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Abstract—The D-decomposition method allows to design con-
trol structures with prescribed locations of closed loop poles.
Unlike the root locus method, D-decomposition natively handles
two variable regulator parameters, which makes it suitable
for more complex control structures. Moreover, an extension
to more than two variable parameters is straightforward. In
this paper, the advantages of the D-decomposition method are
illustrated by synthesizing a robust low-order current regulator
for a grid-connected voltage source inverter (VSI) with LCL
filter. It is shown how to visualize the complete region in the
low dimensional regulator parameter space satisfying certain
robust performance criteria (with robust stability being a special
case). The paper concludes by simulation results validating the
robustness properties of the designed low-order regulator under
substantial grid impedance variations.

Index Terms—Current control, D-decomposition, LCL-filter,
robust stability, robust performance

I. INTRODUCTION

Nowadays, the increasing economical and environmental

concerns are enabling the transition from fossil power plants

towards renewable power generation, primarily from photo-

voltaic (PV) and wind turbine (WT) systems. An increasing

amount of energy is being generated locally by distributed

generation (DG) systems that interface PV and WT sources

with the electric grid by means of a pulse-width modulation

(PWM) voltage source inverters (VSI). A classic issue in the

control of VSI-based DG systems is the damping of resonance

peaks of LC and LCL filters. The LC or LCL filters are

most commonly used in VSI-based DG systems because they

provide a higher attenuation of switching harmonics for the

same value of filter inductances, thus considerably saving the

VSI weight and cost. However, the resonance peaks of these

filter types require a special treatment to ensure a good closed-

loop stability. Another common issue is the possibility of DG

operation in remote areas with weak grid connection. Because

of it, DG manufactures have to consider the uncertainty of the

equivalent grid impedance at the point of common coupling

(PCC) of VSI with the grid.

The topic of robust current regulator design for LCL-

VSI has gained a considerable attention in the literature.

Oftentimes, the desired robustness is achieved by applying

the techniques from nonlinear [1] or optimal robust control

[2], [3]. The resulting regulators may often be non-standard

and of a high order. However, industry manufacturers tend to

favor proven standard low-order regulator types (e.g., PI or

PR regulators) due to their clarity and ease of maintenance.

To address this demand, multiple works propose to robustify

the familiar loop shaping technique from classic control theory

[4], [5]. However, the robustification guidelines based on phase

and gain margins are usually empiric do not explicitly relate

the plant uncertainty and the closed-loop control performance.

This paper proposes a novel approach to tackle uncertain

grid equivalents at the PCC that is based on D-decomposition

[6]–[8]. By applying D-decomposition to the control of VSI

with LCL output filters, it becomes possible to simultaneously

tune the gains of the proportional LCL resonance damping

and proportional-resonant (PR) current reference tracking reg-

ulators. The use of D-decomposition and other parametric

methods for the purpose of robustness analysis and robust

controller synthesis has been popularized by Ackerman as

parameter space approach to control design [9]. However,

the practical implementation aspects of both D-decomposition

and the parameter space approach are usually not discussed

in the existing literature. This paper aims to fill this gap

by describing both the robust current regulation methodology

for VSI-interfaced DG and its possible implementation as a

software tool1. Some desirable numerical improvements are

discussed as well.

In Section II, the VSI control task is introduced. The

D-decomposition method is summarized in Section III, and

Section IV describes its application to the design of robust

controllers. Section V describes the implementation of the

techniques from Sections III–IV. Section VI contains time-

domain simulation results and illustrates one possible exten-

sion of the proposed techniques. Conclusions and possible

improvements are summarized in Section VII.

II. CURRENT REGULATION OF VSI WITH LCL FILTER

The selected VSI current regulation structure is shown in

Figure 1. It consists of two feedback loops [10]. The inner loop

is the capacitor current feedback with proportional gain kic. Its

goal is the stability enhancement by damping the resonance of

the LCL output filter consisting of two inductances L1 and L2,

and capacitor Cx1. The parasitic resistances R1, R2, and Rx1

are shown for completeness. Capacitor current ic is obtained

as difference between VSI output current i1 and grid current

1The MATLAB codes accompanying this paper are available at
https://github.com/ityuryukanov/dd.
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Fig. 1: Double-loop VSI current regulation structure

ig . Due to its high harmonic content, current i1 is sampled

synchronously with the PWM carrier waveform [10].

