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ARTICLE INFO ABSTRACT

Keywords: Automated Vehicles (AVs) offer their users a possibility to perform new non-driving activities
Automated vehicles while being on the way. The effects of this opportunity on travel choices and travel demand have
Time-use model mostly been conceptualised and modelled via a reduced penalty associated with (in-vehicle)

On-board activities

travel time. This approach invariably leads to a prediction of more car-travel. However, we argue
Travel behaviour

that reductions in the size of the travel time penalty are only a crude proxy for the variety of
changes in time-use and travel patterns that are likely to occur at the advent of AVs. For example,
performing activities in an AV can save time and in this way enable the execution of other
activities within a day. Activities in an AV may also eliminate or generate a need for some other
activities and travel. This may lead to an increase, or decrease in travel time, depending on the
traveller’s preferences, schedule, and local accessibility. Neglecting these dynamics is likely to
bias forecasts of travel demand and travel behaviour in the AV-era. In this paper, we present an
optimisation model which rigorously captures the time-use effects of travellers’ ability to perform
on-board activities. Using a series of worked out examples, we test the face validity of the model
and demonstrate how it can be used to predict travel choices in the AV-era.

Travel demand
Multitasking

1. Introduction

Today, many public transport passengers conduct activities while travelling (Keseru and Macharis, 2017, Frei et al., 2015, Lyons et al.,
2007, Ettema et al., 2012, Malokin et al., 2016). Many scholars, policy makers and automotive industry practitioners anticipate that
future Automated Vehicles' (AVs) will allow their users to engage in an even wider range of on-board activities. The ability to perform
new on-board activities in the AV is generally expected to increase productivity and well-being (Kyriakidis et al., 2015, Bansal et al.,
2016). Nevertheless, the increased attractiveness of travelling is also feared to cause more car travel in the AV-era and in due time even
relocation of home and work locations to places further apart (Milakis et al., 2017; Fagnant and Kockelman, 2015; Heinrichs, 2016; Sadat
Lavasani Bozorg, 2016). In order to anticipate these changes in travel and location choices, the AV-effect is usually conceptualised using
the idea of a reduced travel time penalty, or similarly, a lower value of travel time savings (Gucwa, 2014, Childress et al., 2015).
However, this approach has important limitations, which we illustrate with an imaginary narrative of a future traveller.

Before purchasing her AV, Anne used to commute to work with a conventional car. In the mornings, she used to wake up at 7:00 to
get ready (dress, eat breakfast), depart at 8:00, and reach work at 9:00. She often contemplated visiting a swimming pool in the
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morning, but ultimately did not want to get up earlier to do so. In the evening of a typical working day, she used to leave her work
at 18:00, headed home for a 30-min nap, and then drove to meet her friends for dinner at 20:00. She often felt like working longer,
but did not want to miss out on her evening activities.

Recently, Anne’s company has adopted a new policy allowing employees to perform their morning work tasks in their fully
automated vehicles, and arrive at the office at 9:30. Now, Anne has switched to an AV. She leaves home at 8:30 and arrives at the
office at 9:30. About 30 min of her journey she spends preparing and eating breakfast; the remaining 30 min she spends replying
to work emails. She uses the gained one hour in the morning to visit a swimming pool, which she reaches with her AV. In the
evening, Anne stays an extra hour and a half at work, and takes a nap in her AV, while it drives her straight to the meeting with
friends (saving her a detour to home).

This example exposes two key aspects of travel behaviour in the AV-era, which are overlooked when applying the travel time
penalty approach:

1. On-board activities can create time savings. If an activity is transferred from another time of the day to the AV, then time is saved,
because the activity and travel are simultaneous. In the example, Anne gains time in the morning, as well as in the evening. If the
analyst does not account for such possibilities (which is the case when AV-implications are conceptualised using the travel time
penalty approach), then he/she implicitly assumes that all activities that are executed in the AV are added to the existing daily
activity schedule of the traveller, rather than being transferred. Note that the share of work activities transferred to the business
travel time is explicitly modelled in Hensher’s equation (used to obtain the value of business travel time savings, Hensher, 1977),
and empirical evidence for such transfer of work activities is available (e.g., Gustafson, 2012).

