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Simulating short-range order in 
compositionally complex materials

Alberto Ferrari1, Fritz Körmann    1,2  , Mark Asta    3,4 & Jörg Neugebauer2 

In multicomponent materials, short-range order (SRO) is the development 
of correlated arrangements of atoms at the nanometer scale. Its impact 
in compositionally complex materials has stimulated an intense debate 
within the materials science community. Understanding SRO is critical to 
control the properties of technologically relevant materials, from metallic 
alloys to functional ceramics. In contrast to long-range order, quantitative 
characterization of the nature and spatial extent of SRO evades most of the 
experimentally available techniques. Simulations at the atomistic scale 
have full access to SRO but face the challenge of accurately sampling high-
dimensional configuration spaces to identify the thermodynamic and 
kinetic conditions at which SRO is formed and what impact it has on material 
properties. Here we highlight recent progress in computational approaches, 
such as machine learning-based interatomic potentials, for quantifying and 
understanding SRO in compositionally complex materials. We briefly recap 
the key theoretical concepts and methods.

Compositionally complex materials (CCMs)1–4, including medium- and 
high-entropy alloys and ceramics, are crystalline mixtures of many 
elements in concentrated compositions. Unlike standard materials, 
where the alloying elements are diluted in one or two elements, CCMs 
have three or more principal components. This enables the explora-
tion of larger portions of high-dimensional multicomponent phase 
diagrams, leading to superior design flexibility and tunability, which can 
be exploited to improve mechanical5–11, physical (transport, electronic 
and magnetic)12–19 and chemical20–23 properties.

Compositional complexity often translates into a more com-
plicated atomistic structure, because, in contrast to pure elements, 
mixtures generally break the crystal symmetry because of configu-
rational arrangements of the chemical species over the sites of the 
underlying parent lattice, coupled with local distortions of the atoms 
away from them. Many recent investigations of CCMs have focused 
on determining a realistic atom-by-atom picture for these materials 
and on characterizing the degree of order or disorder at the atomistic 
level. This is of utmost importance for the understanding and design 
of materials, as the details of the atomistic structure often have direct 
consequences for the performance of a material. In this Review we 

first discuss how the local configurations of atoms are characterized, 
if and how they deviate from randomness by forming local order, and 
if and how they impact the microscopic and macroscopic properties 
of CCMs. To do this, we revisit how ordering can emerge in CCMs and 
how to distinguish long- and short-range ordering.

In thermodynamic equilibrium, the atomistic structure of CCMs is 
determined by the balance of three factors: (1) internal energy, related 
to the strength of the interatomic bonds, (2) vibrational entropy, which 
favors the formation of bonds with softer force constants, and (3) con-
figurational entropy, which tends to favor configurations with a large 
number of possible realizations. External thermodynamic parameters, 
among which the prime example is temperature, tip this balance in 
favor of order or disorder. If the atomistic structure is periodically 
repeated in space, a material is said to possess long-range order (LRO). 
For CCMs, LRO is common only at low temperature. At high tempera-
ture, materials tend to lose LRO, which goes along with a phase tran-
sition, but correlations between atoms may still persist over finite 
spatial ranges (for example, several neighbor shells), and the atomistic 
configuration may not be completely random because the strength 
between certain pairs (or triplets, quadruplets and so on) of elements 
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Although there is now consensus in the CCMs community that SRO 
is probably omnipresent, there is still debate about whether and how 
it can impact measurable materials properties27,28. The main reason 
behind this uncertainty is that, experimentally, it is very challenging to 
quantitatively measure the degree of SRO for all pairs (because it has a 
typical length scale of only a few nanometers) and to control SRO, as it is 
very sensitive to the processing conditions29–32. Moreover, SRO does not 
seem to be correlated with simple chemical descriptors (for example, 
atomic size mismatch or electronegativity difference)33, but is instead 
driven by the strength of the interactions between pairs of elements33,34. 
Given the inherent difficulties of performing experiments, theoretical 
simulations have thus been critical in exploring this phenomenon.

One of the most popular methods to gain atomistic insights into 
CCMs is density functional theory (DFT). DFT is based on quantum 
mechanics and allows calculation of the total energy and forces of 
a system of atoms up to milli-electronvolt accuracy. Unfortunately, 
obtaining useful information on SRO directly from DFT is not straight-
forward. As displayed in Fig. 2, to sample all the possible configurations 
of just the first three neighbor shells around an atom in a quinary alloy 
with DFT (‘brute force’ simulation) would already take several orders 
of magnitude more time than the age of the Universe. This is because 
(1) the number of possible configurations is extremely large (543 for a 
quinary alloy with a face-centered cubic lattice) and (2) the high accu-
racy of DFT comes at a high computational cost, deriving mainly from 
the repeated diagonalization of very large matrices.

