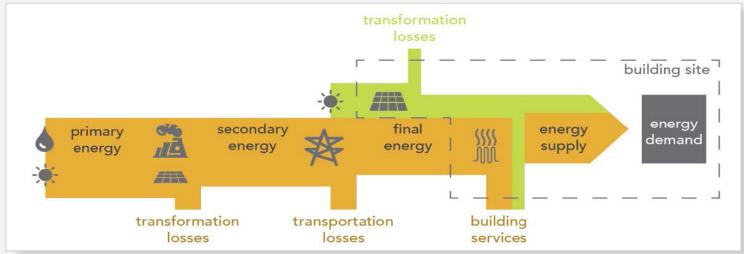
ENERGY FLAT BUIKSLOTERHAM On how to design energy flat multifunctional urban blocks Kjell-Erik Prins // P5 Presentation // July 4th 2019

PRESENTATION OVERVIEW

Explain research context Show my approach Explain the results Conclude and summarize

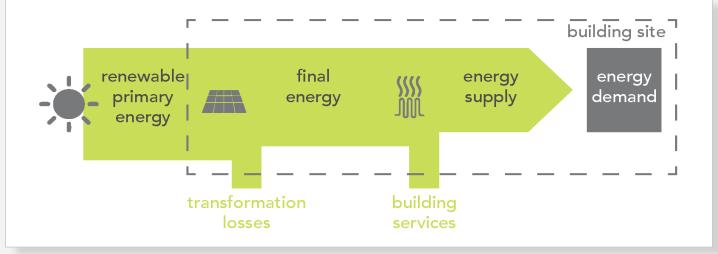


Research framework

- Introduction
- Problem statement and research question
- Methodology

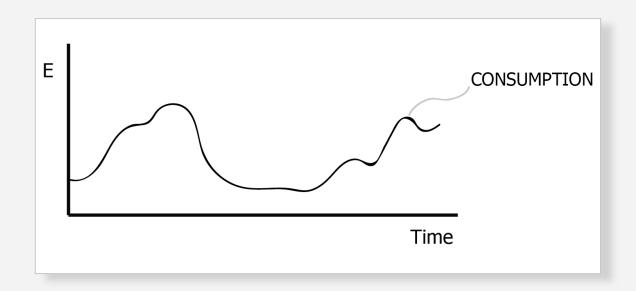
RESEARCH FRAMEWORK INTRODUCTION

Conventional energy system (Höfte, 2018)

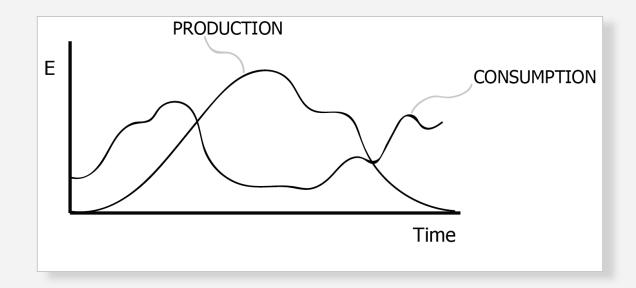

RESEARCH FRAMEWORK INTRODUCTION

CHANGE TO A MORE SUSTAINABLE SYSTEM

- Paris energy agreement (2015)
- Het Klimaatakkoord (2019)
- 6.6 % (2017) -> 16 % (2023) -> ~ 100 % (2050) Energy from renewable resources


RESEARCH FRAMEWORK INTRODUCTION

Sustainable energy system (Höfte, 2018)



RESEARCH FRAMEWORK PROBLEM STATEMENT

RESEARCH FRAMEWORK PROBLEM STATEMENT

RESEARCH FRAMEWORK PROBLEM STATEMENT

RESEARCH FRAMEWORK PROBLEM STATEMENT

CURRENT RESEARCH

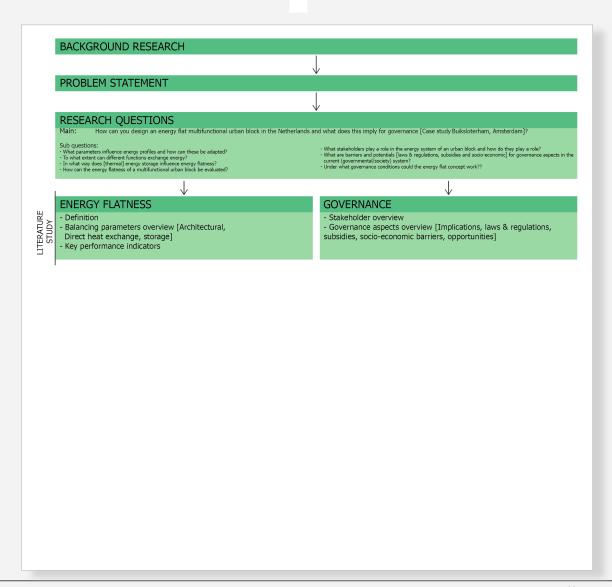
- Several studies on how to reduce the mismatch
- Limited to one function type at a time
- Do not combine several ways to balance supply and demand

CASE STUDY

- Multi functionality
 - Governance
 - Energy exchange

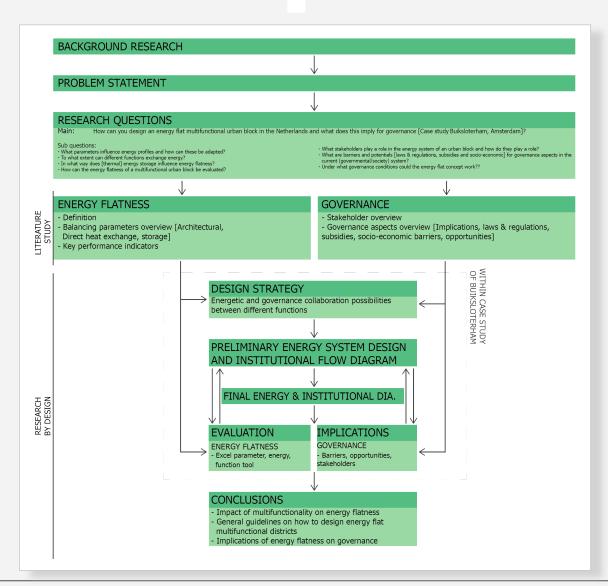
RESEARCH FRAMEWORK RESEARCH QUESTION

How can you design an energy flat multifunctional urban block in the Netherlands and what does this imply for governance? [Case study Buiksloterham, Amsterdam]


RESEARCH FRAMEWORK **DEFINITION**

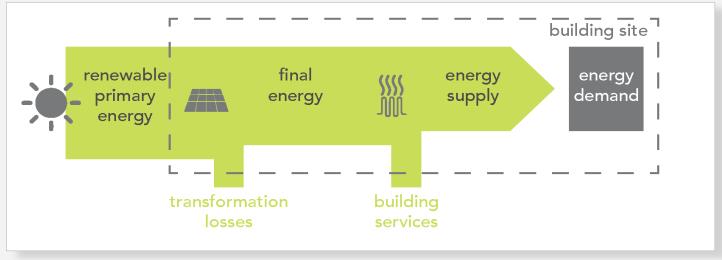
Energy flat urban block

An urban block where the local energy supply and demand are equal at any given time of the year



