

Signal Generation and Hardware
Control

by

Patrick Geel
Zep Kleijweg

In partial fulfillment of the requirements for the degree of

Bachelor of Science
in Electrical Engineering

at Delft University of Technology

To be defended on Thursday June 27th 2019 at 10:30

Supervisor: Dr. Ir. S. Vollebregt
PhD Supervisor: Ir. J. Romijn
Chairman: Dr. Ir. M.A.P. Pertijs
Jury Member: Dr. C. Garćıa Almudever

Abstract

This project is to design and implement a reconfigurable measurement interface for Internet of
Things sensors, for the Microelectronics Department of the Delft University of Technology. This
thesis will discuss the functionality and design process taken in designing such a reconfigurable
measurement interface, focussing on generating signals and control control signals for the hard-
ware. The important choices will be highlighted and the strengths and weaknesses of each design
choice will be weighed in order to produce a fully functional measurement interface. In the span
of 10 weeks this group was able to successfully generate sinusoidal, square, and triangular waves
as well as DC voltages at +12V and +24V and in the voltage range of -10V to +10V on different
pins of the dip-48 socket. Sensor output voltages can also be measured and observed using an
external computer.

i

Preface

This thesis is written in partial fulfillment of the Electrical Engineering Bachelor at the Delft
University of Technology. This project originates out of the Microelectronics Department, the
goal to deliver a functioning product in a span of 10 weeks.
We would like to express our gratitude to our daily supervisor Dr. Ir. S. Vollebregt, our PhD
supervisor Ir. J. Romijn for their support and openness during this project, Ir. L. Pakula for
being present at our green light assessment, as well as Dr. Ir. I.E. Lager for overseeing all bachelor
graduation projects. We would also like to thank our families, friends, and roommates for their
support during this project and taking the time to supply feedback on this thesis. Finally we
would like to thank Ze-Sheng Zhuang, Michel Wervers, Daan Verrer, and Maima Postma for all
the hard work put in during this project and most importantly for a lot of laughs over the last
10 weeks.

Patrick Geel & Zep Kleijweg
Delft, June 2019

iii

Contents

1 Introduction 1
1.1 Project Objective . 1
1.2 Signal Generation & Measurements . 2
1.3 Signal Quality Specifications . 3

1.3.1 Amplitude Flatness & Bandwidth . 4
1.3.2 Resolution . 4
1.3.3 Total Harmonic Distortion . 5
1.3.4 Intermodulation Components . 5
1.3.5 Aliasing . 6
1.3.6 Spurious Free Dynamic Range . 6
1.3.7 Phase Noise . 6
1.3.8 Rise and Fall Times . 7
1.3.9 Overshoot & Undershoot . 7

1.4 Control Signals . 8
1.5 Thesis Outline . 9

2 Programme of Requirements 11
2.1 Functional Requirements . 11
2.2 System Requirements . 12

3 Design Process 13
3.1 Generation Device Choice . 13

3.1.1 Comparison DAQ, FPGA and Microcontroller 13
3.1.2 DAQ vs. FPGA . 14

3.2 LabVIEW Implementation . 14
3.2.1 Digital Channels . 15
3.2.2 Analog/Digital Channels . 15
3.2.3 Main Functionalities . 16

3.3 Control Signals . 17
3.3.1 Parallel Communication . 18
3.3.2 Encoding & Decoding . 18
3.3.3 Serial Communication . 18
3.3.4 Design Choice . 20

3.4 Connection with User Interface . 21

4 Results and Validation 23
4.1 Signal Generation Measurements . 23

4.1.1 Low Frequency Signal Generation . 23
4.1.2 High Frequency Signal Generation . 25

4.2 Frequency Response and Amplitude Flatness . 26
4.3 Frequency Spectrum Analysis . 27

4.3.1 Aliasing . 28
4.3.2 Intermodulation Distortion . 28
4.3.3 Spurious Free Dynamic Range . 28

v

4.3.4 Phase Noise . 29
4.3.5 Total Harmonic Distortion . 29

4.4 Measurement Analysis . 29

5 Discussion and Conclusion 31

A Decoding Circuits 33

B Frequency Spectra 37

vi

Chapter 1

Introduction

The internet of things (IoT) is a rapidly growing technology, and sensors are an important part of
this field. Some examples of the use for sensors that are connected to the internet are gathering
information about a large system or geographical area without the need to physically collect
the data at each sensor, place the sensor in a harsh environment without the need to run a
cable to it for real-time read out, and they enable easy integration between multiple sensors. All
these different sensors need to be tested extensively before they can be deployed into the real
world. Because the sensor requirements are different from case to case, a new test setup must be
designed for each new sensor. This can be very time consuming and the test setups are rarely
used after testing a single chip design, which is a waste of time and money. In order to simplify
the testing process a generalized testing interface is desirable.

1.1 Project Objective

The goal of this project is to design and fabricate a measurement interface with a wide range of
functionality with the key factor being that generated signals are all reconfigurable, allowing users
to test a variety of sensors using the same setup, saving time and money that would otherwise
be spent designing and building a sensor specific test setup. The measurement setup should
allow a user to generate simple signals and bias voltages, read sensor output, connect external
equipment for higher accuracy, and to control the setup using a computer. As seen in Figure 1.1,
the overall project is split into three parts: building a graphical user interface (GUI), generating
analog signals and control signals, and hardware to create the correct voltage levels. The part
of the project focused on in this thesis is the mediator between the user interface and hardware,
generating control signals to integrate with the hardware, as well as generating simple signals
according to user input.

Figure 1.1: System overview

1

1.2 Signal Generation & Measurements

As highlighted above, generation of basic signals as well as control signals is required. The option
should also be available to perform measurements and graphically visualize these measurements
performed on a device under test (DUT). The generation of the basic/control signals can be
broken down into digital and analog signals. The most common form of analog signal generators
found in most research labs is a Direct Digital Synthesis (DDS) signal generator [1]. In Figure
1.2 the block diagram of such a DDS signal generator can be found. The crucial component of
a DDS signal generator is the phase accumulator, as this component accumulates the frequency
control word, K, at intervals of the clock frequency, fc. This is then output in binary code to the
ROM, which uses a look up table to obtain the correct output amplitudes. As this is still in the
digital domain a digital analog converter (DAC) is used to generate the respective signal in the
analog domain. A low pass filter is applied to remove distortion of higher frequency components
out of the output signal, f0.

Figure 1.2: DDS block diagram[1]

The measuring and displaying of signals is done using an oscilloscope, this device draws a graph
of instantaneous signal voltages. As the signal generator and the oscilloscope are two separate
units a desirable result of this project is to have a signal generator and oscilloscope in one easy
to use package. Therefore, a method to create both a signal generator and to display measured
voltages in one unit is studied. Ways to implement a signal generator that can be controlled via
a computer are by the use of FPGA’s, microcontrollers, and multifunctional I/O modules.

Field Programmable Gate Array (FPGA)

One method of generating signals is utilizing an FPGA. This contains reprogrammable logic
blocks, which allows for flexibility as they are reprogrammable in Hardware Description Lan-
guages (HDL) such as VHDL or Verilog. Thus with such reprogrammablity an FPGA can be
used as the brains to make a signal generator. Using this method it is possible to make a signal
generator capable of generating frequencies from 1 Hz to 20 MHz [2]. A limiting factor of using
an FPGA based design is the limitation of the digital to analog converter (DAC), as a DAC with
low resolution will create poor signals. The influence of the bit accuracy can be seen in Figure
1.3.
Using this method it is also possible to analyze measured signals. As an FPGA is a digital device,
an analog to digital converter [3] is needed to convert the analog signal into a digital signal. This
digital signal is then passed along to the FPGA such that it is able to communicate the signal to
the user interface (UI). The communication between the UI and the FPGA needs to be able to
take place in both directions: the signal generation needs to be controlled from the UI, and the
measurement data needs to be sent from the FPGA to the UI. This can be implemented using
a communication protocol such as UART [4].