The first problem can be addressed by ranking the configurations 
in terms of frequency/likelihood and sample only the most likely ones. 
According to Boltzmann’s statistics, high-energy configurations are 
exponentially less likely than low-energy configurations. The more 
likely configurations can be explored with the Metropolis Monte Carlo 
algorithm35, which is several orders of magnitude more efficient than 
‘brute force’ sampling, as shown in Fig. 2. However, Monte Carlo simula-
tions still require substantial computational time if combined with DFT 
calculations, and existing works that rely only on DFT are often limited 
in terms of system size or number of configurations and also often 
rely on the assumption that atoms reside on ideal lattice sites36–39. To 
further decrease the computational time, the interatomic interactions 
must be parameterized with simpler models, and how to parameterize 
these interactions accurately and efficiently is actually one of the main 
challenges currently faced by the computational materials science 
community.

might be stronger than others. In this case, a material is said to possess 
short-range order (SRO). SRO is particularly relevant for CCMs given 
the increased variability of the chemical species.

The difference between LRO and SRO is best exemplified by con-
sidering a model system with two atomic species (Fig. 1, black and 
white) that occupy a square lattice. For simplicity, we can assume that 
the atoms interact only with their nearest neighbors and that there is 
a net attraction between opposite species. As shown in Fig. 1, a long-
range-ordered chessboard pattern arises at low temperature because 
opposite-type pairs tend to form nearest-neighbor bonds. This LRO 
disappears at Tcrit (Fig. 1d, magenta line, corresponding to the LRO 
parameter, defined as the difference in composition of black atoms 
on the two sublattice sites of the checkerboard structure). Above Tcrit, 
opposite-type pairs are not able to arrange in a regular pattern, but 
they still tend to attract each other more than same-type pairs. This 
imbalance leads to SRO.

The easiest way to quantify SRO is to use the Warren–Cowley 
parameters24,25, which measure to what extent the correlation between 
pairs of elements i and j deviate from randomness. The Warren–Cowley 
parameters for multicomponent materials are defined as

αm
ij = 1 −

pm
ij

cicj
, (1)

where pm
ij  is the probability of finding i–j neighbors in the mth  

shell, and ci and cj are the concentrations of i and j, respectively.  
We note that pm

ij  is equal to the product cicj if sites i and j are  
uncorrelated, as they would be in a random alloy, where αm

ij = 0 for all 
shells m. By contrast, the Warren–Cowley parameters are negative 
(positive) if elements i and j tend to attract (repel) each other. The  
green line in Fig. 1 shows α1

00, that is, the black–black (or equivalently 
white–white) correlation at the first neighbor shell. It can be clearly 
seen that same-type pairs repel each other up to very high temperature, 
indicating that SRO may be active even up to the melting point of  
a material26.

Qualitative analysis of the simple model in Fig. 1 can be general-
ized to any non-ideal solid solution, meaning that, if the interactions 
among the components are not negligible, every mixture of elements 
possesses SRO. This naturally includes CCMs, for which, in most cases, 
the simultaneous presence of many elements enhances the imbalance 
among the atomic interactions and hence promotes SRO.
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Fig. 1 | Long- and short-range order. a–c, Low- (a), medium- (b) and high- (c) 
temperature configurations of a two-dimensional binary alloy with attractive 
interactions between opposite-type pairs. Purple and green shaded areas 
indicate LRO and SRO, respectively. d, Temperature dependence of the LRO and 
SRO parameters. The shaded area indicates typical statistical error bars.
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Fig. 2 | Gigantic chemical phase space requires a large amount of 
computational resources. The estimated time required to sample all the 
possible configurations in the first three neighbor shells (see inset) of a quinary 
alloy (`brute force') or to perform a million Monte Carlo steps with DFT, 
compared to the length of a working day, the average human lifetime, the whole 
span of human history and the age of the Universe. For the DFT calculations, we 
assumed a typical time of 1 h for each configuration.
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In this Review we discuss how SRO is currently investigated with 
computer simulations and how, based on these simulations, it is pre-
dicted to change the properties of CCMs.