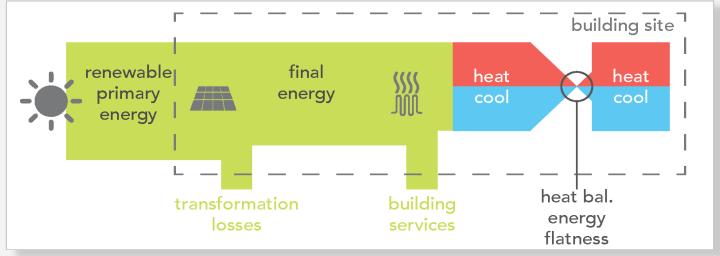
RESEARCH FRAMEWORK METHODOLOGY

RESEARCH FRAMEWORK METHODOLOGY

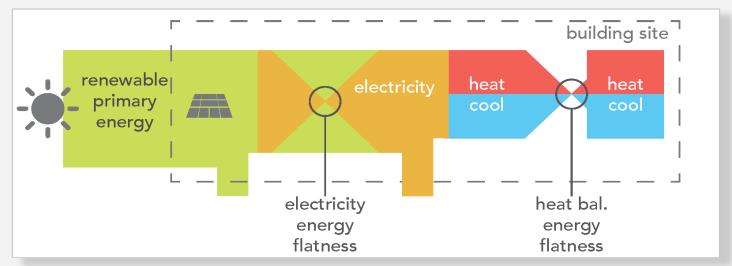


2 Energy flatness

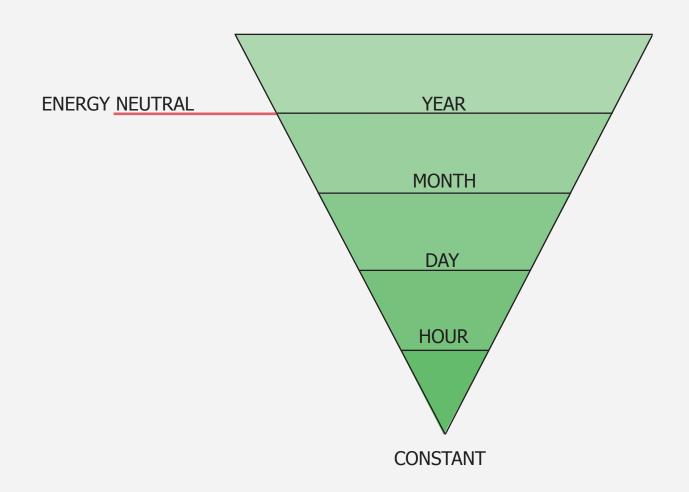
- What is energy flatness?
- How can it be evaluated?


ENERGY FLATNESS BALANCE BOUNDARY

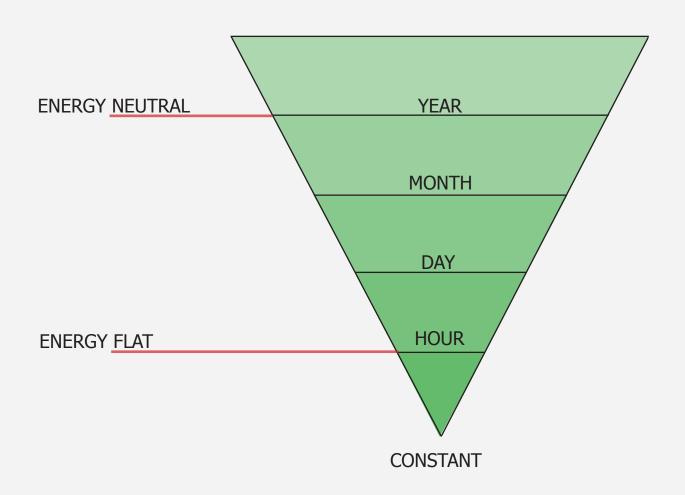
Sustainable energy system (Höfte, 2018)


ENERGY FLATNESS BALANCE BOUNDARY

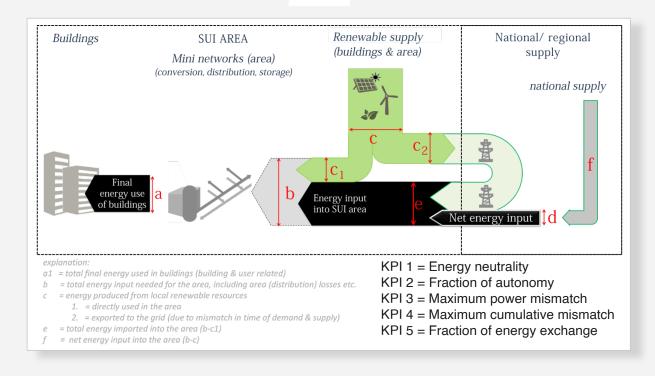
Thermal energy balance (Höfte, 2018)


ENERGY FLATNESS BALANCE BOUNDARY

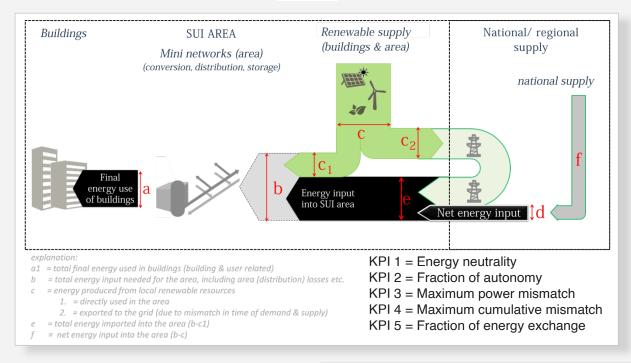
Electrical energy balance (Höfte, 2018)



ENERGY FLATNESS BALANCING PERIOD



ENERGY FLATNESS BALANCING PERIOD



ENERGY FLATNESS KEY PERFORMANCE INDICATORS (KPI)

ENERGY FLATNESS KEY PERFORMANCE INDICATORS (KPI)

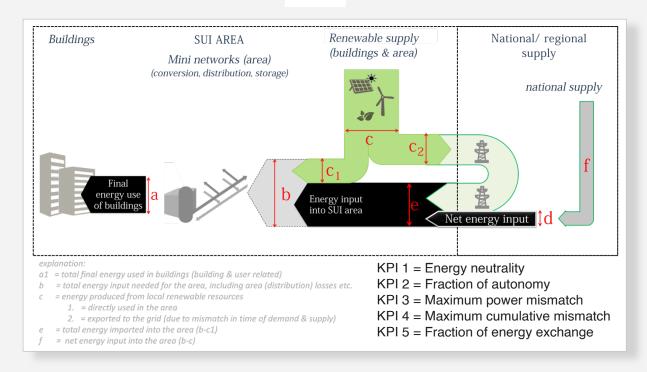
KPI 1

Energy neutrality

$$KPI1. A = C - B = \sum_{t=0}^{t=8760} E_{On-site_{supply(t)}} - \sum_{t=0}^{t=8760} E_{final_{used(t)}} \ [kWh/yr]$$

$$KPI1.B = C/B = \frac{\sum_{t=0}^{t=8760} E_{On-site_{supply(t)}}}{\sum_{t=0}^{t=8760} E_{final_{used(t)}}}$$
 [%]