The outer control loop is the grid current feedback with PR

regulator KPR(z). Its goal is tracking of the grid current ref-

erence i∗out and rejection of disturbances caused by variations

of grid voltage vg . The grid is represented by its Thévenin

equivalent at the PCC consisting of voltage vg behind grid

inductance Lg and grid resistance Rg .

The continuous-time plant model (i.e., the LCL filter and

grid impedance) can be derived in its state-space form by

considering the VSI output voltage vi and grid back emf vg as

system inputs. For a discrete-time control implementation, all

feedback and control signals are sampled with zero-order hold

(ZOH). Therefore, the plant model should be discretized into

the z-domain by using the ZOH method. The continuous-time

PR regulator model [11] is discretized with the Tustin method

with prewarping around the resonance frequency ωr:

KPR(s) = kp +KR(s) → KPR(z) = kp +KR(z)

KR(s) =
krωcs

s2 + 2ωcs+ ω2
r

→ KR(z) =
b2z

2 + b1z + b0
a2z2 + a1z + a0

b2 = krωcsin(ωrTs); a2 = 2ωr + 2ωcsin(ωrTs);

b1 = 0; a1 = −4ωrcos(ωrTs);

b0 = −krωcsin(ωrTs); a0 = 2ωr − 2ωcsin(ωrTs);
(1)

where kp is the proportional gain, KR(s) is the resonant

term of KPR(s), and Ts is the sampling period. Multiplier

ωc shifts the resonant poles of KR(s) left from the imaginary

axis to avoid instability due to round-off errors in coefficients.

The resonant gain kr influences the frequency bandwidth of

high gains around ωr. In (1), KR(s) consists of a single term

with ωr equal to the nominal grid frequency ω0. However,

extra resonant terms can be added in parallel at frequencies

of typical low-frequency harmonics (e.g., 5th, 7th etc.) to

improve their rejection. Parameters kr and ωc of KPR(s)
have a limited impact on closed-loop stability by mostly

affecting the performance around ωr (i.e., not around the

crossover frequency). Therefore, the only control parameters

that significantly affect the system stability are kp and kic. All

other fixed system parameters are given in Table I.

In Table I, Vn and f0 are the grid rated voltage and nominal

frequency, fsw and fs are the VSI switching frequency and

TABLE I: Fixed System Parameters

Parameters Value

Vn, f0 400 V, 50 Hz
VSI rated power 21 kVA
Vdc 700 V
L1, R1, Cx1, Rx1 1.6 mH, 2 mΩ, 10 μF, 0.1 mΩ
L2, R2 0.8 mH, 1 mΩ
fsw , fs 8 kHz, 16 kHz
PWM type sinusoidal PWM (SPWM)
kr , ωc, ωr 30, 3 rad/s, 2π50 rad/s
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Fig. 2: Boundaries of various transfer function pole regions

controller sampling frequency. The LCL filter parameters have

been computed based on [12]. Parameters kr and ωc are set

through tuning the control performance specifically for 50 Hz

signals. The inverter topology is modeled as a two level half-

bridge.

III. D-DECOMPOSITION METHOD

D-decomposition allows to analyze the dependence of sta-

bility and control performance of a linear dynamic system

from its two parameters. These two varying parameters must

enter linearly into the system characteristic polynomial. For

the control problem in Figure 1, its closed-loop characteristic

polynomial can be separated into three terms based on the

most influential control parameters kp and kic:

D(z) = kpU(z) + kicV (z) +W (z) (2)

Since closed-loop poles are the roots of the corresponding

characteristic polynomial, a characterization of roots of D(z)
in (2) is of interest.

A. Specification of Root Boundaries

The mapping of system poles from the s-domain to the

discrete-time z-domain is described by the relationship z =
exp(s/fs), where s is the complex frequency and fs is the

sampling frequency of the discrete-time system. By substitut-

ing z = exp(jω/fs), ω ∈ (−∞, ∞), the s-domain stability

boundary (i.e., the imaginary axis) is mapped into the z-

domain. This is the traditional choice for D-decomposition

[6], but not the only possible one [9].

