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Abstract—Microgrids are suitable electrical solutions for 
providing energy in rural zones. However, it is challenging to 
propose in advance a good design of the microgrid because the 
electrical load is difficult to estimate due to its highly 
dependence of the residential consumption. In this paper, a 
novel estimation methodology for the residential load profiles is 
proposed. Socio-demographic data and electrical power 
consumption are used to generate significant knowledge about 
the load behavior. Socio-demographic data are used as input for 
a neural network called Self-Organizing Maps (SOM). The 
SOM proposes a way to group dwelling according to their 
different features. Moreover, a probabilistic model based on 
Bayesian networks incorporates daily variations of the electrical 
load, simulating the behavior of the electrical appliances. The 
methodology, as a whole, is applied to a case study in a rural 
community located in Chile. The methodology is easily 
adaptable to other rural communities. 

Index Terms-- Microgrids, residential load profiles, rural 
communities. 

I. INTRODUCTION 

Rural communities are human settlements, where the 
residents are scattered and develop their daily activities in the 
countryside far from big cities. Microgrids provide power 
supply integrating different local sources of energy and they 
have proved to be suitable for isolated rural communities and 
remote areas. Thus, microgrids highly contribute to improve 
the quality of life of rural communities by providing a reliable 
electric service [1], [2], [3], [4].  

For the design of microgrid projects, it is necessary to 
determine in advance the electrical load that will be required 
to satisfy the demand. This includes characteristics such as its 
behavior at different hours, the identification of load peaks, 
critical loads and others relevant aspects related to load 
dimensioning [1], [5]. The stage of design is very much more 
complex in the case of microgrids that depend on renewable 
energy sources due to its highly variability over time [3]. 
Moreover, in the rural communities context an important 
challenge is to estimate the electrical demand due to its highly 

dependence of the residential consumption behavior, which is 
variable along the year [6]. Different methodologies have been 
described in literature; however, they have been mainly 
applied to case studies in urban zones. The top-down approach 
is the most used [7], which allows to identify load patterns 
based on general information of a group of customers 
(aggregated information), defining global load profiles 
through statistics distributions, considering a high 
homogeneity in the load behavior of the end users. The 
disadvantage of this approach is the difficulty to generate 
individual load profiles and their specific variations [8]. A 
mechanism to estimate the load in a more detailed way is the 
bottom-up approach, where the information regarding the end 
users is collected, based on surveys and load measurements 
using smart meters [9]. For the identification of patterns, this 
approach requires an important quantity of data and a good 
knowledge related to the behavior of the customers, such as 
social and demographic data [10], [11].  

From the literature, it is important to recognize the 
contribution from the computational intelligence field. Among 
these algorithms, the implementation of neural networks, such 
as Self-organizing Maps (SOM), has been able to ease the 
visualization of the data. Then, with a SOM is possible to 
create clusters of the data, so to group inputs that show a 
degree of similitude to each other [12]. SOM is recommended 
for clustering of survey data due its prominent visualization 
properties [13]. In the literature, SOM has been applied for the 
study of load and it has been employed to compare set of 
customers with similar features or attributes, analysis of data 
of infrastructure regarding electrical consumption, the 
identification of patterns associated to load, among others 
[14]. Furthermore, algorithms of Bayesian networks are used 
for prediction and estimation of residential load consumption, 
employing data about the behavior customers and personal 
data for the identification of probability of use of electric 
appliances [15], [16]. 

In this paper, a novel methodology for the estimation of 
residential load profiles is derived in order to design 
microgrids in rural communities. Socio-demographic 



 

information of a community together with consumption 
measurements obtained by smart meters are used. The 
methodology relies on the close relationship between the load 
behavior and the behavior of the customers [1], [6], [17], [18], 
[10]. A SOM is used for grouping households considering 
their particular features. In addition, a Bayesian network 
model is employed for the residential load profile generation, 
considering the daily variability of the load through the 
knowledge about the use of electric equipment in households. 
Finally, a case study is presented with real life data coming 
from a Mapuche rural community called Huanaco Huenchun, 
located in the south of Chile. The methodology is presented as 
a systematic tool to estimate residential load profiles, in order 
to ease the microgrid design stage based on local context of 
the different rural communities [3].  