KPI 2


Fraction of autonomy

$$KPI2. A = C1 = \sum_{t=0}^{t=8760} E_{Directly \, used_{supply(t)}}$$
 [kWh/yr]

$$KPI2.B = C1/B = \frac{\sum_{t=0}^{t=8760} E_{Directly \, used_{supply(t)}}}{\sum_{t=0}^{t=8760} E_{final_{used(t)}}}$$
 [%]

ENERGY FLATNESS KEY PERFORMANCE INDICATORS (KPI)

KPI 3

Maximum power mismatch

$$KPI3.A = \max(C - B) =$$

$$\max_{0 \leq t \geq 8760} (E_{On-site_{supply(t)}} - E_{final_{used(t)}}) \left[W\right]$$

$$KPI3.B = \min(C - B) =$$

$$\min_{0 \leq t \geq 8760} (E_{On-site_{supply(t)}} - E_{final_{used(t)}}) \left[W\right]$$

KPI 4

Maximum cumulative mismatch

$$KPI4 =$$

$$\max_{0 < t < 8760} (CEM_{(t)}) - \min_{0 < t < 8760} (CEM_{(t)}) [KWh]$$

(Battery size)

KPI 5

Fraction of energy exchange

$$KPI5 = \frac{\sum_{t=0}^{t=8760} E_{reused(t)}}{\sum_{t=0}^{t=8760} E_{final_{used(t)}}} [\%]$$

3 Case study design

- Approach
- Explain case study design

CASE STUDY DESIGN

Smart 50 Urban 49 Isle

- Case study description
- Energy status quo
- Energy concept potentials
- Conceptual energy network
- Evaluation and selection
- Institutional energy flow diagram

CASE STUDY DESIGN CASE STUDY DESCRIPTION

3.1 Case study description

- Site characteristics
- Functional program
- Context & Boundaries [Governance]

CASE STUDY DESIGN CASE STUDY DESCRIPTION

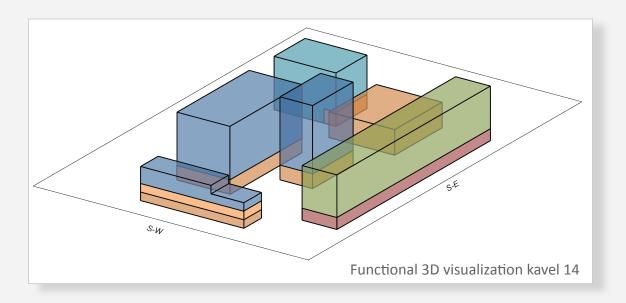
Kavel 14

Buiksloterham, Amsterdam

14.710 m2

South-West orientation

6 Buildings


CASE STUDY DESIGN CASE STUDY DESCRIPTION

Visualization of kavel 14 by Marc Koehler Architects (2019)

CASE STUDY DESIGN CASE STUDY DESCRIPTION

Residential (buy)	4696 m2
Residential (rent)	1700 m2
Commercial (non-hotel)	1909 m2
Commercial (hotel)	820 m2
Hotel	5079 m2
Office	300 m2

CASE STUDY DESIGN STAKEHOLDERS

STAKEHOLDERS ACTIVE IN ENERGY SERVICES	STAKEHOLDERS ACTIVE IN DESIGN , DEVELOPMENT & CONSTRUCTION	STAKEHOLDERS ACTIVE IN THE USAGE PHASE
Network operator electricity and gas	Real estate developer	Owners association
Heating network operator	Contractor	Private home and commercial unit ownership
Electricity and gas production companies	Architect	Housing association, commercial rent corporation and hotel
Third party as local network operator	Building physics, structural and fire safety engineer	Tenants (residential) and tenants (commercial)
	Mechanical, electrical and plumbing engineer	
	Local government	

CASE STUDY DESIGN STAKEHOLDERS

	Expected benefits	Expected barriers
NETWORK OPERATOR	■ Less peaks in national grid	Is obligated by law to provide a physical connection with the grid

	Expected benefits	Expected barriers
Building physics engineer	 Optimized system could benefit the indoor climate 	More collaboration with other specialistsLack of knowledge

	Expected benefits	Expected barriers
TENANTS/ RESIDENTS	Energy system that is sustainable, safe and cheap as possible.	Has to be part of the systemNo freedom to choose its supplier

CASE STUDY DESIGN BARRIERS

	Influence on energy flatness	Influence on stakeholders
ELECTRICITY LAW	 Network operator CANNOT both produce and distribute electricity 	Electricity CANNOT directly be exchanged between stakeholdersMonopolist status

	Influence on energy flatness	Influence on stakeholders
SOCIAL	Conservatism	Influence on all design parties
BEHAVIOR	Minimal requirements	Stakeholder collaboration should be high

CASE STUDY DESIGN OPPORTUNITIES

NUMEROUS LAWS	Allow to deviate from Electricity law when permission is granted [Experiment status]	 Possibilities to implement innovation into designs Owners association is allowed to arrange the energy system
NUMEROUS SUBSIDIES	Influence on energy flatness Experiments with payment rates can be carried out	Influence on stakeholders Reduce financial worries for high initial investment

Influence on energy flatness

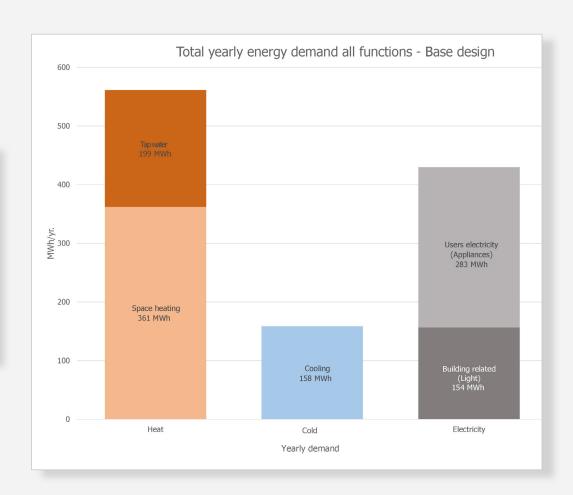
Influence on stakeholders

CASE STUDY DESIGN ENERGY STATUS QUO

3.2 Energy status quo

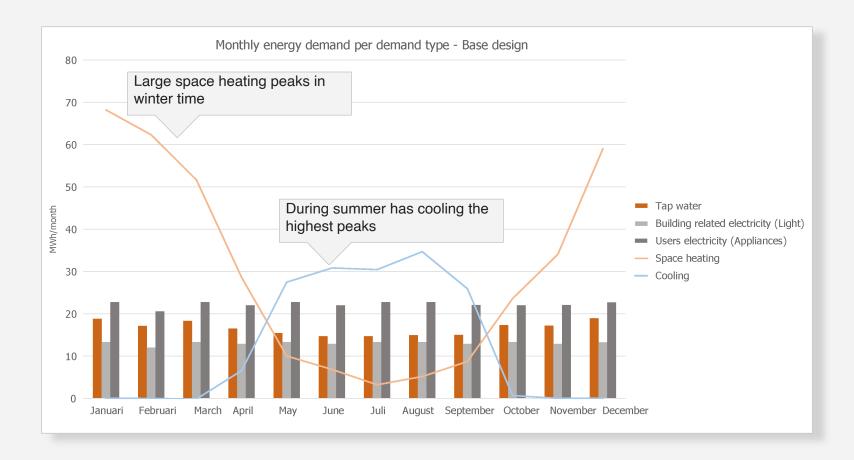
- Demand
- Energy infrastructure
- Current local supply

