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Abstract

Due to the trend towards minimization of optical space instruments, in combination with ever increas-
ing performance requirements, their optical and mechanical design are becoming more and more
intertwined. As a result, it is invaluable to have insights into how mechanical and thermomechanical
disturbances influence the system’s optical performance already in early stages of the design pro-
cess. In this work, a differential ray tracer is implemented into a topology optimization framework,
allowing for direct optical performance analysis of optical instruments under disturbance loads. The
gradient information of the optical performance is provided by semi-automatic differentiation. A wide
range of optics can be used including freeform optics, that have become frequently used in state-
of-the-art instruments. The method has been verified and shows a strong agreement with ZEMAX.
To demonstrate the advantages of the STOP-based computational design workflow, a fully coupled
opto-thermo-mechanical topology optimization is performed on a case inspired by CHAPS-D, a hyper-
spectral air pollution sensor. The results show the potential of direct optical performance analysis in
topology optimization, creating a structure that maintains optical performance at or above nominal
performance, while highlighting challenges posed by the optimization process.

Keywords: Topology optimization, Ray tracing, STOP analysis, Automatic differentiation

1 Introduction

Space-based opto-mechanical instruments have to
meet strict performance requirements. The main
challenge is to maintain the position and shape
of optical components in all operating condi-
tions. These conditions can include gravity release,
vibrations and thermal loads. For instruments in
orbit, thermal disturbances are especially common

due to heat produced by the sun or active compo-
nents, combined with the lack of convective heat
dissipation. Designing a structure that performs
well in all conditions is not trivial. A perfectly
thermally isolated system is one that is not con-
nected to its surroundings. However, the structure
should also provide enough stiffness for the optical
components to stay in nominal position, survive
transport or launch and keep the fundamental



eigenfrequency above the critical minimum. More-
over, the coupled interactions between compo-
nents are further intertwined by miniaturization
of the instruments, enabled by freeform optics.
These optics allow for more compact designs over
their conventional optics counterparts [1]. Some
notable examples for space-based spectrometers
include Sentinal-5, CHAPS-D and TANGO [2].

In the current workflow of opto-mechanical instru-
ments, optical designers create an optical design
with a corresponding error budget on displace-
ments and deformations for all individual compo-
nents. The structural designer then has to create
a design to keep all the components under their
allocated budget for a variety of above mentioned
load cases. Optical performance is not directly
considered, limiting the design space and prevents
realizing full performance potential.

A method to directly analyze an optical instru-
ment’s performance under thermal load is the
structural thermal optical (STOP) analysis. It
works in two steps first, the displacement and
deformation of the structure due to the thermal
load is determined. Then, the displacements and
deformations of the structure and components
are translated into optical performance [3]. This
performance can be expressed by image quality,
optical resolution and image position accuracy.
Image quality and optical resolution can be quan-
tified by the RMS spot radius and image position
by the Line Of Sight (LOS) error. Several meth-
ods exist to map displacements and deformations
to optical performance such as linear optical sen-
sitivities, Zernike fitting, or ray tracing with the
latter being the most accurate [4]. Ray tracing is a
computational method that determines the prop-
agation of light through an optical system. Both
the RMS spot radius and the line of sight error
can be determined using ray tracing.

In literature a host of methods exist to trace rays
through a system. A well known method is using
the ray transfer matrix. It simplifies the opti-
cal physics by using the paraxial approximation,
which assumes light only hits the optical surface
under low angles. It allows a ray to be described
as a vector and optical components to be repre-
sented by a matrix. Multiplying the ray vector
with the optical component matrix together gives
the ray that results from their interaction. Due

to the paraxial approximation, it is only possible
to accurately describe rays moving through a sys-
tem if all components lay on the optical axis. To
alleviate this problem Corcovilos [5] developed a
method using a homogeneous coordinate descrip-
tion for a ray. The ray can be transformed to
the local reference frame of an optical component,
after which the resulting ray is transformed back
to the global reference frame. This allows off axis
systems to be analyzed without violating the con-
ditions for the paraxial approximation. Expanding
on this framework is Dorst [6], using algebraic
geometry to extend the method to 3D systems
and being able to not only image rays and points
but to also image lines, planes and volumes. Yuan
et al. [7] use the three dimensional version of the
ray transfer matrix and added an extra column
to describe error terms due to mirror deforma-
tion and displacement. A more elaborate method,
not limited by the paraxial approximation, is pro-
posed by Caron and Baumer [8] [9]. In this work,
equations relating freeform shape coefficients to
third order aberrations are composed. It allows ray
tracing through a system with off axis freeform ele-
ments. The proposed use case is to identify special
solutions to reduce low order aberrations and give
insight in the number of degrees of freedom that
are required to cancel certain aberrations. A few
essential steps of the method can be recognized.
The intersection of an incoming ray with a surface
is first calculated. This intersection point is used to
calculate the surface normal vector which is used
to determine the reflecting direction. Combining
this procedure with the aforementioned homo-
geneous coordinates to transform rays between
reference frames should allow for a robust and
general ray tracing algorithm.