2. Changes in on-board time-use can lead to more travel, as is commonly argued. However, it can also lead to less travel, given a
certain activity wish-list (or daily activity plan) of the traveller. The narrative illustrates both possibilities: more travel (in the
morning) and less travel (in the evening). When only reductions in the travel time penalty are considered as in many previous
studies, the possibility of a decrease in travel is implicitly ruled out. Note that conceptually this idea is not new: already 20 years
ago, Kitamura et al. (1997) wrote that ‘the key question to be addressed when dealing with induced or suppressed trips is how
people use time’.

The above aspects summarise the main problem of solely using (reduced) travel time penalties to model the impact of on-board
activities in the AV. This travel time penalty-approach disregards the duration of on-board activities and their interactions with other
activities. Therefore, more subtle effects, such as the difference between adding and transferring activities, are likely to be missed. In
other words, by solely using the travel time penalty as a proxy for the effect of productive time use in the AV, the researcher or policy
analyst implicitly assumes that activity-travel patterns - beyond the added activities during travel and extended or generated trips —
will remain unchanged in the AV-era. This assumption leads to an incomplete understanding of travel behaviour and potentially
mistaken forecasts of travel demand in the AV-era, which carries important and obvious risks for transport policy making.

We aim to address this problem by modelling on-board activities in the AV explicitly, rather than implicitly assuming that their
only effect is a reduced penalty associated with travel time. Specifically, we propose a formal model that accounts for changes in
time-use, when some of a traveller’s activities can be performed on board the AV. The model is based on, and extends, classical time-
allocation frameworks (Becker, 1965; DeSerpa, 1971; Evans, 1972). Our model is also in line with previous studies that have made
important steps towards using the time-allocation framework to model on-board activities and ICT use (Pawlak et al., 2015, 2017;
Banerjee and Kanafani, 2008). Pawlak et al. (2015, 2017) build upon Winston’s (1982) extension of the classical time-allocation
framework and represent the effect of AVs with higher intensity of on-board activities. They study a multi-dimensional choice,
including the choice of on-board activities, in a two activity, single-trip setting. This implies an interaction between on-board ac-
tivities (and their productivity) and the scheduling of the directly neighbouring activities (pre- and post- travel). Banerjee and
Kanafani (2008) adapt the time-allocation framework to study effects of working in the train (using wireless internet) on travel
choices. They model a choice to transfer the work activity from a fixed office location to train.

Our work contributes to this literature in several important aspects. First, whereas previous work exogenously specified which
activities are to be performed in stationary locations or on board, we allow for endogenous selection of activities and their locations.
Second, by considering longer activity lists than in previous studies and by allowing activity transfers to the AV, our model captures a
wider range of possible changes in daily travel and time-use, which can be expected in the AV-era.

The remaining sections are structured as follows. Section 2 builds the time-use model. Section 3 illustrates the model’s working
using minimalistic examples. Section 4 applies the model to an extended example. Section 5 reflects on the role and scope of our
model and provides suggestions for calibrating, applying and extending our model. Section 6 concludes and discusses policy im-
plications.

2. Time-use model considering on-board activities

We base our model on the core ideas behind the classical time-allocation frameworks derived by Becker (1965), DeSerpa (1971)
and Evans (1972). These microeconomic frameworks postulate that people choose the activities that provide most utility for them,
while staying within total available time and monetary budget constraints. In other words, they suggest that an optimisation task is
solved to obtain the optimal daily activity plan.