Microcontroller

Another method investigated as possible solution to generate basic/control signals is the approach
of using a microcontroller as brains of the signal generation, this method uses the DDS approach
to create analog signals. The microcontroller is used to generate a bit pattern at intervals of
the clock frequency which represents the amplitude and frequency of the desired output, which
is passed to a digital analog converter (DAC) to convert this bit pattern to an analog signal.
As for measuring inputs, this is similar to the method explained in the FPGA section. The

2

Figure 1.3: Resolution of DAC [5]

microcontroller acts as the brains which do all the computations [6]. Another similarity to the
FPGA is that this approach would also require the implementation of a communication protocol
to transfer the data back and forth from microcontroller to the UI.

Data Acquisition Device

A final method examined as possible signal generator is using a multifunction I/O module,
also called a data acquisition unit (DAQ). Similar to the FPGA the in-/outputs of a DAQ
can be reprogrammed, using a graphical programming language (G programming language) like
LabVIEW [7]. Other examples of G programming languages are Simulink [8] and NI multisim
[9]. Such a unit can also measure input voltages and it is possible to easily display measurement
results to a user, through a user interface. LabVIEW makes it easy to program a multifunctional
I/O module to output desired signals such as sinusoidal, triangle, and square waves, as well as
DC voltages. This approach can shorten the development time as there are a handful of resources
available, such as LabVIEW this program has many built in functionalities which are easy to
use. An example of using LabVIEW can be found in Figure 1.4, which contains an example of
generating a simple sinusoidal wave.

Figure 1.4: Signal generation using LabVIEW

1.3 Signal Quality Specifications

There are a lot of different properties that describe the quality of a signal. Unfortunately, there
is not a limited set of properties that fully describes the way a signal behaves. In this section

3

the more commonly used properties will be described [10], [11]. These different measures can be
used to indicate to the end user what the accuracy of the generated signals is.

1.3.1 Amplitude Flatness & Bandwidth

The amplitude flatness describes how the output amplitude of the generated signal varies de-
pending on the frequency of the signal. Ideally, the frequencies within the bandwidth are all
produced with the same amplitude, but different distortions can occur at different frequencies.
A frequency sweep can be performed to measure the output amplitude across a range of frequen-
cies. This involves outputting a signal with a continuously higher frequency, while keeping the
intended output power constant. The achieved output power can then be plotted against the
frequency, showing the frequency response of the system. An example of a frequency response
can be seen in Figure 1.5.
The 3dB-bandwidth of a signal generator is defined as the frequency at which the output signal is
attenuated by 3dB with respect to the frequency with the highest power, which should be within
the pass-band [12]. The output sample rate is one of the factors that limits the bandwidth, and
should at least be twice as high as the highest desired frequency component in the signal, as
described by the Nyquist-Shannon sampling theorem [13]. However, a much higher sample rate
is desirable to approximate a continuous signal, as shown in Figure 1.6. The method described
above not only shows the amplitude flatness, but should also produce a graph from which the
-3dB frequency can be read, as long as the sweep continues to high enough frequencies to actually
reach the bandwidth frequency.

Figure 1.5: Example of a frequency response [14]

1.3.2 Resolution

As described in Section 1.2, the analog output signals will be created using a digital to analog
converter (DAC). This means that the output is still quantized in amplitude, and not completely
smooth. The distance between the different voltage levels depends on the amount of bits used
to create the signal according to Equation (1.1), where step is the step size between the discrete
voltage levels, VR is the maximum input voltage range and N is the number of bits. A graphical
representation of this can be seen in Figure 1.3, where the same sine wave is plotted when output
using both a 3-bit and a 16-bit DAC. Naturally, using a DAC that uses more bits results in the
generation of a more smooth output wave.

Step =
VR
2N

(1.1)

4

Figure 1.6: Sampling a 1.5 kHz sine with different sample rates

1.3.3 Total Harmonic Distortion

The lowest frequency in a periodic signal is the fundamental frequency, this is the desired fre-
quency. However, the power spectral density of a periodic signal shows that the power is dis-
tributed into multiple frequency components, which are at integer multiples of the fundamental
frequency [15]. An important measure to quantify this type of distortion is the Total Harmonic
Distortion (THD) [16].
The THD can be calculated in two different ways. In one definition the harmonic content is
compared to the fundamental frequency, THDF , in the second it is compared to the signals root
mean square value, THDR. Equations (1.2) and (1.3) can be used to calculate the different val-
ues. The different definitions can cause ambiguity, but in this thesis the first definition, Equation
(1.2), is meant when discussing the THD.

THDF =

√∑∞
n=2 V

2
n

V 2
1

(1.2)

THDR =

√∑∞
n=2 V

2
n√∑∞

n=1 V
2
n

(1.3)

1.3.4 Intermodulation Components

Another aspect is that the output of the devices is not continuous, but updated at a set rate: the
sample rate. This causes intermodulation between the sample frequency and the fundamental
frequency of the generated signal [17]. These frequency components appear at the frequencies
described in Equation (1.4), where fs is the sample frequency, f0 the fundamental frequency of
the signal, n and m are natural numbers, and f is the unwanted frequency component.
The amount of distortion can be determined by looking at the power spectral density of the
signal and comparing the power of the unwanted frequency components to the power of the
fundamental frequency.

f = ±nfs ±mf0 (1.4)

5

1.3.5 Aliasing

Aliasing is a phenomenon that can occur due to sampling a signal. When sampling a signal, its
spectrum will repeat not only around frequency zero, but also every multiple of the sampling
rate [18], as shown in Figure 1.7 (b). In the case when the maximum frequency in the signal is
higher than half of the sampling frequency, as described by Equation (1.5), the spectra of the
original signal and the spectra around the next multiple of the sample frequency will overlap, an
extreme case of which is shown in Figure 1.7 (c).

fs ≤ 2fmax (1.5)

Figure 1.7: (a) Frequency spectrum of a signal, (b) spectrum of sampled signal when satisfying
Nyquist condition, (c) spectrum with aliasing: superposition of individual spectra, which are
shown as dotted lines [18]

1.3.6 Spurious Free Dynamic Range

The spurious free dynamic range (SFDR) is the ratio between the RMS value of the fundamental
frequency component and the next largest RMS frequency component, regardless of its frequency
[19]. Frequency components at different frequencies than the fundamental, with an amplitude
above the noise floor, are called spurs. The SFDR characterizes the dynamic range of a signals
generator [20]. It can be calculated visually from the frequency spectrum of a generated signal,
by finding the RMS value of the fundamental frequency as well as the RMS value of the highest
spur.

1.3.7 Phase Noise

A perfect signal generator would produce a discrete frequency component at exactly the funda-
mental. In reality, there is usually a small band of frequencies around the fundamental where
power is concentrated, as seen in Figure 1.8. This is often due to clock jitter in the clock signal
of the signal generator [21]. Sometimes the frequency of the clock is a bit too high, causing the
generated signal to be of a too high frequency, or the clock frequency is slightly too low and the
generated frequency is also slightly lower than intended. This phenomenon is called phase noise
and the result is that frequency components occur in a small range and not as one peak.

