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ABSTRACT

In the next decades, many public infrastructure assets will reach the end of their life that they were
originally designed for. Replacement costs are high, and therefore increasing effort is put into lifetime-
extending maintenance, including major overhauls and renovations. A key question is whether the
investments in lifetime-extending maintenance justify the postponement of a full replacement. This
question becomes more complicated when future life cycle cash flows are non-repeatable. Differential
inflation and technological change, including multiple intervention strategies to maintain a desired
functionality, cause such non-repeatability. In this case, classic replacement analysis techniques will
not suffice in answering this question. Literature demonstrates that case-specific modelling with
dynamic or linear programming techniques is required to find economic optimisation. However, such
literature primarily addresses replacement interval optimisation of new investments within relative
short time horizons, whereas the current research develops a nested dynamic programming (DP)
approach for typical ageing infrastructure assets over long service life periods. The model can deal
with multiple and various successive intervention strategies and addresses differential inflation and
age-related cost increases. Finally, it is shown in an infrastructure case study that this DP approach
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leads to a better decision in comparison to the application of classical replacement techniques.

1. Introduction

Many public infrastructure assets are ageing, such as
bridges, dikes, locks, pumping stations, treatment plants,
and transport mains. In general, the first public assets were
built around early 1900. A peak occurred in the years
1950-1970 and today increasingly more assets reach the end
of the life that they were originally designed for. The tech-
nical lives of public infrastructure range from 30 to over
120 years. However, the required functionality often extends
beyond the technical lives and frequently approximates
infinity. A function is for example transportation, high
water protection and is not restricted to the technical life of
assets. The costs of replacements are high and increasing
effort is therefore dedicated to lifetime-extending mainten-
ance, including major overhauls and renovations.

The classic theories in engineering economics provide
techniques for solving replacement problems, but their
applicability is limited due to underlying assumptions. The
most important assumption is continuous repeatability of
the life cycle cash flows of a challenger (a renovation or
replacement option). However, life cycle costs of many
infrastructure assets are subject to differential inflation (dis-
tinct price development of cost components compared to

the general inflation) and multiple successive intervention
strategies with different life cycle costs often apply. Both
characteristics reject the assumption of continuously repeat-
ing life cycle cash flows of a replacement option. Asset own-
ers generally have several successive intervention strategies
available for ageing infrastructure, for example, maintain
with an initial upgrade, renovate, and/or fully replace.

Moreover, costs (and benefits) are subject to inflationary
effects as historic consumer price and producer price indices
demonstrate. For example, over the past two decades, aver-
age total inflation rates for concrete, steel, asphalt, electri-
city, and labour, range between 1.1% and 3.8% per year in
the Netherlands, with an average general inflation rate of
1.9% per year. Differential inflation is fully defined in
Section 3.1, but here by approximation described as the dif-
ference between the general inflation (applicable to all goods
and services) and the total inflation for specific cost compo-
nents. By approximation, the differential inflation rates
range between —0.8% and 1.9%per year for the same cost
components. Considering low public-sector discount rates,
varying between 2% and 5% in real terms (opposed to nom-
inal), differential inflation, if present, can significantly influ-
ence costs (and benefits), the net-discounting and
potential decisions.
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Hence, the current research develops a realistic model
that includes differential inflation and multiple successive
intervention strategies for a common infrastructure replace-
ment challenge. To position the scope of the current
research in a wider context before narrowing down, a dis-
tinction is made between component replacement and cap-
ital equipment replacement, as proposed by Campbell,
Jardine, and McGlynn (2011) and Jardine and Tsang (2013).
Component replacement is strongly supported by probabilis-
tic reliability modelling and often part of a larger mainten-
ance optimisation strategy over the life cycle of an asset
(Gertsbakh, 2000). Frangopol, Kallen, and Noortwijk (2004)
further classify these probabilistic optimisation models in
random-variable models and stochastic process models,
among which probabilistic Markov decision processes.
Markov decision processes incorporate optimised decision
making by maximising multi-objective functions such as
minimising life cycle costs while considering other con-
straints (Adey, Burkhalter, & Lethanh, 2018; Bocchini &
Frangopol, 2011; Frangopol, Estes, & Stewart, 2004; Golabi,
Kulkarni, & Way, 1982).

The difficulty with probabilistic life cycle optimisation
modelling is the estimation of the required statistical prop-
erties (underlying probability distributions). In practice, his-
torical data to perform such modelling is often unavailable.
Second, even if historical data is available, it may become
obsolete when modern technology or new materials are
introduced. Another observation is that literature on prob-
abilistic life cycle modelling is in general less focused on the
economic aspects of life cycle costing. These aspects are bet-
ter dealt with in the second class of literature to which
Campbell et al. (2011) and Jardine and Tsang (2013) refer
to as capital equipment replacement modelling.

Literature on capital equipment replacement modelling
puts more focus on the economic aspects such as selecting a
proper discount rate, incorporation of inflationary effects,
using a proper calculation horizon and identifying the right
cash flows in real or nominal terms. Capital equipment
replacement models are often a blue print for a larger group
of similar assets. The results of these models are used for
mid and long-term capital equipment replacement planning
and these models are not a first choice for detailed mainten-
ance optimisation modelling of single assets. This may
explain why probabilistic failure modelling is less prevalent
in capital equipment replacement models. However, in cap-
ital equipment replacement models, failures are often esti-
mated by an increasing cost function.

In the class of capitalised equipment replacement models,
the classic engineering economy approaches (de Neufville,
Scholtes, & Wang, 2006; Newnan, Lavelle, & Eschenbach,
2016; Sullivan, Wicks, & Koeling, 2012) and the dynamic or
linear programming optimisation approaches, including (the
same) Markov decision processes but with more emphasis
on economic aspects, are found. This dynamic programming
(DP) and linear programming (LP) literature is reviewed in
Section 2.

The current research builds on capital equipment
replacement modelling and is geared at the inclusion and

impact of differential inflation and multiple successive inter-
vention strategies (equivalent for technology change).
Condition deterioration is modelled by accounting for age-
ing with annually increasing costs. The outline of this article
is as follows: Section 2 presents the results of a literature
review on capital equipment replacement decisions under
differential inflation and technological change. This provides
a direction for a solution using DP or LP techniques.
Section 3 develops a novel DP approach for a class of prob-
lems that cannot be solved with classic replacement techni-
ques. This approach is demonstrated for a pumping station
with three alternative options: maintain with major over-
hauls, renovate, or fully replace. All options are subject to
differential inflation. The article ends with a discussion and
conclusions.