Interatomic interactions in many dimensions
The problem inherent to sampling millions of configurations with 
DFT is its low computational efficiency. To address this issue, energies 
and forces derived from quantum mechanics must be obtained from a 
simpler mathematical format for the interatomic interactions between 
atoms, but finding accurate interactions that best mimic the multi-body 
relations between real atoms is not straightforward. This problem 
is even more difficult for CCMs, because these interactions usually 
depend strongly on the chemical environment, which is characterized 
by a high variance when many elements are mixed together. Mathemati-
cally, this means that the domain of the functions that describe the 
interactions is high-dimensional, so exponentially larger databases 
are required for the fitting (the curse of dimensionality).

Especially when they are used to characterize ordering mech-
anisms, the methods to obtain interatomic interactions are distin-
guished as off-lattice and on-lattice models (Fig. 3). In off-lattice 
models, the energy of an atom i is a direct function of the positions R 
and chemical species Z of its N neighbors, and hence the total energy 
of a particular configuration σ is given by

Eoff−latt(σ) = ∑
i
Ei(σi), σi = (R1, ..., RN; Z1, ..., ZN). (2)

In on-lattice models, the atomic displacements with respect to the ideal 
lattice sites are assumed to be small, allowing for an affine mapping of 
the equilibrium atomic positions to the underlying crystal lattice sites. 
In practice, this requirement limits applications to systems that are 
dynamically stable, that is, to those for which atomic distortions do 
not alter the atomic environments substantially. The energy of an atom 
i thus depends only on the decoration of chemical species around it:

Eon−latt(σ̃) = minREoff−latt
= ∑

i
Ẽi(σ̃i), σ̃i = (Z1, ..., ZN).

(3)

Atomic coordinates are not entered explicitly in this model and there-
fore the computational complexity is dramatically reduced.

The traditional approaches used to parameterize interatomic 
interactions are (1) cluster expansion40, an on-lattice model that con-
siders the total energy of a system as a sum of contributions from 

multi-body figures of atoms (pairs, triplets, quadruplets and so on) up 
to a given distance threshold, and (2) classical potentials41,42, off-lattice 
models that assume a physically motivated functional form for the 
interactions and fit the parameters of this form to reproduce a set of 
properties. These approaches provide reasonable accuracy for binary 
or ternary systems. However, they become increasingly intractable for 
materials containing larger numbers of components, such as CCMs, 
and are potentially less accurate due to the challenge of adequately 
sampling the configuration space in their training for such systems. 
This challenge is mainly related to the fact that the number of fitting 
parameters is inadequate: too large for cluster expansion, yielding 
impractical fitting, and too small for classical potentials, yielding poor 
accuracy. Moreover, neither of these methods, at least as proposed 
originally, can treat magnetism, which is intimately connected with 
SRO for some materials43.

Another class of approaches, more efficient for CCMs, exploits 
the coherent-potential approximation44,45, a mean-field treatment that 
introduces an effective medium to model the varying potential of differ-
ent atoms in an alloy. With these approaches it is possible to calculate 
the interactions between pairs of atoms in real space (with the general-
ized perturbation method46, based, for example, on the exact muffin-tin 
orbital formalism47) or in reciprocal space (with concentration wave 
analysis48, based, for example, on the Korringa–Kohn–Rostoker Green’s 
function method49) and hence to derive approximate SRO and LRO 
tendencies. The main drawback of these mean-field approximations 
is that they cannot incorporate atomic distortions, which have been 
observed to qualitatively impact ordering mechanisms50. This is due 
to the fact that atomic displacements can give rise to sizable strain-
mediated interactions that can qualitatively and quantitatively change 
the nature of the SRO51,52.

The limitations of such conventional approaches have led to the 
development and application of a new generation of methods based on 
the concepts of machine learning. These approaches can be viewed as 
improvements and generalizations of the traditional cluster expansion 
and classical potentials methods, with the application of data science 
techniques, such as regularization or feature engineering. Although 
many formalisms to derive the interatomic interactions have been 
proposed, only a few have proven accurate enough to treat CCMs.

The conventional cluster expansion can be made more robust for 
CCMs by applying feature selection and dimensionality reduction to 
decrease the number of parameters before fitting. It has been shown 
that preselecting the most important interactions with the Bayesian 
information criterion53, or applying principal component analysis54, 
substantially improves the quality of cluster expansion for CCMs. 

