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Abstract

Nanomechanical resonators made from graphene are widely researched for their potential
applications due to their high sensitivity. Their atomic scale thickness makes it that these
resonators exhibit amplitude-dependent damping at relatively small driving forces. To further
increase the performance of these devices, it is essential to understand the dissipation process.
Although many physical mechanisms that lead to linear damping have been investigated, the
origin of nonlinear damping remains largely unknown. Nonlinear damping in nanomechanical
resonators is typically studied using phenomenological models. In this thesis, a multilayer
graphene resonator is studied that is electrostatically actuated. The graphene resonator is
modeled as a viscoelastic membrane operating in the geometrically nonlinear regime. The
amplitude-dependent damping term used in phenomenological models arises naturally in the
equation of motion. The experimentally obtained nonlinear frequency responses are then
fitted using a fully automated algorithm. Based on these fits, the viscoelastic properties of
graphene and its loss tangent are found. When the same analysis is done for a single-layer
graphene resonator coupled to an optical cavity, negative nonlinear damping is observed which
turns positive with increasing laser power. The effect of the optical field on the nonlinear
damping is then modeled. It is found that the change in equilibrium position of the graphene
membrane due to laser illumination as well as geometric imperfections can lie at the root of
the negative nonlinear damping behavior.
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Chapter 1

Introduction

Mechanical resonators are systems that show resonant behavior. Such systems have the nat-
ural tendency to vibrate at a certain specific frequency called the resonance frequency. When
a resonator vibrates at its resonance frequency, the oscillations occur at a higher amplitude.
Mechanical resonators are not only common at the macroscopic scale, but also at the micro
and nano level. For example, nanomechanical resonators are used to measure single cells
and nanoscopic particles [1,2], or to detect gravitational waves [3]. However, miniaturizing a
mechanical resonator typically leads to an increased energy loss, or dissipation, and thus to
an increased dampening of the amplitude of vibration [4,5]. This is often a problem, since the
increased dissipation deteriorates the sensitivity and responsivity of the device. It is therefore
important to study dissipation in nanomechanical resonators, in order to ultimately increase
the performance of these devices.

1-1 Dissipation in nanomechanical resonators

1-1-1 Definition of dissipation

In general, the dynamic behavior of mechanical resonators can be characterized by two fun-
damental properties: the resonance frequency (f0) and dissipation (energy loss). A certain
degree of energy loss is always present in a mechanical system. Dissipation is commonly
expressed as the inverse of the quality factor Q, or Q-factor:

Q−1 = ∆W
2πW0

(1-1)

The Q-factor expresses the ratio between the total mechanical energy W0 that is stored in
the system and the energy that is lost during one cycle of oscillation, ∆W . A high Q-
factor corresponds to low dissipation and less damping of the vibrational amplitude of the
resonator. There are various physical mechanisms that contribute to the overall energy loss.
These can be roughly divided into two categories. Intrinsic dissipation refers to all energy
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loss mechanisms that happen within the resonator material. An example is energy loss due
to the motion of defects in the material. Extrinsic dissipation includes all mechanisms where
energy is lost to the environment of the resonator, like clamping losses and liquid damping.
The total dissipation is a summation of all these individual mechanisms:

Q−1 = Q−1
defects +Q−1

clamping +Q−1
liquid + ... (1-2)

The most dominant dissipation mechanism will thus dictate the total Q-factor of the system.
Before summing up the various physical mechanisms that describe small dissipative processes,
the so-called standard linear solid model will be presented. This model provides a framework
for dissipation that describes many of the intrinsic dissipation mechanisms.

1-1-2 The standard linear solid model

The various intrinsic dissipation mechanisms are most conveniently explained by using the
Standard Linear Solid model (SLS), also known as the Zener model [6]. The SLS describes
anelastic behavior of the material, which is a deviation from Hooke’s law for ideal elastic
materials. Like ideal elastic solids, anelastic solids have a linear stress-strain relationship and
recover completely when an applied load is lifted. However, the response is not instantaneous,
making the stress-strain relationship time dependent. Anelastic solids are a subset of linear
viscoelastic materials, which do not recover completely. The SLS consists of purely elastic
springs with Young’s Modulus Ei and a viscous dashpot with viscosity η, and is capable of
describing both stress relaxation and creep behavior in a simple manner. Figure 1-1 shows a
representation of this model. The relationship between stress σ and strain ε can be derived
easily, and is given by [7]

σ + τ σ̇ = E2ε+ τ(E1 + E2)ε̇ (1-3)
where τ = η

E1
is the relaxation time at constant strain.

Now suppose a harmonic load is applied to this model. Since the response will not be instan-
taneous, the strain will lag behind the stress:

ε = ε0e
i(ωt) (1-4a)

σ = σ0e
i(ωt+δ) (1-4b)

Figure 1-1: The Standard Linear Solid model, consisting of an elastic spring in parallel with a
spring-dashpot combination.
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Here, δ is called the loss angle. By filling in equation 1-4 into equation 1-3 and introducing
a complex Young’s Modulus E∗(ω), the stress-strain relationship can be rewritten to:

σ =
(
E′(ω) + iE′′(ω)

)
ε (1-5)

with

E′(ω) = E2 + E1ω
2τ2

1 + ω2τ2 (1-6a)

E′′(ω) = E1ωτ

1 + ω2τ2 (1-6b)

The storage modulus E′(ω) is the real part of E∗(ω), and this part of the stress-strain
relationship is in phase with the strain. The loss modulus E′′(ω) is the imaginary part of
E∗(ω), and is π/2 out of phase with the strain. These quantities are used to calculate the
amount of energy stored and lost in one loading cycle. The amount of energy lost and the
maximum energy stored in the system are:

∆W =
∮
σdε =

∫ 2π
ω

0
σ
dε

dt
dt = πE′′ε20 (1-7a)

W0 = 1
2E
′ε20 (1-7b)

Therefore, using equation 1-1, the dissipation is simply:

Q−1 = E′′

E′
(1-8)

Dissipation can also be related to the loss angle δ:

Q−1 = tan δ = (Eu − Er)ωτ
Er + Euω2τ2 (1-9)

where Eu = E1 + E2 is defined as the unrelaxed Young’s Modulus and Er = E2 is the
relaxed Young’s Modulus. The loss angle δ is therefore a measure of energy loss per cycle,
i.e. viscoelastic damping. For this reason, tan δ is often referred to as the internal friction of
the material.
The expressions for E′, E′′ and tan δ are all frequency dependent. A plot of the complex
Young’s Modulus versus frequency is shown in figure 1-2. The shape of the loss tangent
tan δ is similar to that of E′′, and is known as a Debye peak. Clearly, the dissipation has
a maximum at ωτ = 1. From the plot, it also becomes clear what the SLS represents:
it describes a single frequency-dependent dissipation mechanism with a relaxation time τ .
When the resonance frequency of the resonator is close to τ−1, dissipation will be large. In
reality, a material will possess multiple relaxation times, and there will be multiple Debye
peaks, possibly overlapping each other. However, when ω � τ−1 or ω � τ−1, dissipation will
be small.