2. Literature review

In addition to its treatment in classic textbooks, replacement
optimisation under inflation or technological change has
been investigated by several authors. Bellman (1955) laid the
foundation for using DP techniques for solving this class of
replacement problems, with the development of a functional
equation for a single asset replacement optimisation under
technological change. Wagner (1975) introduced DP techni-
ques to solve this functional equation, designated as regen-
eration models. All replacement options between a source
node (start decision) and a destination node (result of the
final decision) are considered and visualised as a network.
DP techniques are used to find the least cost route (shortest
path) in such a network. The same solution is obtained
using LP techniques, such as the one explained by Hillier
and Lieberman (2010), as shortest path problems that are a
special class of so-called transhipment models.

One of the first studies that explicitly deals with differen-
tial inflation in replacement decisions originates from
Karsak and Tolga (1998). Karsak and Tolga (1998) stressed
the importance of proper treatment of general and differen-
tial inflation. The authors used a DP approach to identify
the optimum maintain-replace strategy for a finite 8-year
time horizon under various scenarios for inflation. The
short time horizon and the use of continuously increasing
or decreasing cost functions limit the applicability of this
model for public infrastructure assets.

Oakford, Lohmann, and Salazar (1984) conducted a simi-
lar study. DP was again used to find the optimal replace-
ment chain of multiple challengers under total inflation for
a time horizon of 25 years. The authors addressed the differ-
ence between general inflation and differential inflation, and
the subsequent necessity for expressing cash flows in real
and nominal terms. The term ‘real present value’ is confus-
ing as there is no such thing as a ‘real present value’. There
is merely a ‘present value’ that can be calculated by dis-
counting real cash flows with a real discount rate or nom-
inal cash flows with a nominal discount rate. Using either
of the methods, one can arrive at the same present value.

The authors further demonstrated that the calculation
horizon influences the optimised replacement chain.



Oakford et al. (1984) emphasised that the current calcula-
tion power of computers enables accurate optimisation cal-
culations, leaving no excuse for using classic replacement
approaches for replacement decisions under inflation and
technological change. Although this line of reasoning is
plausible, it must be noted that Oakford et al. (1984) used
convenient cost functions for calculating the future cash
flows, and limited the computational effort by restricting the
time horizon to 25 years and considered maximum asset ser-
vice lives of only 10years. The presence of salvage values
also enabled appropriate and convenient truncation of
cash flows.

Hartman (2004) developed a DP optimisation approach
for a parallel or redundant asset replacement problem under
changing demand (causing non-repeatability of future cash
flows) for a finite time horizon of 50years. Although the
problem differs from the current case study, which concerns
a single asset replacement with successive multiple interven-
tion strategies, Hartman (2004) demonstrates the need for a
DP model formulation under conditions of non-repeatable
future life cycle cash flows.

Another case-specific DP approach originates from
Hartman and Murphy (2006). In this study, the single asset
replacement of equipment is investigated under a finite time
horizon and stationary costs (repeatability of future cash
flows). Under an infinite horizon, the solution to an opti-
mised replacement chain under stationary costs is continu-
ously replacing the asset at its economic life. However,
under a finite time horizon, this classic approach will not
lead to an optimised solution as there will be a trade-off
between increasing operational and maintenance (O&M)
expenditures and decreasing salvage values of multiple asset
replacements within a fixed time horizon. Hartman and
Murphy (2006) observed that the techniques required for
dealing with these types of optimisation problems, such as
DP, are not learned by all engineers or financial managers.
Considering this reason, classical replacement theories that
assume an infinite identical repeatability of the challengers’
life cycle cash flows are used in practice for this different
class of problems. Hartman and Murphy (2006) again dem-
onstrated that this will lead to errors.

The closest study to the current one is an optimisation
model developed by Regnier, Sharp, and Tovey (2004),
which concerns an unbounded single asset replacement
problem under total inflation (combined general and differ-
ential inflation) and technological change. Starting with a
new investment, an optimised replacement chain for an
infinite time horizon was developed using DP techniques.
Different inflationary rates were allowed for (re)investments
and O&M expenditures. The authors demonstrated that
under total inflation, the economic life of an asset is not a
constant and this feature influences the optimised replace-
ment chain and in many cases the first replacement. The
authors proved that using classic techniques will lead to
suboptimal decisions in replacement problems under infla-
tion and technological change.

Regnier et al. (2004) made assumptions about total infla-
tion and price increases for operation and maintenance
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expenditures and assumed a constant growth (or decline) of
future cash flows to model cash flows of future technology
development. This facilitates compact mathematical formulas
that support an easier present value calculation of cash flows.
These assumptions however, restrict the application of their
model for the case study of this research because the current
research considers successive intervention strategies from
which the cash flows are not proportionally connected.

Mardin and Arai (2012) used the cost model of Regnier
et al. (2004) to validate an adaptation of the classic
defender/challenger (existing asset versus replacement
option) comparison as an alternative to the more complex
DP approach presented by Regnier et al. (2004). The adapta-
tion used an improved approximation approach first intro-
duced by Christer and Goodbody (1980), and further used
by Christer and Scarf (1994) and Scarf and Hashem (1997).
This approximation approach minimises the sum of the
equivalent annual cost (EAC) of the defender and challenger
seen as two consecutive assets at each period in time.

Although Mardin and Arai (2012) obtained good
approximation results for the case-specific studies of
Regnier et al. (2004), their method does not necessarily pro-
vide optimal solutions under other circumstances as this
approach ignores the impact of future challengers with dif-
ferent cash flow patterns. Yatsenko and Hritonenko (2011)
also compared the improved approximation method with
the classic economic life comparison technique and the opti-
mal DP or LP approach (Hartman & Murphy, 2006;
Regnier et al, 2004). For comparison, the authors again
used technology change scenarios from Regnier et al.
(2004). Considering these scenarios, Yatsenko and
Hritonenko (2011) concluded that the classic economic life
comparison replacement technique provided good approxi-
mation results for small technological improvement rates
only (<1%). For higher technological improvement rates,
the improved approximation approach was sufficiently
accurate for the scenarios considered. However, the optimal
results were obtained by using LP or DP techniques.

LP techniques for replacement optimisation under differ-
ential inflation and technological change receive less atten-
tion in the literature than DP techniques. LP is less efficient
in its computations for shortest path problems. Nonetheless,
the availability of solvers and their computational power
make LP a good alternative. Biiyliktahtakin and Hartman
(2016) used LP to solve a parallel replacement optimisation
problem for a finite time horizon of 100 years. Brekelmans,
den Hertog, Roos, and Eijgenraam (2012); Zwaneveld and
Verweij (2014), and Dupuits, Schweckendiek, and Kok
(2017) provide recent examples of an LP approach to find
an optimised intervention strategy for a coastal flood
defence system. A time horizon of 300 years was considered
as an approximation of infinity. This time horizon is of
interest for the current case study, as explained in Section
3.2, while differential inflation is ignored.