Classical potentials
Moment tensor potentials

Spectral neighbor analysis potentials

On-latticeO�-lattice

a

With relaxation
Cluster expansion

Low-rank potentials

Without relaxation
Coherent-potential approximation

b c

Fig. 3 | Off-lattice and on-lattice models. a, Off-lattice models, capturing chemical configurations and the full atomic degrees of freedom. b, On-lattice models, 
allowing the inclusion of atomic distortion energies. c, On-lattice models, restricted to the ideal lattice positions.
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Furthermore, addition of a penalty term to regularize more complex 
models during fitting (for example, by adding the norm of the fitting 
parameters to the cost function) also improves the regression of the 
interaction parameters54,55.

Classical potentials can instead be enhanced by increasing the 
number of parameters, up to the point of no longer even requiring 
the definition of a specific function. This leads to the development of 
machine learning potentials, which are currently the state-of-the-art 
method for modeling interatomic interactions with near-DFT accuracy.

One of the most popular classes of machine learning potentials 
used to study SRO in CCMs is that of low-rank potentials (LRPs)56, a class 
of systematically improvable on-lattice potentials suited for Monte 
Carlo simulations. Like cluster expansion, LRPs establish a mapping 
between the local atomic arrangements of atoms and the energy, 
but are much more efficient when the training sets are sparse; that is, 
the parameter space is high-dimensional and the training databases 
are comparatively small. LRPs are based on tensor decomposition 
techniques, generalizations of the matrix factorization algorithms 
used, for example, by product recommendation systems in electronic 
commerce57.

Like all on-lattice models, the main disadvantage of LRPs is that 
they cannot explicitly include atomic vibrations, which may con-
tribute to SRO at finite temperature. Off-lattice machine learning 
potentials, among which moment tensor potentials (MTPs)58 and 
spectral neighbor analysis potentials (SNAPs)59, lift this approxima-
tion of a static lattice by parameterizing the interatomic interactions 
as a function of the distance and angles between a central atom and 
the atoms in its neighborhood. The different flavors of machine learn-
ing potentials proposed in recent years differ from each other in the 
features they use to represent the neighborhood of an atom, and 
compete to provide an as-complete representation as possible at the 
least computational cost. Machine learning potentials are therefore 
promising for tackling computational problems that are, on the one 
hand, too expensive to be solved by DFT directly (for example, prob-
lems requiring very large supercells or long simulation times), but 
for which, on the other hand, a computational accuracy is required 
that cannot be achieved by classical potentials. Some examples are 
given in the following.

Three examples in the literature show that traditional methods 
may be inadequate for CCMs and that machine learning potentials 
could be more appropriate. (1) For the MoNbTaW alloy, approaches 
based on the coherent-potential approximation and cluster expan-
sion60–62 indicated that this system partitions into two ordered phases, 
one containing Mo and Ta and one containing W and Nb, but more 
recent calculations with an LRP showed that this is an artifact of neglect-
ing the atomic distortions and that another phase may be more sta-
ble50. (2) For the MoNbTaVW alloy, it was shown that MTPs are much 
more accurate than classical potentials to calculate the vibrational 
contributions to the free energy up to the melting point63. (3) A clas-
sical potential fitted for the CrCoNi alloy64 and used in many investi-
gations exhibits qualitatively different Warren–Cowley parameters 
with respect to recent machine learning potentials65 and DFT37,39. The 
classical potential also predicts a tendency for the alloy to decompose 
into Ni-rich and CrCo-rich domains, which has so far not been observed 
in DFT nor in experiments.

SRO and its impact on materials properties
The advancement of the computational techniques used to character-
ize SRO in recent years, especially with the advent of machine learning 
potentials, has led to a better understanding of this phenomenon. As 
most of these techniques have been developed only very recently, the 
majority of SRO investigations discussed in the following were per-
formed based on explicit DFT calculations. SRO has been observed in 
many CCMs, including (1) the famous Cantor alloy, CrMnFeCoNi, and 
some of its subsystems37,66,67, also with the addition of Al68,69, Cu70 or 
Pd71; (2) alloys of the refractory elements Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and 
W60,61,72–75; (3) more diverse combinations of elements, such as VCoNi76, 
Co–Fe–Ni–Ti74,77, Al–Cr–Fe–Ni–Ti78, AlNbTiV79, AlHfNbTaTiZr and their 
subsystems54; and (4) multication ceramics with rocksalt80 and pyro-
chlore81 structures. Despite the abundance of observations, however, 
details of how this mechanism impacts CCMs are still not fully clear.

