close the predictions are to the actual value.
The Ri/!  score—being a normalized version of the MSE—is scale-
independent and is more concerned with the general quality of
the fit of the model. The closer the Brier score is to 0, the better.
Contrarily, the closer the Ri/[  score is to 1, the better.

We compare the metrics with the EPSS scores we collected using
EPSS API [32] for all vulnerabilities in our dataset except for 88, of
which two were observed as targeted. This is because these CVEs
are stored in the NVD but labeled as “REJECT” or “RESERVED” in
the CVE List and do not appear in search results. EPSS predicts
the likelihood of exploitation within a 30-day window [41], so we
collect EPSS scores for our set of vulnerabilities for 1 September
2023, 30 days before the last day of data collection (1 October 2023).
This allows for a consistent evaluation and comparison with EPSS.

The poor performance of EPSS reiterates its unsuitability for [oT-
specific vulnerabilities. Both the control and Engagement models,
despite using fewer features, outperformed EPSS on the same set of
vulnerabilities. For example, the Brier score for both of our models,
performed similarly, with scores of 0.031 and 0.029, which represent
an improvement over EPSS’s score of 0.035, though the difference
is small in absolute terms. Furthermore, when comparing the pre-
diction accuracy of our second model with the Engagement feature
to EPSS using their Brier scores, we obtained a 17% performance
improvement (PI) over EPSS.

Not only did the model with the Engagement feature perform
best in Brier score, but also had a 21% PI in the RJZWF score when
comparing it with the control model. This highlights the value of
extracting insights from the hacking community (see Figure 9).

While Brier scores offer insight into prediction accuracy, the Ri/[ P
scores more clearly differentiate the models. The control model had
an Rjzw F score of 0.183, whereas the model with the Engagement fea-
ture achieved 0.222, reflecting the 21% PL This suggests that while
both models performed similarly in terms of individual prediction
errors, the Engagement model was better at explaining the variance
in targeted IoT vulnerabilities. Incorporating hacking community
data greatly improves the model’s predictive power, emphasizing
the value of monitoring such activity. In contrast, the EPSS model
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yielded an Ri/l  score of -0.157, indicating it performed worse than
a mean-based prediction. This further demonstrates EPSS’s limita-
tions for IoT vulnerabilities across both metrics, as it struggles to
capture the unique nuances of IoT-related threats.

7.3 Risk assessment using hacking forum

To evaluate the impact of hacking forum discussions on the risk
assessment of vulnerabilities before their first exploitation, we con-
ducted an experiment comparing model predictions in two scenar-
ios. First, with the first-exploitation date in hand for the 78 CVEs
that were both discussed in hacking forums and targeted before
or on the same day as their first observed exploitation (see subsec-
tion 6.3), we applied the trained model from subsection 7.1 to this
subset. To specifically assess the impact of discussions prior to first
exploitation, we recalculated and aggregated forum activity data
only up to their first exploitation date. Since all CVEs in this subset
were targeted, the predicted probability of targeting should ideally
be close to 1. The mean prediction for this subset was 0.57. To assess
whether hacking forum features significantly influence targeting
predictions, we compared these results to a case where the same
78 CVEs were assumed to be targeted but had no prior forum dis-
cussions. So, we excluded all hacking forum-related features while
keeping all other characteristics unchanged, assuming no prior
forum discussions. After applying the same data processing steps,
we predicted the targeted label for this second scenario. The mean
prediction dropped to 0.26. The observed reduction in predicted
targeting probability of the second scenario confirms that removing
forum discussions significantly reduced the model’s confidence in
identifying these vulnerabilities as targeted and reinforces the role
of hacking forum discussions in enhancing pre-exploitation risk
assessment. In addition, we computed “Thiel’s U” [17] for these
features to help identify their predictive power. Since “Thiel’s U”
closer to 1 indicates a feature almost perfectly explains the target,
we found that BaseScore with a Thiel’s U of 0.995, followed by
count of references at 0.984, Engagement at 0.978, and number of
vendors per CVE at 0.977, have the highest predictive power.

7.4 Model interpretation

7.4.1  Features significance. The fitted model includes 38 features
with < 0.05, as shown in Figure 9. Each coefficient indicates the fea-
ture’s influence on the likelihood of an IoT vulnerability being tar-
geted. Among the 38 features linked to vulnerability, exploitability,
and hacking community factors, all but five increase the likelihood
of an IoT vulnerability being targeted.

Significance of vulnerability features. Of the 38 features, 36
were derived from vulnerability data, including 1 CVSS metric, 22
vendors, 8 CWE categories, and 5 from references features.