The review of the literature demonstrates that replace-
ment decisions under inflation and/or technological change
require consistent calculation and discounting of future cash
flows with attention to inflationary effects, in combination
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Table 1. Data for the case study.

Inflation (per year)

Interest (per year) Costs Interval Ageing
Real interest i,.,; = 4.00% (initial) (years) General Differential Total (per year)
Nominal interest ipom = 5.94% fy fa fy g
Maintain N, = 15 years

Major overhaul t=0 € 150,000 1.87% 1.03% 2.92%

Major overhaul t=5 € 150,000 1.87% 1.03% 2.92%

Major overhaul t=10 € 150,000 1.87% 1.03% 2.92%

0&M € 70,000 1 1.87% 0.85% 2.74% 1.5%

Electricity € 15,000 1 1.87% 0.20% 2.07% 0.0%
Renovate Ny, =30 years

Initial investment € 1,125,000 1.87% 1.03% 2.92%

Major overhaul at age 10 € 150,000 1.87% 1.03% 2.92%

Major overhaul at age 20 € 150,000 1.87% 1.03% 2.92%

0&M € 35,000 1 1.87% 0.85% 2.74% 1.0%

Electricity € 15,000 1 1.87% 0.20% 2.07% 0.0%
Replace Nyq =60 years

Initial investment € 2,500,000 1.87% 1.03% 2.92%

Major overhauls € 150,000 15 1.87% 1.03% 2.92%

0&M € 10,000 1 1.87% 0.85% 2.74% 0.5%

Electricity € 10,000 1 1.87% 0.20% 2.07% 0.0%

with a case-specific DP or LP approach to find the least cost
route over a bounded or unbounded time horizon. Using
classic replacement theories will lead to errors. Improved
approximation methods can be used in specific circumstan-
ces, but their applicability must be assessed for each case
study in comparison with DP or LP approaches.

Calculating present values of future cash flows for all
possible replacement scenarios is a daunting task. Therefore,
several authors generalise cost functions, which restricts the
applicability of the models for the commonly observed case
study of this research. The literature review showed that
many authors restricted the computational effort by intro-
ducing short asset service lives and calculation horizons.
Only a few authors handled inflation and none of the
authors made a clear distinction among general inflation,
differential inflation, and age-related cost increases. The
case-specific DP models in the literature start with a new
investment and do not address the common case of optimis-
ing intervention strategies for ageing existing assets.

In the literature, defender and multiple successive
challengers’ optimisation problem under differential infla-
tion is commonly absent. The objective of the current study
is to develop an approach to find the optimised intervention
intervals for ageing infrastructure assets considering multiple
future intervention strategies. An explicit distinction is
made among general inflation, differential inflation, and
age-related cost increases. A nested DP approach is devel-
oped to find an optimised maintenance, renovation, and
replacement chain.

3. Development of model and case study

In this section, a nested DP model is developed for the opti-
mised maintenance, renovation, and replacement chain
under differential inflation and age-related cost increases.
The model is explained by means of a case study: an exist-
ing and ageing polder pumping station with options for life-
time-extending maintenance, renovation, and replacement.
This approach is applicable to other types of infrastructure
assets and not restricted to pumping stations.

In the Netherlands, pumping stations are owned by
municipalities (sewerage transport), water boards (sewerage
transport, water systems management), and drinking water
utilities (drinking water transport). Older pumping stations
are characterised by non-automated pumping units which
require labour-intensive maintenance. Revision or a full
replacement allows for partial or full automation and
reduces O&M expenditures. Depending on the type of
pumps, energy reduction can also be achieved. O&M and
energy expenditures are subject to differential inflation.
Ageing also affects O&M expenditures.

3.1. Description of the case study

The current defender is an old non-automated pumping sta-
tion that needs an immediate major overhaul. The max-
imum remaining technical life of the old pumping station is
estimated at 15years, provided that three major overhauls
are undertaken, each at 5-year intervals. The first option is
to retain the old pumping station, while the second option
(first challenger) is a full renovation. This extends the tech-
nical life of the current pumping station by 30 years.
Subsequent to the initial investment for renovation, two
major overhauls are required over 10 and 20 years, respect-
ively. The regular O&M expenditures decrease after renova-
tion, whereas the annual electricity expenditures remain the
same. The third option (second challenger) is a full replace-
ment by a modern and fully automated pumping station.
This reduces the annual expenditures for both O&M and
electricity. Periodic major overhauls are then required every
15years. The maximum technical life of the new pumping
station is estimated at 60years. As a boundary constraint,
the last intervention strategy in the model is considered to
be a perpetuity (the strategy, not the cash flows as a conse-
quence of differential inflation). This perpetuity will be opti-
mised in a separate DP-model that will be nested in the
overall DP-optimisation model. Therefore, the final inter-
vention strategy is modelled as an optimised perpetuity of
full replacements including their life cycle costs. All data are
presented in Table 1. These three intervention strategies are



designated as maintain, renovate and continuously replace
in the remainder of the document. Cost data, the real inter-
est rate, and estimates for ageing factors are obtained from
a water board and are representative for many ageing polder
pumping stations in the Netherlands.

Salvage value is end-of-life cash to be received when sell-
ing an asset at a certain age (Brealey, Myers, & Allen, 2017).
End-of-life demolition and scrap values are considered in
this case study and incorporated in following investment
costs of a successive intervention strategy. These costs are
treated as fixed costs as their time-variant proportion is
considered negligible for the case study. Time-variant sal-
vage values from trading are not considered in this case
study. Public infrastructure assets as investigated in the cur-
rent research are mostly not tradable, and therefore gener-
ally do not have these types of salvage values. When cash
flows cannot be appropriately truncated (salvaged) at the
end of a calculation horizon, the convention in the domain
of engineering economics is to estimate all expected future
life cycle costs that contribute to the present value of a scen-
ario (Blank & Tarquin, 2012; Park, 2011; Sullivan et al.,
2012). Despite the fact that technical lives of public infra-
structure assets are finite, the required functionality, such as
protection against high-water, is likely to be infinite. Several
replacements, which can be identical or not, approximate
such infinity. Although not included in the case study, equa-
tions for the calculation of time-variant salvage values from
trading and time-variant demolition costs are provided in
Section 3.3.