In this section, we discuss the implications of SRO regarding fun-
damental materials parameters, related to basic thermodynamical, 
mechanical or chemical features, and applied properties, involving 
more complex mechanisms (mechanical response, ionic transport, for 
example) or structures (defects). The impact of SRO on fundamental 
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Fig. 4 | Consequences of SRO. A concept map showing the features and 
consequences of SRO in relation to the fundamental parameters (top) and 
applied properties of CCMs (bottom). The schematic shows how SRO can 
directly impact fundamental properties (the intrinsic coupling of local magnetic 

moments and local cohesion is indicated by double arrows) and indirectly a 
number of applied materials properties (for example, mechanical properties or 
conductivity).
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parameters is generally well understood from the atomistic point of 
view, but lacks experimental validation. On the other hand, the impact 
of SRO on some applied properties is still under debate from both 
theoretical and experimental points of view.

To give an impression of how fundamental parameters and 
applied properties are intertwined with each other and how both may 
be influenced by SRO, we sketch in Fig. 4 the key concepts that will be 
discussed in this section. The advantage of investigating SRO and its 
consequences with computer simulations, in contrast to experiments, 
is that individual features can be independently resolved for the pur-
pose of clarifying how different mechanisms ultimately impact the 
performance of a material.

SRO and fundamental materials parameters
Atomistic simulations clearly indicate that SRO can have direct impact 
on the physical properties of CCMs. For example, when the degree of 
SRO increases, the elastic moduli generally increase because the inter-
nal energy decreases38,67,77,82,83, and in magnetic alloys the magnetiza-
tion can decrease because antiferromagnetic configurations may be 
formed38,68. Changes in cohesion and magnetic properties could in 
turn also impact the equilibrium volume43.

Phase stability. Besides the physical properties, the most obvious 
aspect that is affected by ordering is phase stability. This can be studied 
with the on-lattice interatomic machine learning potentials discussed 
in the previous section. SRO always decreases both the enthalpy and 
the configurational entropy of a phase84, and the competition between 
these two contributions determines the degree of SRO as a function of 
temperature. Calculation of phase diagrams (CALPHAD) simulations34 
has estimated that the excess Gibbs energy due to SRO can be of the 
order of −10 meV per atom. SRO can also have an influence on order–
disorder transition temperatures, as observed in CrCoNi for the phase 
transformation responsible for the so-called ‘K-state’ phenomenon, 
that is the abnormal change of physical properties as a function of tem-
perature85. The term ‘K-state’ originates from the German ‘Komplexer 
Zustand’ (‘complex state’). Moreover, SRO often signals incipient order-
ing tendencies that may manifest at low temperature, for example, the 
precipitation of ordered phases in MoNbTaW60, AlNbTiV79, VCoNi76, 
Al–Cr–Fe–Ni–Ti78,86 and Cr–Ta–Ti–V–W73.

We note that the majority of recent simulations for SRO assume on-
lattice approaches and typically do not account for thermal excitations, 
which could, as discussed above, also impact phase stability. To study 
such effects, accurate but computationally and conceptually much 
more demanding off-lattice potentials are required to perform cou-
pled Monte Carlo and molecular dynamics simulations, for example.

Stacking fault energy. In face-centered cubic and hexagonal close-
packed CCMs, SRO can impact the stacking fault energy, that is, the 
energy required to create a planar defect in the periodic stacking of 
atomic layers. DFT calculations, in combination with Monte Carlo 
techniques, showed that the stacking fault energy depends strongly 
on the composition near the fault87–89. This can result in local arrange-
ments rendering the stacking fault energies positive and, for some 
other arrangements, negative.

The change in stacking fault energy can also be related to phase 
stability. In face-centered cubic alloys, the stacking fault energy gener-
ally increases with increasing SRO, as shown by combined Monte Carlo 
and ab initio calculations39,64. This means that, for alloys for which the 
face-centered cubic arrangement is thermodynamically stable, SRO 
decreases the energy of the face-centered cubic structure more as 
compared to hexagonal close-packed structures. Higher stacking fault 
energies result in smaller equilibrium separation distances between 
partial dislocations, as observed in simulations employing carefully 
constructed classical potentials and molecular dynamics simulations64 
and experiments32.