The trade-offs posed in opto-mechanical design
lend themself well to optimization techniques.
Several authors have already used optical per-
formance as an objective for the optimization of
structures and show promising results. Liang et al.
optimize the position of several mirror supporting
pins to reduce the minimal wave front error under
the mirrors’ own weight [10]. Wang et al. optimize
the thickness of beams on a frame of a spectrom-
eter under gravity release and thermal load, using
ZEMAX for the optical performance evaluation
[11]. Song et al. propose a method to model the



impact of the dynamic behavior of a photoelec-
tric detection system on optical performance using
homogeneous coordinate transformation and ray
tracing [12].

Another structural optimization technique is
topology optimization. Given loads, boundary
conditions and constraints, it distributes material
within the design domain to maximize a spec-
ified performance measure [13]. Regularly used
performance measures include stiffness, mass and
eigenfrequency. Thermal loads have been inves-
tigated using topology optimization, where min-
imum compliance was required under prescribed
temperatures [14] [15]. Topology optimization has
been used to design mirror mounts for optical
performance. For example, Sahu et al. minimize
mirror deformation under static loads [16] and Van
der Kolk et al. use the placement of viscoelastic
material to attenuate the resonant modes present
in instruments [17]. Koppen et al. performed a
system design optimization combining topology
optimization and a full STOP analysis to optimize
a two mirror system under a thermomechanical
load for optical performance [18]. The results show
that directly including optical performance, in the
form of the RMS spot radius, allows the two mir-
rors to compensate for each others optical errors.
However, this analysis is only performed in 2D and
uses the ray transfer description of Yuan et al. [7],
which is limited by the paraxial approximation.

In optical system optimization, differential ray
tracing is widely used to optimize individual sur-
face shapes and component positions for better
optical performance of the system. It is espe-
cially useful when considering freeform optics as
they can poses a large amount of surface coeffi-
cients. For example Volatier et al. use differential
ray tracing and automatic differentiation to opti-
mize surface shape and position with the optical
surfaces being described as Non-uniform ratio-
nal B-splines (NURBS) [19]. Furthermore Pflaum
uses differential ray tracing to successfully design
a freeform lens to project a specified irradiance
distribution [20]. Using differential ray tracing
for structural optimization would bridge the gap
between structural displacements and optical per-
formance and can provide the necessary gradient
information.

In this work, differential ray tracing is imple-
mented in a fully coupled structural thermal opti-
cal analysis to drive the topology optimization
of opto-mechanical structures. This alleviates the
need for optical designers to assign an error budget
per component, and create systems with improved
optical performance under equivalent loads. By
using the general description of ray tracing it will
allow 3D analysis on a wide range of optical com-
ponents including more complex optics such as
freeform optics, while not being limited by the
paraxial approximation. In Chapter 2, the working
principles of differential ray tracing is explained.
Chapter 3 introduces two optimization problems:
a simple test case of a single mirror on the end
of a cantilever beam, and a more complex spec-
trometer consisting of 12 optical components. The
results are discussed and recommendations given
in Chapter 4.

2 Differential ray tracing

In this section the implementation of differential
ray tracing is described. Starting with the homo-
geneous coordinates description of points and
vectors making transformation and rotations pos-
sible by matrix multiplication. Then, a description
is given on how ray intersections, reflections and
refraction are calculated. Lastly, the calculation of
the derivatives is explained.

2.1 Homogeneous coordinates

Homogeneous coordinates are used to simplify
calculations that would be complex in Cartesian
coordinates. An example is affine and projective
transformations, which in homogeneous coordi-
nates can simply be calculated by a matrix mul-
tiplication. Given a point [z,y,z] in Euclidean
space, for a non-zero real number w, [z,y,z,w]
is the homogeneous coordinates set of the point.
The Cartesian coordinate represented by a homo-
geneous coordinate can be determined by dividing
x,y,z by w. With this property homogeneous
coordinates [1,2,4, 1] and [2,4, 8, 2] represent the
same point in Cartesian coordinates. A point in
homogeneous coordinates with a w value of zero
is a point at infinity.