The case study uses an average real interest rate of 4%,
which is common for public infrastructure assets in the
Netherlands. Four per cent reflects the average weighted
cost of capital of the water board. The long term general
inflation rate is obtained from the consumer price index
(CPI) over the years 1995 until 2017 and estimated at
1.87%, based on the analysis of its past development. The
relation between the nominal discount rate i,,,,, real interest
rate ip,, and general inflation rate f, is given by (Brealey
et al., 2017; Park, 2011; Sullivan et al., 2012):

inom :ireal+,f<g+ireal',f:g: (1+ireal)(1 +j:g)_1> 1)

with a general inflation rate of 1.87%, real interest rate of
4%, and resulting nominal discount rate of 5.94%.

Differential inflation is specific for each cost component.
Differential inflation is additional incremental (or decre-
mented) inflation next to general inflation (Sullivan et al,
2012). General inflation is measured by the CPI. Industrial
goods and services are often subject to higher price
increases and measured by the producer price index (PPI).
The relation between the general inflation rate f,, differential
inflation rate f;,and the so-called total price escalation rate
fior (total inflation, PPI) is given by (Brealey et al, 2017;
Sullivan et al., 2012):

Jor =fo+fatfo-fa=(+f) Q+f)-1 (2)

Equations (1) and (2) mathematically define and incorp-
orate an important engineering economics implication for
discounting of cash flows. Total inflation expresses cash
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flows in nominal currency. Differential inflation expresses
cash flows in real currency. Nominal cash flows (inflated
with total inflation) need to be discounted with a nominal
discount rate. Real cash flows (inflated with differential
inflation) need to be discounted with a real discount rate
(Park, 2011; Sullivan et al., 2012). Equations (1) and (2)
define that both discounting approaches are mathematically
equal. The current research expresses cash flows in real val-
ues and discounts with a real discount rate. Under differen-
tial inflation, certain cash flow components grow (or
decline) faster than others and also continue to grow (or
decline) after new investments. The estimates for differential
inflation in Table 1 are subtracted from PPI data over the
years 1995-2017.

3.2. Model description

This study aims to develop an optimised chain of interven-
tion strategies under differential inflation. This section
develops a nested DP optimisation model. To explain the
model, first a downscaled version of maintain, renovate, and
replace optimisation problem is used in the figures and
tables. Hereafter, the model formulation is applied to the
full-scaled case study. In the downscaled example, the max-
imum technical lives for maintain, renovate, and replace
options are restricted to 3, 5, and 4years, respectively in
comparison to 15, 30, and 90 years, respectively in the case
study. The technical lives for the downscaled example do
not have a physical meaning and are only meant for
explaining the structure of the model. The total time hori-
zon in the downscaled example is restricted to 10years
instead of an approximated infinite time horizon in the case
study. Replacements (but neither cash flows nor economic
lives) are considered to be repeated until the end of the
time horizon as motivated in Section 3.1. The renovation
option is the potential first or second intervention strategy
before the replacement chain. The model allows for inclu-
sion of more in-between intervention strategies by following
the same approach.

The network corresponding to this example is visualised
in Figure 1. The node S, represents the source node from
which the current decisions start, and Zr represents the ter-
mination node where all replacement decisions end. The
nodes X; and Y; represent the years in which maintain and
renovate options end, respectively. For example, X; is read
as the year in which a maintain strategy ends (here year 3)
and Y5 is defined as the year in which a renovation strategy
ends (here year 5). The maintenance strategy starts with an
existing asset in place. The path Sy — X3 — Y5 therefore rep-
resents the scenario: maintain from year 0 until year 3,
renovate at year 3 and keep until year 5 (two years of a
renovation strategy). From year 5 onwards, the (renovated)
assets will be continuously replaced over its time-variant
optimised economic life. Note that in Figure 1, there are no
arcs from X; to Y; for j < iandj > i + 5, where 5 is
the maximum number of years the asset can be renovated
in this example.
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Figure 1. lllustrative and comprised decision network for the pumping station case study with maximum service lives for the maintain, renovate, and replacement

options of respectively 3, 5 and 4 years and termination at year 10.

Table 2. Present values of costs of the arcs of the decision network in
Figure 1.

J 0 1 2 3 4 5 6 7 8
i Nodes Y, Y Y, Y3 Ya Ys Ye Y7 Y  So
0 X @ @ @ @ =
1 X 4 ¢ a3 Gy G5 G a
Z & & & & & & & & g

A decision variable x; is introduced to indicate whether
the asset is maintained from year 0 till year i. This corre-
sponds to the arc from node Sy to node X;. The parameter
cirepresents the present value of the corresponding cost
and N, represents the maximum service life of the option
to maintain. Similarly, y; is introduced to indicate
whether the asset is renovated from year i till year j. This
corresponds to the arc from node X; to node Y; in
the network.

Again, cly] represents the present value of the correspond-
ing cost and N, represents the maximum service life of the
renovate option. Finally, decision variable z; indicates

whether continuous replacements start in year j. This corre-
sponds to ending the renovation of the asset in year j. The
present value of the costs of continuous replacements from
year j till year T (termination node Zr) is denoted by ¢
The value for ¢ is obtained by solving a separate regener-
ation model, which is explained at the end of this section.
An overview of the present values of the costs of the arcs in
Figure 1 is shown in Table 2. It is emphasised that the cost
variables in Table 2 represent the present values of life cycle
costs from instalment until the time where a successive
intervention strategy starts.

The optimal maintain, renovate, and replace decision is
given by the shortest path in this network. The shortest
path in a network can be efficiently found by means of
Dijkstra’s algorithm (Dijkstra, 1959). However, owing to the
special structure of the network, where each path between
So and Zr has a fixed length, a more efficient backward
recursion can be used, as shown in the sequence in
Equation (4). Even though the problem is not solved using
LP, the LP formulation helps to understand the structure of
the problem. The objective of the model is to find the least
cost route from Sy to Zy and is given by:
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Figure 2. Schematic representation of the regeneration network for the continuous replacements.

Table 3. Cost matrix for the regeneration model (continuous replacements,
comprised example).

j 0 1 2 3 4 5 6 7 8 9 10
i Nodes 2, Z, Z, Zz Z, Zs Zy¢ Z; Zg 2o Zy
0 Zo G G G
L Z G G G Gs
2 2 G Ga G G
3 Z G G5 Gs Oy
4 Z4 Gs G Cu g
5 Zs Ge G G Cig
6 26 Cé7 CéS ch Cg,TO
7 Z G Go o
8 Zg Go G
9 Zy G0
10 Zy
N, N, i+N, Ni+N,
min c’l.‘-xi—l—ZZcfj-yij—l—Zcf-zj (3)
i=0 =0 j=i =0

subject to the following constraints:

Ny

j
Z Y ij = ZJVJ 3
S,
Xi, yij, zj € {0, 1}Vi,j.