Often it is desirable to satisfy some control performance

requirements beyond the closed-loop stability. For example, it

�
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is possible to reduce the settling time of a dynamic system by

constraining the real parts of all of its poles not to exceed a

certain value. For an underdamped second order system, the

output settles to ±5 % of its steady-state value within the

time ts,5% if the real parts of system poles do not exceed

σ∗ = −3/ts,5% [13]. In s-domain, this corresponds to the root

boundary s = σ∗ + jω. Its mapping to the z-plane is defined

by z = exp ((σ∗ + jω)/fs), or z = exp (σ∗/fs) exp (jω/fs),
which describes a set of circles centered at the origin with

radius less than 1 (see Figure 2a and [9]).

Many sources address the mapping of lines of equal damp-

ing from the s-plane into the discrete time domain (e.g., [9],

[13]), and the constant damping contours can be visualized in

MATLAB [14] by the command zgrid(). In Figure 2b, the

damping contour ζ = 0.3 is approximated by a circle of radius

0.7 with its center shifted right from the origin by 0.25 [9].

From Figures 2a–2b, the boundaries of closed-loop poles in

terms of system damping and settling time can be reasonably

approximated by circles of varying radii and center:

z = R · exp(jΩ) + δ (3)

where R is the circle radius, δ ∈ R is the shift from the

origin, and Ω ∈ [−π, π] is equivalent to ω/fs, ω ∈ (−∞, ∞).
By setting R = 1 and δ = 0 in (3), z is constrained to the

discrete-time stability boundary (red in Figure 2). The chosen

circular contour (3) can be plugged into the characteristic poly-

nomial in (2) by considering (3) as polynomial z = R · x+ δ,

which implies zn = (R · x + δ)n, which can be expanded

either through polynomial multiplication by using Fast Fourier

Transform (FFT) or through the binomial theorem.

B. Mapping of Root Boundaries into Two Parameter Plane

The main idea of D-decomposition is to map the root

boundaries on the z-plane described in Section III-A into the

plane of two system parameters (i.e., the parameter plane).

This is achieved by plugging the contour equation (3) into

(2), which results in a complex trigonometric polynomial [9]:

D′(Ω) = kpU
′(Ω) + kicV

′(Ω) +W ′(Ω) (4)

where U ′(Ω) =
∑p

n=1
U ′
n · exp(jnΩ), and V ′(Ω), W ′(Ω)

are of the same form as U ′(Ω). Separating the real and

imaginary parts, while aiming to find the zeros of (4) yields:{
kpU

′
re(Ω) + kicV

′
re(Ω) +W ′

re(Ω) = 0

kpU
′
im(Ω) + kicV

′
im(Ω) +W ′

im(Ω) = 0
(5)

where U ′
re(Ω), V

′
re(Ω), W

′
re(Ω) are finite linear combina-

tions of cos(nΩ), n ∈ N, and Ω ∈ [0, π]. Similarly, U ′
im(Ω),

V ′
im(Ω), W ′

im(Ω) are finite linear combinations of sin(nΩ).
Note that considering Ω ∈ [0, π] instead of Ω ∈ [−π, π] is

correct because all system eigenvalues are symmetrical about

the real axis.

The linear combinations of cos(nΩ), sin(nΩ) in (5) are

known as real trigonometric polynomials [9], and they are

closely related to the Chebyshev polynomials. Therefore, it is

possible to convert (5) into regular polynomials by using the

substitution cos(Ω) = x and the Chebyshev polynomials of

the first (for U ′
re, V ′

re, W ′
re) and second (for U ′

im, V ′
im, W ′

im)

kind, with the new variable x ∈ [−1, 1]:

{
kpU

′′
re(x) + kicV

′′
re(x) +W ′′

re(x) = 0√
1− x2(kpU

′′
im(x) + kicV

′′
im(x) +W ′′

im(x)) = 0
(6)

The next step is to solve (6) for kp and kic. This is done by

using the Cramer’s rule to write the determinants of (6) and

the expressions for kp(x) and kic(x), x �= ±1:

kp(x) =
Δ1(x)

Δ0(x)
; kic(x) =

Δ2(x)

Δ0(x)
;

Δ1(x)

Δ0(x)
=

∣∣∣∣−W ′′
re(x) V ′′

re(x)
−W ′′

im(x) V ′′
im(x)