CVSSv3 metrics: The only CVSS metric with a significant yet
negative impact on targeting is “Privileges Required: Low” (PR:L);
a one-unit increase reduces the likelihood of an IoT vulnerability
being targeted by 0.56 times, perhaps because attackers prioritize
vulnerabilities requiring no authentication for broader impact or
favor those with higher privileges for deeper system access.

Vendor: This represent the most influential feature, with 22 out

of 38 features linked to targeting likelihood. All vendors, except
“Huawei” and “FreeBSD,” increase the likelihood of an IoT vulnera-

bility being targeted by 1.8 to 34.6 times, with “Microchip” having

1042

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

the highest impact. In contrast, “Huawei” and “FreeBSD” decrease
targeting likelihood by 0.02 and 0.03 times, respectively. The sharp
decline associated with “Huawei” may be due to only one targeted
vulnerability, CVE-2017-17215, compared to 1,400 non-targeted
ones in our dataset. While this vulnerability, which allows authen-
ticated attackers to remotely exploit Huawei HG532 routers, was
the most frequently and consistently targeted IoT vulnerability
[1, 2, 10, 24, 25, 38], the high standard error suggests some uncer-
tainty in the estimate (see Table 8 in the Appendix).

CWE: All eight CWE categories increase the likelihood of an
IoT vulnerability being targeted, except for CWE-352 (Cross-Site
Request Forgery), which decreases it by 0.23 times. The remaining
CWEs raise targeting likelihood between 1.75 and 12.29 times, with
CWE-116 (Improper Encoding or Escaping of Output) having the
highest impact, increasing it by 12.29 times per unit increase.

References: We identified five reference-related features assigned
to CVEs by NVD, all positively correlated with a 1.43 to 2.11-fold
increase in the likelihood of an IoT vulnerability being targeted,
except for “Third Party Advisory”, which decreases it by 0.68 times.
“Issue Tracking” has the highest impact, increasing the likelihood
of targeting by 2.11 times.

Significance of exploitability features. PoC availability: Al-
though the availability of PoC exploits alone do not fully explain
IoT targeting, the presence of PoC exploits alongside other fea-
tures make IoT vulnerabilities 3.57 times more likely to be targeted
compared to the ones without PoC exploits.

Significance of Engagement. This feature captures whether
an IoT vulnerability was discussed in underground hacking forums,
including details like the number of forums, boards, threads, posts,
and members involved. For example, when community members
actively engage in discussions about specific vulnerabilities, the like-
lihood of those vulnerabilities being targeted in the wild increases
by 1.27 times. This indicates that increased forum discussions lead
to a higher probability of malicious targeting. These findings align
with previous results in subsection 7.2, where including forums
data improved the model’s variance explanation by 21% and its
targeting prediction of IoT vulnerabilities by 17% over EPSS.

7.4.2  Features importance. The SHAP value distribution highlights
feature influence, with the top 10 in our model ranging from 0.017 to
0.002. The highest SHAP value is for the CVSS base score, followed
by CVE Age (0.013) and Engagement (0.008), while the lowest is
for the vendor “Intel” (see Figure 10). Notably, the Engagement
feature underscores the role of attacker-driven insights. In contrast,
EPSS top features have SHAP values between 0.42-0.09, led by the
count of references, Remote tag (0.34), and Code Execution (0.29),
with CVSS metric (C:H) ranking lowest. We compare the feature
importance derived from our model including the Engagement
feature, with that from EPSS using SHAP values, as it’s the only
public information provided by EPSS [41]. This comparison allows
us to assess the relative significance of various features in predicting
exploitation, contrasting general vulnerabilities in EPSS with our
model’s focus on IoT vulnerabilities. Our model and EPSS exhibit
considerable overlap in their top 10 influential features, with 8 of our
top 10 features appearing in EPSS and 7 of EPSS’s features present
in our model (see Table 6). This alignment underscores shared key
predictors, such as Age of CVE, exploit availability (Exploit-DB),
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Table 6: Top 10 SHAP features: Our model with Engagement
vs. EPSS

Model with Eng.  EPSS rank EPSS model Model with Eng. rank
CVSS:3.1/Scored #28 CVE: Count of Ref. #8
CVE: Age of CVE #5 Tag: Remote -
Engagement - Exploit: Exploit DB #5
Ref: VDB Entry #14 Tag: Code Exec. -
CVSS:3.1/ILH #24 Vendor: Microsoft #19
Exploit: Exploit DB #4 CVSS:3.1/PR:N -
CVSS:3.1/A:H #7 CVE: Age of CVE #2
CVE: Count of Ref. #1 CVSS:3.1/AV:N #9
CVSS:3.1/AV:N #7 CVE: Age of CVE #2
Vendor: Intel - CVSS:3.1/C:H #14

CVSS metrics, reference label “VDB Entry”, and vendor “Intel”. For
example, the top predictor in our model is the CVSS base score
but it ranks lower in EPSS (#28), while the count of references is
EPSS top feature yet ranks lower for IoT in our model (#8). Notably,
hacker forum engagement ranks as the 3rd most influential feature
in our model but is absent in EPSS, emphasizing the model with
Engagement’s stronger focus on attacker community discussions
in risk assessment.