CASE STUDY DESIGN ENERGY STATUS QUO

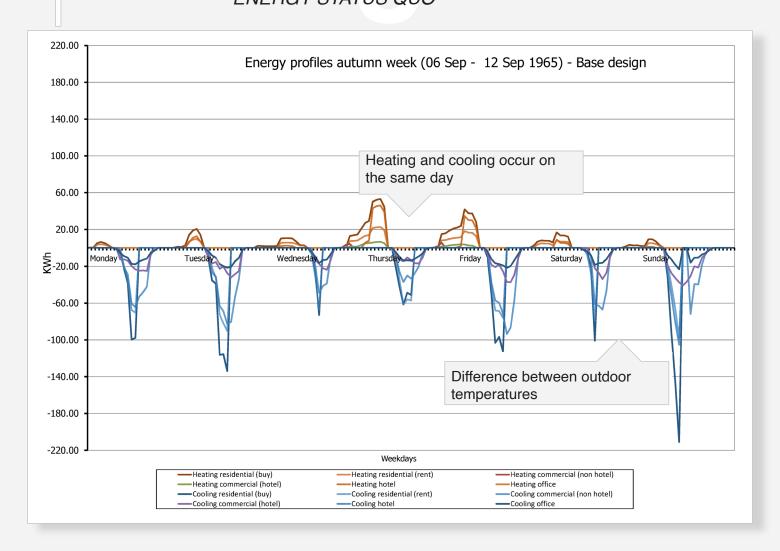

Base design

Minimal requirements Dutch building decree (Bouwbesluit)

Based on architectural design


Total energy of 1155 MWh/year

Space heating the biggest



CASE STUDY DESIGN ENERGY STATUS QUO

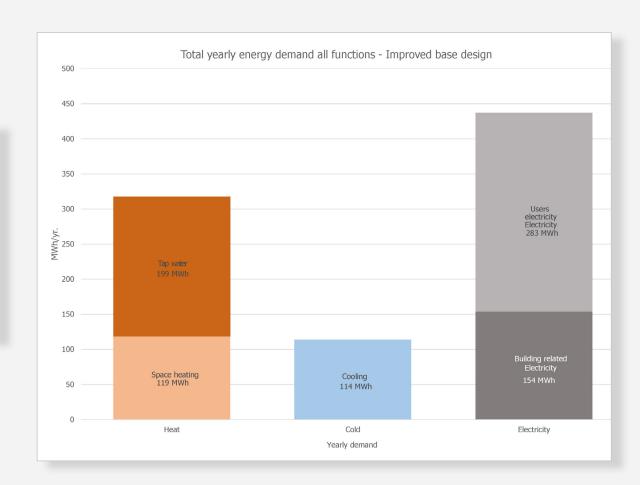
CASE STUDY DESIGN ENERGY STATUS QUO

CASE STUDY DESIGN ENERGY CONCEPT POTENTIALS

3.3 Energy concept potentials

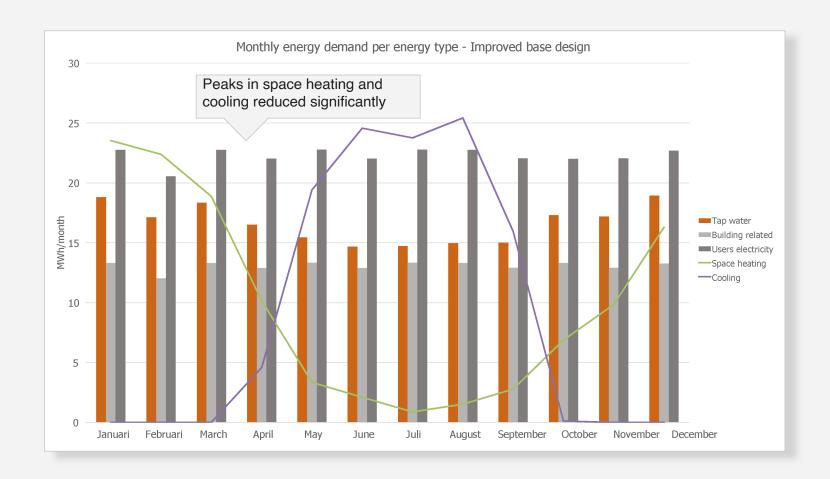
- Adapting demand: Bioclimatic/Architectural design
- Energy exchange
- Adapting supply

CASE STUDY DESIGN ADAPTING DEMAND

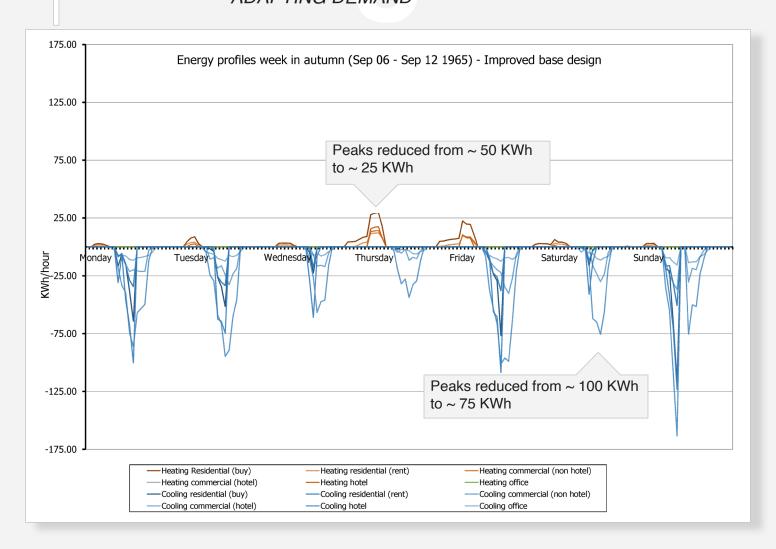

Improved base design

Bioclimatic design

Façade and seasonal approach

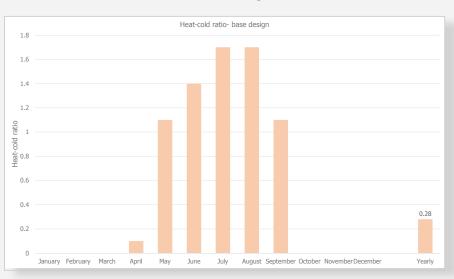

Total energy of 856 MWh/year

26 % reduction



CASE STUDY DESIGN ADAPTING DEMAND

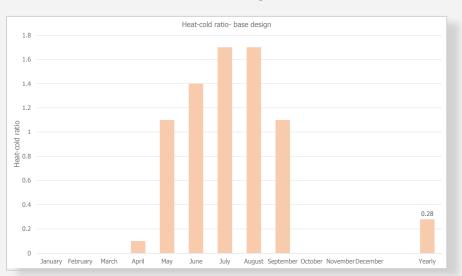
CASE STUDY DESIGN ADAPTING DEMAND



- Subtracting heat through cooling of a building
- Extra design: Continuous cooling
- Defined as the heat-cold ratio