∣∣∣∣
/ ∣∣∣∣U ′′

re(x) V ′′
re(x)

U ′′
im(x) V ′′

im(x)

∣∣∣∣
Δ2(x)

Δ0(x)
=

∣∣∣∣U ′′
re(x) −W ′′

re(x)
U ′′
im(x) −W ′′

im(x)

∣∣∣∣
/ ∣∣∣∣U ′′

re(x) V ′′
re(x)

U ′′
im(x) V ′′

im(x)

∣∣∣∣
(7)

Substituting x ∈ [−1, 1] into (7) produces the mapping of

the root boundaries (3) into the plane of parameters kic and

kp. The characterization of kp(x) and kic(x) by (7) results

in zero values of (4), i.e. for any (kp, kic)-pair satisfying (7)

some system poles lie on the specified contour (3). Therefore,

the parametric curves kp(x) and kic(x) divide the kic0kp
plane into sectors with equal counts of closed-loop eigenvalues

outside of the specified contour (3).

When calculating the borders of root invariant regions

according to (7), three cases are possible for every x:

Δ0(x) �= 0: The linear system of equations in (6) has

solution and kp(x), kic(x) can be calculated according to (7).

Δ0(x) = 0 ∧ (Δ1(x) �= 0 ∨ Δ2(x) �= 0): The system in

(6) has no solutions. At such x both kp(x) and kic(x) go to

infinity, and it looks like a discontinuity on the solution graph.

Δ0(x) = 0 ∧ (Δ1(x) = 0 ∧Δ2(x) = 0): The solutions of

system in (6) are represented by a straight line kpU
′′
re(xsng)+

kicV
′′
re(xsng) + W ′′

re(xsng) = 0, where xsng are such that

Δ0(xsng) = 0 ∧Δ1(xsng) = 0 ∧Δ2(xsng) = 0.

Therefore, it is very important to determine the values of

x at which the determinant Δ0(x) is zero. The permanent

singular x are2 xsng = −1 and xsng = 1, but for some specific

problems there may be more singularities. At this point, the

advantage of using polynomials in x becomes more obvious,

as it is possible to find all roots of a regular polynomial as the

eigenvalues of its companion matrix. Moreover, computing the

determinants in (7) involves pairwise products of functions.

If the two functions are polynomials, their product can be

computed as discrete convolution of their coefficient vectors.

C. An Illustrative Example

In Figure (3), a possible outcome of applying the methods of

Sections III-A and III-B to the VSI current regulation problem

in Section II is illustrated. The mapped root boundary in (3)

is R = 0.987 and δ = 0, which translates into the requirement

2Since sine equations for U ′

im(Ω), V ′

im(Ω), W ′

im(Ω) are all equal to zero

for Ω = πk, k ∈ Z, which is reflected by the
√
1− x2 factor in (6).

�
�
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(a) CRB and RRB curves (b) Enlarged Γ-stable region

Fig. 3: Root invariant regions for Lg = 0, Rg = 0

of ts,5% ≤ 14.3 ms, and the grid equivalent is assumed equal

to Lg = 0 mH, Rg = 0 Ω.

In Figure (3a), the two red lines represent the singular case

xsng = ±1, and they are often called the real root boundaries

(RRBs). For the considered control problem, there are no other

xsng besides ±1 (the typical situation). The curve (7) is drawn

in black color for x : Δ0(x) �= 0. This curve is often called the

complex root boundary (CRB). The meaning of the terms RRB

and CRB is explained in many sources related to parametric

control (e.g., [7], [9]).

As mentioned in Section III-B, the RRB lines and CRB

curves shown in Figure 3a form the boundaries of root

invariant regions in the plane kic0kp. It is enough to take a

single point inside of a region to check for the whole region the

number of closed-loop system poles outside of the root bound-

ary (3). Choosing z = exp(jΩ) as the root boundary is done

to search for the root invariant regions that ensure the closed-

loop stability (i.e., zero poles outside of the unity circle).

Analogously, a generic root boundary inside of z = exp(jΩ)
(e.g., see Figure 2) poses a stricter requirement on the closed-

loop poles that is known as Γ-stability [9]. The Γ-stable region

for the Γ-stability specification z = 0.987 · exp(jΩ) is shown

in Figure 3b as the black-filled region.