6

Figure 1.8: Phase noise

1.3.8 Rise and Fall Times

Rise and fall times are relevant when generating a square wave. The rise time is the time it takes
to switch from the low voltage level to the high voltage level, and the fall time is the reverse: the
time it takes to switch from the high voltage level to the low voltage level. Both are displayed in
Figure 1.9. Ideally, these are both zero: switching is instantaneous. In reality, this takes some
time. The main cause for this are capacitances which need to be either charged or discharged on
a rising or falling edge respectively.

Figure 1.9: Rise and fall times of a signal [22]

1.3.9 Overshoot & Undershoot

Another phenomenon that can occur when generating a square wave is overshoot. This means
that the signal rises above the desired voltage on a rising edge, or falls below the desired voltage
on a falling edge, and than settles to the desired voltage. During this settling, the voltage can
”overshoot” again, but in this case it is called undershoot as it goes in the reverse direction of
the edge. This is shown in Figure 1.10.

7

Figure 1.10: Over- and undershoot [23]

1.4 Control Signals

Part of this project focuses on the generation of control signals, these are signals which are needed
to translate the data from software to hardware and setting the correct signals on the correct
pins. Commonly used methods to transfer data are parallel and serial communication. Parallel
data communication is extremely fast as parallel communication allows data to be transferred
over multiple lines at the same time, which works well for a short distance. However, at long
distances errors occur due to signal attenuation over long distances [24]. Serial communication
transmits 1 bit at a time over a single line, which is better for long distance communication. It
is, however, slower than parallel communication. Both methods can be seen in Figures 1.11 &
1.12.

Figure 1.11: Parallel communication

Figure 1.12: Serial communication

The necessary control signals must all arrive simultaneously, as control signals arriving at different
times may cause an error to be made due to the incorrect bit pattern arriving at the receiver.
The first and most direct way to transfer these control signals is a direct connection from A to
B: parallel communication. Using parallel communication each control signal must have its own
connection, which can be a problem since the device used to generate these signals will have a
limited number of outputs. A second approach would be to use serial communication to transfer
the control signals. As the control signals need to arrive simultaneously this replaces the problem
of using too many outputs with a new one: how to output serially received data simultaneously?
For this, a shift register can be used [24]. A shift register can consecutively read in bits and
output all of them simultaneously. This does, however, introduce some latency in the system
which does not occur in a parallel system. The choice remains a trade-off between the amount
of necessary output channels and latency.
As mentioned with the parallel communication method above, a possible problem that may
arise is the limited number of output pins of the selected signal generator. A work around to
this problem is to use an encoding and decoding approach. This can reduce the number of

8

necessary output pins according to Equation (1.6), where e is the number of encoded bits and d
is the number of decoded bits. This reduces the amount of necessary output pins, allowing more
flexibility when there is a limited number of output pins available on the signal generator.

e = dlog2 de (1.6)

1.5 Thesis Outline

This thesis is structured as follows, Chapter 2 will outline the requirements which are set in
accordance with the supervisors needs. Chapter 3 will discuss the thought process taken in
decision making of this project, as well as describe the design process in detail. Chapter 4
discusses all the results obtained from testing the design. The results obtained from these
measurements will be compared with what is expected to validate that the design choices taken
function as expected and any discrepancies from what is expected will be discussed in detail.
This chapter is followed by the Discussion, where the most important observations of the project
will be elaborated on, finishing with the concluding remarks about this project.

9

Chapter 2

Programme of Requirements

The functional requirements describe the purpose of the measurement setup, as well as the
task that it should be able to perform. The functional requirements are split into primary and
secondary requirements, where the primaries are essential in order to produce a properly working
product and the secondaries are nice to have to increase functionality or user friendliness. This
distinction also takes the available development time into account. The system requirements are
more technical and describe the performance of the system.

2.1 Functional Requirements

Primary Requirements

1. 5 Digital outputs:

a. Constant bias voltages at 3.3 V, 5 V, 10 V, 12 V and 24 V.

2. 4 Analog/Digital outputs:

a. Sinusoidal, square and triangular waves as well as constant voltages, ranging from -10V to
10V.

b. Constant (digital) bias voltages at 12 V and 24 V.

3. Instead of using internal signal generation:

a. The option to connect external equipment to the sensor.

b. The possibility to measure sensor voltage output and display it in the user interface.

4. The output signals need to be reconfigurable during run time, meaning the signals can be
changed and turned on or off.

Secondary Requirements

5. 5 Digital outputs:

a. Square waves with the same amplitudes as the bias voltages and variable duty cycle and
frequency up to 100 kHz.

6. The output current of generated signals can be measured and displayed in the user interface.

11

2.2 System Requirements

7. The different channels can be controlled independently and simultaneously.

8. Analog signals can be generated with a frequency up to 100 kHz.

9. Distortions in the generated signals need to be documented to allow the user to account
for them in their measurements.

12

Chapter 3

Design Process

This chapter will describe the design process in detail. First the choice of signal generating
device will be described, followed by the software design and implementation. Lastly, the trade-
offs made in the communication of the control signals will be discussed.

3.1 Generation Device Choice

As highlighted in Section 1.2, a decision needs to be made on which signal generator to use, as
this will be the core of this project. In this section a series of comparisons between the FPGA,
microcontroller, and DAQ will be assessed to choose the best option for this project.

3.1.1 Comparison DAQ, FPGA and Microcontroller

To better reflect on the differences between each of the three choices a comparison table was
formulated in order to better compare each methods strengths and weaknesses, these can be
found in Table 3.1.

Table 3.1: Comparison of three options
DAQ Microcontroller FPGA

Clock Rate + - +
Cost – 0 +
Development Time ++ - 0
In-/Output 0 + -
Computing Power + 0 +
Availability ++ 0 0

As outlined the DAQ has many strong points, such as development time and availability. As the
choice needs to be narrowed down, either the FPGA or microcontroller should be eliminated as
choice to compare the DAQ with either the FPGA or microcontroller side by side. Development
time is something that is seriously taken into consideration when choosing which one to remove,
as this project should be completed in 10 weeks. A microcontroller is programmed in C/C++
while an FPGA is programmed in Hardware Description Language (HDL). A personal preference
is to program in VHDL, as this subgroup has more experience programming in VHDL than
in C/C++. Another point to consider is how often each method is used in such a project.
Microcontrollers are less commonly used to make a signal generator, this is concluded as there
are fewer project which use a microcontroller as signal generator and more commonly they use an
FPGA to make signal generators. With these things kept in mind the choice is made to remove
a microcontroller as an option, not stating that it is impossible to make a signal generator with a
microcontroller, however, the personal preference weighs in favor of the FPGA when comparing
it with a microcontroller.

13

3.1.2 DAQ vs. FPGA

To better evaluate the difference between the final two, the PXI 6229 DAQ [25], which is available
from the microelectronics department, and the Nexys 2 Spartan-3E FPGA [26] will be compared.
This FPGA was chosen for comparison as it has comparable specifications. In Table 3.2 important
criteria for this project are compared of both.