II. METHODOLOGY 

The methodology is based on four steps, as shown in Fig. 
1. In step A) socio-demographic data of the households 
(dwellings) are obtained and processed to provide the inputs 
needed for the clustering algorithm based on SOM. As 
output, each dwelling of the community is sorted in different 
clusters (groups). Based on the main features of each group, 
one reference dwelling (dR) is selected per group. In step B) 
for each reference dwelling dR, an electric consumption meter 
is installed for obtaining measurements of load. In this way, 
characteristic daily average load profiles are determined for 
each group. These load profiles are named “base load 
profiles”. In step C), data regarding the electrical appliances 
used in the dwellings is used as input for a Bayesian network, 
which provides the probability of use of the electric 
appliances (loads) in each dwelling. From this information, 
variations of the load profiles are generated for each dwelling 
(d1, d2, d3…, di). Finally, in step D) a modeled load profile is 
generated adding the base load profile of dR with the variation 
load profile for each dwelling (di). 

 
Figure 1. Flow diagram of the methodology. 

A. Dwelling clustering according to features associated to 
the electricity demand 

This section describes the SOM clustering algorithm and 
its inputs. The residential electricity demand is associated to 
the consumption behavior and their particular patterns. All 
these aspects are very important to identify the main features 
in order to perform the clustering process in a community. In 
the literature, the features are usually related to electricity 
demand, number of people that live in the dwelling and their 
behavior during a typical day [10], [15], [17], [18]. In this 
paper the features used in the SOM clustering process are: 

Number of members: in [17] and [19], the number of 
members are considered in order to predict the residential 

electricity demand. The demand tends to increase with the 
number of members; nevertheless, the increase is a nonlinear 
function because the electricity consumption depends of the 
electrical home appliances (lighting, TV, refrigerator, among 
others). Moreover, the electricity consumption is different for 
each family member. 

Age range of members: in [10] and [19], the age of the 
members is included because the behavior seems to be age 
dependent. For example: elderly people tends to remain in 
their dwelling for a longer time during the day and night, 
while young people develop more activities outside. 

Activities (occupation): the people behavior in a typical 
day is an aspect that affects significantly the electricity 
consumption. The main activities related to the people 
behavior in a community are: attend to school, work full day, 
moving from a place to another, etc. These activities are 
related to the time that people spend doing dwelling 
activities, and they are considered potential electricity 
consumers [17], [20]. 

The information of the dwellings is obtained from the 
surveys, which are based on a participatory model proposed 
in [4]. The topics considered in this work are: family 
composition, productivity activities of their members, number 
and kind of home appliances and the current situation of the 
power system. Table I shows the main features used for the 
clustering process. The main features were selected based on 
general information from rural areas, such as the activities of 
the community which have the tendency to be quite different 
between different communities. 

TABLE I. FEATURES ASSOCIATED WITH ELECTRICAL 
DEMAND 

Aspect Feature Description 

Members 
Number of 
members 

People living in the dwelling 

Age range 
 

Number of young Members under 18 years old 
Number of adults Members aged over 18 and under 60 
Number of adults 
older 

Members over 60 years old 
 

Activities 

Number of 
farmers 

Members who practice family 
farming or subsistence 

Number of house 
owner 

House owners that at a time practice 
family farm activities  

Number of 
students 

Students who attend to school 
regularly  

Number of full-
time worker 

Members who practice full-time or 
similar working day. 

 
The features were obtained from surveys applied to each 

dwelling of the community and used as inputs of the SOM. 
The aim of SOM is to identify similarities among dwellings 
in the community, using the features or inputs in order to get 
clusters. The SOM uses a nonsupervised training, and 
generates groups based on the similarity of the input data 
[21]. Figure 2 shows a scheme of a SOM, the input layer has 
the attributes of each element (dwelling). In this paper, the 
input layer has eight neurons (attributes in Table I). Dwelling 
clusters (C1, C2, C3…, Cu) are obtained according to the 
similarity between its features.  



 

Each output neuron has a weight (w), this represents the 
effect of each neuron in the model. The output layer is 
defined by a set of neurons (m neurons). SOM process 
information building a layer, which can be rectangular or 
hexagonal. The main advantages of SOM corresponds to the 
ability to represent in an easy and intuitive way the clusters 
generated and the features that defined each cluster [10]. 
Another important aspect of SOM is the capacity to maintain 
the topology of the input space. The output of SOM shows 
the clustering of all elements. After clustering, the most 
relevant features of the dwellings in each group are identified. 

 
Figure 2. Scheme of a neural network SOM. 