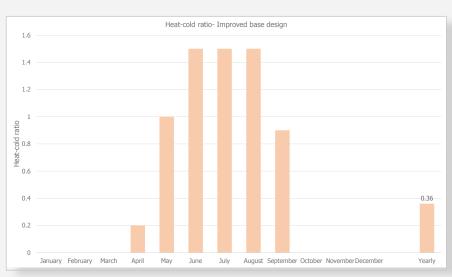
- Total per month
- Per function per year

Base design



Function	Heating [kWh]	Cooling [kWh]	
Residential (buy)	1	0.2	
Residential (rent)	1	0.3	
Commercial (non-hotel)	1	1.3	
Commercial (hotel)	1	0.5	
Hotel	1	0.17	
Office	1	2.6	

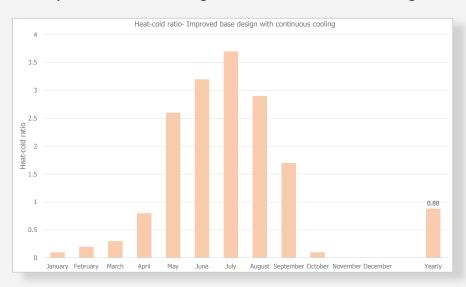
Yearly heat-cold ratio per function


Base design

Function	Heating [kWh]	Cooling [kWh]
Residential (buy)	1	0.2
Residential (rent)	1	0.3
Commercial (non-hotel)	1	1.3
Commercial (hotel)	1	0.5
Hotel	1	0.17
Office	1	2.6

Yearly heat-cold ratio per function

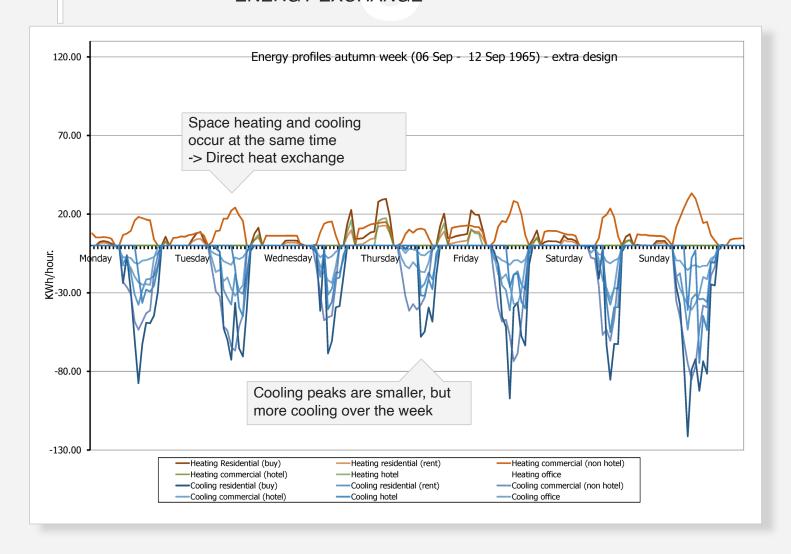
Improved base design



Function	Heating [kWh]	Cooling [kWh]	
Residential (buy)	1	0.1	
Residential (rent)	1	0.2	
Commercial (non-hotel)	1	9.7	
Commercial (hotel)	1	8.3	
Hotel	1	0.12	
Office	0	18.5	

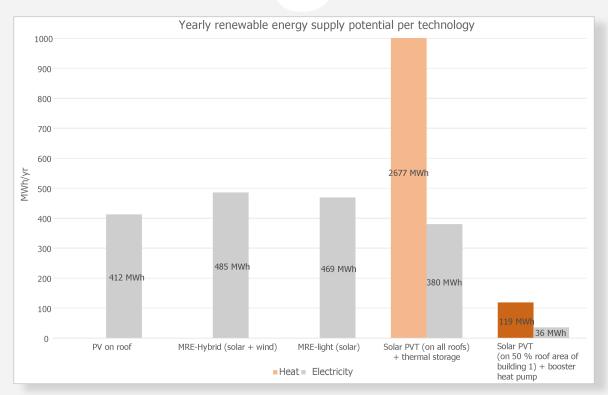
Yearly heat-cold ratio per function

Improved base design with continuous cooling


Function	Heating [kWh]	Cooling [kWh]	
Residential (buy)	1	0.7	
Residential (rent)	1	0.9	
Commercial (non-hotel)	1	14.6	
Commercial (hotel)	1	13.8	
Hotel	1	0.3	
Office	1	22.1	

Yearly heat-cold ratio per function

		Overall	higher	heat-cold	ratio
--	--	---------	--------	-----------	-------

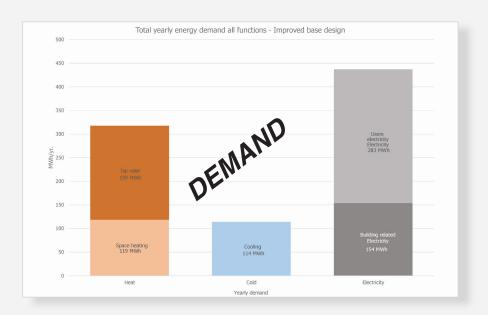

- Exchange possible throughout the year
- Introduction of direct heat exchange

CASE STUDY DESIGN ADAPTING SUPPLY

PV panels

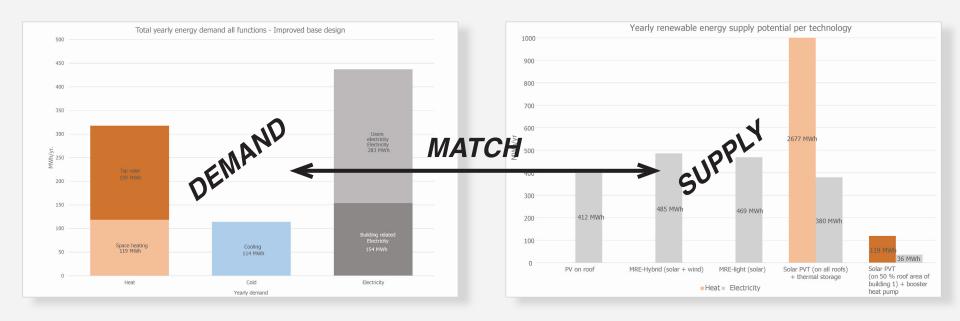
MRE-hybrid (wind + solar)

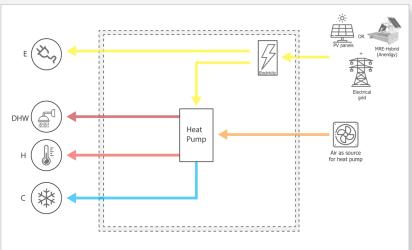
P(V)T panels

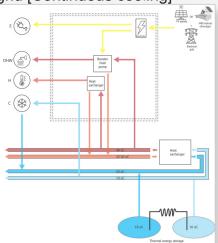

CASE STUDY DESIGN CONCEPTUAL ENERGY NETWORK

3.4 & 3.5 Conceptual energy network & Evaluation and selection

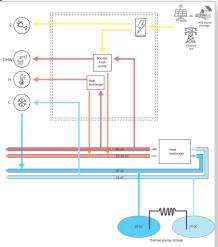
- Connecting supply and demand
- Energy system design principles
- Evaluation and selection
- Energy system design for case study