Table 3.2: Comparison between PXI 6229 and Nexys 2
PXI 6229 (DAQ) Nexys 2 Spartan-3E

Clock Speed 80 MHz 50 MHz
DAC Resolution 16 bit N/A
Ease to Program Simple, programmable in Lab-

VIEW
Programming in HDL, more com-
plex

Availability Direct Order
In-/outputs ports 32 Analog Inputs, 4 Analog out-

puts, 48 Digital I/O
60 Digital I/O

As depicted in Table 3.2, the PXI 6229 has more in-/output ports than the Nexys 2. The number
of necessary in-/outputs depends on the communication method used, which will be explained in
Section 3.3, but both options will have plenty available. An important difference is that the DAQ
has a built in DAC, while the FPGA would need an external DAC. Having this integrated in the
signal generating device makes controlling it and outputting desired analog signals easier. A key
factor that should not be overlooked is the ease to program the device, to keep the development
time short. An FPGA is programmable through an HDL, which is quite low-level programming.
The DAQ has high-level software and drivers readily available to control it, as well as signal
generation built into the software making the generation of sinusoidal waves, square waves, etc.
rather simple. Another key factor is the availability of each: the microelectronics department of
TU Delft has a DAQ available for use, while an FPGA needs to be bought.
The most important factor in choosing which form of signal generator will be used in this project
is development time, as this project only spans a 10 week period and the desired result is to
deliver a working product, the complexity of programming weighs heavily in the decision. Easier
programming will give less problems thus increasing the chances to deliver a working prototype
after 10 weeks. As the DAQ is also readily available for use, has plenty of in-/outputs and a built
in DAC with a 16 bit resolution, the choice is made to use this device to generate the signals.
The DAQ will be controlled by a computer that is integrated into the same housing as the DAQ
for ease of use as well as mobility: this enables the user to easily move the complete system.
This computer runs Windows 10, as well as LabVIEW 2018 to control the DAQ.

3.2 LabVIEW Implementation

The choice of using the DAQ developed by National Instruments also implies the use of their
software to control it: LabVIEW. This is a graphical programming language, which aids in
visualizing what is being worked on. A LabVIEW program is called a Virtual Instrument (VI)
and can contain smaller VI’s, called subVI’s, to allow encapsulation of functionality. National
Instruments also offer an extra driver, NI-DAQmx [27], that is focused on controlling PC-based
data acquisition. This offers a lot of VI’s to control the in- and output pins of the DAQ. There
are also VI’s available to generate analog waveforms.
To keep the main VI clear, it needs to be structured properly. A logical split in functionality is
to create a subVI for the digital channels and one for the analog/digital channels. Each of these
channels is split up into different states, where each state is responsible for one functionality. A
channel can not perform two functionalities simultaneously, so a channel should only be able to
be in one state at a time.

14

3.2.1 Digital Channels

The different digital states and the corresponding control signals can be found in Table 3.3, and
the way the control signals are built up is shown in Figure 3.1. The control signals are discussed
in more detail in Section 3.3. The way the code is implemented is by using a case statement to
select between three different output cases: measure, external/digital off and digital on. In the
external state the user can use an external connection to the sensor instead of using the DAQ.
Since the control signals that are necessary for the external state are all off, this state doubles as
the channel off state. The measure voltage state can be used to measure the voltage output of
the sensor under test and display it in the user interface. Since there are enough analog inputs
available in the DAQ, the choice was made to also use analog inputs for the voltage measure-
ments on the digital channels, to give the user more freedom in how to connect their sensor. If
a digital voltage is measured it will be displayed as a DC voltage at the digital voltage level.
The aggregated sample rate for the measurements is limited by the DAQ to 250 ks/s, which is
split evenly over all the channels the user wants to measure. The digital output case contains
another case statement that selects which voltage level is desired, and outputs the corresponding
control signals. In this state the user can also select to measure the output current delivered to
the sensor, which is then displayed in the user interface.

Table 3.3: Digital channel states and control sig-
nals

State Control Signals
Measure voltage 1000 000
External/off 0000 000
3.3 V 0100 001
5 V 0100 010
10 V 0100 100
12 V 0101 000
24 V 0110 000

Figure 3.1: Digital control signals

One of the secondary requirements is to generate square waves at the same voltage levels as
the digital bias voltages. A possible implementation for this is to use a flat sequence: this first
performs the actions in the first frame and continues to the next frame when everything in the
first frame is done, and so on. In the first frame the output is made high and the Wait VI is
used to wait for a time of dutycycle

frequency , which corresponds to the time the signals needs to be high.
After this time the program continues to the next frame, in which the output is made low for a
time of 1−dutycycle

frequency , which corresponds to the time the signal needs to remain low.
This approach turned out to work at low frequencies, but problems occurred when raising the
frequency: the output would remain either low or high, or change at random times. This is
due to the fact that this approach uses software timing: the Wait VI does not use a hardware
clock signal to time how long to wait. This approach can not provide accurate wait times for
high frequencies. Another problem is that the timing depends on the software: when the user
performs an action in the software this unbalances the wait times which translates into jitter in
the square wave. These actions can be changing settings in the user interface, or even something
as simple as moving the mouse pointer around. This makes that this approach is not reliable,
even for the lower frequencies at which it first seemed to work properly.
A solution is to use hardware timing instead of software timing. However, this turned out to be
easier said than done: no solution to implement this has been found at this moment in time.
Even the active LabVIEW community did not seem to have an answer on how to make this
work, unfortunately.

3.2.2 Analog/Digital Channels

The different analog/digital states and the corresponding control signals can be found in Table
3.4, and the way the control signals are built up is shown in Figure 3.2. The way the code is

15

implemented is by using a case statement to select between four different output cases: measure,
external/off, analog, and digital. The measurement and off states function the same as in the
digital channels, and signal current measurements can be performed in both the analog and the
digital states. In the digital case is another selector to select between generating a 12 V or 24
V bias signal. In the analog state different waveforms can be generated: sinusoidal, square and
triangular waves, as well as DC bias voltages. For all these signals the voltage can range from
-10 V to +10 V. For the waveforms the frequency and offset can also be set up by the user.
The square wave’s duty cycle can be changed as well. There is a LabVIEW VI available that
generates a waveform according to the user input, this waveform is then output to the main VI.
The maximum output sample rate for the analog outputs of the DAQ is limited to 625 ks/s. The
influence of this will be investigated in Chapter 4.

Table 3.4: Analog/digital channel states and
control signals

State Control Signals
Measure 1000 0
External/off 0000 0
Analog 0001 0
Digital 12 V 0010 1
Digital 24 V 0100 1

Figure 3.2: Analog/digital control signals

3.2.3 Main Functionalities

A main VI also had to be implemented in order to control the different channels on a high level,
as well as receive the settings from the user interface. In this main VI the channel subVI’s
are used to control the individual channels, and some control over the complete system is also
implemented: the stop and update buttons.

Generating Output

In the main VI, 5 of the digital channel subVI’s and 4 analog/digital channel subVI’s are placed.
All the settings are received from the user interface as an array, which are then split into separate
elements and connected to the corresponding channel. These channel subVI’s only give the
necessary output back to the main VI, they do not generate the output of the DAQ. This
is necessary because the same type of in-/outputs can only be controlled from one place in
LabVIEW: if one digital output is generated in one channel, the other channels can not generate
digital output simultaneously. Since all channels need to generate output at the same time, this
should all happen in the same place: in the main VI.
The instance that actually controls the in-/outputs of the DAQ is called a task in NI-DAQmx
[28]. A task can only contain in-/outputs of the same type, so three tasks are necessary in our
case: one for analog output, one for digital output (which includes the signals as well as the
hardware control signals), and one for analog input to measure the voltages and currents. The
first step to create a task is to use the Create Virtual Channel subVI to add all the necessary
pins to the task. This task can than be used as an input for either the Write or the Read
subVI, depending on what the task needs to do: generate output signals or measure the voltage,
respectively. The Write subVI also takes the data that it needs to output as an input, and
generates this data as a physical output on the pins of the DAQ that are configured in its task.
The Read subVI outputs the data that it has measured at the pins that are included in the task,
which is then given to the user interface so it can be displayed.
The measurement task is the most difficult one to create. The output tasks can just output a
zero when a pin in its task is not needed. This also ensures that only the wanted pins generate
output at all times. The measurement task, however, is more difficult since the sample rate
setting is for the entire task and is limited to a maximum of 250 ks/s, aggregated over all pins.
If all the pins are always added to the measurements task, this limits the sample rate of the pins
that are actually in use: the sample rate is split evenly over all pins, also the ones not currently

16

in use to measure. To fix this, only the pins that need to measure according to the user input
are added to the task, which is done using a case statement. The maximum sample rate is then
divided by the number of pins, to maximize the accuracy of the measured signal. The achieved
sample rate is also given to the user interface, so the user can see this and account for it in
their measurements. This way to generate the measurement task does introduce a problem when
trying to stop the DAQ generating output, which is discussed in the next section.