The number of clusters (u) depends of the input data and 
parameters defined by the user. In this work, the dimension of 
the grid is x = 3 and y = 3. Thus, it is possible to identify a 
maximum of nine clusters in the community. The basic 
training algorithm of SOM initializes the weights network (w) 
by random numbers, and updates them, moving the order of 
the output neurons, generating the clusters. From the 
numerical results, the most common clusters in a community 
are: houses composed by elderly couples, retired old single 
person, couple of adults practicing family farming, family of 
two adults and two young people, among others. Other 
groups are also presented in the data as each community can 
present different groups or number of groups, according to 
the features of the dwellings that compose it. What is the 
most important is on how the features of these clusters relate 
to electricity consumption patterns [10]. 

B. Base load profile generation 

Afterwards clustering, a reference dwelling for each 
cluster is identified, dR. This reference has an average 
behavior respect of observed features per cluster. For each 
dwelling, an electric consumption meter is installed, allowing 
to record instant power measurements every 5 minutes. This 
sampling facilitates the load profile generation for each 
reference dwelling (dR1, dR2, dR3, …, dRu) with a high 
resolution level, including even small variations of the load. 

In the real-life experiments, it was established a minimum 
measurement period of two months. The aim is to recognize a 
regular pattern of the electrical demand for each one of these 
dwellings. Based on the collected data, an average load 
profile for weekday and weekend are generated. These 
profiles are named base load profiles. 

C. Generation of variation demand profiles based on 
Bayesian networks 

The daily use data of the residential loads for each 
dwelling in the community are used to adjust a Bayesian 
network (BN) to generate variability in the loads utilization. 
With the characteristic base consumption and the generated 
variations over it, the daily demand profiles are estimated for 
each dwelling. 

First, the surveys incorporate questions about quantity, 
type and typical scheduling of use for the dwelling loads to 
estimate their characteristic consumption. Table II presents an 
example of the requested data with 14 basic domestic loads 
considered, with the possibility to incorporate more if needed. 

TABLE II. USE AND QUANTITY OF LOADS 

Load Fridge TV Microwave … 

    kj  Power (W)  
Hour (h)   hhnhh    

350 165 650 … 

0:00 1 0 0 … 
1:00 1 0 0 … 
2:00 1 1 0 … 
… … … … … 
22:00 1 2 1 … 
23:00 1 1 0 … 

 

The survey includes information for a typical day, 
distinguishing weekdays and weekends, and indicating the 
number of loads working at a certain hour (h). Each load has 
a typical nominal power (Pn) and a use factor (fu), derived 
from [17] and [22], where fu is the proportion of time (per 
hour) that the load actually works.  

Given that the survey only contains information for 
typical days, a probabilistic approach based on BN is applied 
to include variability in the load profiles of the dwellings, in 
respect to a base consumption of their membership group. 
Variables are represented by nodes and, given the relations 
between variables, these nodes are connected to each other, 
with associated probabilities of occurrence. These 
probabilities are obtained via an inference process, in which 
the evidence (previous knowledge) is propagated through the 
network, updating the knowledge about the unseen variables 
[23]. In this way, BN can be used to explain a variety of 
phenomena by making use of the interdependence of a series 
of variables, in a cause-and-consequence relationship. 

Fig. 3 shows the topology of two nodes BN utilized, in 
which the causes are the evidences (Hour), and the network 
generates the consequences or effects (Load State). The Load 
State (LS) is conditioned by the Hour of the Day (h), having 
probabilities associated to three possible states of LS: 
increaseܲሺூሻ, decreaseܲሺ஽ሻ, and maintainܲሺெሻ. These states 
correspond to the probability that, for the dwelling vi, the use 
of a specific load e at a specific hour h respect to the 
reference dwelling dR increases, decreases or maintains it 
value, respectively. In each group, the quantity of loads that 
variate over the dwelling dR (states of LS), is adjusted to the 
standard deviation of the load considered in the group. 



 

  
Figure 3. Topology of the BN utilized for the demand variation profiles 

model 

With the survey information (Table II), and considering as 
database the whole community, the BN parameters are 
estimated using the Expectation Maximation (EM) algorithm. 
Thus, for each identified group, and for each load, one BN is 
obtained. Each BN generates variations in the consumption as 
the change in the use of a load in a specific dwelling i (di) 
respect to a reference dwelling for a certain group, at a certain 
time.  