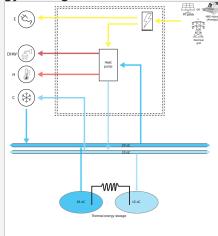

CASE STUDY DESIGN CONNECTING SUPPLY AND DEMAND


CASE STUDY DESIGN CONNECTING SUPPLY AND DEMAND

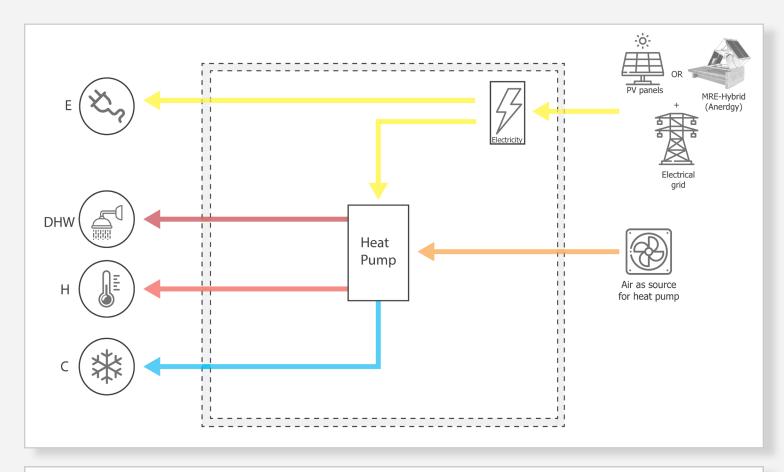


CASE STUDY DESIGN ENERGY SYSTEM DESIGN PRINCIPLES

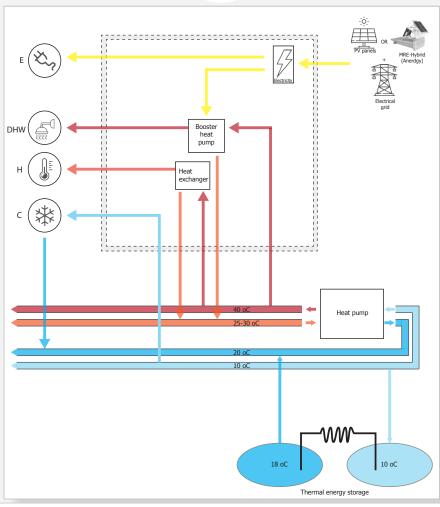

All-Electric (Individual heat pump per building)


Medium temperature thermal grid + separate cooling grid [Continuous cooling]

Medium temperature thermal grid + separate cooling grid



Low temperature thermal grid + thermal energy storage


CASE STUDY DESIGN ENERGY SYSTEM DESIGN PRINCIPLES

Option 1: All-electric (Individual heat pump per building)

CASE STUDY DESIGN ENERGY SYSTEM DESIGN PRINCIPLES

Option 2a: Medium temperature thermal grid + separate cooling grid

Option 2b: Medium temperature thermal grid + separate cooling grid [Continuous cooling]

CASE STUDY DESIGN ENERGY SYSTEM DESIGN PRINCIPLES

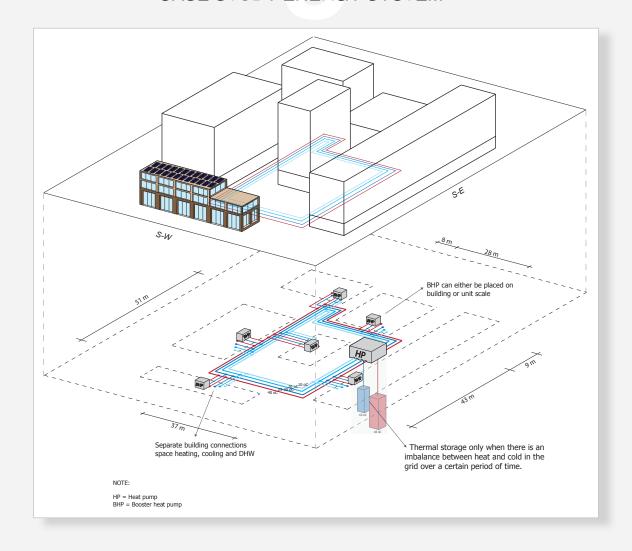
Option 3: Low temperture thermal grid + thermal energy storage

	Options							
Network configurations	All-electric Medium temperature thermal grid + Low temperature cooling grid thermal thermal thermal							
	1	2a: Heating/cooling when people present	2b: With continuous cooling	3				
KPI 1: Energy neutrality								
(MWh/yr.)/fraction of								
local renewable supply								
per year (%)								
Heating (MWh/yr.) [%]	n.a.	0 [100 %]	0 [100 %]	0 [100 %]				
Electricity (MWh/yr.) [%]	4 [101 %]	1 [100 %]	1 [100 %]	5 [101 %]				

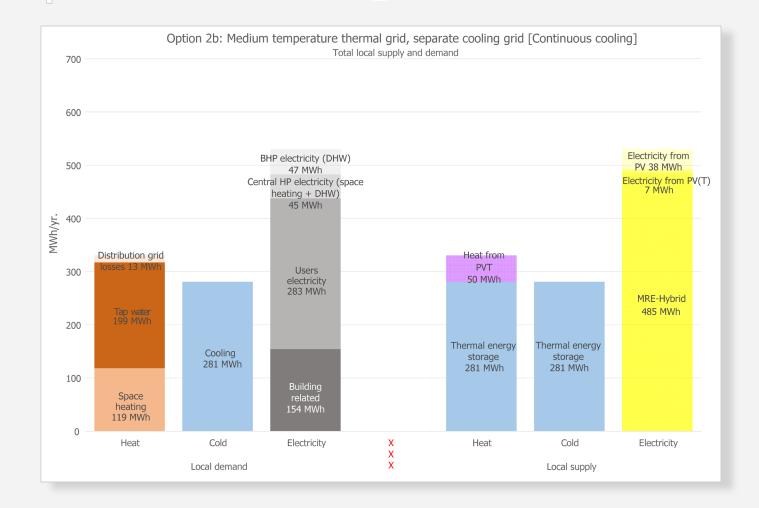
	Options								
Network configurations	All-electric	Medium temper separate	Low temperature thermal grid + thermal storage						
	1	2a: Heating/cooling when people present	2b: With continuous cooling	3					
KPI 1: Energy neutrality (MWh/yr.)/fraction of									
local renewable supply per year (%)									
Heating (MWh/yr.) [%]	n.a.	0 [100 %]	0 [100 %]	0 [100 %]					
Electricity (MWh/yr.) [%]	4 [101 %]	1 [100 %]	1 [100 %]	5 [101 %]					
KPI 2: Fraction of									
autonomy; Direct energy									
supply use (MWh/yr.)									
[%]									
Heating (MWh/yr.) [%]	63 [11 %] *	30 [9 %] **	30 [9 %] **	30 [9 %] **					
Electricity (MWh/yr.) [%]	226 [39 %]	193 [36 %]	194 [37 %]	188 [37 %]					