Stop Button

An important functionality is to stop all channel outputs: the global stop. When testing the sig-
nal generation it was discovered that when the LabVIEW program is stopped, each pin continues
to generate its last output. This can be hazardous when the user wants to change connections
to the sensor, or when testing is finished. To prevent problems, a stop button is implemented
that makes all outputs zero. Integrated with this is also an indicator light to show whether the
program was terminated correctly, to give a visual aid whether all outputs are actually zero.
The first step when the stop button is pressed by the user is to stop all current tasks. This is
done by first using the Stop Task VI, followed by the Clear Task VI. When the tasks are stopped,
however, it does not mean that all outputs of the DAQ are zero: the pins continue to output
their last value. To make sure all the outputs are zero, a new task is started where the data that
will be generated is all zero. This is implemented in LabVIEW using a flat sequence. The tasks
are stopped in the first frame, and the all zero output tasks are started in the next frame. This
is done to ensure all tasks are stopped before starting a new one, as LabVIEW will give an error
when this is not the case. When all outputs are made zero, the light that indicates that output
are being generated is also turned off, to show the user that it is safe to handle the hardware
components.
As mentioned in the previous section, the measurement task can give some trouble when trying
to stop it. This is because when the user does not want to measure any voltages or currents, an
empty task is generated: no pins are added to the task. LabVIEW can not stop an empty task
and gives an error when this is attempted. To remedy this, the number of measurements wanted
by the user is counted. If this is 1 or larger a boolean is set to true, when it is zero the boolean is
set to false. The stop button then only stops the task when this boolean variable is true, using
a case statement.

Update Button

An update button was also implemented to allow the user to make multiple adjustments in the
settings of the signals and apply them all at the same time. A small delay is also implemented:
the signals are first turned off and the new signals are turned on after a second. This delay is
necessary for the hardware, to prevent damage to the relays.
The update button is implemented by using a flat sequence: the first frame contains the update
functionality, the second frame the generation of all the tasks as discussed in Section Generating
Outputs. The first part of the update is the same as the stop button: stop the current tasks and
start new ones that generate zero output on all pins, again using a flat sequence. Then another
frame is added, in which the program waits for a second, this is necessary to give the relays the
opportunity to close properly. After this, the new tasks are created according to the new user
input.

3.3 Control Signals

All control signals that need to be generated are used to control relays to make sure the correct
voltages and signals are connected to the sensors pins. Some of these control signals are corre-
lated: if a digital signal is generated on an analog/digital channel the control signal indicating
that it is a digital signal needs to be high, as well as one control signal to select either the 12 V
or 24 V option. Since the need for the control signals originates from the hardware group of this
project, the exact use and a more in-depth description is not included here, only how they are
generated.

17

3.3.1 Parallel Communication

As discussed in the introduction, Section 1.4, there are two main strategies when data needs to be
transferred: parallel or serial communication. For parallel communication no difficult protocols
are necessary, each control signal can be sent directly to the hardware component that needs it.
This makes that the implementation is more simple when compared to serial communication.
However, the 5 digital channels need 7 control signals each and the 4 analog/digital channels
each need 5 control signals. Using parallel communication this would use 5∗7+4∗5 = 55 output
pins for just the control signals, which is too much since the DAQ that will be used only has
48 digital output pins. The amount of necessary output pins can be reduced by encoding the
different states, which will be discussed next.

3.3.2 Encoding & Decoding

To reduce the number of needed output pins relative to parallel communication, each state can
be encoded and later decoded into the necessary control signals using hardware components.
The digital channels have 7 states and the analog/digital channels have 5 states, as discussed in
Section 3.2. This means that both could be encoded using 3 bits, since 3 bits can be decoded
into 23 = 8 different states. A convenient component to decode the signal into the separate
states control signals is a 3 to 8 demultiplexer, which makes 1 of the 8 outputs high depending
on the 3 bit input. As can be seen in Table 3.5, more than one control signal can need to be high
simultaneously. To solve this, OR gates are used between correlated control signals to make all
necessary control signals high. The schematics for this can be seen in Figures 3.3 and 3.4.

Table 3.5: Signal generation states
Analog/Digital Digital

1) Measure 1) Measure
2) External 2) External
3) Analog 3) 3,3 V
4) Digital 12 V 4) 5 V
5) Digital 24 V 5) 10 V

6) 12 V
7) 24 V

Figure 3.3: Decode circuit for digital channels
Figure 3.4: Decode circuit for analog/digital
channels

3.3.3 Serial Communication

In serial communication the data that belongs to one message is sent consecutively, as seen in
Figure 3.5. The data needs to be stored in order to be able to apply the control signals to
the hardware continuously, as well as to aggregate the control signals that belong to one state
together. For this purpose a shift register can be used, as shown in Figure 3.6. Using the enable
signal, new data can be loaded in consecutively, and by making the enable signal low the data is

18

stored for as long as it is necessary.

Figure 3.5: Serial data communication

Figure 3.6: Shift register

One problem with this is that the values stored in the shift register are directly connected to the
hardware, also when new data is being loaded. This can cause many unwanted phenomena, since
part of the old control signals and part of the new control signals are connected to the hardware
simultaneously, as shown in Figure 3.7. In the worst case this will cause a short circuit damaging
the hardware components. To solve this problem, a buffer can be placed between the output of
the shift register and the hardware components. This would enable loading new control signals
and only applying them to the hardware when all control bits are received. Using this strategy,
a total of three outputs are used: one for data, an enable for the shift register and an enable for
the buffer, as is displayed in Figure 3.8. The length of the shift register and buffer determine
how many control signals can be stored. The control signals for the different channels can be
stored in the same register, as long as the register is long enough and the signals are forwarded to
the correct hardware components. This implies that all the channels always need to be reloaded
when a single setting is changed.

Figure 3.7: The problem with using a shift register

A difficulty with this approach is that the communication of the data needs to be timed correctly:
a data bit needs to be available, then the enable of the shift register needs to rise and fall again,
after that the next data bit can be sent. After all bits are sent, the enable of the buffer needs

19

Figure 3.8: Shift register followed by a buffer

to rise and fall to output the new control signals. This all needs to happen at the right time
and in the right order, which can be problematic since software timing in LabVIEW is not very
accurate, as discussed in Section 3.2.1. Another downside is that it introduces latency in the
system: when the output is generated it first needs to be transferred bit by bit before it can be
sent through to the hardware, where parallel communication has a direct connection between
the control signal generation and the hardware components.

3.3.4 Design Choice

Since the encoding and decoding approach is easier to implement in LabVIEW because it does
not require accurate timing, the decision was made to use this approach. Another thing that was
taken into account was that the encoding approach would need 3 ∗ 5 + 3 ∗ 4 = 27 digital output
channels. Since the DAQ has 48 available channels, this was not a problem.
The choice for the state encoding is somewhat free, but the output of the demultiplexer needs to
be taken into account. As an example the 5 V state for a digital channel will be discussed. The
encodings are based on the schematics displayed in Figures 3.3 and 3.4. For the 5 V state, output
2 of the demultiplexer needs to be high. This will directly make the 5 V control signal high, as
well as the internal control signal through the OR gates. To make output 2 high, the encoding
for the state needs to be 010. The same procedure can be followed for all the encodings, which
are all listed in Tables 3.6 and 3.7.