3.2.1. Regeneration model
The next step is to find the cost of continuous replacements
from year j till year T, which is denoted by ¢j. These con-
tinuous replacements follow from their own optimisation
model, which is schematised in Figure 2 for a restricted
maximum service life of a replacement option of 4years
(N, =4years) and a restricted time horizon of T = 10years.
To solve the optimisation of the continuous replacements,
the regeneration model explained by Wagner (1975) is
expanded and solved for each start year j of the possible
series of replacements.

The decision variable z; is defined to indicate whether
the asset is replaced in year i and discarded in year j. The
present values of the corresponding costs are denoted by ¢j;
This is again a shortest path problem that can be solved by
Dijkstra’s algorithm. Considering the case study, a more

efficient DP algorithm is chosen that uses the following
backward recursion:

&= min
T k=i, LN,

(c; + cf). (4)

in which, cfj is given as an input, ¢; comes from the pre-
vious iterations of the algorithm, and N, represents the
maximum technical life. The recursion is initiated
with ¢ = 0.

Similarly, the LP formulation of the problem is also pro-
vided, in which the objective function of an optimised
replacement chain between year S and year T is:

T-1 T
mn> 36z ®
i=S j=it1

T—-1 T
E Zis — E zZsk = —1,
i=S k=S+1

T
Yoz=0 Vj£S#T,

T-1
E Zi]' —
i=s k=s+1
T-1 T

g Zir — § zre = 1,
i=s k=s+1

z; € {0,1} Vi,j.

For the regeneration model, DP is preferable to LP as one
run of the DP algorithm directly calculates the least costs
from each start node S to termination node Z. When solv-
ing the problem for ¢, the values ¢/ for all j are found as
part of the recursion. Therefore, the solutions to all regener-
ation models that follow the end of a renovation option are
automatically found. In contrast, an LP approach to find the
minimal cost ¢; would require solving 45 LP problems in
the case study, one for each j. The costs of the arcs in
Figure 2 are presented in a matrix structure in Table 3.

In theory, the decisions to be made on continuous
replacements are infinite. In the case study, the solution
space is reduced by choosing a finite boundary for T that
approximates infinity, such that cash flows beyond T do not
significantly contribute to the total present value of a main-
tain, renovate, and replacement chain. As long as the dis-
count rate exceeds the total escalation rate of cash flows, the
total present value is a concave and asymptotic function.

Several studies investigated how to assess a minimum
approximation of infinity, such as Bean, Lohmann, and
Smith (1994); Regnier et al. (2004); and Wagner (1975).
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Table 4. Symbols and indices used in present value equations.

t Time of purchase or instalment (t = 0 for ¢ and t =i
for ci . )

Initial investment cost

Salvage value

Demolition costs

Costs of a major overhaul

First year's operation and maintenance costs

First year's electricity costs

Index for investment

Index for salvage values

Index for demolition costs

Index for major overhauls

Index for operation and maintenance costs

Index for electricity costs

Index for current price level, real (non-inflated) costs,
constant currency

mMETOLNT MITTOUN

S

frot Total inflation rate [% per year]

fg General inflation rate [% per year]

fa Differential inflation rate [% per year]

inom Nominal interest rate [% per year]; includes general inflation

ireal Real interest rate [% per year]; excludes general inflation

g Age related price increase [% per year]

b Reduction of the initial investment for calculating the
salvage value [% per year]

dm A percentage of the initial investment to calculate the
end of life demolition costs [%]

n The age of an asset when disposed of (n =i for

fod andn:jforc{j,cfj)
The age at which the 1%, 2",
takes place with n; < n
P The present value (t=0) of cash flows incurred from
ttot+n

ny, Ny, .. ng ... q" major overhaul

These studies demonstrate that a minimum approximation
of infinity is reached for a horizon length (terminal state)
that is independent of the first decision to be made. To find
such a minimum horizon length, successive approximations
can be used. A DP algorithm is terminated as soon as an
additional time period does not influence the first decision.
As a practical and safe estimate for public infrastructure
assets with high investment costs and relatively low O&M
expenditures, a boundary of 300 years is chosen as an approxi-
mation of infinity. The motivation is that the real costs of a
full replacement in year 300 contribute to only a factor
1/(14+ire)” = 1/(1 4+ 0.05)° = 4.4-1077 to the total pre-
sent value of all costs between year 0 and year 300. Three hun-
dred years is in line with another case study dealing with
capital-intensive infrastructure with long service lives (coastal
flood protection) presented by Brekelmans et al. (2012);
Zwaneveld and Verweij (2014); and Dupuits et al. (2017).

3.3. Present value calculations under inflation and age-
related cost increases

This section outlines the calculation of the present values
c, cﬁ;, and ¢ (¢} follows from the application of the regener-
ation model). The variable ¢/ represents the present value of
maintaining the pumping station from year 0 to year i, CZ rep-
resents the present value of a renovate option that starts in
year i and ends in year j, and cj; represents the present value
of a replace option that starts in year i and ends in year j.

The cost calculations under total inflation, differential
inflation, and age-related cost increases are rarely addressed
in the literature. These factors are a real issue in practice.

The relations between total inflation f;,, differential inflation
fa> general inflation f,, real interest rate ir,,, and nominal
interest rate i,,,, are depicted in Equations (1) and (2). The
general inflation rate is equal for all cost categories: invest-
ments, major overhauls, O&M expenditures, and electricity
costs. The differential inflation differs across categories, and
therefore the total inflation rate is also specific for a
cost category.

Inflation should be treated consistently in present value
analyses. Equations (1) and (2) define: Cash flows that are
inflated with the total inflation rate f;,, are discounted with
the nominal or effective discount rate i,,,. Cash flows that
are inflated with a differential inflation rate f; are dis-
counted with the real interest rate i, (Brealey et al., 2017;
Park, 2011; Sullivan et al., 2012):

(tfur) _ (L) A+ (1+fa)

(1 + inom) - (1 + inom) B (1 + ireal)

Discounting of real and nominal cash flows with the
appropriate discount rate leads to the same present values,
as noted in Equations (1) and (2). By definition, all present
values ¢, Csz’ and cfjhave the same baseline t = 0. The fol-
lowing equations are used to calculate the present values.
The equations are expressed in nominal terms, and their
symbols and indices are presented in Table 4.

Under differential inflation, the present value (t = 0) of
an initial investment I for an asset bought in year ¢ and dis-
posed of at age n is modelled as:

o) (L)' (1 + fa)'
Pripn) = 1 ‘ )
(1 + lnom)

The initial investment expressed in the current price level
for an asset bought in year t is inflated with general infla-
tion and differential inflation to year ¢, and discounted with
the nominal discount rate from year ¢ to the present.