IV. PARAMETER SPACE APPROACH

The parameter space approach, as introduced in English

control literature by Ackermann (e.g., see [9]), has two

major steps. In the controller synthesis step, root invariant

regions satisfying certain closed-loop pole specifications (3)

are computed in the domain of variable regulator parameters

for several uncertain plant representatives. The crossing of the

Γ-stable regions defines the set of robust regulator candidates.

In the control loop analysis step, the candidate controller is

analyzed for the whole uncertainty range to verify its robust

Γ-stability. If the candidate controller ensures the required

closed-loop pole specifications for the whole uncertainty

range, then the design goal is reached. Otherwise return to

step one and take more uncertain plant representatives.

A. Robust Controller Synthesis

For the controller synthesis step, D-decomposition can

usually be used because the characteristic polynomial of the

0 2.5 5 7.5 10
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(a) Uncertainty set (b) Robust region ts,5% ≤ 14.3 ms

Fig. 4: Γ-stable root invariant regions for z = 0.987exp(jΩ)
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Fig. 5: Closed-loop poles with fixed KPR(z)

discrete-time system (2) is typically linear in the regulator

coefficients (e.g., kp and kic).

For our application, assume Rg ∈ [0, 10] Ω and Lg ∈
[0, 5] mH to be the grid impedance uncertainty range and

the same root boundary for ts,5% ≤ 14.3 ms that was studied

in Section III-C. For this uncertainty, the parameter values kp
and kic are shown in Figure 4b as the red-filled intersection of

four root invariant regions corresponding to the four enlarged

colored vertices of the uncertainty set in Figure 4a. The values

of kp and kic inside of each of the four regions in Figure 4b

result in zero closed-loop poles outside of the root boundary

z = 0.987exp(jΩ), which can be seen as a generalization of

closed-loop stability (i.e., (3) generalizes z = exp(jΩ)).
It should be noted that, in some cases (e.g., see [9, Section

11.4]), a controller that is simultaneously stabilizing for all

vertices of the uncertainty set may not stabilize some other

plant representatives inside of the uncertainty set. Therefore, it

is advisable to include some samples of uncertain parameters

from the depth of the uncertainty set into the set of plant

representatives for the robust controller synthesis. In Figure

4a, these additional combinations of Lg and Rg are shown

with smaller black dots, and they were also considered when

generating the red-filled area in Figure 4b. However, their

corresponding extra root-invariant regions are not shown in

Figure 4b because they result in no additional constraints.

B. Robustness Analysis

For continuous-time systems, uncertain plant parameters

(e.g., Lg and Rg in our example) often enter linearly into the

closed-loop characteristic polynomial, which enables the use

of D-decomposition for robustness verification. Unfortunately,

system discretization causes an exponential dependence of

�
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Fig. 6: Block diagram of the control structure in Figure 1

the resulting characteristic polynomial from these physical

parameters, thus precluding the direct use of D-decomposition.

Another option is to check the closed-loop system poles

for changing uncertain physical parameters. Such check is

easy to accomplish if the size of the uncertainty set is rather

small. Since the system poles don’t jump if the system

physical properties are varied continuously, the testing grid

in the uncertain parameter space may not be very dense.

The closed-loop poles for kp = 0.049, kic = 0.042 and

Lg ∈ [0, 5] mH, Rg ∈ [0, 10] Ω are shown in Figure 5. Thus,

the parameters kp = 0.049, kic = 0.042 chosen from the red-

filled region in Figure 4b satisfy the Γ-stability specification

z = 0.987exp(jΩ) for the whole uncertainty range. In Figure

5, higher values of Lg are marked with lighter grayscale colors.

V. ALGORITHM IMPLEMENTATION

A. Fast Generation of Closed-Loop Systems

The parameter space approach to robust controller design

involves computing Γ-stability regions for multiple represen-

tatives of the uncertain plant. Therefore, it becomes necessary

to generate multiple polynomials in (2) – an operation that

may significantly increase the overall computation time.