However, the original formulations of the model, for understandable reasons, do not allow for overlapping activities, such as the
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execution of non-driving on-board activities during travel. Moreover, they do not explicitly model travel to activity destinations. Yet,
these elements are crucial for modelling the interaction between on-board and other activities. In our model, we capture these
elements, and specifically, we model the interplay among stationary activities, travel, and on-board activities. The interplay results
from the complementarity and substitution relationships in this triplet, which is contained in three statements:

1. Stationary activities generate a need for travel.
2. Travel enables on-board activities.
3. On-board activities may (partially or completely) replace stationary activities.

The main contribution of our model is that it explicitly models on-board activities. However, and beyond this main contribution,
our model in fact captures all three components of travel utility, as classified by Mokhtarian and Salomon (2001): the intrinsic utility
of travel, utility of on-board activities, and the utility of reaching potentially better destinations. Note that our model could be
extended to allow an overlap not only between travel time and on-board activities, but between any two or more activities. Such a
generic model was proposed by Sanchis (2016). However, our model in another way extends the model of Sanchis (2016) by
introducing the above-mentioned complementarity and substitution relationships between activities. On the other end, com-
plementarity and substitution, but not an overlap (in the use of time or goods), has been modelled in the context of multiple discrete-
continuous models by Bhat et al. (2015).

Following is the introduction of the model. We consider a set of activities i € I, a set of stationary locations where activities may
be performed [ € L, and a set of travel modes m € M. The utility of performing activity i is U}, if it is performed stationary at location
1, and U™, if it is performed on board travel mode m. For example, an individual may perform shopping activity in several shopping
malls or online while travelling in AV, taxi, or public transport.

Similar to the utilities, the necessary time for activity i € I is denoted by parameters T} and T}, which correspond to the total
time necessary to perform the entire activity at a stationary location I and on board mode m, respectively. The reason for specifying
different parameters for stationary and on-board activities is the intuitive idea that activities may be better or worse facilitated at
different (stationary and on-board) locations.

The parameters describing the travel to stationary location I to perform activity i € I are V' for travel (dis)utility and Hjj* for
travel time, both assuming that the entire trip is performed with mode m. The travel (dis)utility Vi refers to the intrinsic (dis)utility
of travelling in mode m, which is unaffected by on-board activities and includes mode-specific costs such as travel effort, incon-
venience, monetary costs, as well as motivations of curiosity, status, and independence (Ory and Mokhtarian, 2005). Travel times H;j*
and (dis)utilities V7 are assumed to be known and not dependent on other selected activities, nor their sequence.” In case any
stationary location is suitable for an activity (e.g., read a book in the library or in a park), then travel time H;* to this stationary
activity is zero.”

All the selected activities and the associated travel to reach them need to fit within the total time constraint T. In order to
maximise the utility, the person makes three choices, represented by decision variables. First, the choice to perform activity i is
denoted by binary decision variable x; € {0, 1}. Second, the choice of location(s) for activity i is represented with continuous decision
variables yi', y&'{ € [0, 1]. These variables represent the shares of activity i performed at each stationary location I (yi’) and on board
each mode m during each trip (y;;), respectively. A trip is identified by its destination I and activity j at that destination. To indicate
that activity i is performed on board during a trip to activity j, we use two indices i and j that belong to the same set I. Thus, the
product yil T} represents the time spent on activity i at location I, and yé'l'Ti"‘ represents the time spent on activity i while on board
mode m on the way to activity j at location Il. Third, the choice of travel mode(s) to reach the stationary location I of activity i is
denoted by continuous decision variables z;* € [0, 1] that indicate the share of mode-specific total trip time (i.e., the share of Hj").
The product z;* Hj* represents the time spent in mode m while travelling to perform activity i at the location 1.