Public infrastructure assets generally do not have salvage
values from trading as motivated in Section 3.1. However, if
these salvage values are relevant, the present value of a sal-
vage value of an asset bought in year t and disposed of at
age n can be modelled as:

T (1) (- (18 (1 £)"(1 4 fo)”
(1 + inam)t+n :

(6)

Pt -4
(8)

The factor b represents an annual reduction in the initial
investment, expressed as a percentage. The investment is
first inflated to the year of purchase, then reduced to calcu-
late the salvage value at age n. A minus sign is added before
the investment costs as a salvage value is income. The sal-
vage value may have different inflation rates than the initial
investment, and therefore the salvage value is inflated from
year t to age n with its own inflation rate. Finally, the
inflated salvage value at time t + n is discounted to the pre-
sent using the nominal discount rate.

In the case of end-of-life time-variant demolition costs D,
the present value of these costs can be modelled in a similar
manner, as shown in Equation (9). The time-variant



demolition costs are modelled as a percentage dm of the ini-
tial investment at age n and a separate inflation rate for the
demolition costs is used:

Loy (L+£) (L + fan) - dm - (14 £)"(1 + fap)"
(1 + inom)t+n

Ppit t-+4]

9)

However, for the infrastructure case study, demolition
costs are not considered to be age-related (no significant
age-related scrap value) and included as fixed costs in the
successive investment costs.

Major overhauls (H) 1, Hp)a, ---, Hp),) are planned
periodically at age ni,n,, ..., ng while Hy); is the cost
of the first major overhaul in the current price level,
H(g), is the cost of the second major overhaul in the cur-
rent price level, and Hg), is the cost of the last major over-
haul in the current price level. The parameter n, represents
the age of the asset at the last major overhaul, a number of
years before the end of its service life (). The present value
of major overhauls of an asset bought at time t and dis-
posed of at age n is modelled as follows:

Ho) (14 £)"™ (U + fam)™
(1 + dpom)™™
Ho(1+£)"" (1 + fam,)™™
(1 + dpom)™™

H(o)ﬂq(l +J€g)t+nq(1 +fd_Hq)t+nq
(1 + inom)thq .

The yearly O&M expenditures (M) can be subject to
both inflation and age-related price increases (g). O&M
expenditures can increase with age owing to increasing fail-
ures and maintenance needs. To model the present value of
O&M expenditures, the geometric gradient factor is adapted
by substituting i,os for i, conforming to Equation (1).

The generic geometric gradient with cash flows in real
terms is (Newnan et al,, 2016; Park, 2011; Sullivan et al,,
2012):

Pt t4n)

(10)

+ ...+

1—(1 4 p)"(1 + iyear)”
ireal - P

where parameter A; is the first year’s real costs, n is the

age of the asset, and p is an annual percentage price

increase. First, p is split into a part reflecting differential

inflation and a part reflecting age-related price increases as
follows:

(11)

P= Al,reul

(1+p) =0 +f)(1+g) =
p=(1+f)(1+g)~1.
Substituting (1 + p) and p in Equation (11) results in:
1-(1+£)" (1 4+ 8)" (1 + drea) "
ireal — (1 +fa)(1+8) +1

Expressing the right-hand side in nominal terms requires
the substitution of:

P= Al,real (12)
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. _ (1 + inom)
(1 + lreal) = (1 +]€g)
i | = (inom_f:g)
rea (1 +_]fg)
— Al,nom
1,real (1 —i—fg)l

Performing these substitutions results in a geometric gradi-
ent with cash flows expressed in nominal terms as follows:

1I=(1+f)"(1+8)" (1 +fo)" (1 + inom) "
—(I+f)(1+g)(1+f) +1
Using this expression, the present value of O&M expen-

ditures for an asset bought at time tand kept in service for
n years is modelled as:

Moy (1+£) (1 + faar) ™ (1 + gur)!

(1 + ipom)’
(14 f)" (1 fann)" (1 + ga)" (1 + nom) ™"
(L4fo) (1 + far) (1 + gu) + 1

P :Al,nom (13)

lnom

PM[LHn] =

inom -
(14)

The parameter Mg represents the first-year O&M costs
in the current price level (base year 0), which are inflated
from year 0 to the first year after purchase (t+ 1) of an
asset. These inflated first year O&M costs are then multi-
plied with the classic geometric gradient factor, adapted for
nominal cash flows. This results in the nominal future value
of a series of n years of increasing O&M costs at the time of
purchase t. To find the present value (base year 0), these
costs are discounted over ¢ using the nominal discount rate.

A similar process is followed to calculate the present
value of the annual electricity costs E:

E(O)(l _|_j:g)t+l(l +fdAE)t+l(l+gE>l

(1 + ipom)’
. 1_(1 +f:€)n(l +fd,E)n(l +gE)n(1 + inomrn
(T+fo) (1 + fap) (1 +ge) + 1

P E[t,t+n] —

inom -
(15)

The age-related price increase for electricity costs gg
could arise, for example, owing to greater electricity con-
sumption as assets age.

Excluding salvage values from trading and time-variant
demolition costs (see case study description in Section 3.1 for
the underlying motivation), the total present value of an asset
(t = 0) installed in year t and kept until year ¢ + n is calcu-
lated using Equations (7), (10), (14), and (15) as follows:

Clt,t+n] = Priten) + Prtr+n] + Pumpte+n] + PE[t 40 (16)

Equation (16) is used to calculate the present values
¢, ¢y, and ¢j;- Regarding the formulation of the shortest

i i
path problems in Section 3.2, the following is considered:

t=0 for ¢

i
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Table 5. Results of optimised continuous replacements when starting at t =0.

Regeneration model starting at t=0 Replace Replace Replace Replace Replace
Optimal life 60 60 60 60 60
Time interval [0,60] [60,120] [120,180] [180, 240] [240, 300]

Present values (baseline t=0)
Total present value

G g =€ 3,237,632

Coro = € 547,643

G080 = € 93,695
¢ = € 3,897,920

Cigo 240 =€ 16,152 Gaoz00 = € 2,798

v
t=1i for cﬁ}, <
n=i for c,

— z
n=j for cZ,cij.