1-1-3 Intrinsic dissipation mechanisms

Defects

In reality, any material has a certain degree of defects or disorder. Crystal defects in the
resonator can significantly influence the dissipation [8]. The defect-related dissipation mech-
anisms are due to atomic and defect motion, as they reconfigure between equilibrium and
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Figure 1-2: Plot of the storage modulus E′ and the loss modulus E′′. E′ transitions from the
relaxed modulus Er to the unrelaxed modulus Eu with increasing ωτ . E′′ has a maximum at
ωτ = 1.

metastable states under application of a time-varying strain field. There can be numerous
physical origins that cause reconfiguration, like the motion of vacancies, substitutinal impu-
rities or dislocations. These processes take a finite amount of time relax to a new equilibrium
value, a feature that is characteristic for anelastic solids and the SLS. A detailed overview of
many processes is given in Ref. [9]. The dissipation due to defects takes the same form as
equation 1-9:

Q−1 = A
ωτ

1 + (ωτ)2 (1-10)

where A is a constant related to the concentration and nature of a specific defect. Most
processes are thermally activated [10] and can be described by atomic motion, for which the
relaxation rate (or: ‘frequency jump’) τ−1 follows the Arrhenius relation. These defects are
characterized by an activation energy EA that is required to overcome an energy barrier in
order to switch to another stable state. Consequently, for a specific thermally activated defect,
equation 1-10 can be rewritten to [11]:

Q−1 = A
ωτ0 exp

(
EA
kB

(
1
T −

1
T0

))
1 +

(
ωτ0 exp

(
EA
kB

(
1
T −

1
T0

)))2 (1-11)

where τ0 is the characteristic atomic vibration period, kB is the Boltzmann constant, T is
the temperature and T0 a reference temperature. Dissipation due to thermally activated
defect motion is therefore frequency as well as temperature dependent. By measuring peak
temperatures at different frequencies, EA can be extracted. Knowledge of EA helps to identify
a particular relaxation process.
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Surface losses

As the dimensions of a resonator become smaller, the surface-to-volume ratio increases, and
surface effects can start to dominate the dissipation. Due to the abrupt termination of the
crystal lattice and surface contamination, the surface can contain defects as well. To model the
losses related to these surface defects, a separate complex Young’s Modulus ES = E′S + iE′′S
can be introduced that describe the material up to a certain surface layer depth δs. For
microcantilevers with width w and thickness t, the surface dissipation is then given by [12]

Q−1 = 2δs(3w + t)
wt

E′′S
E′

(1-12)

For very thin beam, dissipation should become proportional to t−1 if surface effects domi-
nate. This behavior has indeed been observed in thin single-crystal silicon and silicon-nitride
cantilevers [12,13], silicon-nitride membranes [14] and diamond cantilevers [15]. Surface treat-
ments also highly influenced the Q-factor in these resonators, further confirming the impor-
tance of surface losses in thin nanomechanical resonators. A high surface roughness results
in higher losses because of the increased surface area.

Thermoelastic damping

Thermoelastic damping (TED) is a dissipation mechanism that arises due to the interaction
between acoustic and thermal phonons. Phonons are quanta of vibrational energy of a lattice
of atoms. Specifically, thermal phonons are generated by the temperature of the lattice
(random lattice vibrations), whereas acoustic phonons refer to the coherent movement of
atoms from their equilibrium position. The thermal expansion coefficient α of a material
captures the coupling between the acoustic and thermal phonons. TED occurs even in a
perfect, defect-free crystal, setting a lower limit to dissipation.

Zener was the first to describe TED as a dominant source of dissipation for beam resonators
under flexural vibration by using the anelastic framework [16, 17]. The vibrations induce
a strain field, which in turn causes temperature difference across the beam. For α > 0, the
compressed side increases in temperature while the stretched side decreases. Consequently, an
irreversible heat flow is generated, causing thermalization at a finite rate and losing mechanical
energy to the thermal phonon bath. Once again, dissipation takes the form of a Debye peak:

Q−1 = ETα2

ρCp

ωτth
1 + (ωτth)2 (1-13)

where Cp is the specific heat capacity at constant pressure and τth = ρCpt2

π2κ is the thermal
relaxation time, with κ as the thermal conductivity. Only little energy is lost if ω � τ−1

th (the
system stays in thermal equilibrium) or ω � τ−1

th (the heat has no time to relax). TED can
be significant for micro resonators as well [18,19].

Many improvements or extensions to Zener’s model have been made, the most notable one
being an exact expression for TED in thin rectangular beams [20]. Other extensions include
TED for circular micro-plates [21], and introducing 2-D heat conduction [22] and ballistic
(non-diffusive) heat conduction [23, 24]. In general, TED can be the dominant mechanism
only for relatively thick resonators.
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Akhiezer damping

Like TED, Akhiezer damping [25–27] is a phonon-mediated loss that is present even in a per-
fect crystal. In thermal equilibrium, the vibrational modes of the crystal lattice are occupied
by thermal phonons according to the Bose-Einstein distribution. Now consider a suddenly
applied uniform strain field. Due to anharmonicity, the strain changes the elastic constant
and thus the frequencies of the various modes. Crucially, frequencies change differently for
each mode. The original phonon distribution is then disturbed, and scattering among the
phonons redistributes the populations to a new equilibrium [9]. The frequency changes are
accompanied by temperature changes. Thus, different modes will have different temperatures,
which will relax to the mean temperature value at a finite rate. The generated intramode
heat flow removes energy from the strain field. This behavior can be described as an anelastic
relaxation process, and dissipation is given by [28]

Q−1 = CTγ2
G

ρv2
ωτph

1 + (ωτph)2 (1-14)

where C is the heat capacity per unit volume, γG is the Grüneisen constant which relates the
strain field to the frequency changes, and v is the sound velocity. Furthermore, the phonon
relaxation time τph = 3κ

Cv2
D
, where vD is the mean Debye sound velocity. The value of τph

is generally a few picoseconds, making Akhiezer damping relevant only in the GHz regime
or above [24]. Akhiezer damping has been investigated for NEMS in doubly clamped Euler-
Bernoulli flexural nanobeams [23], in longitudinally loaded nickel nanowires using molecular
dynamics simulations [24] and for single-crystal resonators [29].

Phonon-electron interactions

Phonons do not only interact with other phonons, but also with free electrons. For nanome-
chanical resonators made of metals or highly doped semi-conducting materials, this leads to
an additional dissipation mechanism that is often overlooked. An incoming strain wave results
in ion oscillations, and this in turn generates a varying electric (and magnetic) field, forcing
the “electron gas” to move. Due to electrical resistivity, energy is dissipated by Joule heating
of the material [30]. For thin film resonators made of piezoelectric material, it was found that
phonon-electron interactions can be significant [31].

Two level systems

Two-level systems (TLSs) are used to give a quantum-mechanical description of the transition
of an atom or defect from one state to another [32]. At sub-Kelvin temperatures, atoms and
defects are only active in their quantum-mechanical ground state or nearly degenerate ground
states. Even though the energy barrier between two possible states is too high for thermal
activation of the defect, it can "tunnel" through this barrier. This is depicted in figure 1-3,
where two states of a particle are described as an asymmetric double well potential. Because
of energy conservation, a phonon must be either absorbed or emitted. At low temperatures,
TLSs couple to acoustic phonons resonantly, absorbing phonons. At higher temperatures, the
phonons modulate the asymmetry energy ∆: a strain field disturbs the thermal equilibrium
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Figure 1-3: The asymmetric double-well potential of a two-level system. A particle can tunnel
through the energy barrier V from one state to the other, indicated by the orange arrow. During
this process, a phonon is either emitted (green dashed arrow) or absorbed, depending on the
direction of the transition.

of the the TLSs, which then have to relax back to a new equilibrium at a finite relaxation
rate [33]. This quantum-mechanical type of dissipation depends on temperature through a
power law [34]. At very low temperatures, coupling to TLSs has to be included in any analysis.