Thus, for each of the u groups, and k loads, a realization 
of the BN is performed to obtain demand variation profiles 
for each dwelling. Considering [17], the dwellings in each 
group are assumed to have a similar consumption behavior. 
The demand variation profiles are generated as follows: 

ሻݐሺ	௜∅݌             ൌ ∑ ቀܴ൫ܲሺ௅ௌሻሺ݄ሻ൯௘ ∙ ܲ݊௘ ∙ ௘ቁݑ݂
௞
௘ୀଵ             (1)     

 
Where ݌∅௜ሺݐሻ	corresponds to the estimation of the variation 
in power at instant t in a dwelling di with respect to dR, and 
ܴ൫ܲሺ௅ௌሻሺ݄ሻ൯ is the response at time h of the state ܵܮ for each 
load. This value is multiplied by the nominal power ܲ݊௘ and 
use factor ݂ݑ௘ for the load e. The sampling time t is 5 
minutes, and it is considered the behavior of loads that have 
short periods of use, as kettles among others [17]. 

D. Residential load profile generation 

Finally, the residential load profile for each dwelling di is 
created aggregating the base load profile for the membership 
group (average load profile of dR, define in the Section II.B) 
and the load variation profile (as in Section II.C). For each 
event (a day), a different load profile is created, reflecting the 
variability of the residential electrical consumption day to day 
(2). 

ሻݐ௜ሺ݌                             ൌ ሻݐௗோሺ݌ ൅ 	ሻ                          (2)ݐ௜ሺ∅݌
ሻݐ௜ሺ݌ ൒ 0 

 
where pi(t) corresponds to the consumed power at instant t for 
di, pdR (t) represent the power value metered in the reference 
dwelling (dR) at time t. In the case that pi is negative, the 
value is adjusted to zero, taking over that in those situations 
the consumed power is null or nearby to zero. 

III. CASE STUDY 

The methodology is implemented in the Huanaco 
Huenchun community, which is composed by 68 dwellings 
and currently has electrical supply from a utility. Below, the 
main results regarding the study are shown. 

A. Dwelling clustering according to features associated to 
the electrical demand 

Sixteen electrical appliances were identified that are used 
in the dwellings in a regular way. In Fig. 4 the average 
quantity of the appliances in the community and the standard 
deviation of the loads is presented. The main appliances 
correspond to refrigerators, TVs, electrical kettles and 
lighting, presenting a homogeneity regarding the possession 
of equipment inside the community.  

  
Figure 4. Average quantity of electrical appliances within community.  

The data of each survey were entered to SOM clustering 
algorithm based on the features defined in Table I. The 68 
dwellings were clustered in four groups, from where the main 
characteristics of the dwellings of each group were analyzed 
in Table III. From the identified characteristics, it is not 
possible to appreciate a correlation between the behaviors of 
the groups. Therefore, each group presents a particular 
behavior, different to other group. 

TABLE III. GROUPS AND THEIR MAIN CHARACTERISTICS 

Group N° of 
dwellings 

Observed features 
Members Age range Activities 

1 33 1 to 2 
Only adults 
and elderly 
people 

Mostly are farmers. 
Do not have full time 
employment. 

2 11 3 
Only adults 
and elderly 
people 

Some members 
practice the 
agriculture and other 
full time employment. 

3 5 2 to 3 
Couple of 
adults 

Only house owner 
and farmers. 

4 19 ≥ 5 
Young 
people and 
adults 

Farmers, house 
owner, students and 
full time employment. 

 

B. Base load profile generation 

Four reference dwellings are selected that show an 
average behavior per cluster. For each dwelling, a 
consumption electric meter was implemented, obtaining 
power data for a period of three months (Jul to Sep, 2015). In 
Fig. 5, base load profiles of each dR are presented. Similar 
profiles for weekday and weekend were obtained. This is 
because the community has similar activities all the days of 
the week. These activities like familiar agriculture are 
regularly performed along the week, without high variations. 
Additionally, in most of the dwellings, a similar use of 
electric appliances for each type of day was declared in the 
surveys. 



 

 
Figure 5. Daily base load profiles. 

From the power data and surveys, it is clear that the 
consumptions within the community has predominantly low 
values, reflecting mainly the use of refrigerator (cooling 
cycle) and lightings [23]. Each one of the dR has a similar 
load, however dR4 presents a higher consumption level that is 
explained as this dwelling belongs to the group with a higher 
number of members. 

C. Load variation profile based on Bayesian networks 

After the identification of reference dwellings, the 
information regarding to the daily use of electrical appliances 
is used by the Bayesian network model (Section II.C) to 
generate the state probabilities of LS for each cluster. In the 
Table IV, the values of nominal power Pn and use factor fu 
used in the generation of the load variation profile are shown 
[18], [23]. In Fig. 6, three load variation profiles for the same 
dwelling (di) are presented. The profiles are generated with a 
5 minutes of resolution.  