First, observe that polynomials U(z), V (z), W (z) in (2) can

be obtained as closed-loop characteristic polynomials D(z)
corresponding to three special values of kp and kic:

W (z) = D(z, kp = 0, kic = 0)

U(z) = D(z, kp = 1, kic = 0)−W (z)

V (z) = D(z, kp = 0, kic = 1)−W (z)

(8)

Second, observe that the control block diagram in Figure 6

consists of the ”fixed subsystem” (drawn in black) that can be

characterized by the three pairs of kp and kic in (8), and the

”uncertain subsystem” (filled in red) that is different for every

representative of the uncertain plant. Therefore, it is possible

to obtain three auxiliary fixed subsystems for the (kp, kic) pairs

(0, 0), (0, 1), (1, 1). These auxiliary subsystems replicate the

black portion of Figure 6. Their output is the VSI voltage

signal vi(k − 1) averaged over the sampling period Ts, and

their inputs are the VSI output current reference i∗out(k) and

the LCL plant signals ic(k), iout(k). In Figure 8, the z−1 block

represents the digital regulator time delay of one Ts, and the

KPWM block models the VSI as the gain converting the PWM

reference signal into vi(k − 1) [10]. For SPWM, KPWM =
Vdc/2. In MATLAB [14], the three auxiliary subsystems can

be easily obtained by using the connect() function.

Next, it is possible to derive the closed-loop system state-

space from the state-space representations of the ”fixed sub-

system” and ”uncertain subsystem” (the derivation is purely

algebraic). Representing the ”fixed subsystem” of the closed-

loop system through three auxiliary subsystems has been

discussed above. The ZOH-discretized LCL plant GLCL(z)
can be obtained as [13]:

ALCL = exp(GTs), BLCL = G
−1(exp(GTs)− I)H

CLCL = C, DLCL = D
(9)

where I is the identity matrix, G, H, C, D are the state,

input, output, and feedthrough matrices of the continuous-time

state-space plant model, and ALCL, BLCL, CLCL, DLCL

are their discrete-time counterparts. Directly applying (9) is

noticeably faster than using the c2d() function of MATLAB.

The overall fast generation of closed-loop polynomials can

be summarized as follows:

• Generate the three auxiliary fixed subsystems based on

the (kp, kic) pairs (0, 0), (0, 1), (1, 1).

• Loop over representatives of the uncertain plant:

1) Discretize the current plant representative using (9).

2) Use the state-space matrices of the plant and the

three auxiliary subsystems to compute the three

polynomials D(z, kp, kic) in (8).

3) Finally obtain current U(z), V (z), W (z) using (8).

B. Numerical Accuracy Issues

The D-decomposition technique requires the three polyno-

mials U(z), V (z), and W (z) as its inputs. They are obtained

through operations with state-space matrices described above

and the characteristic polynomial function of MATLAB (i.e.,

charpoly()). These operations have an accuracy close to

the machine precision. However, when operating with polyno-

mials (e.g., computing Δ0(x), Δ1(x), Δ2(x)), small round-

off errors in coefficients may lead to significant deviations of

the roots and values of the resulting polynomials. This issue

becomes increasingly relevant for high-order polynomials.

To improve the numerical accuracy of operations on polyno-

mials (e.g., polynomial multiplication, polynomial root find-

ing etc.), the Multiprecision Computing Toolbox (MCT) for

MATLAB [15] is being used, as computations in variable pre-

cision with [15] are not much slower than standard MATLAB

computations in the double-precision floating-point format.

Alternatively, the Symbolic Math Toolbox of MATLAB can

be used, but it is noticeably slower than [15] and thus less

suitable for repeated computations of root-invariant regions.

Another alternative is to directly represent the polynomials

in x (7) in the Chebyshev polynomial basis. Represent-

ing U ′′
re(x), V ′′

re(x), W ′′
re(x), U ′′

im(x), V ′′
im(x), W ′′

im(x) as

combinations of Chebyshev polynomials possesses favorable

numerical properties on the interval [−1, 1], and there are

specialized algorithms for polynomials in the Chebyshev basis

(e.g., polynomial root finding [16]). Moreover, the Chebfun

toolbox for MATLAB [17] exploits the numerical stability of

Chebyshev approximations on [−1, 1] to extend MATLAB

from vectors and matrices to functions. In a nutshell, Chebfun

internally represents a function as a high-degree polynomial

in the Chebyshev basis and uses specialized algorithms for

�
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such polynomials to perform operations on them. In our exper-

iments, Chebfun performed well with low-order polynomials

D(z) in (2) (e.g., 6th order), but produced errors for 12th-order

D(z). Thus, the use of MCT or its alternatives is seemingly

necessary to produce reliable results for a wide range of

control problems.