8 Discussion

EPSS was trained on a dataset dominated by general-purpose com-
puting vulnerabilities, as they make up the bulk of the total vulner-
ability population. However, IoT vulnerabilities differ in important
ways that make them harder to predict using these same general
features.

For instance, while our model and EPSS share similarities in their
top 10 most influential features (see Table 6), only 11 of the top 30
most influential features values overlapped when considering the
fulllist in Figure 10. In terms of the differences, we find more vendor-
related features dominating our model, with 10 appearing in the top
30, compared to only two in EPSS. This underscores the role vendors
play in IoT exploitability, aligning with prior work identifying Zyxel
and Sonicwall among the most frequently exploited vendors [1, 2,
10]. Similarly, we found that two categories of CWE weaknesses
correlate with attacker targeting for IoT vulnerabilities, yet EPSS
does not rank any CWE-related features in its top 30.

These discrepancies highlight the unique and complex nature
of IoT vulnerabilities. Spring [64] argued that EPSS often assigns
low scores to IoT vulnerabilities that are actively exploited, such as
those listed in CISA’s (KEV) catalog. For example, CVE-2017- 17215
(Huawei HG532 routers) remained a frequent target yet received
a near-zero EPSS score (0.05) for exploitation within 30 days as
of May 2021. It took three years for the score to rise to 0.96 by
April 2023—delayed recognition that does not align with real-world
attacker behavior [1, 2, 10, 24, 25, 38]. Prior work emphasizes the
importance of IoT-specific features, such as device types [2, 10, 14,
18, 63] and internet exposure levels [2, 14, 54], which significantly
influence attacker targeting [1, 2, 10, 14, 46]. While we acknowledge
that collecting such data is labor-intensive and difficult to scale for
integration into automated models like EPSS, these findings suggest
IoT vulnerabilities may be exploited differently from general ones.

Additionally, EPSS relies on social media discussions, such as
Twitter/X, to detect exploitation, whereas research suggests that
dark web discussions are more predictive [9]. To address this gap of

improving the prediction for IoT vulnerabilities, we incorporated
hacking community discussions into our model, enhancing the
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model’s ability to explain variance by 21%. Not only did this inclu-
sion improve the model’s explanatory power, but it also increased
its predictive accuracy by 17% over EPSS [41]. To further assess the
impact of hacking forum discussions on pre-exploitation risk as-
sessment, we found that including forum data increased the mean
predicted targeting probability for these CVEs to 0.57, whereas
excluding forum-related features reduced it to 0.26.

These cases accounted for 49% of discussed CVEs with known
exploit dates, averaging a 482.6-day ‘time-to-exploit”. Notably, 9%
were exploited on the same day they were first discussed. In con-
trast, EPSS did not rank social media feeds among its top 30 predic-
tors, highlighting the importance of hacking forum discussions in
identifying targeted IoT vulnerabilities.

This suggests that IoT vulnerabilities should likely be treated
separately in prediction models, as the factors influencing their
exploitation differ significantly from those of general vulnerabilities.
This provides an area for future research and model development,
particularly in the realm of IoT security, that might account for
TIoT-specific features.

9 Limitations

Several limitations exist within our methodology. Our approach
solely relied on CVE identifiers for identifying IoT vulnerabilities,
both those targeted in the wild and those discussed in underground
forums. This may exclude vulnerabilities not assigned CVE-IDs,
potentially overlooking significant threats. Additionally, the auto-
mated search methods employed using VARIoT dataset to identify
IoT-related vulnerabilities might have resulted in missed or irrele-
vant entries. In underground forums, there is a risk of input data
manipulation by malicious actors, who may discuss random IoT
vulnerabilities to disrupt classification. Furthermore, the lack or
ambiguity of exploit capture dates for targeted IoT vulnerabilities
in some datasets, such as CISA and VirusTotal, poses challenges
in understanding the timing of targeting activities. Finally, includ-
ing IoT-specific features like device type [1, 2, 10, 11, 18] or install
base [2, 14, 54] requires manual data collection, which is imprac-
tical given the scale of our dataset of over 23k CVEs. Instead, this
study focuses on supporting vendors and users in evaluating IoT
vulnerabilities by leveraging readily available online information.