A ray can be described in Cartesian as a point
and a direction. In homogeneous coordinates this
translates well to a point p, using a value of 1



for w, giving z,y and z the exact same values in
both coordinate systems, and a point at infinity
as a direction, d. This results in the following ray
description:

o dx

Yo dy
r=[pd],p= ol 9= (1)

1 0

This formulation allows for easy transformations
between global and local reference frames of the
optical components. A ray can be transformed
using the translation matrix T and rotation
matrix R, where u,v,w,¢,0 and v describe position
and rotation in the global reference frame, as:

100w
010w
001w
0001

The surface shape of an optical component is
described in its local reference frame. To cal-
culate where the globally defined ray intersects
the locally defined component it needs to be
transformed as described in Equation (4):

F=R'T 'r, (4)

where T denotes the ray in local coordinates. The
resulting ray is then transformed back to the
global reference frame as:

r = TRF. (5)

2.2 Surface intersection, reflection,
refraction and diffraction

An optical surface is described in its local reference
frame as z = sag(z,y). To calculate the inter-
section between a local ray r, and a surface, the
local ray’s description is converted to a paramet-
ric line equation and placed in the optical surface
equation, as:

f(t) = sag(xo + tdz,yo + tdy) — (20 + tdz). (6)

=cotert+ ey g t"T "

The intersection pintersect, is calculated by finding
t = to for which f(¢9) = 0. In practice this is
done by composing a companion matrix using the
coeflicients of the polynomial in ¢ and calculating
its eigenvalue:

00...0 —Cp
10...0 —¢
c=101...0 —c (7)

00...1 —Cnp—1-
The eigenvalue of C can be plugged back into the

parametric line description of the original ray to
find the intersection point:

o + tod.’E
Yo + tody
sag(xo + todz, yo + tody)
1

(8)

Pintersect =

This intersection point is then used as the origin
point for the next ray. For reflective surfaces, the
new direction dyefiect, 1S calculated using the sur-
face normal vector n, as stated in Equation (9)
and depicted in Figure 1 [21]:

dreﬂect =d - 2(d . n)n. (9)

The refracted ray direction for a transmissive sur-
face is calculated using Equation (10), where n is
the refractive index of the medium surrounding
the transmissive component and n; the refractive
index of the material of the component:

drefract =

n(d —n(d- n))_n\/1 _m2(l—(d-n)?)

ng



z=sag(x,y)

Fig. 1: Reflection on a locally defined mirror sur-
face, using the surface normal vector

Besides reflection and refraction, diffraction is also
commonly used in optical systems, specifically
spectrometers. For a reflective grating, the nor-
mal vector is artificially rotated in the direction of
diffraction to simulate a mirror reflection (Figure
2). The incoming angle «, of a ray is first deter-
mined using Equation (11). Depending on the
diffraction direction either ray component dx or
dy is used.

a= tan_l(%) (11)
Y. N
8 = sin 1(7 + sin(«)) (12)

The angle that the reflected ray should have 3,
determined with k, the diffraction order d, the line
spacing and A, the wavelength. The normal vec-
tor can then be rotated by half of the difference
between « and S i.e. B%a to make the ray reflect
with the correct angle.

2.3 Ray differentiation

Several methods can be considered for calculat-
ing the derivatives for ray tracing. The derivative
can be implemented manually, allowing for it to
be calculated relatively fast. However, the oper-
ation has to be described analytically. Moreover,
its not a flexible method as each new derivative
has to be determined manually again making it a
tedious process. The finite difference method can

Fig. 2: Diffraction by rotation of the normal vec-
tor

also be used, it does not require the operation
to be analytically describable. Finite differencing
performs two function evaluations separated by
a small value of h, where the slope between the
function evaluations is the derivative. Finite dif-
ferencing relies on h being a small enough number
that the section in between the two evaluations
can be linearly approximated. The difficulty then
lies in choosing the right value for h, as to not
make it too large that the function can become
nonlinear and not too small that numerical noise
starts to take effect. Even still, finite differenc-
ing only gives estimating values and it requires
two function evaluations, which can get costly in
the case of many variables or long calculation
times per evaluation. Another approach is sym-
bolic differentiation, which takes an input function
and recursively solves for the derivative to get its
symbolic expression. The advantages are that the
derivative can be given as a function, allowing it
to be interpreted and it generates exact results.
However, when the expression gets large and the
recursion depth increases, symbolic differentiation
will become slow to use. An additional differen-
tiation method is automatic differentiation, its
working principle is to convert an expression into
a sequence of elementary operations. For each ele-
mentary operation the computer knows what the
derivative is. Using the chain rule the computer
can then accumulate derivatives together to get
the derivative for the full expression. This accu-
mulation can be done in a forward mode and a
reverse mode. Forward mode traverses the chain
rule from the inside starting with an input and
calculating the derivatives to all outputs. Reverse



mode starts from an output and directly calcu-
lates the derivatives to all inputs. The benefit of
automatic differentiation is that it is fast, espe-
cially when there are either many inputs or many
outputs, and that it gives exact derivatives [22].