TABLE IV. ELECTRICAL APPLIANCES PARAMETERS 

Load 
Nominal 
power 

(W) 

Use 
factor 

Load 
Nominal 
power 

(W) 

Use 
factor 

Fridge 195 0.7 Lighting 23 – 50 1 
Electric 
oven 

1300 1 Hairdryer 500 0.15 

Electric 
kettle 

1500 0.08 Freezer 180 1 

TV 150 1 PC 300 1 

Iron 1000 0.5 
Kitchen 
items 

500 0.5 

Washing 
machine 

520 1 
DVD – TV 
Digital 

150 1 

Radio 60 1 Water pump 350 1 

Microwave 800 0.25 Electric stove 550 1 

 

  

At each event, a different load profile is modeled, depicting a 
similar behavior with respect to each other, with local minor 
variations. This is due to the use of a probabilistic approach.  

D. Residential load profile generation 

Once obtained the base load profiles and load variation 
profiles, for each di, the corresponding load profile is 
modeled. In the Fig. 7, the load profile for a specific dwelling 
of the community is presented. 

 
Figure 7. Modeled load profiled for one dwelling (di). 

The modeled load profile for a dwelling di is obtained 
adding base and variation curves, keeping zero as minimum 
possible value. This procedure is replicated to all the 
dwellings and different days. In Fig. 8 three simulations of 
the community load profile are presented.  

 
Figure 8. Simulations of the community load profile for one day. 

Similarly to the individual case, aggregate load reflects 
the typical behavior of the residential load, depicting peaks at 
the morning hours (7:00 to 9:00 hrs) and at evening (18:00 to 
21:00 hrs), which are periods with the most activities in the 
houses [20]. For the case of the community, based on the 
simulation of 60 days, a maximum power of 34.4 kW is 
registered. This value is presented during the evenings, while 
that of the minimum power is of 2.5 kW. The load factor is 
0.38 and the daily consumption is of 315.6 kWh, which is 
considered representative for the sampling period. 

E. Validation  

For validation, a comparison with the monthly electrical 
consumption was performed. The electric company 
FRONTEL S.A. supplies energy to this community and a 
bimonthly rate is received for each customer. Since that there 
is not a complete base of the electrical consumption of all the 
dwellings of the community, a comparison with only 32 
dwellings is carried out. For this, 60 simulations (60 days) 
were performed, to estimate the consumed energy for the 
period of two months for each one of the dwelling. After, a 
comparison was performed of the results with the actual 
records of the company for the same sampling period.  

Figure 6. Load variation profile generation. 



 

In the Table V, the aggregate comparison of each cluster 
is presented. The Table V shows a low relative error for each 
one of the clusters. The cluster 3 presents the higher error, 
being at same time the cluster with less dwellings in 
comparison with the others clusters. 

TABLE V. ENERGY CONSUMPTION COMPARISON 

Group 
or 

cluster 

Compared 
dwellings 

Registered 
consumption 

(kWh) 

Modeled 
consumption 

(kWh) 

Relative 
error 
(%) 

Group 1 17 2459 2703 10.0 
Group 2 4 677 725 7.1 
Group 3 3 517 342 33.8 
Group 4 8 1268 1645 29.7 
General 32 4921 5415 20.1 

 
Using more data from the meters installed, for different 

periods (for instance one year), it could be possible estimate 
the seasonal variations along of the year, including bimonthly 
average profile such as the base load profiles. 

IV. CONCLUSION 

A novel methodology based on SOM and Bayesian 
networks for load profile estimation is presented. The 
methodology can be applied for a whole community to 
generate load profiles for several days, taking into account 
the local variability of loads during short time intervals. We 
conclude that it is important the inclusion of socio-
demographic data of the dwellings, since these allowed to 
identify particular features regarding electric power 
consumption. Besides, computational intelligence techniques, 
such as SOM and Bayesian networks, allowed capturing 
different behavior of the consumers and its variability. 

The generated profiles provide relevant information for 
the design of microgrids; in particular, the installed capacity 
of each power generation unit based on the profiles that 
include the electric power consumption and power peaks over 
time, among others design variables needed. The 
methodology is successfully applied to a rural community 
and can be applied to others with partial or full power supply. 
Further research could include the social and cultural aspects 
in the methodology for improving the load profile estimation.  
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