The decision variables y}, ¥y and zii" are defined as continuous to represent the idea that activities may be split between several
locations and, similarly, travel may be split among several travel modes. Time and utility of split activities is composed pro-
portionally. For example, one may have a choice of reading a newspaper in a cafeteria, which could take 30 min and give a utility of
size 2, or on the way home in mode m, which could take 60 min and give a utility of size 1 (perhaps due to lower comfort levels in that
mode). Faced with a time constraint, this person may choose to read 80% of the newspaper in the cafeteria, and 20% of it on the way
in mode m. In such a case, the utility obtained from reading the newspaper equals 0.8%2 + 0.2x1 = 1.8. The time spent reading the
newspaper equals 0.8%30 + 0.2:60 = 36 minutes.* However, splitting an activity among several locations may be inconvenient (e.g.,
‘flow’ may be interrupted, or equipment may need to be set up each time). Therefore, an activity-specific weight 1, (expected to be
negative or zero) is used to penalise each additional fragment of activity i (at stationary locations I and/or on-board locations m).”

The time-use model that maximises utility from selected activities, including on-board activities, is as follows:

2If our model is implemented in comprehensive simulation frameworks, then the travel times and (dis)utilities would need to be updated by a subsequent
optimisation of activity sequence. Note that separation of activity selection and sequencing steps is a common practice in activity-based modelling (Arentze et al.,
2010, p. 72).

3 Travel times would also be zero, if the traveller happens to be in the stationary location for the preceding activity. Our model is not sensitive to such situations (see
the previous footnote).

“ Note the difference between reading 80% of the newspaper in the cafeteria and spending 80% of the newspaper reading time in the cafeteria. The decision variable
refers to the former.

5 In a similar way, mode changes within a trip could also be penalised in an extended version of the model.
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In the model, the objective function (1) maximises the utility from the selected activities, including the (dis)utility of the travel to
them and penalties for fragmentation (variables ril and si;-'l‘ are explained below). Constraint (2) limits the total time of all selected
activities to T. It includes the time spent in stationary activities and the time spent travelling. On-board activities are conducted
simultaneously with the travel; therefore they are not part of the total time constraint. This constraint is a key to the potential
preference for on-board activities, even if their utility and/or time parameters are worse than the parameters of stationary activities.
Constraints (3) limit the time for the on-board activities in each trip: the time allocated to the on-board activities while travelling with
mode m to location I to perform activity j must be less than or equal to the travel time to that location with the respective mode.
Constraints (4) ensure that each activity is either performed completely (shares of activity at different locations add up to one) or not
performed at all (all share variables are zero). Activity would not be started, if there is not enough time to complete it stationary (due
to constraints (2)) and/ or on board (due to constraints (3)). Constraints (5) and (6) define a binary flag ri’ that indicates whether
activity i is at least partly performed stationary at location I. Similarly, constraints (7) and (8) define a binary flag sy that indicates
whether activity i is at least partly performed while travelling with mode m to location I to perform activity j. These binary flags are
defined using G as a large positive constant. It can be checked that by substituting yi’ (in case of constraints (5) and (6)) with values
from [0, 1], constraints (5) and (6) replicate the following logic: if yl.’ > 0, then ri’ = 1; otherwise ri‘ = 0. The sum of binary flags ri’ and
sii over j, I, m indicate the number of fragments of each activity i, which is penalised in the objective function (1). Constraints (9)
make sure that each necessary travel is completed, whenever an activity is at least partly performed stationary (indicated by flag r}).
Finally, constraints (10) and (11) define the domain of variables. The resulting system (1) and (11) is a mixed-integer linear model,
which can be solved by commercial integer linear programming solvers.

Besides extending the time-allocation framework to include on-board activities, our model differs from more recent commonly
used representations of the classical time-allocation framework (such as Jara-Diaz et al., 2008) in several other aspects.

1. We exclude the utility of consuming obtained goods from the objective function. In doing so, we follow Evans (1972), who stated:
‘utility is not derived from the properties or characteristics of the goods but from the activities for which the goods are used.’ (p.
14)

2. We exclude the monetary budget constraint for model expediency. We assume that the AV users will generally belong to the high-
income market, where the budget constraint would typically be ineffective (Evans, 1972) in the context of daily travel and activity
choices. Nevertheless, budget constraint might be re-introduced in an extended version of the model. Budget constraint should
also be included when modelling vehicle purchase decision.