An example of a sequence is shown in Figure 3,
where the function y = (z12913)? + sin(xy) is
split into elementary operations. Table 1 shows
how the forward evaluation is divided and how
the derivatives are calculated in reverse mode.
More generally, if w; represent all successive oper-
ations of w; then Equation (13) describes how the
derivative of w; is calculated. In reverse mode, the
derivative of an output is seeded with a value of
one as the derivative towards itself is one.

_ _ Ow;
J i

Fig. 3: Sequence of elementary operations

Table 1: AD evaluation and reverse
derivative calculations

Forward evaluation = Reverse adjoint

w1 wg =1

= w

wa wr = Ws awi
— — w

w3 We = Ws 75~
— — dw

wq = w1 Ws = W6 5,,°
= . dws

W5 = W4 w4 = Ws 834
— 2 = _ = Ows

we = WE W3 = W5 5,°
. — — dw;

wr = sin(wi) Wo = w4a—w‘;

_ _ Qw — dw
w1 = Wy Bwj + wr aw]’

wg = we + wr
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Fig. 4: Effect on the ray path due to displace-
ments in a mirror

To differentiate the ray tracing, semi-automatic
differentiation is used. It differs from automatic
differentiation in that the expression is not con-
verted into a sequence of elementary operations
but a sequence of manually selected operations.
An optical system can already be viewed as a
sequences of operations that change the proper-
ties of light, making it a good fit. As an example,
the optical system in Figure 4 is decomposed as
shown in Figure 5. Each node represents an opti-
cal element in the system, with the last node f
representing the performance metric. The opti-
cal element nodes have two inputs a ray r; and
position x = [u,v,w, ¢, 0,1].

Xp

X2

g1

M1

s e

Fig. 5: Sequence of operations for Figure 4



The derivative of objective f towards the posi-
tion of the first mirror can be written as Equation
(14). The semi automatic differentiation calculates
the total derivative by multiplying the individual
derivatives together, while the individual deriva-
tives are analytically implemented.

of _0f Op oy orm

8XM1 o ap 81’2 . 81'1 . 6xM1 (14)
For ease of implementation and insight into the
process, the derivatives are divided further using
the chain rule. As an example, the most com-
prehensive derivative g—x is broken down into its
fundamental parts. As previously mentioned the

ray is composed of a point and a direction:

Ory dps od
mfma] w

Starting with the point, its derivative can be bro-
ken down, separating the derivatives that are cre-
ated transforming the ray in and out of the mirrors
local reference frame. These derivatives simply
reduce to the matrices applied for transformation:

Op2 _ 0P20P2 0Ty _ ., 02

871‘1 B 8152 8?1 (91‘1 6f‘1

R™'T™'. (16)

Calculating gg’f requires the derivative of the root
of Equation (6). This can be obtained by cal-
culating the derivative to the eigenvalue of the
companion matrix in (7) using its left and right
eigenvectors as stated:

o

—V. 17
o8, (17)
The derivative of the direction is similarly
obtained by first separating it from its transfor-
mation to the global reference frame:

ody  9dyody ., ,0dy

o sa o Ry, 1Y

Then g—i"" can be determined as the derivative of

the reflection Equation (9):

od ad ad -9 -
2 o (& o((En+d; 2yt (dy n)

on
o~ Lo, G ntdigs

o)
(19)

g—:‘l can be separated into three parts with 552

being the second derivative of the mirrors surface
and ggf is already determined in calculating the
derivative towards the point. The derivative can

therefore be written down as:

on - on 8f>2 (9I~'1

on _ O 0P2 poips
81‘1 a 8]32 8%1 81‘1 - 8;32 6%1 . (20)

Using this method makes it easy to quickly evalu-
ate different optical systems. It relies on manually
implementing the individual derivatives of optical
components, but once implemented these deriva-
tives can be reused for any similar component
with a different surface shape and easily chained
together by the semi automatic differentiation. To
perform a topology optimization the performance
sensitivity needs to be extended to the design vari-
ables. Using the adjoint method this will take a
single solve per objective h to get the adjoint vec-
tor A, with K and u being the stiffness matrix and
displacement vector and x; the design densities.

dh
_ -T
A=K (21)
dh 0K
= — 22

In this case, objective h is the rigid body transla-
tions and rotations of all the optical components.

3 Numerical examples

In this Chapter four test cases are introduced and
their results shown. In Table 2, a short description
of their objectives is given.