Table 3.6: Digital channel states and control signals
State Control Signals Encoding
Measure voltage 1000 000 111
External/off 0000 000 000
3.3 V 0100 001 001
5 V 0100 010 010
10 V 0100 100 011
12 V 0101 000 100
24 V 0110 000 101

20

Table 3.7: Analog/digital channel states and control signals
State Control Signals Encoding
Measure 1000 0 111
External/off 0000 0 000
Analog 0001 0 100
Digital 12 V 0010 1 101
Digital 24 V 0100 1 110

Since all the signals generated here are digital signals, the components specifications are not that
important as the generated control signals are constant at either 0V or 5V. The choice was made
to use the SN74LV4051A demultiplexers [29] and the CD4071BE OR gates [30], as these were
easily accessible and inexpensive. The hardware circuit design using the selected hardware can
be found in Appendix A. The circuit corresponds to the schematics found in Figures 3.3 & 3.4.

3.4 Connection with User Interface

The user interface made by another subgroup will also be made in LabVIEW. This means that
what is discussed here as Main VI can be used as a subVI in the UI VI, to which all the user
setting can be connected as input. The user settings will be supplied as arrays, with a separate
array for each setting type. These arrays are then split into separate items in the signal generation
Main VI, to be connected to the correct channels.

21

Chapter 4

Results and Validation

This chapter explains the measurements and their results in detail. First describing basic signal
generation as well as bias voltages, followed by the frequency response and distortion mea-
surements of the signal generator. The measurements functionality of the system will also be
analyzed.

4.1 Signal Generation Measurements

To test whether the DAQ correctly generates both low and high frequency signals, tests were
performed to ensure that the desired result is achieved. To perform each of these tests, each type
of signal was generated simultaneously to demonstrate that the DAQ is capable of outputting
multiple signals simultaneously, as this is a requirement. It demonstrates that the different
waveforms can be generated as well.

4.1.1 Low Frequency Signal Generation

During this test the amplitude of each signal was different to verify that the DAQ is capable of
achieving different voltages in the range of -10 V to 10 V. In Figure 4.1 the setup of this test can
be seen. Two SCB68’s (the green boards) are connected to the pins of the DAQ and make it easy
and safe to probe the outputs, as well as connect signals to the inputs in order to test the voltage
measurement option. The probes are connected to two oscilloscopes to measure the generated
signals. The measurements from the oscilloscope can be seen in Figure 4.2. The computer in the
image is used to control the DAQ, as well as to display the measurements performed by the DAQ
which will be discussed in Section 4.4. Tables 4.1 & 4.2 depict the desired and actual results
when generating low frequency signals.

23

Figure 4.1: Measurement setup

Table 4.1: Voltage measurement of signal generation test
Signal Type Desired

Voltage
(Vpk−pk)

Measured
Voltage
(Vpk−pk)

Relative Er-
ror (%)

Sine 20 20.8 4
Square (Duty Cycle 65%) 20 21.2 6
Triangle 20 20.8 4
DC (measured in Volt) 5 5.2 4

Table 4.2: Frequency measurement of Signal Generation
Signal Type Desired Fre-

quency (Hz)
Measured Fre-
quency (Hz)

Relative Er-
ror(%)

Sine 1000 1000.04 0.004
Square (Duty Cycle 65%) 500 500 0
Triangle 750 750.8 0.11

24

Figure 4.2: Signal generation low frequencies

From these measurements can be concluded that the DAQ performs as expected, with a duty
cycle of 65% and a rise and fall time of 4µs with no overshoot on the generated square wave, as
seen in Figure B.1 in the Appendix. The average voltage relative error is 4.5% and the frequency
has an average relative error of 0.038%. As there are no hard requirements of the acceptable
bounds for the signal generation, this only verifies if the DAQ performs as expected.

4.1.2 High Frequency Signal Generation

As specified in Chapter 2, frequencies up to 100kHz must be generated. To verify that the signal
generator is able to output these high frequencies the same measurement setup as in Figure 4.1
was used, with the difference that during this test signals with frequencies above 50 kHz were
generated. Tables 4.3 & 4.4 depict the desired and actual results, and Figure 4.3 displays the
results graphically.

Table 4.3: Voltage measurement of high frequency measurements
Signal Type Desired

Voltage
(Vpk−pk)

Measured
Voltage
(Vpk−pk)

Relative
Error (%)

Sine 20 23 15
Square (Duty Cycle 50%) 20 24.2 21
Triangle 20 23 15

Table 4.4: Frequency measurement of high frequency measurements
Signal Type Desired

Frequency
(kHz)

Measured Fre-
quency (kHz)

Relative
Error(%)

Sine 100 95.97 4.03
Square (Duty Cycle 50%) 50 48.08 3.84
Triangle 60 59.24 1.3

25

Figure 4.3: Signal generation high frequencies

This test shows that the DAQ has difficulty generating high frequencies, this is not a strange
phenomena and was expected due to the limited update rate of the DAQ. The number of samples
taken per period of the generated signal is determined by Equation (4.1), with fs the update
rate of the DAQ and f the desired frequency. fs is set to 625 ks/s.

#samples =
fs
f

(4.1)

This can be translated into 6 sample points per period for a desired frequency of 100 kHz, which
means that the signal will be constructed out of 6 points resulting in a rough signal construction.
The generated square wave has a duty cycle of 51.89% with a rise and fall time of 16 µs with no
overshoot, see Figure B.2 in Appendix B. The average relative error for the voltage is 17% and
a frequency average relative error of 3.06%.

4.2 Frequency Response and Amplitude Flatness

To better analyze the bandwidth and amplitude flatness of the signal generator a frequency
response analysis was performed, the importance of which is explained in Section 1.3.1. To
perform this test the signal generator was set up to perform a frequency sweep: setting the
voltage amplitude to 10V and varying the frequency of a sine wave from 10Hz to 312.5kHz. This
max frequency is half of the update rate of the DAQ and was set to meet the Nyquist criterion.
An oscilloscope with a spectrum analyzer was used to visualize and save the data. During this
analysis the signal generator output is examined to verify if the response of the signal generator
is uniform in the range of 0-100kHz. This analysis will also illustrate the 3dB-bandwidth of
the signal generator: the point where the amplitude of the power is 3dB lower than that of the
maximum. The results can be found in Figure 4.4.

Out of this analysis it can be concluded that the 3dB-bandwidth of this signal generator is
295kHz, which falls outside the 0-100kHz range the signal generated needs to be able to generate.
This means the bandwidth is wide enough to satisfy that requirement. From the same plot can
be concluded that the amplitude of the signal strength falls 0.73 dB in the 0 - 100 kHz range,
which resembles the amplitude flatness in this range.

26

Figure 4.4: Frequency response

4.3 Frequency Spectrum Analysis

In this section the frequency spectra of generated sine waves at different frequencies will be mea-
sured and evaluated. The spectra are measured at intervals of 10 kHz. In this section the focus
is on 10 kHz and 100 kHz, which are displayed in Figures 4.5 - 4.8, the rest of the measured
spectra can be found in Appendix B and the same procedures can be followed to quantify the
distortions. The spectra are measured using the Fast Fourier Transform (FFT) functionality of
an oscilloscope: the Tektronix TDS2022C [31].