1-1-4 Extrinsic dissipation mechanisms

Viscous damping

Some NEM resonators have to operate in fluidic environments. Fluid damping is often the
most dominant loss mechanism in nanomechanical resonator. Depending on the fluid pressure
and resonator dimensions, fluid flow and dissipation are treated in the viscous or the molecular
regime. This is determined by the Knudsen number Kn, which is the ratio between the
pressure-dependent mean free path of the fluid molecules and the characteristic length of the
resonator. Liquids and gases with Kn < 0.01 can be treated as a continuum, and the viscous
flow results in a dissipative effect due to a drag force. Simple analytical models show that
for resonating beams immersed in a viscous fluid, the Q-factor scales linearly with resonance
frequency ω0 [35]. Experiments on silicon nitride strings vibrating in air at atmospheric
pressure confirmed this dependence, and showed that there is an optimal width for which
the Q is maximized [36]. Furthermore, dissipation is shown to scale as Q−1 ∝ √p [37]. At
sufficiently high pressure, dissipation can become pressure independent [38].

Considerable effort on studying viscous damping of fully immersed microcantilevers has been
done as well. In a detailed derivation, it was shown that the Q-factor is a function of
fluid viscosity and density, and increases monotonically with increasing Reynolds number
(decreasing viscosity) [39]. The model was extended to include arbitrary flexural and tor-
sional modes [40,41] and verified experimentally [42–44]. Suspended micro-channel resonators
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(SMRs), which are used as mass and density sensors [1, 2], features fluid flow inside the res-
onator. Since they can be operated in vacuum, the Q-factor increases significantly with typical
values of 103-104 [45]. The dissipation in this case comes from the boundary layers of the flow
inside the resonators. A detailed study on the dissipation can be found in Refs. [46–48].

Gas damping: molecular regime

When the pressure is lowered, the free molecular path of gas molecules increases. At suffi-
ciently low pressure and/or small dimensions of the resonator such that Kn > 0.5, energy
dissipation follows from the momentum transfer between the individual gas molecules and
the resonator [49]. During vibration, the number of collisions on one side is greater than
on the other side. According to Boltzmann statistics, this then results in a net energy loss.
Gas damping in the molecular regime can still be dominant, as was shown for cantilever mi-
crobeams where a Q-factor of just 18 was obtained [50]. For plates and beams in the molecular
regime, Q−1 ∝ p. When the pressure is reduced even further, dissipation become pressure
independent since clamping losses and/or intrinsic losses start to dominate.

Squeeze-film damping

When the NEM resonator vibrates near another surface, like the substrate, the air between
both surfaces has to be squeezed out of the created gap. The viscous flow of the air is
responsible for a viscous damping force. Squeeze-film damping can be modeled for different
geometries in both the viscous and molecular regime. For a long, oscillating beam, Q ∝ g3,
where g is the gap distance [35]. Because of the strong dependence on gap distance, squeeze-
film damping can quickly become a significant damping mechanism, especially for relatively
wide beams. For the molecular regime holds Q ∝ g [5]. An excellent overview of squeeze-film
damping for different geometries is given in Ref. [51].

Clamping losses

Vibrational energy of a nanomechanical resonator can radiate through the clamps into the
support structure. At the point(s) where the resonator is clamped, varying shear forces and
moments exist, which act as sources from which elastic energy is transmitted. The amount of
energy dissipation is highly dependent on the design and geometry of the support. Clamping
losses can be determined by using finite element analysis, but a few analytical models for
specific geometries exist as well. These 2-D models are based on calculating a transmission
coefficient which expresses how well the energy of a resonator mode is transmitted at the
nodes into the supports. For thin cantilever beams attached to a thick base, the dissipation
was found to be strongly dependent on both resonator thickness t and support thickness
tb [52]:

Q−1 ≈ 0.95w
L

t2

t2b
(1-15)

This analytic models have been verified experimentally [53].



1-1 Dissipation in nanomechanical resonators 9

1-1-5 Dissipation in graphene resonators

Due to its unique mechanical, electrical, thermal and optical properties, graphene has gained
tremendous interest from the academic community for its potential applications. Graphene
resonators are highly sensitive and can for instance be used as mass sensors [54], pressure
sensors [55] or gas sensors [56]. Graphene resonators can be made from graphene sheets
[57] or carbon nanotubes (CNTs) [58]. The Q-factors measured at room temperature are
typically in the order of 101-102, and can become even lower due to squeeze-film damping
[59]. Among the first to study dissipation in graphene resonators was Seoánez [60, 61], who
considered electrically driven graphene sheets on a Si/SiO2 substrate. It was found that energy
dissipation is mainly due to phonon-electron interactions. When the oscillating graphene
layer is charged, these charges experience a time-dependent Coulomb potential created by
the charges in the doped Si backgate. Consequently, electron-hole pairs in the graphene layer
are created and excited by absorbing the mechanical energy. Likewise, the charges in the
Si gate experience a time-dependent Coulomb potential from the charges in the oscillating
graphene layer, creating electron-hole pairs in the Si gate as well. The creation of electron-
hole pairs implies ohmic losses. When a optical actuation is used, the effect is still present
but less pronounced.

Other mechanisms that contribute in a lesser extent to the total dissipation were also investi-
gated. Trapped charges in the Si-SiO2 interface and the bulk of the SiO2 create electron-hole
pairs in the graphene layer as well, resulting in additional ohmic losses. Another mechanism
is the Velcro effect, which is the repeated breaking and healing of the hydrogen bonds between
the graphene and the SiO2 substrate. This type of dissipation is expected to be negligible for
small amplitude vibrations, since the energy of the bond is much larger than the stored energy
available in a typical graphene resonator. Coupling of the resonator to TLSs provides an-
other dissipation channel. Considering that the graphene shows a high degree of crystallinity,
it can be assumed that TLSs only exist in the rest of the structure. Charge impurities in
the substrate can switch between metastable trapping sites, and can interact electrostatically
with the electrons in the graphene. At 5 < T < 300, damping due to TLSs is relatively
unimportant. However, the temperature dependence of the Q-factor in the sub-Kelvin regime
can be explained by TLSs [62].

Clamping losses, which are independent of temperature, were found to dominate at lower
temperatures. For fully clamped membranes, the elimination of edge effects is likely to be
responsible for increase in Q-factor [63]. Thermoelastic damping is generally not important
for resonators based on graphene and other 2-D materials. The small dimensions result in
extremely short thermal relaxation times. In order to be significant, the resonance frequency
has to be very large, usually in the order of 1 THz at room temperature.

Classical molecular dynamics have been used to study the temperature dependence of clamp-
ing losses and friction between multiple graphene layers [64]. The strength of the van der
Waals bond between the graphene and the substrate has a major influence on the total dis-
sipation. A reduced attachment strength increases the dissipation. In double-layer graphene
resonators, one layer can slide relatively easily over the other because of the weak van der
Waals bonds between both layers. This further increases the dissipation. Both effects are
enhanced at higher temperatures.
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1-2 Nonlinear dissipation

1-2-1 Nonlinear dynamics of mechanical resonators

Because of their small dimensions, nanomechanical resonators are easily driven into the non-
linear dynamic regime with just very small forces. The most evident nonlinear effect often
encountered is a nonlinear restoring force, which enters the equation of motion of a mechanical
resonator through the Duffing term αx3:

m
d2x

dt2
+ Γdx

dt
+ kx+ αx3 = F cos(ωt) (1-16)

where m is the mass, Γ is the dissipation rate, k is the linear stiffness and F cos(ωt) the
harmonic force. Depending on the sign of α, the resonator becomes stiffer or softer, result-
ing in an amplitude dependent resonance frequency as shown in figure 1-4. All resonance
frequencies at different driving forces form the back-bone curve. For sufficiently high force
values, two saddle-node bifurcation points exist, making the amplitude a multivalued func-
tion of ω in certain ranges. Two periodic solutions are stable whilst one is unstable. This
leads to the jump phenomena as the frequency is swept up- or downwards. The Duffing term
can originate from nonlinear effects of external potentials or geometric effects [65], which are
especially important for graphene resonators since the amplitude of vibration quickly exceeds
the resonator thickness.