3.1 Ray tracing verification

To verify that the proposed ray tracing method
is accurate, it is compared to ZEMAX. To com-
pare results, the telescope section of CHAPS is
used (Figure 6) and its TM1 mirror translated



Test | Test objective

1 Verifying the ray tracing response by comparing it
to ZEMAX

2 Verifying the accurate modeling of homogeneous
expansion

3 Comparing results and behavior of a simple topol-
ogy optimization problem using ray tracing

4 Comparing results and behavior of a complex
topology optimization problem using ray tracing

Table 2: Overview of test cases and their objective

and rotated in all degrees of freedom. The result-
ing RMS spot radii are shown in Figure 8 and
overlap perfectly with the response from ZEMAX.
This confirms that the ray tracing method can
accurately model the behavior of multi component
systems.

TMz/ . FM1

Detector '

Aperture E ™1

Fig. 6: CHAPS telescope section

3.2 Homogeneous expansion

A second test to validate the ray tracing method is
to check the behavior of optical performance while
being subjected to homogeneous expansion. This
is because optical instruments retain their exact
optical properties when homogeneously expanded.
For this test a telescope is used as shown in Figure
7. It uses four off-axis parabolic to reduce the
incoming beam diameter by ten times. Hexapo-
lar sampling is used to sample 37 rays over the
aperture creating a RMS spot radius of 4.011 mm.
The position and surface coefficients are scaled
with a factor s as described in Equation (23),
using a expansion coefficient of 22e-6 1/K and
temperature difference of 1000 K. The temper-
ature difference is an exaggerated large value,
which should demonstrate how accurate, homo-
geneous expansion can be modeled. The scaling
simulates the homogeneous expansion of the sys-
tem. With scaling applied, the RMS spot radius
remains 4.011 mm and is exactly the same up to
the 12th decimal, proving the ray tracing method

Detector M3 M1
=
iy
> = —
[ w N
M4 M2 \\.._ //
Aperture

Fig. 7: Telescope using four off-axis parabolic mir-
rors

can accurately model optical systems undergoing
homogeneous expansion.

s=a-dl (23)

3.3 Cantilever beam

A simple case is set up to test the behavior of
the differential ray tracing being used in topol-
ogy optimization. It consist of a cantilever beam
fully constrained on the left side, with a length
of 250 mm and a cross section of 50x50 mm and
made out of titanium alloy Ti6Al4V. A parabolic
mirror is modeled at the other end of the beam.
As Figure 9 shows, the mirror perfectly focuses a
collimated bundle of light on the detector placed
above. Below the mirror a force of 250 kN is
exerted on the structure to bring the system out
of focus. This is an exaggerated force to impose
a large deformation on the structure to show the
difference between optimization methods. Three
different optimizations are performed, a compli-
ance minimization, a displacement minimization
and a RMS spot radius minimization. Function g
is the objective of the problem and is varied for
the three cases, this makes the general problem
statement:

min go
st. K(pu=f

m = § PeVe S Mmazx
eecd

0<p<i
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Fig. 8: Ray tracing method compared to ZEMAX

where Q¢, defines the discritized design domain
made up of elements, e. For the first optimization
problem objective gq, is compliance:

g0 = C(p) = £ u(p).

For the second optimization problem, all trans-
lations and rotations of the parabolic mirror d;,
minus the average displacement of the whole
structure dq.4, are aggregated together using the
P-Norm:

(24)

N o (1/P)
go =dpn = (Z(M + 1)P> - (25)

d
i=1 max

The average displacement is subducted from the
total as only relative displacement is of impact on
the optical performance. In the third optimization

10

Detector

’ I—;
x Parabolic mirror v

F

Fig. 9: A cantilever beam with a parabolic mirror,
focusing light on a detector

problem, r is minimized and is defined as the RMS
spot radius:

1 <N ) 1 <N 5
1 SICEFALIEL SYR

€ =T=\|%
i=0 i=0
(26)

where, x; and y; is the location of a ray on the
detector with N the total amount of rays and x.
and y. the location of the chief ray on the detector.