Figure 4.5: Frequency spectrum 10 kHz
sine wave

Figure 4.6: Frequency spectrum 10 kHz sine
wave zoomed in

27

Figure 4.7: Frequency spectrum 100 kHz
sine wave

Figure 4.8: Frequency spectrum 100 kHz sine
wave zoomed in

4.3.1 Aliasing

In the frequency spectra it can be seen that there are more frequency components present than
just the fundamental. The most pronounced peaks lie at frequencies described by Equation
(4.3). These occur due to the effects of sampling a signal: its spectrum repeats around every
integer multiple of the sampling frequency, fs. Since the signals here are real, negative frequency
components do not exist. Those are mirrored to their absolute frequency value on the positive
axis.

f = nfs ± f0 (4.2)

Let’s use the 100 kHz spectrum as an example to make this more clear. The highest peak occurs
at 100 kHz, which is the fundamental frequency and thus expected to be there. The peak at 725
kHz is part of the frequency spectrum around +fs: 625kHz + 100kHz = 725kHz. The peak at
525 kHz is part of the frequency spectrum around −fs, that is mirrored to its absolute value:
| − 625kHz + 100kHz| = 525kHz.
Since the maximum frequency component is always smaller than half of the sampling frequency
this phenomenon is not aliasing: it is purely caused by sampling the signal, the spectra around
multiples of the sampling frequency do not overlap.

4.3.2 Intermodulation Distortion

Intermodulation can occur at frequencies as described in Equation (4.3), as also described in
Section 1.3.4. However, there are no peaks at any of these frequencies other than the frequencies
as described in Equation (4.3), which are more likely caused by the sampling. This means that
the power of the frequency components due to intermodulation fall below the noise floor.

f = ±nfs ±mf0 (4.3)

4.3.3 Spurious Free Dynamic Range

The spurious free dynamic range is different for the different frequencies: the height of the spurs
depends on the frequency of the signal. In the 10 kHz spectrum the fundamental frequency has
an amplitude of 17.0 dB, and the highest spur occurs at frequency 635 kHz with an amplitude of
-27.8 dB. This makes the SFDR 17.0− (−27.8) = 44.8 dB. For 100 kHz the highest spur occurs
at 525 kHz, and the SFDR is 16.6− (−5.0) = 21.6 dB.

28

4.3.4 Phase Noise

Phase noise occurs due to jitter in the clock frequency the DAQ uses to generate analog out-
put. It means that the fundamental frequency component not a discrete peak, but distributed
over a small frequency range. The single sided phase noise is approximately 9.5 kHz for the 10
kHz sine wave, as can be seen in Figure 4.9. For the 100 kHz sine wave it is approximately 7 kHz.

Figure 4.9: Phase noise of 10 kHz sine wave Figure 4.10: Phase noise of 100 kHz sine wave

4.3.5 Total Harmonic Distortion

As can visually be seen from the spectra, the harmonic frequency components in both figures
are quite small. Equation (4.4) can be used to calculate the values. The THD is 6.0 % for the
10 kHz sine, when using n = 6 as highest value. For the 100 kHz sine wave the THD is 5.0 %.

THDF =

√∑∞
n=2 V

2
n

V 2
1

(4.4)

4.4 Measurement Analysis

The user should be able to obtain voltage measurements out of the device under test (DUT),
to verify whether their device is working correctly. An analysis was performed, in which a sinu-
soidal signal was provided using an external signal generator connected to an input of the DAQ.
This signal was generated at 5 V and a frequency of 1 kHz and another at 10 kHz. The 1 kHz
signal was sampled with a rate of 250 kHz, while the 10 kHz signal was sample with a rate of
62.5 kHz: the maximum rate when four channels are performing measurements as discussed in
Section 3.2.1. The measured signals can be found in Figures 4.11 & 4.12. The desired outcome of
this experiment is that the measurement correctly represents the signal with as little distortion
as possible. The measured values are shown in Tables 4.5 & 4.6.

29

Figure 4.11: Measurement 1 kHz at 250 ks/s Figure 4.12: Measurement 10 kHz at 62.5 ks/s

Table 4.5: Voltage measurement analysis
Signal Type Generated

Voltage
(Vpk−pk)

Measured
Voltage
(Vpk−pk)

Relative
Error (%)

Sine 1kHz 5 5.064 1.28
Sine 10kHz 5 5.063 1.26

Table 4.6: Frequency measurement analysis
Signal Type Generated

Frequency
(kHz)

Measured
Frequency
(kHz)

Relative
Error (%)

Sine 1kHz 1 1 0
Sine 10kHz 10 10 0

30

Chapter 5

Discussion and Conclusion

As the field of IoT sensors is rapidly expanding, a method to quickly and efficiently test these
sensors was needed. To accomplish this a signal generator was designed that also controls the
hardware components. The analog channels can generate DC voltages, sinusoidal, square and
triangle waves from -10 V to 10 V and corresponding control signals, as well as control signals
for bias voltages at 12 V and 24 V. The digital channels output the correct control signals to put
bias voltages of 3.3 V, 5 V, 10 V, 12 V and 24 V on the correct sensor pins. All these signals are
reconfigurable during run time, and the system can also measure sensor output voltages instead
of generating signals. This means all the primary functional requirements are met. The output
current of the bias voltages can also be measured and displayed in the user interface, which was a
secondary functional requirement. All the system requirements are also met by the end product.
One of the things that was a bit difficult after verifying that the signal generation worked, was
that there were no requirements on how accurate the generated signals need to be. This made
validation of the generated signals tough, as a different conclusion than ”it works” can not really
be drawn. An effort was made, however, to quantify the accuracy of the signals using different
measures.
Something that is not understood is why the voltage accuracy of a higher frequency signal goes
down, while this does not show in the amplitude flatness that was measured. The voltage at 100
kHz should be slightly lower than the voltage at 1 kHz according to the frequency response of
the system, while the voltage error when measuring a 100 kHz sine wave shows that the voltage
is 15% too high, while at 1 kHz this error is only 4%.
A mistake that was made is the choice of OR gates for the decoding circuit. Due to a lack of
attention paid to the current the gates should be able to drive, they were unable to provide
enough current to switch the relays. This meant that the OR gates needed to be changed to
a different type. Unfortunately the ones that could provide enough current all had a different
pin layout, meaning they could not just be used on the PCB that was already made. To solve
this problem, a separate board was made with the new OR gates. This is not very neat, but
unfortunately it was necessary. In a possible future iteration this problem can be addressed by
routing the signals to the OR gates slightly differently to comply with the pin layout of the new
gates.
Another issues which presented itself during this project is the capability to measure current
of the analog signals. This issue was caused by the choice of current measurement IC by the
hardware subgroup, being a high side current measurement device and thus only able to measure
positive currents. This functionality was fully implemented however, but can not be used. The
option to replace these ICs was investigated. However, the ICs that can measure both positive
and negative currents all have a different pin layout so they could not be replaced. Since the
ICs are all surface mounted and really small, the same approach as used to replace the OR gates
could not be used.

31

Future Work

One of the secondary requirements was not met unfortunately: the generation of square waves
on digital channels. It is however hard to believe that this is completely impossible, so this could
be investigated further.
Another thing is that the focus was mainly on achieving signal generation, not so much on gener-
ating accurate signals with low distortion. A possibility to improve the frequency spectra would
be to use a low pass filter for the generated signals to remove the high frequency components
that lie outside the 0 - 100 kHz range.
The communication of control signals between the DAQ and the hardware now takes place using
the encoding & decoding approach. While this works, it is a bit sloppy and using a serial com-
munication protocol would be neater. This is something that could be implemented in a next
iteration of this project.