Another type of nonlinearity to be considered is nonlinear damping, which has been shown

Figure 1-4: The frequency response of a mechanical oscillator with a nonlinear restoring force
for different force levels f . Here, α > 0, and the resonator becomes stiffer as the driving force is
increased.
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to be relevant for nanomechanical resonators [66]. The effects of nonlinear damping on the
dynamic behavior can be demonstrated by adding an amplitude-dependent damping term
νx2ẋ to the equation:

m
d2x

dt2
+ Γdx

dt
+ kx+ αx3 + νx2ẋ = F cos(ωt) (1-17)

Secular perturbation theory can be used to find an approximate solution to this equation.
Following Lifshitz and Cross in Ref. [67], the amplitude is given by:

|a|2 = g2(
2Ω− 3

4 |a|2
)2

+
(
1 + 1

4η|a|2
)2 (1-18)

where a, λ, Ω and η are dimensionless expressions for the amplitude, force, frequency and
the nonlinear damping coefficient respectively. The nonlinear damping coefficient is expressed
as η = νω0

α . For 0 < η <
√

3, the critical value of the force that is required for bi-stability
increases with η, whereas for η >

√
3, bifurcation no longer occurs. Without nonlinear

damping, bifurcation will always occur above a certain critical force value.

For high driving amplitudes, nonlinear damping will significantly reduce the magnitude of
the response. The effective damping rate can be deduced from equation 1-18 and is given
by 1 + 1

4η|a|
2. The effect of nonlinear damping on the frequency response curve is therefore

the same as the effect of linear damping: it determines the position of the resonance peak.
However, since the resonance peaks will always lie on the back-bone curve, it is hard to
distinguish between linear and nonlinear damping. This problem can be dealt with by looking
at the normalized response, i.e. the amplitude divided by the force. This is also called the
responsivity of the resonator. When η = 0, the normalized response is constant for increasing
driving force. For η > 0, responsivity decreases with increasing drive fore because of the
additional damping. This behavior is shown in figure 1-5.

Finally, it is worth to investigate what happens to the analysis when other forms of nonlinear
damping are chosen, like ẋ3 or xẋ2. Interestingly, this does not alter the analysis in any
fundamental way, and only leads to different effective expressions for the nonlinear damping.
It is often unclear which expression to use, since the underlying physical mechanisms for
nonlinear damping remain largely unknown.

1-2-2 Nonlinear damping at the nanoscale

Nonlinear damping can play an important role in micro- and nanomechanical resonators.
This has for instance been shown for a micromechanical beam oscillator, where nonlinear
damping was necessary to describe the dynamics of the beam, as well as the behavior of
the system near the bifurcation points [66]. To explain the source of this nonlinearity, a
linear viscoelastic material model (the Kelvin-Voigt model) operating within the geometrically
nonlinear regime was proposed. However, this could not fully account for the nonlinear
dissipation parameter obtained from the experiments, suggesting that other effects are at play.
Nonlinear dissipation was also found in piezoresistive diamond nanomechanical resonators
at cryogenic temperatures [68]. At room temperature, the Duffing equation (1-16) could
fully explain the dynamic behvior. At temperatures of 77 K and below, linear dissipation
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remained roughly the same, whereas nonlinear dissipation comes into play. Again, the source
of nonlinear dissipation remains unclear, although coupling to two-level systems and nonlinear
clamping losses are suggested. In addition to these findings, a "nonlinear dissipation back-
bone curve" was proposed to characterize the strength of nonlinear dissipation. This back-
bone curve can be created by starting from equation 1-18, setting Ω = 0, and looking at the
limit where the linear dissipation Q−1 → 0. This is depicted in figure 1-6, and shows the
dominance of nonlinear dissipation at high driving forces.

Resonators made from graphene sheets and carbon nanotubes also exhibit nonlinear damping
[69]. The observed resonance broadening and the break-down of hysteresis in the nanotube

Figure 1-5: The responsivity of a nonlinear mechanical oscillator without (left) and with (right)
nonlinear damping for different values of the driving force. Without nonlinear damping, the
responsivity stays constant. With nonlinear damping, the responsivity decreases with increasing
driving force.

Figure 1-6: Dissipation back-bone curves for the limit where nonlinear dissipation is zero (yellow
line), the linear dissipation is zero (green line), and a combination of linear and nonlinear dissi-
pation, fitted to experimental data (purple line and dots respectively). Fdr is the driving force.
Source: [68].
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resonators is explained by adding an amplitude-dependent damping term to the equation of
motion, similar to equation 1-18. The experiments were performed at a temperature of 90 mK.
The physical origin is not investigated, but it is suggested that a linear dissipation mechanism,
such as clamping losses, in combination with geometrical nonlinearity could be responsible,
as well nonlinearities in the phonon-phonon interactions and the sliding between graphene
and metal electrodes. Coupling between flexural vibrations and in-plane displacements has
also been proposed as a microscopic mechanism for both linear and nonlinear damping in
graphene resonators [70]. The cross-over between both regimes could be managed by varying
the bias and ac voltages.

In a more recent effort, negative nonlinear damping was observed experimentally in a mul-
tilayer graphene resonator [71]. When driven at larger amplitudes, the resonator showed a
reduction of the mechanical damping rate, with the total damping remaining positive. The
extracted effective linear damping did not follow a quadratic dependence on the resonator
amplitude, suggesting a nonlinear damping term in the form of ν|x|ẋ, with ν < 0. Further-
more, the negative nonlinear damping was believed to be intrinsic to the resonator, and not
a result of optomechanical effects. As a possible source, saturation of TLSs coupled to the
resonator was proposed. The TLSs absorb vibrational energy at low drive forces, resulting in
an increased damping rate. When the drive is increased, the absorption is saturated, and the
damping rate goes down. Negative nonlinear damping has also been reported in a nanome-
chanical plate resonator supported by two beams [72], where it was induced by nonlinear
coupling of the resonator modes. The negative nonlinear damping could be made strong
enough to overcome the positive linear damping in a certain range of vibration amplitude,
leading to self-sustained oscillations.

1-3 Research objective

As discussed in the previous sections, nanomechanical resonators exhibit nonlinear damping.
Because of their small dimensions, only very small forces on the order of nanoNewtons or
even below are required drive the system into the nonlinear regime [65]. Nonlinear damping
has then to be taken into account. Graphene resonators are especially prone to nonlinear
damping, because of their atomic scale thickness. Although there are various mechanisms
known that lead to linear dissipation, the origin of nonlinear dissipation is not well understood.
Usually, nonlinear damping is introduced phenomenologically by simply adding an amplitude-
dependent dissipation term to the Duffing equation, as shown in equation 1-17. However, most
studies do not explain where this term comes from, or how it is obtained.

In this thesis, two possible sources for amplitude-dependent nonlinear damping in graphene
resonators are explored. The first source is related to an intrinsic dissipation mechanism.
From the previous sections, it became clear that dissipation can be understood in the vis-
coelastic framework. By introducing a viscoelastic material model, this source for dissipation
is further investigated. The second source is related to an extrinsic dissipation mechanism.
Many graphene resonator systems use optical techniques to detect the motion or for actuation.
We show that the optical field leads to an optomechanically induced nonlinear damping.
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1-4 Thesis outline

In this introductory chapter, various physical mechanisms for linear dissipation in nanome-
chanical resonators were investigated. Nonlinear damping was briefly introduced, and research
objectives were formulated. In Chapter 2, nonlinear damping in a multilayer graphene nan-
odrum is investigated by modeling graphene as a viscoelastic material. This allows for the
internal friction of graphene to be obtained, which is a measure of intrinsic damping. Chapter
3 is written in a paper format and deals with the influence of the optical field on the nonlinear
parameters of the resonator. The paper is followed by a dedicated Supporting Information.