3.4. Results of the optimised maintain, renovate, and
replacement chain for the case study

The present values ¢, CZ, and ¢j; for the case study are
obtained using Equation (16). The DP recursion in
Equation (4) is first used to calculate the ¢ values of the
regeneration model (Figure 2), which in the current case
study represent the present values of a chain of optimised
continuous replacements starting at t = 0, 1, 2, ., 45
and ending at T, = 300years. Hereafter, the combined
maintain, renovate, and continuously replace network is
solved (Figure 1) using the same DP recursion. The Java
code for the nested implementation of this backward recur-
sion is given in Appendix A. The results of the regeneration
model for continuous replacements that start at t = 0 are
presented in Table 5. The ¢f values for j=0-45 (thus, the
total present values of each optimal replacement chain start-
ing at time j) are shown in Figure 3.

The current case study uses DP to calculate the future
optimal service lives of the continuous replacements starting
at t = 0 and ending at t=45. The postponement of this
optimised replacement chain will decrease its present value
as depicted in Figure 3. These present values (C]Z) in
Figure 3 represent the optimised cost values for the final
paths Y; — Z; in Figure 1. Table 5 illustrates that the eco-
nomic lives of future challengers remain unchanged from
the current viewpoint. This is a characteristic of the current
case study. Different asset types with different cost profiles
will result in other economic lives which are not likely to be
equal. In addition, starting the replacement chain in the
future instead of t = 0 influences economic lives.
Although economic service lives of the continuous replace-
ments are similar in the current case study, it still needs a
DP solution for continuous replacements as differential
inflation rejects the repeatability assumption of the future
cash flows. A comparison with a classic approach (without
DP solutions) follows in Section 3.5.

The combined optimisation model in Figure 1 incorpo-
rates the current defender with the renovation option and
continuous replacements. In essence, solving the mathemat-
ical model does not differ from the regeneration model.
The only difference is another network structure, a differ-
ent corresponding cost matrix, and different cost values.
The final calculation results are presented in Table 6. The

optimal strategy is to replace the pumping station immedi-
ately. The optimised path is X,, Yy, and Zzp (recall that
the index represents the year in which the activity ends).
Several additional infrastructure case studies with other
realistic input data were considered in this DP model lead-
ing to different paths for optimal strategies, such as path
X15, Y25, and Zg()(). The path Xo, Y(), and Zg()() of the current
case study may not appear very exciting. However, this
path is an equally optimised path among many pos-
sible paths.

3.5. Comparison of the classic approach to
replacement analysis

The classic approach to replacement analysis compares the
minimum Equivalent Annual Cost (EAC*) values of main-
tain, renovate, and replace options at their economic lives.
The classic theory is well described in textbooks by authors
such as Blank and Tarquin (2012); Hastings (2015); Newnan
et al. (2016); Park (2011); and Sullivan et al. (2012).

As explained in Section 2, the classic economic life com-
parison cannot be used when differential inflation is
involved. A decision maker not familiar with DP techni-
ques could therefore choose to ignore differential inflation
or to include differential inflation in the classic calculation
techniques. Both situations are incorrect. In the first case,
the calculations are correct but real costs caused by differ-
ential inflation are ignored. In the second case, there is an
attempt to include real costs caused by differential infla-
tion, but the calculations will be incorrect owing to the
repeatability assumption of the challengers’ cash flows that
will not hold in the comparison of EAC* values. Both
cases are investigated and compared to the optimal
DP solution.

Excluding differential inflation in the case study (all dif-
ferential inflation is set to zero), results in the EAC* values
as depicted in the top part of Table 7. Based on these values,
a decision maker would maintain the defender for 5 years.
The major overhaul necessary for maintaining the defender
at the end of year 5 prompts a renovation. The renovated
pumping station is retained for 30 years before replacing it.
The classic approach in this example searches for the least
total present value which is obtained by the lowest sequence
of EAC* values as the expensive major overhauls will
enforce an intervention at the calculated economic lives.
Without major overhauls, optimised intervention times in a
classic defender-challenger replacement analysis may occur a
couple of years beyond the economic service lives (Park,
2011). Nevertheless, this is not the case in the current
case study.
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Present values of optimal replacement chain t=[j,300]

€ 4,500,000

€ 4,000,000

€ 3,500,000

€ 3,000,000

€ 2,500,000

€ 2,000,000

€ 1,500,000

€ 1,000,000

€ 500,000

€0
0 5 10 15

25 30 35 40 45

Start time j

Figure 3. Present values ¢; of optimised replacement chains starting at t=j and ending at ¢ = 300.

Table 6. Results of optimised maintain, renovate, and replacement chain.

Maintain, renovate, Replace and
replace Maintain Renovate regenerate
Node X() Y() Z300
Service life 0 years 0 years 300 years
Time [0,0] [0,0] [0,300]
Present values E=€0 o=%€0 = € 3,897,920

(base line t=0)

Total present value Pro,300 =€ 3,897,920

Table 7. Classic EAC* comparison calculated at t=0.

Baseline t=0 EAC* n* (years)
Excluding differential inflation

Maintain now and keep for 5 years € 121,822 5
Renovate now and keep for 30 years € 129,703 30
Replace now and keep for 60 years € 138,430 60
Including differential inflation

Maintain now and keep for 5 years € 123,765 5
Renovate now and keep for 10 years € 136,496 30
Replace now and keep for 60 years € 143,109 60

The total present value of this scenario is presented in
Table 8 and follows from straightforward discounting of a 5
years’ annuity of €121,822 starting in year 1, a 30 years’
annuity of €129,703 starting in year 6, and an infinite annu-
ity of €138,430 starting in year 36. Note that annuities start
1 year after an investment, thus, in year t 4 1 and are first
discounted to year t. Hereafter, this local present value is
discounted to the present to t = 0.

The second case includes differential inflation in the
classic economic life comparison. This leads to the EAC*
values depicted in the bottom part of Table 7. The EAC*
values are marginally higher owing to extra costs induced
by differential inflation. Based on these EAC* values, a
decision maker would also maintain the pumping station
for 5years, renovate and retain it for 30 before replacing it.
This is not correct as the EAC* values should not be
treated as constants, as a consequence of differential infla-
tion. The total present value is presented in Table 8 and

calculated similar to the previous case, though only the
cost values differ.

Comparing the classic approach with the DP model shows
a difference in optimal strategies and in their total present val-
ues. The classic approach underestimates the total cost of the
case study in a range of k€500 to k€635 on an investment vol-
ume of k€2,500 in comparison to the optimal DP solution.
Under estimating the real costs leads to a suboptimal strategy.
The DP solution favours an early replacement, while the clas-
sic approach advises to postpone the replacement because the
relative high differential inflation on O&M expenditures make
the maintenance and renovate options less attractive.