The resulting three structures are shown in Figure
10. They show that optimizing directly for RMS
spot radius gives about a 7% improvement over
displacement minimization and about a 61%
improvement over compliance minimization. Even
more interesting is the way it reaches this per-
formance, Figure 10c and Table 3 shows that it
deforms more than the other two results. However
it deforms in a different way, prioritizing a smaller
rotation over the y-axis over displacement in the z-
direction. Table 4 show that it moves about 3 mm
less in the z-direction but has a reduced y-rotation.
This behavior could be explained when consid-
ering the aberrations each movement makes. A
displacement in the z-direction creates defocus
while rotation over the y-axis creates tilt. Tilt
creates a considerably larger RMS spot radius as
it elongates the spot in the tilt direction, while
defocus homogeneously increases the radius of the



spot (Figure 11). Because the optimizer has access
to the ray tracing it is able to indirectly discern
which aberration is most influential on the RMS
spot radius and decrease the movement that cre-
ates that aberration. Looking at Figure 10c, the
structure and the end of the beam is similar to
a compliant coupling which rotates inward due to
the force applied. A comparable structure can be
seen in Figure 10b, however it creates less inward
rotation.

08 005 01 015 02

002 m

002 m

(c) RMS spot radius minimization

Fig. 10: Optimized cantilever beam for all three
optimization problems. The color gradient depicts
the magnitude of displacement.
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Fig. 11: Spots of the three different cantilevers
structures on the detector

Optimization | RMS spot radius [mm] | Strain energy [J]

1 8.60 2730
2 5.72 2835
3 5.34 3216

Table 3: RMS spot radius and strain energy for each
optimization result

Optimization | z-displacement [mm] | y-rotation [rad]
1 -21.8 0.224
2 -22.7 0.120
3 -25.7 0.027

Table 4: Cantilever displacement and rotation for
each optimization result

3.4 CHAPS spectrometer

An additional test case will focus on a more elab-
orate optical system, inspired by a the Compact
Hyperspectral Air Pollution Sensor (CHAPS) [23].
It is a spectrometer designed to detect and map
trace gasses in the atmosphere. The optical path
of CHAPS is shown in Figure 12, where TMI,
TM2, Collimator, IM1, IM2 and IM3 are freeform
mirrors. An optimization using CHAPS will be a
useful test case to see how the optical optimization
behaves for a state of the art optical instrument
with multiple optical components. First, an opti-
mization just constraining the optical component
displacements is performed and this is compared
to the second optimization using the ray tracer to
directly evaluate optical performance.



The design domain contains the optical com-
ponents as well as a light tight shell. Due to
manufacturing limitations the system is split up
into two parts along the dotted line in Figure 13a.
Six interface locations have been predetermined to
fully constrain the system.

. M1 IM3
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Fig. 12: Optical path and components in CHAPS

The analysis is performed in 2D to limit the cal-
culation time required for each optimization. To
go from a 3D design domain to a 2D domain, a
slice of the middle section of the 3D domain is
taken. Important components that are not posi-
tioned in the middle such as the interface location
are projected onto the 2D domain. The inter-
faces are constrained as shown in Figure 13b, with
the top right interface fixed in = and y direction
and the other interfaces fixed in x and y, respec-
tively. This allows the structure to freely expand
under thermal load. The design domain is split
along the dotted line, with two interfaces on either
side indicated in red, connecting the two halves
together.

12

(a) 3D design domain

(b) 2D design domain

Fig. 13: 2D design domain compared to 3D design
domain

The design is analyzed for six load cases, a grav-
ity release load in = and y directions, a thermal
gradient in z and y directions and a quasi-static
load simulating launch conditions at 200 g acceler-
ation in x and y direction. For the gravity release
and thermal gradient, optical performance is ana-
lyzed, while for the launch condition the stress is
analyzed.

In the first case, optical performance is con-
strained by means of limiting the displacement of
the optical components. In the second case, the ray
tracer is used to directly assess and constrain the
impact on the optical performance. The perfor-
mance measures used are the RMS spot radius and
the line of sight (LOS) error. The spectrometer
has a wavelength range of 300 - 500 nm, however,
likely due to the shape of the spot, using a wave-
length of 398.4 nm makes the chief ray hit the
middle of the detector and is therefore used in the
analysis. A perpendicular beam of 49 collimated
rays is traced to get a good balance between accu-
racy of the spot radius and calculation time. The
rays are sampled in a square pattern on the aper-
ture, giving a nominal RMS spot radius of 27.4646
wm.

The stress constraint ¥, is formulated by Ver-
bart et al. [24]. Then for k amount of load cases,
where k£ = 1,2 are the launch accelerations and
k = 3,4,5,6 are gravity and thermal loads, the
first optimization problem becomes:



min m:Zpeve

P eeQd

st. v—-1<0, k=1,2
dpy —1<0, k=3,4,5,6
0<p<l1

Similarly, the second optimization problem using
ray tracing is defined as:

min m = Ve

e

st. W-1<0, k=12
T/Tmaz — 1 <0, k=3,4,5,6
D/Pmaz —1 <0, k=23,4,56
0<p<1

Here, r is defined as the RMS spot radius with
a maximum allowable value of 7,4, and p is the
LOS error, with a maximum value of py,q.. The
maximum allowable RMS spot radius is set to the
spot radius in nominal performance i.e. 27.4646
pum and the maximum LOS error is set to 1
um. The RMS spot radius is defined in Equation
(26) and the LOS error is defined as the abso-
lute distance of the chief ray to the center of the
detector:

p =l +yz (27)