Chapter 2

Viscoelastic properties of multilayer
graphene resonators

In this chapter, a viscoelastic material model is used to describe dissipation in an electrostat-
ically actuated multilayer graphene resonator. The combination of this model and geometric
nonlinearities results in an equation of motion with the same nonlinear damping term that
is used to phenomenologically describe nonlinear dissipative behavior in nanomechanical res-
onators. Moreover, an automated fitting algorithm is developed from which the coefficients
of the equation can be obtained. These coefficients can then be linked to the loss tangent.
The following steps are followed in this chapter:

• The equation of motion of the graphene membrane is derived.

• This equation is used to fit the experimentally obtained frequency response curves.

• From the coefficients, the viscoelastic properties are determined.

• The loss tangent can then be calculated.

2-1 Modeling the graphene membrane

To model the graphene resonator, nonlinear membrane theory will be used. The equation
of motion can be obtained with a Lagrangian approach, which allows for the coefficients of
the equation to be related to viscoelastic properties. Eventually, a fit to experimental data
obtained from the dynamic response of the resonator will then tell what the values of these
properties are.

Consider a circular membrane element with radius a and thickness h, representing a graphene
nanodrum, shown in figure 2-1. To conveniently describe the kinematics, the polar coordinates
(r, θ, z) are used, where r is the radial coordinate, θ is the angular coordinate, and z is the
transverse coordinate that goes through the thickness of the membrane. The membrane is



16 Viscoelastic properties of multilayer graphene resonators

Figure 2-1: Membrane element representing the graphene nanodrum. The radial, tangential and
transverse coordinates are indicted with r, θ and z respectively. The membrane has a radius a
and thickness h.

fixed at the edges, such that the displacements are zero, but rotations are allowed. Throughout
the analysis, only axisymmetric vibrations are assumed. After the kinematic and constitutive
relations are established, the energies of the system will be calculated, resulting in the equation
of motion.

2-1-1 Kinematic relation

The displacement vector u, which denotes the displacement of a point on the membrane
at a distance z from the middle surface, can be found by adopting Kirchhoff’s hypotheses
for circular plates [73]. It is therefore assumed that the lines orthogonal to the membrane’s
middle surface remain straight after bending. The components of u are then

u1(r, θ) = u(r, θ)− z ∂w
∂r

(2-1)

u2(r, θ) = v(r, θ)− z ∂w
r∂θ

(2-2)

u3(r, θ) = w(r, θ) (2-3)

where u, v and w are the radial, tangential and transverse displacements of the middle surface
respectively. To obtain the relation between strain and displacements, the Green-Lagrange
strain tensor is used. Assuming a negligible bending rigidity of the membrane, it can be
shown that the strain components εrr, εθθ and γrθ are given by

εrr = ∂u

∂r
+ 1

2

(
∂w

∂r

)2
(2-4)

εθθ = u

r
+ ∂v

r∂θ
+ 1

2

(
∂w

r∂θ

)2
(2-5)

γrθ = ∂u

r∂θ
+ ∂v

∂r
− v

r
+ ∂w

∂r

∂w

r∂θ
(2-6)

Note that at this point, geometric nonlinearities have been introduced. However, only the
nonlinear terms that depend on w are retained. This is the von Kármán hypothesis, which
takes into account moderate rotations.
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Since it is assumed that the membrane is subjected to axisymmetric vibrations only, v = 0
and ∂/∂θ = 0. Subsequently, the strains reduce to:

εrr = ∂u

∂r
+ 1

2

(
∂w

∂r

)2
(2-7)

εθθ = u

r
(2-8)

γrθ = 0 (2-9)

Furthermore, the edges of the membranes are fixed, so that u|r=a = 0 and w|r=a = 0.
Moreover, continuity and symmetry dictate that u|r=0 = 0. The radial and tangential dis-
placements that satisfy these boundary conditions are [74]:

w = x̃(t)J0

(
α0
r

a

)
(2-10)

u = u0r + r(a− r)
N̄∑
k=1

qk(t)rk−1 (2-11)

where x̃(t) is the generalized coordinate associated with the transverse motion of the funda-
mental axisymmetric mode, J0 is the Bessel function of order zero, α = 2.40483 and qk(t)
are the generalized coordinates associated with radial motion. Furthermore, N̄ is the number
of terms used in the expansion of the radial displacement and u0 is the initial displacement
associated with the pre-tension n0 of the membrane.

2-1-2 Constitutive relation: introducing viscoelasticity

To calculate the energies of the system, the relation between stress σ and strain ε has to be
known as well. The simplest relation is known as Hooke’s law:

σ = Eε (2-12)

where E is the Young’s Modulus. It assumes linear elastic material behavior and does not take
into account any dissipative effects. In reality, materials deviate from this simple relation.
Viscoelasticity describes such a deviation, and assumes that the material exhibits both viscous
and elastic behavior when it is deformed. For viscous materials, stress depends on the rate
of deformation rather than the strain itself. The stress-strain relationship of viscoelastic
materials therefore depends on time, or, in the frequency domain, on frequency. It is due
to this time dependence that three important effects in linear viscoelastic materials can be
observed:

1. When a constant stress σ0 is applied, the strain increases with time. This is called
creep, and the creep response function is described as J(t) = ε(t)

σ0
.

2. When a constant strain ε0 is applied, the stress decreases with time. This is called stress
relaxation, and the relaxation response function is described as E(t) = σ(t)

ε0
.

3. When cyclic loading is applied, the stress and strain are out of phase. This hysteresis
phenomenon leads to dissipation of mechanical energy. See also section 1-1-2.
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Figure 2-2: Response functions. Left: creep, which is the increase of strain with time after a
step stress is applied. Right: stress relaxation, which is the decrease of stress with time after a
step strain is applied.

The typical creep and relaxation responses are shown in figure 2-2. They are most easily ap-
proximated with exponential functions, which arise from mechanical models involving purely
elastic springs (σs = Eεs) and purely viscous dashpots (σd = ηε̇d, where η is the viscosity).
Two mechanical models will be further explored: the Kelvin-Voigt model, and the standard
linear solid model, which has already been introduced in section 1-1-2.

Kelvin-Voigt

The Kelvin-Voigt model consists of a spring and a dashpot in parallel, as depicted in figure
2-3. The deformation in both elements is the same, and the total stress is the sum of the
stresses in each element: σ = σs +σd. The relation between stress and strain when using this
model can therefore be obtained easily and is given by:

σ = Eε+ Eτε̇ (2-13)

where τ ≡ η
E is a time constant called the retardation time or creep time. Applying a constant

stress results in the following expression for the creep function:

J(t) = 1
E

(
1− e−t/τ

)
(2-14)

Since the function is a decaying exponential, the creep behavior shown in figure 2-3 can be
captured well. According to the Kelvin-Voigt model however, the stress relaxation function
is a constant plus a delta function, which is clearly not correct.

Figure 2-3: The Kelvin-Voigt model. Figure 2-4: The SLS model.



2-1 Modeling the graphene membrane 19

Equation 2-13 can also be written in terms of the three polar coordinates (r, θ, z). Assuming
that the material is homogeneous and isotropic, the constitutive relation becomes:σrrσθθ

τrθ

 = E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2


εrrεθθ
γrθ

+ τE

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2


ε̇rrε̇θθ
γ̇rθ

 (2-15)

where ν is Poisson’s ratio. Note that due to the axisymmetric vibrations considered here,
γrθ = 0. Therefore, τrθ = 0 as well.