Magnetism. In magnetic materials, the relief of magnetically frustrated 
configurations may be a driving force towards the formation of SRO. 
Clear examples are the ordering of Cr in CrCoNi and CrFeCoNi37,43,66,90,91 
and of Mn in MnFeCoNi68: Cr and Mn generally prefer an antiferromag-
netic configuration and hence tend to avoid binding with other Cr or 
Mn atoms in the first neighbor shell, so that their magnetic moment is 
antiparallel to that of Fe, Co and Ni.

In certain CCMs, such as CrCoNi, because of stoichiometric con-
straints, antiferromagnetic elements cannot have only ferromagnetic 
elements as first neighbors. The existing nearest-neighbor pairs of the 
elements that would prefer the antiferromagnetic configuration usu-
ally tend to have opposite spins, and this results in a magnetic SRO43 
that adds on top of the chemical SRO.

It is worth mentioning that most studies coupling magnetism and 
SRO have so far been performed using explicit DFT calculations either 
in conjunction with Monte Carlo simulations or based on the coher-
ent-potential approximation to mimic chemical disorder. Although 
local lattice distortions are not explicitly accounted for in the latter 
approach, magnetic effects can be more straightforwardly modeled 
(for example, using the disordered-local-moment method). This exem-
plifies once more the need for a next generation of machine learning 
potentials including magnetism to better understand the inherent 
interplay of distortions, vibrations and magnetism in CCMs.

Lattice distortion and misfit volumes. Because it homogenizes the 
lattice, SRO usually decreases the average lattice distortion in CCMs76. 
The reduction of lattice distortion usually results in a decreased avail-
ability of nucleation sites for new phases or defects, and this, in turn, 
may increase the melting temperature92 or affect solid–solid phase 
transitions, for example.

The change in lattice distortion may also have consequences 
for misfit volumes, that is, variations in the volume per atom for  
small changes in composition, which are very important input param-
eters for solid solution strengthening theories of CCMs93,94. Changes 
in misfit volumes determine variations in the elastic contribution 
to hardening74,77, but also in the dislocation nucleation rate95,96, and  
thus ultimately impact mechanical properties. These contributions 
tend to compete with each other, and whether higher or lower misfit 
volumes result in softening or in hardening differs from material  
to material.

Yin and colleagues27 observed experimentally that misfit volumes 
of the component elements in CrCoNi are similar to those measured 
in the binaries Cr–Co, Co–Ni and Cr–Ni, and they thus concluded that 
the role of SRO is negligible. They also claimed that misfit volumes are 
poorly predicted by DFT for this material. On the other hand, Walsh 
and colleagues43 showed, for the same material, that the experimen-
tally measured misfit volumes can be obtained from DFT if a model 
for the composition-dependent chemical and magnetic SRO is taken 
into account. These apparently contradicting conclusions show that 
the impact of SRO on the misfit volumes of CrCoNi is still a matter of 
debate. A negligible effect of SRO on misfit volumes was predicted for 
NbHfTiZr83 based on DFT.

Impact of SRO on applied materials properties
The impact of SRO on the fundamental materials parameters of CCMs 
has an effect on their applied properties too. For example, the change 
in misfit volumes influences the mechanical properties, and the change 
in the phase stability influences the composition of defects and ion 
transport in ceramics. To understand to what degree SRO can lead to 
modifications of applied materials properties will be pivotal for CCM 
design, as SRO could be engineered to optimize desired features or 
hamper detrimental mechanisms.

Dislocation mobility. SRO can have opposite effects on the dislocation 
mobility. In general, SRO promotes the formation of diffuse antiphase 
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boundaries77,97 and increases local cohesion64, both of which decrease 
the mobility of dislocations. However, SRO also homogenizes the 
lattice, which may result in a decrease in the solid solution strength-
ening and hence in an increase of dislocation mobility74. As already 
mentioned, the competition of these mechanisms can lead either to 
hardening or softening of CCMs. To resolve this, highly accurate and 
efficient potentials are required, providing an excellent opportunity for 
the machine learning potentials introduced above (Interatomic interac-
tions in many dimensions section). With an MTP, the aforementioned 
duality was eventually observed in MoNbTaW simulations98. In this 
material, SRO slows down screw dislocations, because of the forma-
tion of diffuse antiphase boundaries that decrease the nucleation rate 
of kink pairs, but at the same time it speeds up edge dislocations, due 
to lower solute drag. Note that in body-centered cubic alloys such as 
MoNbTaW, screw dislocations determine plasticity at low temperature, 
whereas edge dislocations do so at high temperature94,98. Accordingly, 
the overall impact of SRO on mechanical properties might strongly 
depend on temperature for this CCM.