The resulting structure of the first optimization
problem is shown in Figure 14a, and the results
of the second optimization problem are shown in
Figure 14b. The result of the first optimization
problem shows well defined thin beams connecting
the components to the interface locations, with a
larger block of material on the top right. Interest-
ingly the connection to the interfaces are relatively
thin compared to the connection to the bottom
right interface. These connections seem to mini-
mize the heat transfer from the interfaces to the
components. The structure is able to keep the
RMS spot radius less or equal to the nominal RMS
spot radius for the gravity load in the x direc-
tion and thermal load in the y direction as can
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be seen in Table 5. The LOS error is greater for
the thermal loads compared to the gravity case,
as expected.

The optimization with the ray tracer is able to
get the RMS spot radius at of below the nominal
RMS spot radius for all load cases and it is able
to keep the LOS error to 1 um as can be seen in
Table 6. This is a promising improvement over the
displacement constrained optimization. However
the result still contains a lot of intermediate (grey)
design densities which do not translate well into a
real design.

| RMS radius [um] | LOS error [um] | Stress [-]

Gravity x 27.4556 6.247 1.53
Gravity y 27.4647 1.685 1.61
Thermal x | 27.6597 22.11 NA
Thermal y 27.4582 15.50 NA

Table 5: Displacement constraint performance

| RMS radius [um] | LOS error [um] | Stress [-]

Gravity x 27.4532 0.112 1.2177
Gravity y 27.4646 0.994 1.2131
Thermal x | 27.4643 1.051 NA
Thermal y | 27.4646 0.841 NA

Table 6: RMS spot radius and LOS error constraint
performance

A threshold is placed on the design densities in
postprocessing to eliminate the intermediate val-
ues and get a clear separation of material and
non-material (Figure 15). For the first optimiza-
tion result the threshold is placed on density value
of 0.16 and for the second optimization result the
threshold is placed on 0.4. For the best compar-
ison the thresholds should be equal, however the
results are too different to allow it. The first opti-
mization needs a low enough threshold value for
all components to stay connected while the second
optimization needs a threshold value high enough
to remove the intermediate values. In doing so, the
mass of the two design become more similar which
will make a better comparison.

The structures are evaluated again for optical per-
formance under the same loads and presented in
Table 7 and 8. While the displacement constrained
result reduces LOS error under the gravity loads,
it increases the RMS spot radius and LOS error



(a) Displacement constraint, mass = 40.4 kg/m

(b) Optical performance constraint, mass = 54.8 kg/m

Fig. 14: Optimized design domains

under thermal load. The optical performance con-
strained result generally reduces the RMS spot
radius and increases the LOS error.

| RMS spot radius [um] | LOS error [um]

Gravity x 27.4594 2.52
Gravity y | 27.4683 1.32
Thermal x | 27.7270 27.01
Thermal y | 27.4533 25.06

Table 7: Performance of the projected design
domain, constrained by displacement

| RMS spot radius [um] | LOS error [um)]

Gravity x 27.4589 1.735
Gravity y 27.4660 0.171
Thermal x | 27.4093 6.956
Thermal y | 27.4021 7.796

Table 8: Performance of the projected design
domain, constrained by optical performance

While both structures support the stress con-
straint during optimization, this is not the case
anymore when putting a threshold on the design
densities. Intermediate gray values that would
otherwise deform under load now take up this
force leading to greater stresses. In Figure 16
several stress concentrations appear in the long
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beams connecting to the top left interface with a
magnitude of 9.25. In Figure 17 the stress is bet-
ter distributed over the structure, not having as
high stress concentrations, with a peak magnitude
of 2.38.

4 Discussion and
recommendations

As can be seen in the case of optimizing the
cantilever beam, optimizing directly for optical
performance allows the optimizer to create better
solutions compared to optimizing for displace-
ments or stiffness. The same can be said in the
optimization inspired by CHAPS, yet its design
suffers from a large amount of intermediate den-
sity values between [0.25-0.35]. These values could
be due to the thermal load as intermediate density
values allow less heat transfer to occur.