C. Identification of Root-Invariant Regions

To plot the root-invariant regions as shown in Figure 3, the

work window is specified by defining the limits for kp and

kic: kp ∈ [kp, kp], kic ∈ [kic, kic]. The work window size

may be rather large, as the precise analytic description of the

borders of root-invariant regions is known.

After the singular values of x have been found, the straight

lines corresponding these xsng can be plotted within the work

window. The root boundary for non-singular x is defined by

(7). To produce more detailed plots, the ranges of x inside

which the CRB curve is inside of the work window should be

found. This is achieved by solving the system of inequalities:{
kp(x) ≥ kp; kp(x) ≤ kp;

kic(x) ≥ kic; kic(x) ≤ kic;
(10)

where kp(x) and kic(x) are defined by (7). Therefore,

inequalities in (10) can be solved through the method of inter-

vals, which again involves polynomial root finding, whereby

the roots of Δ0 are known from the previous search for xsng .

To further improve the CRB plotting accuracy, the extrema

of kp(x) and kic(x) are found as zeros of k′p(x) and k′ic(x),
which once again involves polynomial root finding. The inter-

vals of x found by solving (10) are subdivided into subintervals

by the values of x corresponding to the extrema of kp(x) and

kic(x), and each subinterval is padded by a sufficient number

of x values to produce the plotting grid for the CRB curve.

After the CRB and RRB curves have been plotted in the

work window, the next step is to find their intersection points

with each other, themselves (self-intersections), and the work

window borders. Since the CRB curve is a sequence of line

segments and other contours are straight lines, this is a feasible

task. Each intersection point is inserted into the datasets of

the plotted contours that intersect at it. The resulting plot

can be seen as a planar graph, with its vertices being the

intersection points and its edges being the CRB and RRB

segments between the intersection points. Finding the root-

invariant regions becomes equivalent to finding the faces of

this planar graph embedded onto a plane. A simple planar

embedding face detection algorithm is to start at a graph edge,

then select the next edge as the one that make the least angle

with the current edge, then repeat this process until a closed

contour is identified. All root-invariant regions are detected

when each CRB and RRB segment is traversed twice by

the face detection algorithm, and each work window border

segment is traversed once.

Thus, each root-invariant region is represented by a closed

polygon, and it is enough to take only one point in its interior

to determine Γ-stability for the whole region. A point grid is
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Fig. 7: Time-domain simulations to verify robust settling time

generated over the region and the interior point furthermost

from the region’s borders is taken for testing. Finally, the

robust Γ-stability region is computed by intersecting the Γ-

stable regions corresponding to all tested representatives of

the uncertain plant by using a polygon clipping algorithm.

VI. CASE STUDIES

A. Time-Domain Simulations to Verify Robust Settling Time

In Sections III–IV, a robust current regulator has been

designed for the LCL filter interfaced VSI with its data given

in Table I. The controller synthesis has been focused on robust

settling time ts,5% < 14.3 ms for the uncertainty ranges

Lg ∈ [0, 5] mH and Rg ∈ [0, 10] Ω, and it has resulted

in regulator parameter values kp = 0.049, kic = 0.042.

In Figure 7, the robust performance of the designed con-

troller is demonstrated through time-domain simulations using

Power System Toolbox of Simulink [14]. A step increase in

the controller d-axis current reference I∗g,d from 0 A to 15 A

occurs at t = 40 ms. The q-axis current reference I∗g,q remains

at zero. The associated rotating dq-frame is synchronized with

the PCC voltage via a phase-locked loop (PLL) [11]. The

closed-loop system response to the described step increase

in I∗g,d is shown in black for the vertices of the uncertainty

set (see Figure 4a), while the required ts,5% = 14.3 ms is

shown as a vertical line and the ±5 % tolerance band around

I∗g,d = 15 A is shown with dashed lines. The results in Figure 7

demonstrate the robust performance of the designed regulator

in the time domain, which complements the eigenvalue-based

robustness analysis of Section IV-B. In Figure 7c, the regulator

time response is fast, but poorly damped. Unfortunately, it can

be verified with the methodology in this paper that no robust Γ-

stable region exists for the given control structure, uncertainty

ranges, and the closed-loop poles’ damping above ζ ≈ 0.07.

