

Delft University of Technology

Efficient Methodology for ISO26262 Functional Safety Verification

Silva, Felipe Augusto Da; Bagbaba, Ahmet Cagri; Hamdioui, Said; Sauer, Christian

DOI
10.1109/IOLTS.2019.8854449
Publication date
2019
Document Version
Final published version
Published in
2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design, IOLTS 2019

Citation (APA)
Silva, F. A. D., Bagbaba, A. C., Hamdioui, S., & Sauer, C. (2019). Efficient Methodology for ISO26262
Functional Safety Verification. In D. Gizopoulos, D. Alexandrescu, P. Papavramidou, & M. Maniatakos
(Eds.), 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design, IOLTS
2019 (pp. 255-256). Article 8854449 (2019 IEEE 25th International Symposium on On-Line Testing and
Robust System Design, IOLTS 2019). IEEE. https://doi.org/10.1109/IOLTS.2019.8854449
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IOLTS.2019.8854449
https://doi.org/10.1109/IOLTS.2019.8854449

Efficient Methodology for ISO26262 Functional Safety Verification

Felipe Augusto da Silva1,2, Ahmet Cagri Bagbaba1, Said Hamdioui2 and Christian Sauer1

1Cadence Design Systems, Feldkirchen, Germany
2Delft University of Technology, Delft, The Netherlands

Abstract— Tolerance to random hardware failures, required
by ISO26262, entails accurate design behavior analysis, com-
plex Verification Environments and expensive Fault Injection
campaigns. This paper proposes a methodology combining
the strengths of Automatic Test Pattern Generators (ATPG),
Formal Methods and Fault Injection Simulation to decrease
the efforts of Functional Safety Verification. Our methodology
results in a fast-deployed Fault Injection environment achieving
Fault detection rates higher than 99% on the tested designs.
In addition, ISO26262 Tool Confidence level is improved by a
fault analysis report that allows verification of malfunctions in
the outputs of the tools.

Keywords - ISO26262; Fault Injection Simulation; Formal
Methods; ATPG; Functional Safety.

I. INTRODUCTION

Functional Safety Verification is one of the most chal-

lenging steps for Integrated Circuit (IC) compliance with

ISO26262. In safety-critical applications the system must

include Safety Mechanisms being able to detect up to 99%

of the random faults susceptive of the design. In addition,

ISO26262 requires that all possible malfunctions of tools

(used during fault analysis) have to be considered as per Tool

Qualification requirements [1]. Therefore, there is a high

demand for effective Functional Safety Verification method-

ologies allowing the reduction of costs while maintaining the

same levels of safety.

The commonly used method for Functional Safety Verifi-

cation is Fault Injection (FI) Simulation [2][3]. The purpose

is to show that fault effects can propagate to outputs and

that Safety Mechanisms can detect them. In order to cause

propagation of all faults, complex verification environments

with numerous test inputs are required, resulting in long

FI Campaigns. To address this challenge, we can deploy

different verification technologies in a single methodology.

Methodologies applying Formal Methods to identify faults

that cannot propagate to outputs of the design (Safe faults)

[4][5][6], and ATPG techniques to generate test patterns that

potentialize fault propagation [7][8] have been proposed.

Even though Simulation, Formal Methods and ATPG have

complementary strengths, to the best of our knowledge, they

were not previously combined in a single fault analysis flow

that aims at fault propagation for compliance to ISO26262

requirements.

Our work takes advantage of three different technologies

aiming to achieve high fault detection rates while decreasing

This project has received funding from the European Unions Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 722325.

the efforts of traditional FI Campaigns. ATPG is used for

fast deployment of a verification environment that provides

high fault propagation rate. The outputs from ATPG are used

by the FI Simulator, for verifying the functional behavior of

the design under each fault. In parallel, Formal Methods are

applied to the design to identify Safe faults. In addition, the

outputs of each tool are verified against each other to identify

malfunctions, increasing the confidence in the tool’s outputs,

as required by ISO26262 [1]. The main contributions of our

methodology are:

• Reduction of the efforts with Test Environment develop-

ments and in the number of required Simulations by de-

ploying automatic generated ATPG Test Environments

to FI Simulation campaigns.

• Increasing compliance to ISO26262 fault metrics by

identification of Safe faults with formal methods.

• Generation of report containing detailed information of

tool outputs to detect malfunctions.

II. PROPOSED METHODOLOGY

Our methodology aims to automate the execution of

Simulation, ATPG and Formal analysis for a specific design.

At the end of the execution, the outputs of the tools are

compared to find discrepancies. An application was develop

in order to control the execution flow and generate final

reports. The Fault Checker application can be configured

to use any ATPG, Simulation, and Formal tools. At the

beginning of the execution, the user should configure the

scripts to control the execution of each tool and provide the

rules for parsing the tool reports.

The application starts with the execution of the ATPG and

Formal flows. As these two flows are independent, they can

be executed in parallel using different CPUs. Simulation flow

requires the ATPG Testbench and test vectors to start. So,

after the ATPG flow is finished, the Fault Checker will extract

the generated Test Environment and will use it for the FI

Simulation. At the end of each flow, the reports generated

by the tools are parsed to a common format, allowing

verification of the results to identify discrepancies between

the tools. Finally, at the end of all flows, the relevant parsed

data is retrieved and compared. The comparison is based on

rules that associate the annotations used by each tool. For

example, faults classified as Untestable by the Simulator are

equivalent to faults classified as Safe by Formal and Ignored

by ATPG. In case a rule is not obeyed, the Fault Checker

will include a Warning tag to the report, informing that this

fault requires attention from the designer.