Standard linear solid

The standard linear solid (SLS) model has already been introduced in section 1-1-2. This
model, depicted again in figure 2-4, is an improvement on the Kelvin-Voigt model, since it
gives exponential functions for both the creep and stress relaxation. Therefore, the standard
linear solid is the simplest model to accurately describe linear viscoelastic behavior. The
differential equation governing the stress-strain relationship is (see section 1-1-2):

σ + τ σ̇ = E2ε+ τ(E1 + E2)ε̇ (2-16)

In this case, τ refers to the relaxation time. The fundamental difference between this dif-
ferential equation and equation 2-13 is that first order derivatives appear for both σ and
ε. Equation 2-16 may be solved for σ in terms of ε and ε̇ by using the harmonic balance
method [75]. The harmonic balance method allows to obtain an analytical approximation of
the solution, by expressing it as a truncated Fourier series. Thus, in general, a solution x(t)
is expressed as

x(t) = x0 +
M∑
m=1

xmc cos(mωt) + xms sin(mωt) (2-17)

where x0, xmc and xms are coefficients to be determined. In this particular case, the strain is
expressed as a constant plus the first harmonic term

ε(t) = ε0 + ε1 sin(ωt) (2-18)

in which case the solution to equation 2-16 is expressed as

σ(t) = σ0 + σ1c cos(ωt) + σ1s sin(ωt) (2-19)

The coefficients ε0, ε1, σ0, σ1c and σ1s are to be determined. They can be found by filling in
equations 2-18 and 2-19 into equation 2-16 and equating the constant, cosine and sine terms
respectively. Doing so gives:

σ0 = E2ε0 (2-20)
σ1c + τωσ1s = τω(E1 + E2)ε1 (2-21)
σ1s − τωσ1c = E2ε1 (2-22)

The coefficients of the first order terms, σ1c and σ1s, can be rewritten as:

σ1c = τω

1 + τ2ω2E1ε1 (2-23)

σ1s = E2ε1 + τ2ω2

1 + τ2ω2E1ε1 (2-24)



20 Viscoelastic properties of multilayer graphene resonators

Further combining and rewriting of the above equations leads to an expression for the stress
of which one part is in phase with the strain, and another part that is out of phase with the
strain. The first part is obtained by combining equations 2-20 and 2-24:

σ0 + σ1s sin(ωt) = E2ε+ τ2ω2

1 + τ2ω2E1(ε− ε0) (2-25)

Since this equation represents the in-phase part, it can be considered the elastic contribution
to the stress-strain relationship of a material under harmonic loading. The second part is
obtained by combining equations 2-20 and 2-23:

σ1c cos(ωt) = τ

1 + τ2ω2E1ε̇ (2-26)

This part of the stress-strain relationship is the viscoelastic contribution, and depends on the
strain rate rather than the strain itself. It is therefore π

2 out of phase with the strain, and
will lead to damping of the system under consideration.

As was done for the Kelvin-Voigt element, the stress-strain relationship of the standard linear
solid can be written in polar coordinates (r, θ, z). Assuming again a state of plane stress and
that the material is isotropic and homogeneous, this leads to:

σr,E = E2
1− ν2 (εrr + νεθθ) + τ2ω2

1 + τ2ω2
E1

1− ν2 (εrr + νεθθ) (2-27)

σθ,E = E2
1− ν2 (νεrr + εθθ) + τ2ω2

1 + τ2ω2
E1

1− ν2 (νεrr + εθθ) (2-28)

where σr,E and σθ,E are the elastic contributions for the radial and tangential directions
respectively. Note that the terms for initial tension have been left out. Similarly, the viscous
contributions (denoted by the subscript V ) for both directions are:

σr,V = τ

1 + τ2ω2
E1

1− ν2 (ε̇rr + νε̇θθ) (2-29)

σθ,V = τ

1 + τ2ω2
E1

1− ν2 (νε̇rr + ε̇θθ) (2-30)

2-1-3 Equation of motion

The equation of motion of the membrane is derived with a Lagrangian approach. In this
approach, a function called the Lagrangian is formulated which depends on generalized coor-
dinates q, their time derivatives q̇ and time t. It contains information about the trajectory of
the system of particles that forms the dynamic system under consideration. The Lagrangian
is defined as:

L(q, q̇, t) = T (q, q̇, t)− U(q, t) (2-31)

where T is the kinetic energy, and U is the potential energy of the system. The Lagrange
equation of motion can now be obtained with:

d

dt

(
∂T

∂q̇

)
− ∂T

∂q + ∂U

∂q = ∂W

∂q (2-32)

where W is the virtual work done on the membrane by externally applied loads.
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This Lagrangian approach has been used before to account for the viscoelastic behavior of
square plates under large amplitude vibrations [76,77]. It can also be applied to the circular
graphene membrane. Using Kirchhoff’s hypotheses, the potential energy of the membrane
is [73]

U = 1
2

∫ a

0

∫ 2π

0

∫ h/2

−h/2
(σrrεrr + σθθεθθ + τrθγrθ) rdr dθ dz (2-33)

Only axisymmetric vibrations are assumed, which means that the contribution of the term
τrθγrθ to the potential energy is zero. Since the constitutive relations for both the Kelvin-
Voigt model and the standard linear solid are written as a function of ε and ε̇, the potential
energy of the membrane can be written as a summation of elastic (UE) and viscous (UV )
parts. Using equations 2-15 and 2-33 and the fact that the displacement fields u and w are
functions only of spatial coordinate r and time t, the following expression is obtained for the
Kelvin-Voigt model:

U = UE + UV (2-34)

with

UE = πh
E

1− ν2

∫ a

0

(
ε2
rr + ε2

θθ + 2νεrrεθθ
)
rdr (2-35)

UV = πh
τE

1− ν2

∫ a

0
(εrrε̇rr + εθθε̇θθ + νεrrε̇θθ + νεθθε̇rr) rdr (2-36)

Next, the kinetic energy T of the membrane is obtained. The membrane is driven in its
fundamental mode. It is therefore reasonable to assume that the in-plane inertia is much
smaller than the out-of-plane inertia. This assumption then leads to the following expression:

T = 1
2ρ
∫ a

0

∫ 2π

0

∫ h/2

−h/2
ẇ2 rdr dθ dz (2-37)

= πρh

∫ a

0
ẇ2 rdr (2-38)

where ρ is the mass density of the membrane.

Finally, in the presence of any externally applied load or pressure, the work done on the
membrane by this load or pressure will appear as a generalized force on the right side of
equation 2-32. In the case of a distributed harmonic pressure p = F

πa2 cos(ωt) in the z-
direction of the membrane, the virtual work done on the membrane is

W = 2π
∫ a

0
pw rdr (2-39)

= 2F
a2 cos(ωt)

∫ a

0
w rdr (2-40)

where F is the amplitude of the force and ω is the frequency of excitation.

Equations 2-34 to 2-36, 2-38 and 2-40 can now be filled in into equation 2-32. Since the
vector q contains the generalized coordinates x(t) (associated with the transverse motion of
the fundamental mode of the membrane) and qk(t) (associated with the radial motion), the
result will be a system of one differential equation and N̄ algebraic equations. The differential
equation is related to x(t), whereas the algebraic equations are related to qk(t). The algebraic
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equations can be solved for qk(t) in terms of x(t) by realizing that the total energy of the
membrane for a position of equilibrium is minimum [74]:

∂UE
∂qk

= 0 for k = 1, . . . , N̄ (2-41)

Consequently, a single nonlinear differential equation remains which is the equation of motion
of the membrane:

meff ¨̃x+ c1 ˙̃x+ k1x̃+ k3x̃
3 + c3x̃

2 ˙̃x = ξF cos(ωt) (2-42)

where meff is the effective mass of the membrane, ξ is a correction factor that accounts for the
fundamental mode shape, k1 and k3 are the linear and cubic stiffness coefficients respectively,
and c1 and c3 are the linear (viscous) and nonlinear damping terms respectively. Equation
2-42 represents a forced Duffing oscillator, with a nonlinear damping term added to it. The
nonlinear damping term is a consequence of the viscoelastic material model operating in a
geometrically nonlinear regime. This equation is obtained for both the Kelvin-Voigt and the
standard linear solid model. Each of the coefficients k1, k3, c1 and c3 are linked to certain
material properties. The expressions for each of the coefficients depends on the material
model used and the number of terms N̄ in the radial displacement that are included. It is
found that the values of the coefficients converge for N̄ ≥ 4. Table 2-1 shows the results for
both material models. A Poisson’s ratio of ν = 0.16 was used to obtain these results.