Under differential inflation and multiple successive inter-
vention strategies, it is not possible to derive generic rules
that estimate the deviations from the classic approach as too
many variables are involved. Therefore, each case study
needs to be judged on its case-specific circumstances. The
number of successive intervention strategies is of import-
ance. The cost profiles of intervention strategies may differ
significantly. Differential inflation is positive in the case
study considered, but it can also be negative depending on
the type of costs considered. As ageing plays a role, the tim-
ing of major overhauls can be a decisive factor. Discount
rates are important too. Low discount rates, as seen in pub-
lic sector organisations, amplify the impact of differential
inflation. The current study demonstrates that differential
inflation matters and requires careful assessment.

The contribution of the current research to existing lit-
erature is twofold. First, for infrastructure assets, it confirms
the case-specific conclusion of other authors on the limita-
tions of classic replacement techniques. Second, the current
research developed a novel nested DP model capable of
dealing with multiple successive intervention strategies
under differential inflation. Instead of three intervention
strategies in the case study (maintain, renovate, and con-
tinuously replace), more intervention strategies can be
included, following the same approach.
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Table 8. Comparison of DP solution and classic replacement techniques.

Intervention strategies Maintain Renovate Replace and regenerate Total present value

Classic without differential inflation 5 years t=[0,5] 30 years t=|5,35] Infinite t=[35, oo] € 3,262,784

Classic with differential inflation 5 years t=[0,5] 30 years t=|5,35] Infinite t=[35, oo] € 3,397,622
(wrong application)

Optimal DP solution 0 years 0 years Infinite t = [0, approx. o] € 3,897,920

4. Discussion and limitations

Although DP and LP techniques provide accurate results in
comparison to classic replacement techniques, there are lim-
itations to this approach. In all likelihood, the most import-
ant one is that practitioners are not familiar with DP and
LP techniques. Replacement analyses using these techniques
are not found in conventional textbooks on engineering eco-
nomics. Applying this approach in practice may therefore
be challenging.

A second limitation to the nested DP model is its determin-
istic nature. This does not undermine the value of the
described optimisation method. Probabilistic models are used
to incorporate uncertainty in the timing and size of costs.
These probabilistic models underlie the cost values in the cost
matrices. Adding a probabilistic model would improve the
accuracy of the cost matrices and results of the approach, but
would not alter the nested optimisation method. The challenge
of introducing uncertainty in the current optimisation
approach is considered for further research.

A third limitation to the case study is that only two chal-
lengers are considered, a renovation option and a continuously
replace option. The future may hold more than two chal-
lengers. Adding additional challengers to the described opti-
misation approach follows the same methodology, but will
require more cost calculations of the paths in the network.
This study proposes to be practical. The case study shows that
for the cash flow patterns of common public infrastructure
assets, decisions generally occur before one of the major over-
hauls or the end of the technical life of an asset. This is owing
to the fact that major overhauls are expensive, and the costs of
overhauls are generally much greater than the regular O&M
expenditures. Cost calculation efforts can be significantly
reduced by limiting the decision nodes to the intervals of the
major overhauls and technical lives. This will also enhance the
applicability of the model in practice.

A fourth limitation is that the future is uncertain.
Nevertheless, the prime interests of a maintenance engineer
are the short- and mid-term decisions, which are influenced
by the long-term estimates of future costs. A reasonable esti-
mate of the future costs is adequate in this context. The
described optimisation approach already provides a more
accurate estimate than the classic methods, which assume
continuous repeatability of the first challenger’s life cycle
cash flows. Finally, emphasis should be given to the com-
plexity of replacement decisions in general and least costs
are just one of the replacement criteria involved.

5. Conclusions

Several authors have investigated the application of classic
replacement techniques under inflation and technological

change, and concluded in their case studies that using clas-
sic replacement techniques will lead to errors. DP and LP
techniques are required to identify optimal replacement
strategies when the assumption of continuous repeatability
of life cycle cash flows of future intervention strategies does
not hold. Case-specific modelling is applied to find the least
cost route in a network of probable future scenarios.

In this study, a novel nested DP model is developed for a
replacement problem that is common for many public-sec-
tor infrastructure organisations. This replacement problem
is demonstrated in a case study that consists of an existing
asset and multiple successive intervention strategies under
differential inflation. The multiple intervention strategies
include a renovate option followed by a continuously
replace option as a final estimate for future cash flows.

Although the last intervention strategy considers continu-
ous replacements, the life cycle cash flows of these replace-
ments are non-repeatable owing to differential inflation. The
optimisation model can be extended with more successive
intervention strategies which allows for simulating flexible
technology change. Total inflation, differential inflation, and
age-related cost increases are explicitly addressed as these
are realistic in practice and should not be ignored. The opti-
misation model is applied to a case-study which demon-
strates that the inclusion of differential inflation influences
the optimised total intervention strategy.

The entire optimisation model is described as a nested
DP approach. First, the continuously replace optimisation is
solved, providing the present values of replacement chains
starting at different future times. Second, the three alterna-
tives (maintain, renovate, and continuously replace) are
combined and optimised for the lowest total present value.
This yields an optimal intervention chain for maintaining,
renovating, and replacing the asset.

For infrastructure assets, optimal intervention decisions
are very likely to occur just before a major overhaul or the
end of the technical life of an asset. This feature can be
used to reduce the size of the solution matrix and cost cal-
culations. The optimisation approach provides a realistic
solution for a common infrastructure asset replacement
problem of an existing asset and multiple successive inter-
vention strategies under differential inflation.
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Appendix A

Java code nested DP recursion

W/[_nYearsTotal] = 0;
for (intk =_nYearsTotal-1; k> = 0; k-) {
doublebestValue = Double. MAX_VALUE;
intbestOption =-1;
for (intl =k + I; 1< = Integer.min(_nYearsTotal, I + 90); I++) {
doublevalue = _costReplace[k][1] + W[l];
if (value < bestValue) {
bestValue = value;
bestOption =1;
}
}
WIKk] = bestValue;
WChoice[k] = bestOption;
}

for(intj = 0; j< = _nYearsMaintain; j++) {
doublebestValue = Double MAX_VALUE;
intbestOption =-1;
for (intl=j; 1< = j+30; 14++) {
doublevalue = _costRenovate[j][1] + WT[l];
if (value < bestValue) {
bestValue = value;
bestOption =1;
}
}
Y[j] =DbestValue;
YChoice[j] = bestOption;
}

doublebestValue = Double MAX_VALUE;
intbestOption = -1;
for(inti = 0; i< = _nYearsMaintain; i++) {
doublevalue = _costMaintain[i] + Y[i];
if (value < bestValue) {
bestValue = value;
bestOption =i;
}

}
X =DbestValue;

XChoice = bestOption;
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