10 Conclusion

We analyzed factors influencing IoT vulnerability targeting using
features like CVSS severity, CWE categories, vendors, external refer-
ences, vulnerability age, and PoC exploits derived from EPSS, along
with new insights from hacking forums. For over 23k IoT-related
CVEs, we leveraged vulnerability features, PoC availability, and
discussions from more than 25k posts across 25 hacking forums.
We identified 38 features with p-value < 0.05 that affected attack-
ers’ targeting choices of IoT vulnerabilities. Our model, utilizing
hacking forum data, showed a 21% performance improvement in
McFadden’s pseudo R? score. Using fewer features than EPSS, our
Brier score prediction accuracy increased by 17% compared to EPSS,
which showed that existing state-of-the-art methods often failed
to capture the complexities of IoT threats, and integrating insights
into attacker behavior from online sources enhanced the prediction
of IoT vulnerability targeting.
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Bits and Pieces: Piecing Together Factors of loT Vulnerability Exploitation

A CrimeBB dataset

A.1 Summary of CrimeBB dataset

Table 7: Summary of CrimeBB forums ordered by the number

of posts.

Forums # Posts Oldest post
hack-forums 42,474,326  2007-01-27
Zismo 11,127,167 2010-05-26
blackhatworld 10,320,120 2005-10-31
multiplayer-game-hacking 10,217,579  2005-12-26
nulled 6,675,498 2013-04-02
lolzteam 6,196,005 2013-03-10
ogusers 3,608,306 1900-01-01
cracked 2,977,801 2018-04-03
mmo4me 2,899,930 2010-04-01
antichat 2,630,906 2002-05-29
v3rmillion 2,459,519 2016-02-02
unknowncheats 2,403,995 2002-11-02
raidforums 1,231,126 2015-03-20
elhacker 980,523 2002-08-21
probiv 822,671 2014-11-05
breached 737,922 2022-03-16
forum-team 431,695 2017-10-31
indetectables 328,024 2006-02-20
xss-forum 310,796 2004-11-13
dread 294,596 2018-02-15
runion 240,632 2012-01-11
offensive-community 161,492 2012-06-30
undercOde 92,247 2010-02-10
the-hub 88,753 2014-01-09
ifud 72,851 2012-05-10
piratebay-forum 60,678 2013-10-23
torum 28,485 2017-05-25
safe-sky-hacks 27,018 2013-03-28
kernelmode 26,815 2010-03-11
freehacks 26,471 2013-07-27
deutschland-im-deep-web 20,185 2018-11-22
greysec 11,925 2015-06-10
garage-for-hackers 8,710 2010-07-06
stresser-forums 7,069 2017-04-09
envoy-forum 2,163 2019-07-06
Hackers Armies - -
Total 11,0003,999
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B.1 Features with factors influencing the
targeting of certain IoT vulnerability using

GLM.

Table 8: Regression results of the model including the En-
gagement feature. Only the 38 features with p-value < 0.05

are shown.
Feature Coefficient Standard
Error
PoC 1.272"" (0.165)
PRLL ~0.595* (0.240)
Vendor:INTEL 1.159*** (0.261)
Vendor:FEDORAPROJECT ~ 0.891* (0.338)
Vendor:CITRIX 2.013™** (0.480)
Vendor:MITEL 2.051** (0.733)
Vendor:DLINK 0.785*** (0.223)
Vendor:DRAYTEK 3.399*** (0.629)
Vendor:WESTERNDIGITAL 2.111* (0.920)
Vendor:WAVLINK 1.849* (0.787)
Vendor:MINIO 2.591** (0.853)
Vendor:APACHE 2.304*** (0.356)
Vendor:HUAWEIL —3.882™ (1.217)
Vendor:ZYXEL 1.440"* (0.463)
Vendor:MICROCHIP 3.544* (1.495)
Vendor:FORTINET 1.183*** (0.273)
Vendor:FREEBSD —3.447"% (0.909)
Vendor:EMBEDTHIS 1.943* (0.803)
Vendor:OPENSSL 2.992%** (0.555)
Vendor:GRANDSTREAM  1.566* (0.798)
Vendor:LINKSYS 1.546* (0.736)
Vendor:SONICWALL 1.446™" (0.492)
Vendor:DAHUASECURITY ~ 2.230% (0.722)
Vendor:NUUO 1.540* (0.653)
CWE-22 0.590* (0.266)
CWE-352 —1.488* (0.739)
CWE-843 1.658" (0.535)
CWE-287 0.562* (0.250)
CWE-78 1.152"" (0.182)
CWE-9%4 1.107* (0.493)
CWE-116 2.509* (1.086)
CWE-294 1.733* (0.747)
Ref:Third Party Advisory ~ —0.389* (0.175)
Ref:Exploit 0.358* (0.171)
Ref:Release Notes 0.562* (0.261)
Ref:VDB Entry 0.416* (0.196)
Ref:Issue Tracking 0.746™* (0.266)
Engagement 0.237*** (0.017)
Observations 15,600
Akaike Inf. Crit. 3,810.212
Note: *p<0.05; *p<0.01; “**p<0.001
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B.2 Model feature coefficients