3. We shift the emphasis away from activity duration choices to activity selection by assuming that the considered activities have a
fixed duration. This shift suggests that many activities are rather stable in their duration (certain work tasks, sleep time, meal
time). This assumption could be relaxed, for example, by defining groups of activities, where each group contains alternative
durations for a single activity, and one option is chosen from each group. In such a way, flexible relationships between activity
duration and utility could be modelled.
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Table 1
Anne’s activity wish-list.
Activity Activity stationary Travel to the stationary activity Activity on board
Utility (per activity) Time (h) Utility (per h) Time (h) Utility (per activity) Time (h)

Morning activities:

Swim 9 0.7 -10 0.3 _104 1
Get ready 20 1 0 0 —10% /15 1
Work emails 20 0.5 0 0 —10% /20 0.5
Work in office 20 0.5 -10 1 —104 0.5
Evening activities:

Work in office 8 1.5 0 0 —104 1.5
Take a nap 20 0.5 —10 1 —10% /10 0.5
Dinner with friends 20 1 -10 0.5 —104 1

Total time constraints: 3 h for the morning activities and 3 h for the evening activities.

4. We do not distinguish work activity from other activities. We implicitly assume that on most days the utility generated by, for
example, 8 h of work, far exceeds utility of 8 h of leisure. The income and commitment to work is part of the work utility. If the
utility of leisure exceeds the utility of work for a particular day, then the decision maker would take a ‘day-off’. Alternatively, one
may model work (and other appointment-like activities such as theatre shows, job interviews) as an inflexible activity that defines
the time boundary T of the model. We adopt the latter approach as we illustrate the model in the next section.

5. We adopt a linear utility function, instead of the multiplicative Cobb-Douglas form. This is done for model tractability reasons,
and has no implications for the general validity of results discussed further.

3. Illustration of the model

In this section, we illustrate the model using the fictive example of Anne from the introduction. We translate her morning and
evening activities® into an activity wish-list and add hypothetical utilities and time requirements for all activities (see Table 1). All
activities of Anne’s wish-list can be performed stationary (see column ‘Activity stationary’), and some would require travel when
performed stationary (see column ‘Travel to the stationary activity’). Some activities can also be performed on board, once Anne has
switched to an AV (see column ‘Activity on board’). Note that if an activity cannot be performed on board, then assigning a large
negative utility ensures that the activity is not selected to be performed on board.” ®Cells with two utility values specify both the
utility in a conventional car (i.e., a large negative utility) and in an AV (positive). Some activities, when performed in the AV, have a
reduced utility: getting ready in the morning, taking a nap in the evening may be less comfortable in the AV.

Using these settings as an input for the model,”'® we obtain the optimal activity schedule for Anne both before and after she
switches to an AV, see Fig. 1. The results correspond to the description in the introduction.

A clear pattern can be seen in Fig. 1: AVs enable Anne to perform more activities within the time available to her (attend a
swimming pool in the morning, work longer in the evening). Note that Anne’s examples assume time pressure — given the time
constraint, she cannot perform all the activities of her wish-list at stationary locations. She needs to choose between the activities, or
between full or partial benefit of the activities, since some activities are imperfectly facilitated in the AV, as assumed earlier. In other
cases (not modelled here), activities could be better facilitated in an AV compared to a stationary location: for example, some
travellers may prefer being isolated for activities that require high concentration, such as work. Such travellers would transfer
activities to the AV also in absence of time pressure, and there would be more changes in the time-use patterns, compared to the
current example.

Furthermore, notice how the switch to an AV changes Anne’s total utility and total travel time differently in the morning and
evening activity plans. The total utility is always increased by adopting an AV, but in the morning this increase is smaller than in the
evening. The total travel time is increased in the morning (from 1h to 1.3 h), but decreased in the evening (from 1 h to 0.5h).

© The mid-day activity is assumed to be work, which is not modelled here (see the example in Section 1).