	Options									
Network configurations	All-electric Medium temperature thermal grid + separate cooling grid								al grid +	
	1		2a: Heating/cooling when people present		2b: With continuous cooling		3			
KPI 1: Energy neutrality (MWh/yr.)/fraction of local renewable supply per year (%)			·							
Heating (MWh/yr.) [%]	n.a.		0 [100	0 %]	0 [100 %]		0	[100 %]		
Electricity (MWh/yr.) [%]	4 [101	%]	1 [100	0 %]	1 [100 %]		5	[101 %]		
KPI 2: Fraction of										
autonomy; Direct energy										
supply use (MWh/yr.) [%]										
Heating (MWh/yr.) [%]	63 [1:	L %] *	30 [9	%] **	30 [9 %]	**	30	[9 %]	**	
Electricity (MWh/yr.) [%]	226 [39	9 %]	193 [36	5 %]	194 [37 %]	18	8 [37 %]		
KPI 3: Maximum power										
mismatch (kW) [positive										
and negative]										
Electricity (kW)	388	-188	382	-178	386	-178	38	1	-158	

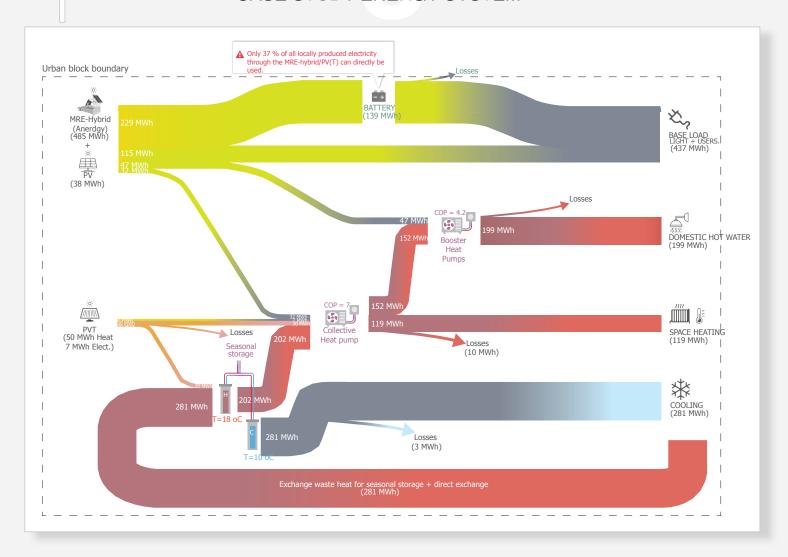
	Options									
Network configurations	All-electric	Medium temper separate	Low temperature thermal grid + thermal storage							
	1	2a: Heating/cooling when people present	2b: With continuous cooling	3						
KPI 1: Energy neutrality (MWh/yr.)/fraction of local renewable supply per year (%)										
Heating (MWh/yr.) [%]	n.a.	0 [100 %]	0 [100 %]	0 [100 %]						
Electricity (MWh/yr.) [%]	4 [101 %]	1 [100 %]	1 [100 %]	5 [101 %]						
supply use (MWh/yr.) [%] Heating (MWh/yr.) [%]	63 [11 %] *	30 [9 %] **	30 [9 %] **	30 [9 %] **						
Electricity (MWh/yr.) [%]	226 [39 %]	193 [36 %]	194 [37 %]	188 [37 %]						
KPI 3: Maximum power mismatch (kW) [positive and negative]										
Electricity (kW)	388 -188	382 -178	386 -178	381 -158						
KPI 4: Maximum cumulative mismatch (MWh)										
Electricity (MWh)	145	128	139	138						


	Options								
Network configurations	All-el	ectric	Medium temperature thermal grid + separate cooling grid				Low temperature thermal grid + thermal storage		
	1		2a: Heating/cooling when people present		2b: With continuous cooling		3		
KPI 1: Energy neutrality (MWh/yr.)/fraction of local renewable supply per year (%)									
Heating (MWh/yr.) [%]	n.a.		0 [1	.00 %]	0 [100 9	%]	0 [1	00 %]	
Electricity (MWh/yr.) [%]	4 [101	%]	1 [1	.00 %]	1 [100 9	%]	5 [1	01 %]	
KPI 2: Fraction of autonomy; Direct energy supply use (MWh/yr.) [%]									
Heating (MWh/yr.) [%]	63 [11 %] *		30 [9 %] **		30 [9 %] **		30 [9 %] **		
Electricity (MWh/yr.) [%]	226 [39	%]	193 [36 %]		194 [37 %]		188 [37 %]		
KPI 3: Maximum power mismatch (kW) [positive and negative]									
Electricity (kW)	388 -	-188	382	-178	386	-178	381	-158	
KPI 4: Maximum cumulative mismatch (MWh)									
Electricity (MWh)	145		128		139		138		
						$\overline{}$			
KPI 5: Fraction of inter- exchange of energy (%)	n.a		34		85		36		

	Options									
Network configurations	All-electric Medium temperature separate cooli					Low temperature thermal grid + thermal storage				
	1		2a: Heating/cooling when people present		continuous	3				
KPI 1: Energy neutrality (MWh/yr.)/fraction of local renewable supply per year (%)										
Heating (MWh/yr.) [%]	n.a.	0 [1	00 %]	0 [100 %]	0 [100 %	6]			
Electricity (MWh/yr.) [%]	4 [101 %]	1 [1	00 %]	1 [100 %		5 [101 %	61			
KPI 2: Fraction of autonomy; Direct energy supply use (MWh/yr.) [%]										
Heating (MWh/yr.) [%]	63 [11 %]	* 30 [30 [9 %] ** 30 [9 %] **		30 [9 %] **					
Electricity (MWh/yr.) [%]	226 [39 %]	193 [193 [36 %]		194 [37 %]		188 [37 %]			
					jan.					
KPI 3: Maximum power mismatch (kW) [positive and negative]										
Electricity (kW)	388 -188	382	-178	386	-178	381	-158			
KPI 4: Maximum cumulative mismatch (MWh)										
Electricity (MWh)	145	128		139		138				
				_						
KPI 5: Fraction of inter- exchange of energy (%)	n.a	34		85		36				