During optimization, a recurring problem was the
mass of the design going to zero. The parameter
that seemed to have the most influence on this
behavior was the value of the stress constraint. A
too loose constraint would make the mass go to
zero and a too strict constraint would prevent the
optimizer from reaching the low stress value. The
reason this happens might have to do with the fact
that the other two load cases, namely the gravity



(a) Displacement constraint, mass = 48.6 kg/m

(b) Optical performance constraint, mass = 52.0 kg/m

Fig. 15: Projected design domains

L

(a) Acceleration in x direc-(b) Acceleration in y direc-

tion tion

Fig. 16: Stress due to 200 g acceleration in pro-
jected design domain

release and thermal gradient do not give a strong
incentive to connect the structure to its interfaces.
The difference between constraining RMS spot
radius and LOS error compared to displacement is
that relative motion between optical components
now become important instead of absolute motion.
This change shows itself during optimization by
not connecting any of the optical components. For
example, under a gravity load an unconnected sys-
tem would be free floating through space but it
would retain the relative position between opti-
cal components, and thus, its optical performance.
Similar behavior is observed for a thermal load,
as the best thermally isolated design is one that
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(a) Acceleration in x direc-(b) Acceleration in y direc-

tion tion

Fig. 17: Stress due to 200 g acceleration in pro-
jected design domain

is not connected to its surroundings. It is likely
that a too strict stress constraint was necessary
for the design to stay connected. This could also
be an explanation for the intermediate density
values. Because removing the intermediate values
with a threshold showed an doubling of peak stress
in Figure 17, mainly around the thin flexure like
structures that would otherwise be supported by
intermediate densities.

Another problem is the discrepancy in perfor-
mance between the output of the optimizer and its
threshold design. A large part can be attributed
to the presence of intermediate density values. A
solution for this could be the robust formulation




creating a design that can vary slightly in size and
still perform as expected and could also help in
reducing the numerical instability [25].

The rays traced during optimization are from a
single collimated beam of light, therefore all the
rays hit the same location on the detector. Dur-
ing real operation, optical instruments take in a
range of angles all being projected on a different
part of the detector. To guarantee real world per-
formance for all incoming angles, a range of angles
need to be sampled during optimization and the
same goes for a range of wavelengths. Depend-
ing on the calculation time for the FEM solve,
tracing many spots on the detector will signifi-
cantly increase total calculation time, so a small
but representative selection needs to be made. The
square sampling pattern can also create artifacts
in spot diagram and skew the value of the RMS
spot radius. A stochastic method like Poisson disk
sampling could be used to remove artifacts from
the spot diagram [26].

In the optimization of the spectrometer, the slit is
not yet taken into account due to its low perceived
impact in ray optics. However, to fully capture
the behavior of the spectrometer, an accurate
representation of the slit should be added.

To continue the work presented, the deformations
of the mirrors could be taken into account. In
the existing framework mirrors are assumed to
be rigid, whereas in reality, mirrors deform due
to gravity release and thermal gradients. This
addition is needed to, for example, correctly deter-
mine the RMS spot radius during homogeneous
expansion, where the curvature of the optical com-
ponents slightly expand along with the rest of the
structure resulting in nominal performance. Cor-
rectly modeling homogeneous expansion is now
only possible by scaling the surface coeflicients
beforehand using the known temperature increase.

Another current limitation of this study is the
impact on the computation time in going from 2D
to 3D structures. In 3D, the number of degrees
of freedom per optical element is doubled from 3
to 6, and, as in every topology optimization, the
number of design variables is increased drastically.
In the current implementation, which uses COM-
SOL for the finite element analysis, this requires a
system solve per degree of freedom, which is a lim-
iting factor in the computation time. It should be
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noted that this is only a limitation of the current
implementation, and not of the method itself.

Eventually, it should be possible to optimize the
structural design together with the optical design.
Position, orientation and surface coefficients of the
optical elements can be added as design variables
giving the optimizer more feasible domain and
freedom to create better performing systems.

5 Conclusion

A differential ray tracing approach has been pre-
sented that combined with topology optimization
can generate opto-mechanical structures with
higher optical performance subjected to several
disturbance loads. It eliminates the need for
optical designers to create an error budget for
individual optical components allows the them
to compensate each others errors. The optical
response of the ray tracing method was tested
against ZEMAX and show strong agreement.
Two optimization cases were put forward to show
the effectiveness of the approach, a cantilever
beam subjected to a large displacing force and
an optimization case inspired by a real state-
of-the-art spectrometer, subjected to gravity,
thermo-mechanical and launch acceleration loads.
In the case of the cantilever beam the ray tracing
approach showed a 61% improvement in RMS
spot radius over a stiffness optimized beam and a
7% improvement over a displacement optimized
beam. Moreover, in the spectrometer optimiza-
tion case, it was able to keep nominal optical
performance and retain more performance when
densities were projected.
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