The equation of motion will be used to fit the experimentally obtained amplitude-frequency
response of a graphene drumhead resonator. The parameters that are found through fitting
can then be related to the viscoelastic properties. For the Kelvin-Voigt model, they can be
related to the Young’s Modulus E and the creep time τ . For the standard linear solid, they
can be related to the dynamic modulus E∗ and relaxation time τ .

Table 2-1: Expressions for the coefficients shown in equation 2-42 when the Kelvin-Voigt and
the standard linear solid (SLS) models are used for the constitutive relation. The coefficients are
functions of material and structural properties of the membrane. A Poisson’s ratio of ν = 0.16
was used to obtain these results.

Expressions of the coefficients in eq. 2-42.
Coefficient Kelvin-Voigt SLS

meff 0.847ρha2 0.847ρha2

c1 2.448n0τ 2.448n0
E1
E2

τ
1+τ2ω2

k1 4.897n0 4.897n0 + 2.448n0
E1
E2

τ2ω2

1+τ2ω2

k3 2.840Eh/a2 2.840E2h/a
2 + 2.840E1h/a

2 τ2ω2

1+τ2ω2

c3 4.260Ehτ/a2 4.260E1h/a
2 τ

1+τ2ω2

ξ 0.432 0.432
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2-2 Measuring the motion of the graphene membrane

2-2-1 Measurement setup

Graphene nanodrums were fabricated from an oxidized silicon wafer using lithographic and
metal deposition techniques. The SiO2 layer on top of the silicon layer is 285 nm thick.
Circular holes were etched into the SiO2. A gold-palladium layer with a thickness of 100 nm
was used as a mask, and also serves as an electrical contact for actuation of the graphene
membrane. Flakes of graphene were then transferred onto the sample with a dry transfer
technique. See figure 2-5 for a schematic overview. The samples were then placed in a vacuum
chamber at 2×10−6 mbar to significantly reduce the effects of air damping. Experiments were
performed at room temperature. The readout of the motion is done with an interferometric
setup [78]. The reflected intensity is directed with a beamsplitter (BS) to a photodiode (PD),
which converts the signal to an electric current. A Vector Network Analyzer (VNA) measures
this current. Its output is an AC-voltage which, together with a superimposed DC-voltage,
is used to actuate the membrane. A schematic drawing of the setup is shown in figure 2-
6. The applied electrostatic driving force is determined accurately: calculations were based
on the geometry and applied voltage, and on the measured amplitudes at resonance [65].
This accounts for uncertainties in gap size, the DC-voltage experienced by the drum and the
device capacitance. Finally, using a calibration procedure based on the thermal motion of the
membrane, the measured VNA signal is converted to a root-mean-squared motion amplitude.

The graphene membrane presented here in the main text is 8 nm thick (approximately 24
layers), and has a radius of a = 2µm.

2-2-2 Experimental results

Measurements of the membrane’s motion were all done using upward frequency sweeps near
the fundamental resonance frequency, which allows one to obtain the frequency response data.
The frequency sweeps were performed at different driving forces. At low driving forces the

Figure 2-5: Schematic drawing of the
sample.

Figure 2-6: Schematic drawing of the
measurement setup.
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frequency response is linear, while at sufficiently high driving forces, the response becomes
nonlinear. This nonlinear response is mainly characterized by a stiffening effect: the resonance
frequency becomes a function of amplitude. The frequency response for all driving forces is
shown in figure 2-7.

The responsivity of the graphene membrane can also be plotted, since the driving forces are

Figure 2-7: Frequency response curves for different driving forces. At low driving forces, the
response is essentially linear. As the driving force increases, the response goes from linear to
nonlinear, and the membrane shows a stiffening effect where the resonance frequency becomes
amplitude dependent.

Figure 2-8: Responsivity plot for different driving forces. A strong decrease of responsivity with
increasing driving force indicates the importance of nonlinear dissipation.
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Table 2-2: Known properties of the graphene membrane.

meff [kg] ρ [kgm−3] h [nm] a [µm] f0 [MHz]
6.313× 10−17 2330 8.0 2.0 26.787

known. Figure 2-8 clearly shows that the responsivity decreases with increasing drive force.
This is a strong indication that a nonlinear dissipation plays an important role. Therefore,
besides the Duffing nonlinearity, a positive nonlinear damping term should be included in the
equation of motion of the membrane when forces are sufficiently high.
Other properties of the membrane, like its mass and thickness, were also measured. These
properties are listed in table 2-2.

2-3 Fitting the response

2-3-1 Fitting strategy

From the previous section, it is clear that the membrane shows a Duffing type of nonlinearity
and positive nonlinear dissipation. Therefore, equation 2-42 is a prime candidate to fit the
nonlinear frequency response of this resonator. However, at low driving forces, both types of
nonlinearities are not yet significant, and the simple harmonic oscillator model can be used to
fit the linear response. The mathematical expression for a forced simple harmonic oscillator
is:

m¨̃x+ c ˙̃x+ kx̃ = F cos(ωt̃) (2-43)

By expressing the natural frequency of the system as ωn =
√
k/m and introducing new

variables t = ωnt̃ and x = x̃/h, this equation is rewritten to:

ẍ+Q−1ẋ+ x = λ cos(Ωt) (2-44)

whereQ is the mechanical Q-factor, λ = F
mω2

nh
and Ω = ω/ωn. Equation 2-44 can be used to fit

the non-dimensionalized linear frequency response curves. Since the driving forces are known
and ωn is extracted easily from the curves, the Q-factor can be obtained in a straightforward
manner.
At high driving forces, equation 2-42 is used to fit the nonlinear response. In this nonlinear
regime, it is assumed that the nonlinear dissipation dominates the linear dissipation. The
value for the Q-factor obtained from the linear fits is therefore fixed during the nonlinear fit
process. This is an important assumption, as it effectively allows for the linear and nonlinear
dissipation to be decoupled. Using this assumption, nonlinear dissipation can be quantified.

2-3-2 Nonlinear parameter identification

One way to obtain the fit parameters for the nonlinear stiffness and dissipation would be to
use a brute force method. However, this is not very elegant, as it can become rather time-
consuming to find the values for a proper fit. Another way is to follow an identification method
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based on harmonic balancing by Delannoy [79], which has been used to find the parameters of
the equations of motion of plates and shells under large amplitude vibrations [80,81]. In this
thesis, the same method is followed and extended to include a nonlinear dissipation term. The
method is only briefly explained here. A more detailed derivation can be found in Appendix
A.