For CrCoNi, simulations with a classical potential indicated that 
SRO decreases the energy of local configurations, thereby increasing 
the Peierls barrier to unpin dislocations64, and decreases the disloca-
tion nucleation rate95,96. The combination of these factors should result 
in a substantial hardening of CrCoNi. However, this is not backed up 
by experiments27,32. The hardness and yield strength of this CCM do 
not change with different annealing conditions, suggesting that SRO 
has a negligible impact on the bulk mechanical properties of CrCoNi. 
We note, however, that differences in nanoindentation responses are 
observed with different annealing conditions, suggesting the effects 
of SRO32. Similar conclusions for the bulk were also drawn from simula-
tions for the quinary CrMnFeCoNi alloy28. As already mentioned, the 
confusion may derive from the use of an inaccurate classical potential, 
which predicts an incorrect partitioning of Ni/CrCo at low temperature. 
To resolve these limitations, more accurate machine learning poten-
tials, possibly considering magnetism, would be required.

Segregation at extended defects. SRO is intimately connected with 
the segregation at extended defects, such as surfaces, grain boundaries 
and faults. SRO can change the chemical potential of the component 
elements in the bulk, while segregation mechanisms can in turn alter 
the Warren–Cowley parameters99. Furthermore, segregation may 
induce another type of SRO, consisting of local rearrangements of 
the atoms in the vicinity of the defects: the atomic layers adjacent to 
a defect are usually enriched in the elements that preferentially bind 
to the segregating elements and this ordering can extend for a couple 
of layers in the bulk.

SRO on the surfaces of CCMs appears to be stronger than in the 
bulk, and it seems that the more open the surface, the larger the mag-
nitude of the Warren–Cowley parameters100. This trend may be related 
to the fact that fewer bonds are available on more open structures, and 
so ordering is enhanced. Monte Carlo simulations are typically used to 
capture ordering effects near extended defects. The quality of these 
simulations is decided by the accuracy of the parameterization of the 
interatomic interactions, and classical potentials may sometimes not 
be appropriate. For example, a classical potential for CrMnFeCoNi 
suggested an incorrect segregation of Mn101,102, whereas DFT calcula-
tions indicate that Ni is the segregating element, at least under vacuum 
conditions103. This again highlights the need for accurate machine 
learning potentials to study segregation in CCMs.

Future directions and opportunities
Despite the substantial effort to investigate SRO in CCMs in the last 
few years, characterization of this phenomenon is still in its infancy, 
and a deeper understanding of the connection between the atomistic 
structure and fundamental and applied properties is required before 
SRO can be exploited for materials design.

From a technical point of view, machine learning potentials still 
have large room for improvement. For example, introducing a scheme 
to automatically detect extrapolation and add structures to the train-
ing database if the extrapolation is too severe (active learning)104 could 
address the issues related to sparseness of the fitting data and the trans-
ferability of potentials. Furthermore, explicit inclusion of magnetism in 
the potentials formalism may further increase accuracy for magnetic 
materials, such as the Cantor alloy and its subsystems105. Off-lattice 
models could also address the interplay of SRO and thermal excita-
tions (for example, vibrations), which at the present time is unknown.

In comparison to classical potentials, machine learning potentials 
suffer from two important drawbacks. First, given the large number of 
fitting parameters, they require large training databases, which need 
to be compiled with DFT and hence can be computationally expensive 
to generate. Second, machine learning potentials are characterized 
by poor transferability to structures and compositions not included 
in the training set. However, for most CCMs, it seems that machine 
learning potentials are very promising to effectively describe complex 
interatomic interactions.

An all-round characterization of SRO in CCMs would benefit from 
new theoretical techniques and computational algorithms to address 
the impact of SRO on kinetic parameters, such as diffusion barriers, 
and the energetics of point defects, such as vacancies and interstitials. 
Furthermore, a grand challenge for future generations of simulations 
and experiments is the investigation of SRO outside thermodynamic 
equilibrium; that is, what are the relevant timescales for the formation 
and dissolution of ordering. These aspects are important to bring 
simulations and experiments closer together, as SRO is usually studied 
in quenched samples that may be frozen into a non-equilibrium state.
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