7 In addition to this, one could set the time necessary for an impossible activity-location pair to a positive infinity (large positive number). Still, it is important that
the utility of the impossible pair is a large negative number. Otherwise, the optimal solution may assign a small portion of the activity to an impossible location in
order to complete the activity (due to constraints (4)).

8 Future AVs may also offer novel entertainment options, which could be impossible or unattractive in any other location (similarly as the way in which Pokemon Go
recently attracted much pedestrian traffic). Such options can be modelled by assigning a positive utility for the activity on board, but large negative utility for the same
activity performed stationary. We thank a reviewer for this remark.

2 Note that a restricted version of the model is sufficient to represent Anne’s situation. First, each activity in Anne’s wish-list has a single possible stationary location
1. Second, Anne has access to only one travel mode m at a time. Third, she does not mind fragmentation of activities. We therefore use a restricted model to compute
results in Anne’s example. In the reduced model, the fragmentation penalty %; is set to O for all activities. Fragments of each activity do not need to be counted;
therefore constraints (7) and (8) are excluded, and variable yi;'l‘ is replaced with yim. Then, constraints (3) can and should no longer differentiate between trips, but

should only restrict total on-board time as less than total travel time: >}, " T/* < 3, 2" H".

10 All results are obtained using internal solver ‘intlinprog’ in MATLAB. Computation for our examples takes less than a second.
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Anne’s morning Anne’s evening
Total utility = 50 Total utility = 25
Total travel = 1h Total travel = 1h
=
]
(3]
=| [
= G Travel ‘Work Work in Travel Take Travel Dinner with
= U= 20y) to work; emails; office; tonap; anap; | todinner; friends:;
E U=-10 U =20 U=20 U=-10 U=20 Y745 U =20
[
>
=
=
Q
7:00 7:30 8:00 8:30 9:00 9:30 10:00 18:00 18:30 19:00 19:30 20:00 20:30  21:00
Total utility = 53.5 Total utility =33
Total travel = 1.3h Total travel = 0.5h
Get ready; Wo.rk' Take_
U=175 emails; anap;
> 2| u=20 U=10
<« (Travel-| ST o Travel to Work in Work in Travel to Dinner with
swim; Uwing’ i. r_ez; Oy. work; office; office; dinner; friends:
U=-3 . a U=-10 U=20 U=8 U=-3 U=20
7:00 7:30 8:00 8:30 9:00 9:30 10:00 18:00  18:30 19:00 19:30 20:00 20:30 21:00

* The various shading patterns represent different activity types. The dark shading is for stationary, non-transferable
activities. The light shading is for transferable activities (in AV scenario). The checked fill is for travel.

Fig. 1. Model predictions for the illustrative example.

This illustration confirms the intuition that changes in time-use patterns may lead not only to an increase in total travel time (as
conventionally assumed), but also to a decrease. This depends on traveller’s activity wish-list, time constraints, and possibilities
offered by different locations, including on board travel modes. As shown using this simple example, our model is able to capture such
effects.

4. Model predictions in an extended example

So far, a single activity wish-list of Anne was used to illustrate our model. Conclusions about individual travel demand were based
on the selection of stationary activities with fixed travel times. However, in reality activity locations (with different travel times) can
often be chosen and in that way influence travel demand. Possibly, the facilitation level of on-board activities could also be chosen, if,
for example, different AVs are available for rental. This would as well influence the selection of on-board and stationary activities,
and therefore travel demand.

Therefore, this section builds an extended activity wish-list, which includes several scenarios of different activity distances and
facilitation levels of on-board activities. We discuss a wider range of possible adjustments in the activity schedules than before, and
we demonstrate how larger and more realistic applications of our model may be built.

In order to create the extended activity wish-list, we first classify activities in types based on their travel requirements and
transferability to AVs (Section 4.1). Subsequently, we specify the traveller’s activity wish-list as a combination of the activity types
(Section 4.2). Finally, we report and discuss the results of the extended example (S