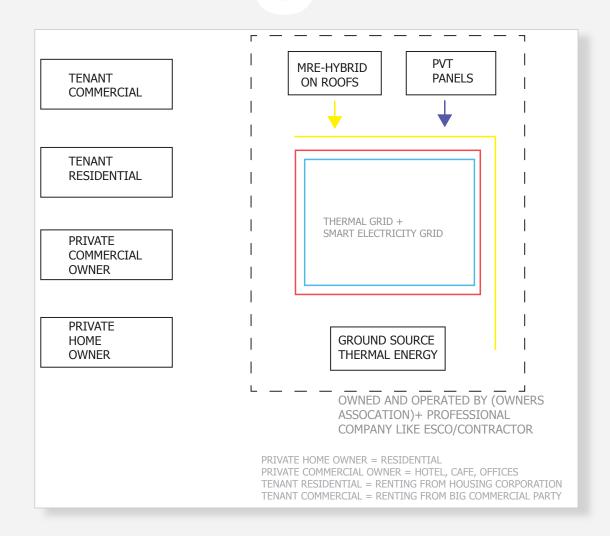


CASE STUDY DESIGN CASE STUDY ENERGY SYSTEM



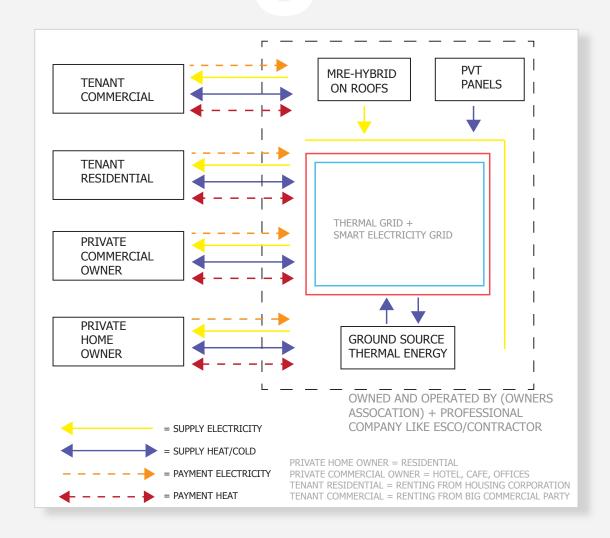
CASE STUDY DESIGN CASE STUDY ENERGY SYSTEM

CASE STUDY DESIGN CASE STUDY ENERGY SYSTEM

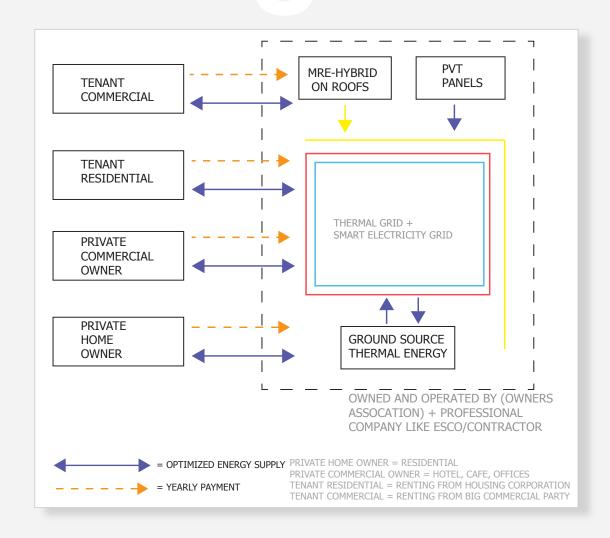

CASE STUDY DESIGN INSTITUTIONAL ENERGY FLOW DIAGRAM

3.6 Institutional energy flow diagram

- Principle How can it be arranged?
- 2 Options
- **Implications**



CASE STUDY DESIGN INSTITUTIONAL ENERGY FLOW DIAGRAM



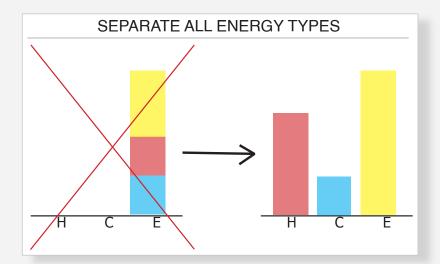
CASE STUDY DESIGN TWO WAY PAYMENT

CASE STUDY DESIGN ONE WAY PAYMENT

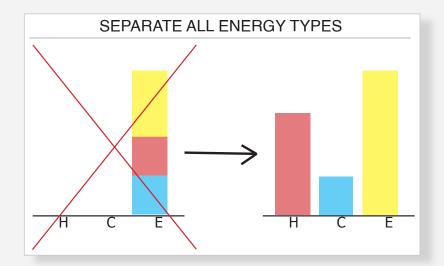
CASE STUDY DESIGN IMPLICATIONS

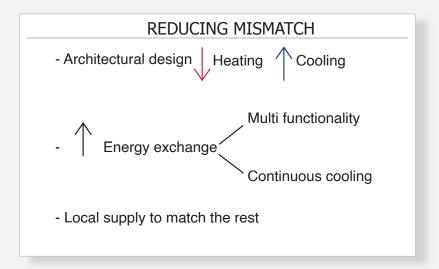
- Stakeholder participation
- Integral approach to optimize overall system
- Electricity law
- Revised Heat law

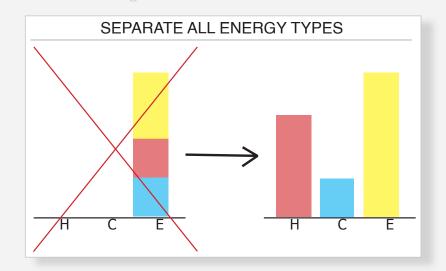
- Research question
- Summary of research results

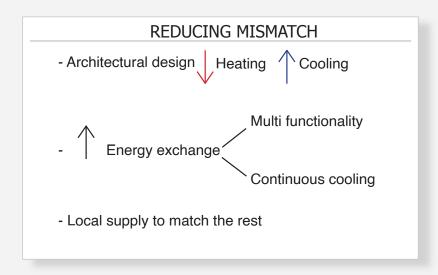


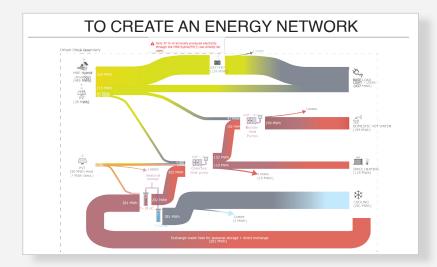
How can you design an energy flat multifunctional urban block in the Netherlands and what does this imply for governance? [Case study Buiksloterham, Amsterdam]



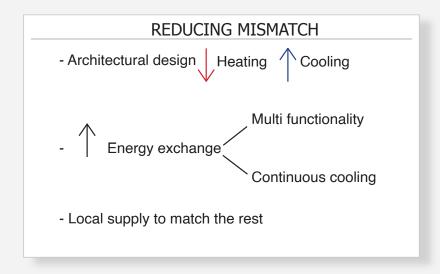


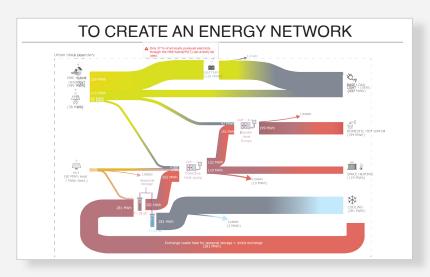


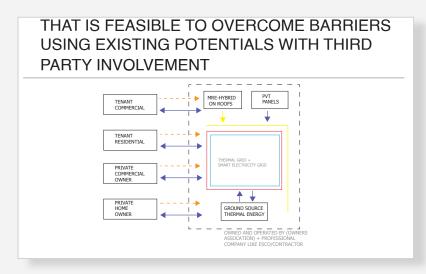




CONCLUSIONRESEARCH RESULTS







CONCLUSIONRESEARCH RESULTS

THANK YOU! QUESTIONS? Kjell-Erik Prins // P5 Presentation // July 4th 2019