255978-1-7281-2490-2/19/$31.00 c©2019 IEEE

Results can be analyzed in a CSV report that details the

annotation of each fault by each tool. An error caused by

a malfunction in one of the tools, will be indicated by

a Warning in the CSV report. For example, if simulation

annotates a fault as Detected and Formal annotates the same

fault as Safe, it indicate a malfunction in one of the tools.

The report provides supplementary information with further

possibilities for fault analysis. For example, if a specific fault

is considered Undetected by Simulator and Dangerous by

Formal, it means that formal analysis identified at least one

test stimulus that can propagate the fault. This information

can be used on a new FI Simulation to achieve detection

of this fault. Any other discrepancy between the faults is

indicated in the report with a Warning.

III. VALIDATION

This section describes the validation process of the pro-

posed methodology. First the Fault Checker was configured

with execution scripts to deploy Cadence R©XceliumTMFault

Simulator (XFS), Cadence R©JasperGold (JG) Formal Verifi-

cation Platform and Cadence R©Modus DFT Software Solu-

tion ATPG component as the representatives of each tech-

nology. Second, selected designs were verified by the Fault

Checker. Table I details, for each design, the total number of

faults, the fault detection rate, and the indication of Pass or

Warning resulting from the verification of the tools by the

Fault Checker.

TABLE I

FAULT CHECKER RESULTS.

Design Faults
(SA0/SA1)

Detection
Rate PASS WARNING

Up Down Counter 162 100% 162 0
Memories 2782 99.78% 2776 6
AC97 57226 99.77% 57108 118
Conmax 153454 99.80% 153191 263

During the Up Down Counter and Memories designs

verification, the Fault Checker confirmed that all faults have

equivalent annotations. As the examples are relatively simple,

the different tools can determine that all faults can propagate

to outputs. For the Memories design, the application detected

6 faults that were annotated as Safe by the Formal analysis,

and can be disregarded.

On the AC97 design, the Fault Checker was able to detect

118 faults with distinctive annotations. From these, 49 faults

were annotated as Safe by Formal and can be disregarded;

23 were annotated as Dangerous by Formal meaning that

Formal can extract test inputs to cause propagation of the

faults; and 46 faults were not classified, meaning that they

require manual analysis.

During the analysis of the Conmax design, the method-

ology detected 263 discrepancies between the tools. From

these, 7 faults were annotated as Dangerous by Formal.

Meaning that results from Formal can be applied for detect-

ing these faults during simulation. The other 256 faults have

non conclusive annotations and should be manually analyzed.

The results demonstrated above corroborate with the listed

contributions. First, the comparison of the fault classifica-

tions from each tool enables identification of tool malfunc-

tion. The report generated by the Fault Checker allows de-

tailed analysis of faults and can be used to support ISO26262

Tool Qualification. Second, Safe faults classification by

Formal Methods permits improvement of fault tolerance,

by decreasing the total number of faults and improving

ISO26262 metrics. Third, the proposed methodology shows

considerable fault detection rates for all tested designs.

IV. CONCLUSIONS

Due to the harsh requirements for random hardware fail-

ures tolerance, Functional Safety verification is a challenging

step for ISO26262 compliance. FI simulation, as part of

this process, becomes a long and expensive procedure, that

is usually repeated numerous times until the metrics for

fault detection are achieved. We propose a methodology

that deploys ATPG and Formal to support Simulation results

and to decrease the overall effort of FI Simulations. Our

methodology enables the use of test environments created

with ATPG for the simulation of faults, and the use of

Formal for identification of Safe faults. Formal results allow

the optimization of the Fault List, reducing the number

of faults to be simulated. In addition, the results of the

tools are compared to identify discrepancies and potential

defects. The inclusion of redundancy as a method to detect

malfunctions in tools is suggested for achieving ISO26262

Tool Confidence [1]. Our results have shown high fault

detection rates, achieving more than 99% of detected faults.

In addition, the proposed methodology can identify Safe

faults, contributing to reaching ISO26262 metrics.

REFERENCES

[1] ISO, ISO 26262 - Road Veichles - Functional Safety - Part 8: Supporting
processes, International Standardization Organization Std., Nov. 2011.

[2] A. Nardi and A. Armato, “Functional safety methodologies for auto-
motive applications,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, nov 2017.

[3] Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu, “As-
sessing automotive functional safety microprocessor with ISO 26262
hardware requirements,” in Technical Papers of 2014 International
Symposium on VLSI Design, Automation and Test. IEEE, 2014.

[4] K. Devarajegowda and J. Vliegen, “Deploying formal and simulation
in mutual-exclusive manner using jaspergolds proofcore technology,” in
Cadence User Conference CDNLive EMEA, 2017.

[5] S. Marchese and J. Grosse, “Formal fault propagation analysis that
scales to modern automotive SoCs,” in 2017 Design and Verification
Conference and Exhibition DVCON Europe, 2017.

[6] A. Traskov, T. Ehrenberg, and S. Loitz, “Fault proof: Using formal
techniques for safety verification and fault analysis,” in 2016 Design
and Verification Conference and Exhibition DVCON Europe. DVCON,
2016, pp. 27–32.

[7] S. Praveen, S. Yellampalli, and A. Kothari, “Optimization of test time
and fault grading of functional test vectors using fault simulation flow,”
in 2014 International Conference on Electronics, Communication and
Computational Engineering (ICECCE). IEEE, nov 2014.

[8] S. Arekapudi, F. Xin, J. Peng, and I. G. Harris, “ATPG for timing-
induced functional errors on trigger events in hardware-software sys-
tems,” in Proceedings The Seventh IEEE European Test Workshop.
IEEE Comput. Soc, 2002.

256 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