In Figure 8, it is further demonstrated that the robust

performance is preserved in case of rapid grid impedance

�
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Fig. 8: Verification of current regulator transient performance

changes and near short circuit faults. In particular, Figures

7a-7b show the regulator performance for an instantaneous

grid impedance increase from zero to (5 mH, 10 Ω) at

t = 80 ms by displaying the simulated grid output current for

this scenario in dq0 and ABC reference frames. Similarly,

Figures 8c-8d are showing the VSI current response after

applying a three phase fault at the PCC from 80 to 120 ms.

Some extra simulation results can be found in [18].

B. Extension to Three Parameters

By its nature, the standard D-decomposition method op-

erates in a plane defined by two system parameters. As

a straightforward extension, it is possible to apply D-

decomposition multiple times, each time varying the value of

a third system parameter, and to plot the resulting Γ-stable

regions along the third parameter axis. If the third system

parameter is varied with a small step size, the resulting 3D

image well approximates the Γ-stability region in the three

dimensional parameter space.

As an illustrative example, Figure 9 shows the influence

of varying the resonant gain kr of the PR regulator on the

robust stability and robust settling time (ts,5% < 14.3 ms). The

results in Figure 9 only consider the vertices of the uncertainty

domain (see Figure 4a), which implies that they could be too

optimistic. On the other hand, it only took about 8-12 minutes

to generate Figures 9a–9b, which is a reasonable effort to

obtain the initial approximate result.

From Figure 9a, it can be concluded that initial assumption

about small influence of kr on the closed-loop stability is

largely valid. In Figure 9a, kr = 3, 4, 5, . . . , 120, and the cross-

sections for various kr levels remain similar over the whole

broad range of kr values. However, the kr parameter has a

significant influence on robust performance, which is evident

from Figure 9b. The range of kr values that allows for robust

settling time ts,5% < 14.3 ms is only around kr ∈ [29, 52],

which is substantially lower than the kr-range that allows for

robust stability (cf. Figure 9a). Moreover, the cross-sections

for various kr levels in Figure 9b differ substantially.

C. Computational Performance

For the 6th order closed-loop system, it took about 5

seconds to compute the robust Γ-stable region in Figure 4

(i.e., for 25 plant representatives). Testing the robust stability

by computing closed-loop eigenvalues took only 6.5 seconds

for the 2028 plant representatives (see Figure 5).

For a PR regulator with the compensation of 3rd, 5th, 7th

harmonics [11], it took about 10 seconds to compute the

robustly stable region for the 25 plant representatives. Testing

the robust stability of this 12th order closed-loop system for

the 2028 LCL filter plant representatives also took 6.5 seconds.

These results were obtained using MATLAB R2019b (64-

bit) on a PC with an Intel R© CoreTM-i7 2.2 GHz CPU and 16

Gb of RAM on a single core.

VII. CONCLUSIONS AND OUTLOOK

The objective of this paper was threefold. First, a concise

overview of D-decomposition and parameter space approach

was provided. Second, their practicality for the synthesis

of low-order digital robust regulators was demonstrated on

the example of the VSI current regulation problem. Third,

a special attention was given to the implementation issues

of parametric controller design methods, including the use

of Chebyshev polynomials, algorithm design, and numerical

issues. This last point is rarely addressed in the literature, but

it is crucial for the successful application of D-decomposition

and related techniques. In particular, the double floating-

point precision is insufficient to reliably obtain accurate root-

invariant regions if the order of the closed-loop system is as

low as eight. Nowadays, highly efficient variable precision

computation packages are commercially available that allow

to increase the resolution of floating-point operations beyond

double precision. The numerical robustness can be further

improved by working with polynomials represented in the

Chebyshev basis. For double precision computations, these

techniques are implemented in the Chebfun library [17];

implementing them for variable precision computations is

could be a task for future work. As the final takeaway, the

presented parametric controller synthesis techniques can be

applied to a much broader range of problems than the VSI

current regulation that was selected for this study because of

the research interests of the first author.
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