32

Appendix A

Decoding Circuits

Figure A.1: Digital circuit old

33

Figure A.2: Analog digital circuit old

34

Figure A.3: Digital circuit

35

Figure A.4: Analog digital circuit

36

Appendix B

Frequency Spectra

Figure B.1: Rise time for low frequency square wave

37

Figure B.2: Rise time for high frequency square wave

Figure B.3: Spectra 20 kHz

38

Figure B.4: Spectra 30 kHz

Figure B.5: Spectra 40 kHz

39

Figure B.6: Spectra 50 kHz

Figure B.7: Spectra 60 kHz

40

Figure B.8: Spectra 70 kHz

Figure B.9: Spectra 80 kHz

41

Figure B.10: Spectra 90 kHz

42

Bibliography

[1] Z. Zhao, L. Wang, J. Chen, Z. Cai, Y. Lv, and Y. Feng, “The design and implementation
of signal generator based on dds,” in 2017 IEEE 9th International Conference on Commu-
nication Software and Networks (ICCSN), pp. 920–923, May 2017.

[2] R. Yue, Y. Wen-Ji, and W. Jinming, “An fpga based multi-functional signal generator using
sopc design methodology,” in 2016 3rd International Conference on Information Science
and Control Engineering (ICISCE), pp. 1257–1261, July 2016.

[3] S. Ball, “Analog-to-digital converters,” May 2001.

[4] , “Basics of UART Communication, Block Diagram, Applications.” https://www.

elprocus.com/basics-of-uart-communication-block-diagram-applications/. [On-
line; accessed 17 June 2019].

[5] National Instruments, “Signal generator terminology and specifications.” http://www.ni.

com/product-documentation/4091/en/#toc2, Nov 2016. [Online; accessed 12 June 2019].

[6] A.-H. Riyadh, M. A. Ismail, and A. I. Ammar, “Microcontroller-based function generator,”
Al-Khwarizmi Engineering Journal, vol. 4, p. 48–57, 2008.

[7] National Instruments, LabVIEW User Manual, Apr 2003.

[8] MathWorks, Simulink User Guide, Mar 2015.

[9] National Instruments, NIMultisim User Manual, Jan 2009.

[10] National Instruments, “Signal Generator Terminology and Specifications.” http://www.ni.

com/product-documentation/4091/en/, 2016. [Online; accessed 9 June 2019].

[11] Tektronix, Arbitrary/Function Generators, Sept. 2016.

[12] L. W. Couch, Digital and Analog Communication Systems, p. 105. Pearson Education, 2013.

[13] C. E. Shannon, “Communication in the presence of noise,” PROCEEDINGS OF THE IRE,
vol. 37, pp. 10–21, Jan 1949.

[14] Owon, “Why is the measured amplitude less than the real value?.” http://www.owon.com.

hk/newsinfo_248, June 2017. [Online; accessed 15 June 2019].

[15] J. G. Proakis and D. G. Manolakis, Digital signal processing: principles, algorithms, and
applications, pp. 235–237. Prentice-Hall International, 1996.

[16] D. Shmilovitz, “On the definition of total harmonic distortion and its effect on measurement
interpretation,” IEEE Transactions on Power Delivery, vol. 20, pp. 526–528, Jan 2005.

[17] J. C. Pedro and N. B. Carvalho, Intermodulation distortion in microwave and wireless
circuits, pp. 19–20. Artech House, 2003.

[18] L. F. Chaparro, Signals and Systems Using MATLAB, pp. 498–499. 2015.

43

https://www.elprocus.com/basics-of-uart-communication-block-diagram-applications/
https://www.elprocus.com/basics-of-uart-communication-block-diagram-applications/
http://www.ni.com/product-documentation/4091/en/#toc2
http://www.ni.com/product-documentation/4091/en/#toc2
http://www.ni.com/product-documentation/4091/en/
http://www.ni.com/product-documentation/4091/en/
http://www.owon.com.hk/newsinfo_248
http://www.owon.com.hk/newsinfo_248

[19] Walt Kester, “Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don’t
Get Lost in the Noise Floor.” https://www.analog.com/media/en/training-seminars/

tutorials/MT-003.pdf, Oct 2008. [Online; accessed 18 June 2019].

[20] National Instruments, “Specifications Explained: Spurious-Free Dynamic Range (SFDR).”
http://www.ni.com/product-documentation/54467/en/, Feb 2018. [Online; accessed 18
June 2019].

[21] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: A unifying the-
ory and numerical methods for characterization,” IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, vol. 47, pp. 655–
674, May 2000.

[22] Matt Newton, “To Terminate, Bias, or Both?.” https://blog.opto22.com/optoblog/

rs-485-to-terminate-bias-or-both, Jan 2017. [Online; accessed 17 June 2019].

[23] V. H. Meyer, A. K. Palit, W. Anheier, A. Sticht, and J. Schloeffel, “Can signal integrity
faults be detected by delay tests?,”

[24] L. E. Frenzel, Principles of electronic communication systems, pp. 194–197. McGraw-Hill
Education, 2016.

[25] National Instruments, “Device Specifications NI-PXI 6229.” http://www.ni.com/pdf/

manuals/375204c.pdf, Jun 2016. [Online; accessed 9 June 2019].

[26] Digilent, Digilent Nexys2 Board Reference Manual, Jul 2011.

[27] National Instruments, “NI-DAQmx Software.” https://www.ni.com/dataacquisition/

nidaqmx.htm. [Online; accessed 12 June 2019].

[28] National Instruments, “Tasks in NI-DAQmx.” http://zone.ni.com/reference/en-XX/

help/370466AH-01/mxcncpts/tasksnidaqmx/, Jan 2019. [Online; accessed 14 June 2019].

[29] Texas Instruments, SN74LV4051A 8-Channel Analog Multiplexers and Demultiplexers, Sep
2015.

[30] Texas Instruments, CMOS OR gates, Aug 2003.

[31] Tektronix, Digital Storage Oscilloscopes TDS2000C Series Data Sheet, Mar. 2012.

44

https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf
http://www.ni.com/product-documentation/54467/en/
https://blog.opto22.com/optoblog/rs-485-to-terminate-bias-or-both
https://blog.opto22.com/optoblog/rs-485-to-terminate-bias-or-both
http://www.ni.com/pdf/manuals/375204c.pdf
http://www.ni.com/pdf/manuals/375204c.pdf
https://www.ni.com/dataacquisition/nidaqmx.htm
https://www.ni.com/dataacquisition/nidaqmx.htm
http://zone.ni.com/reference/en-XX/help/370466AH-01/mxcncpts/tasksnidaqmx/
http://zone.ni.com/reference/en-XX/help/370466AH-01/mxcncpts/tasksnidaqmx/

	Introduction
	Project Objective
	Signal Generation & Measurements
	Signal Quality Specifications
	Amplitude Flatness & Bandwidth
	Resolution
	Total Harmonic Distortion
	Intermodulation Components
	Aliasing
	Spurious Free Dynamic Range
	Phase Noise
	Rise and Fall Times
	Overshoot & Undershoot

	Control Signals
	Thesis Outline

	Programme of Requirements
	Functional Requirements
	System Requirements

	Design Process
	Generation Device Choice
	Comparison DAQ, FPGA and Microcontroller
	DAQ vs. FPGA

	LabVIEW Implementation
	Digital Channels
	Analog/Digital Channels
	Main Functionalities

	Control Signals
	Parallel Communication
	Encoding & Decoding
	Serial Communication
	Design Choice

	Connection with User Interface

	Results and Validation
	Signal Generation Measurements
	Low Frequency Signal Generation
	High Frequency Signal Generation

	Frequency Response and Amplitude Flatness
	Frequency Spectrum Analysis
	Aliasing
	Intermodulation Distortion
	Spurious Free Dynamic Range
	Phase Noise
	Total Harmonic Distortion

	Measurement Analysis

	Discussion and Conclusion
	Decoding Circuits
	Frequency Spectra