Count_ref
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Ref:Patch

Ref:Third Party Advisory
CWE-444

CWE-294
CWE-116
CWE-203

CWE-94

CWE-502
CWE-125

CWE-78

CWE-287
CWE-843

CWE-79

CWE-352

CWE-22

Number_of Vendors
Vendor:OPENBSD
Vendor:NUUO
Vendor:AXIS
Vendor:BELDEN
Vendor:NOVELL
Vendor:SUSE
Vendor:DAHUASECURITY
Vendor:FUJITSU
Vendor:HAXX
Vendor:PHP
Vendor:MOZILLA
Vendor:VMWARE
Vendor:SONICWALL
Vendor:LINKSYS
Vendor:GRANDSTREAM
Vendor:ARISTA
Vendor: TOTOLINK
Vendor:NODEJS
Vendor:OPENSSL
Vendor:JUNIPER
Vendor:EMBEDTHIS
Vendor:FREEBSD
Vendor:ARM
Vendor:FORTINET
Vendor:MICROCHIP
Vendor:ZYXEL
Vendor:HUAWEI
Vendor:LINUX
Vendor:APACHE
Vendor:TENABLE
Vendor:MINIO
Vendor:WAVLINK
Vendor:WESTERNDIGITAL
Vendor:NETGEAR
Vendor:DRAYTEK
Vendor:ORACLE
Vendor:WINDRIVER
Vendor:DLINK
Vendor:MITEL
Vendor:CITRIX
Vendor:DEBIAN
Vendor:REDHAT
Vendor:NETAPP
Vendor:MICROSOFT
Vendor:MCAFEE
Vendor:SIEMENS
Vendor:FEDORAPROJECT
Vendor:CANONICAL
Vendor:OPENSUSE
Vendor:lNT/EL

A:

Features

=

QU)OO_

)
p)
ITI—Z0OIrT

>0
2287
[

AV:A
BaseScore
PoC

o

-400 -200 200

Coefficients
Figure 8: The 93 features used selected by elastic net regularization.
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Figure 9: Odds ratio of the regression model with hacking community PC in regularization. Only the features with p-value < 0.05
are shown.

1048



ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

CVE: Age of CVE
Engagement
Ref:VDB Entry

Exploit: Exploit DB
CVE: Count of References

Vendor:Intel
Vendor:Fortinet
Vendor:Apache

Ref:Release Notes

Vendor:Fedoraproject

Ref:Third Party Advisory
Ref:lssue Tracking
Vendor:Microsoft
Vendor:Netapp
Vendor:Openssl
Vendor:Debian
Vendor:Sonicwall

Ref:Mitigation
CWE-79
Ref:Mailing List

Vendor:Zyxel
CWE-22

0.000

Model with Engagement feature

0.005 0.010 0.015

CVE: Count of References
Tag: Remote

Tag: Code Execution
Exploit: Exploit DB

CVE: Age of CVE

Vendor: Microsoft

Site: ZDI

Exploit: metasploit
NVD: Exploit Ref
NVD: VDB Ref
NVD: US Gov Ref
Tag: SQLi
Scanner: Nuclei
Vendor: Adobe

NVD: Vendor Advisory Ref
Tag: Local

NVD: 3party Advisory Ref
NVD: Patch Ref

Tag: XSS
Tag: Denial of Service
Site: KEV

Exploit: Github
Tag: Buffer Overflow

Mean Absolute Shapley Value

Arwa Abdulkarim Al Alsadi, Mathew Vermeer, Takayuki Sasaki, Katsunari Yoshioka, Michel Van Eeten, and Carlos Gafian

EPSS model
I
I
I
L ]
I
I
.

.

|

[ |

||

|

||

||

||

| |

||

||

||

||

||

||

n

00 01 02 03 04

Figure 10: Mean absolute Shapley value for the top 30 most influential feature of our model with Engagement vs. EPSS.
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