The equation of motion for which the parameters need to be identified is:

meff ¨̃x+ c1 ˙̃x+ k1x̃+ k3x̃
3 + c3x̃

2 ˙̃x = ξF cos(ωt̃) (2-45)

Normalizing the equation and scaling time with ω, this is rewritten to:

Ω2ẍ+Q−1Ωẋ+ x+ αx3 + νΩx2ẋ = λ cos(t) (2-46)

with:

Ω = ω

ωn
(2-47)

Q−1 = c1
meffωn

(2-48)

α = k3h
2

meffω2
n

(2-49)

ν = c3h
2

meffωn
(2-50)

λ = ξF

meffω2
nh

(2-51)

The steady-state solution to equation 2-46 is assumed to be of the form:

x = x1 sin(t) + x2 cos(t) (2-52)

Filling the solution in into equation 2-46 and grouping the sin(t) and cos(t) terms gives two
equations for each frequency step Ω. Since Ω consists of M̄ frequency steps, this results in a
system of equations that can be written as:

Ax = b (2-53)

where A is a 2M̄ × 2 matrix, x is a 2 × 1 vector that contains α and ν, and b is a 2M̄ × 1
vector with known terms. This system is overdetermined, and the best possible solution for
x is found by minimizing the least squares error:

x = (ATA)−1ATB (2-54)

If necessary, the value found for ν is corrected by forcing it to be such that the the maximum
amplitude as obtained from the frequency response function is the same as the maximum
amplitude as obtained from the data.

2-3-3 Result

The results from the fitting procedure are presented in this section. The first ten curves in
figure 2-7 correspond to the ten lowest drive forces (F ≤ 0.064 nN). All fits are excellent,
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Figure 2-9: Three linear response curves and their fits. All curves with F ≤ 0.064 nN could be
fitted using the model of a simple harmonic oscillator with Q = 89.

Figure 2-10: Three nonlinear response curves and their fits. The drive forces belonging to these
curves are, from low to high, F = 0.20 nN, F = 0.32 nN and F = 0.51 nN.

using the same Q-factor Q = 89 for every curve. This is shown in figure 2-9 for three of the
ten linear curves. The response was calculated by numerically integrating the equation of
motion using the ODE45 solver in Matlab. From this analysis, it can be concluded that at
low drive forces, dissipation does not increase with amplitude, and can be described with the
linear dissipation term only. For curves where the driving force F > 0.064 nN, the response
starts to become nonlinear.

To fit the nonlinear frequency response curves, linear dissipation was fixed at Q = 89. For
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Table 2-3: Results from the nonlinear fitting process. At each curve, a certain value for both α
and ν is found.

F [nN] 0.20 0.23 0.25 0.29 0.32 0.36 0.40
α 0.083 0.076 0.067 0.060 0.059 0.062 0.065
ν 0.0054 0.0046 0.0057 0.0066 0.0064 0.0056 0.0060

F [nN] 0.45 0.51 0.57 0.64 0.80 0.90 1.0
α 0.073 0.074 0.076 0.076 0.086 0.085 0.086
ν 0.0059 0.0057 0.0049 0.0051 0.0059 0.0065 0.0071

three nonlinear curves, the result is plotted in figure 2-10. Eleven other fits (14 in total) be-
longing to the highest drive forces are shown in Appendix B-1. The fits seem very reasonable,
but are not perfect. The method of finding the nonlinear fit parameters is fully automated,
and it only takes about a second to find the values for all curves. Therefore, this method
is preferred over the brute force method. Table 2-3 shows the values of α and ν that were
obtained by fitting each of the 14 nonlinear curves individually.

2-4 Determining material properties

From section 2-1, it became clear that material properties are associated with the coefficients
of the equation of motion of the membrane. The coefficients were then related to the fit
parameters in section 2-3. Thus, the material properties listed in table 2-1 can now be
determined for both the Kelvin-Voigt and standard linear solid models.

2-4-1 Kelvin-Voigt

There are three properties that can be determined from the fits: the pre-tension n0, the
Young’s Modulus E and creep time τc. However, for membranes the pre-tension is also
directly linked to the fundamental resonance frequency ωn. The fundamental frequency can
easily be extracted from the frequency response curves. The relation, which follows from the
wave equation, is:

n0 = ρh

(
aωn

2.405

)2
(2-55)

Filling in all the values gives n0 = 0.365 N/m. This still leaves the Young’s Modulus and the
creep time to be determined from the fits.

1. The Young’s Modulus is directly related to the nonlinear spring stiffness. By using
equation 2-49, the Young’s Modulus is found with

E = αa2meffω
2
n

2.840h3 (2-56)
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2. The creep time is directly related to the nonlinear dissipation. By using equation 2-50
and the Young’s Modulus, the creep time is found with

τc = νa2meffωn
4.260h2E

(2-57)

Using the data from tables 2-2 and 2-3, E and τc are determined at all drive forces where a fit
was done. The results are shown in figure 2-11. Except for the first few points, the Young’s
Modulus shows an approximately linear behavior, although it does seem to flatten out for the
highest drive forces. Unfortunately, there were no higher forces available to confirm this. The
behavior of τc is more random, showing no clear trend. Since E and τc are known now, the
creep function for graphene can be found (see equation 2-14).

It would be interesting to see if reasonable fits can still be obtained using just one value for
α and ν. This would then lead to a single value for E and τc as well. At higher amplitudes,
the nonlinear effects will be bigger. Therefore, a weighted average of the fit parameters
corresponding to the six highest drive forces is taken. The average values for α and ν are
then:

αav =
∑6
i=1(ci − 1)αi∑6
i=1(ci − 1)

(2-58)

νav =
∑6
i=1(ci − 1)νi∑6
i=1(ci − 1)

(2-59)

Here, ci = Fi/Flin is an added weight based on the drive force, where Flin is one of the drive
forces in the linear regime. The corresponding averaged values of the nonlinear coefficients

Figure 2-11: Results for the Young’s Modulus E and creep time τ using the Kelvin-Voigt material
model. E and τ are directly related to the fit parameters, and are determined here for every curve
individually.
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are then:

Eav = 400.58 GPa (2-60)
τc,av = 294.29 ps (2-61)

The fits using these values for all 14 nonlinear curves are shown in Appendix B-2. Typically,
the values for E found with AFM indentation techniques are 430-1200 GPa [82].

2-4-2 Standard linear solid

When using the the standard linear solid model, the are three unknowns to be determined are
E1, E2, and relaxation time τr. These properties are related to the dimensionless nonlinear
stiffness coefficient α and the dimensionless nonlinear dissipation coefficient ν in the following
way:

α = 2.840h3

mω2
na

2 E2 + 2.840h3

mω2
na

2
τ2
r ω

2

1 + τ2
r ω

2E1 (2-62)

ν = 4.260h3

mωna2
τr

1 + τ2
r ω

2
n

E1 (2-63)

To disentangle the material properties from one another, α is first written in terms of ν.
Furthermore, close the the resonance frequency, ω ≈ ωn. Equation 2-62 then becomes:

α = b1E2 + b2ντr (2-64)

with

b1 = 2.840h3

mω2
na

2 (2-65)

b2 = 2.840ωn
4.260 (2-66)

Since α and ν were determined for 14 curves in total, equation 2-64 leads to a system of 14
equations. Initially, another least squares optimization of the error was tried to find the best
solution for E2 and τr. However, this leads to a negative value for τr. Therefore, a brute force
method was applied to minimize the error and obtain E2 and τr. Next, E1 is found by using
equation 2-63 and the average value of ν as obtained from equation 2-59. This results in:

E1 = 153.82 GPa (2-67)
E2 = 244.34 GPa (2-68)
τr = 45.28 ns (2-69)

Moreover, the creep time is related to the retardation time and is given by [7]:

τc = τr
E1 + E2
E2

= 73.79 ns (2-70)

These four properties are all that is necessary to determine the relaxation and creep response
functions, and the storage and loss moduli (see equation 1-5). For the standard linear solid
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Figure 2-12: Logarithmic plot for storage modulus E′ and loss modulus E′′ as a function of
frequency. Inset: E′ and E′′ for a selected frequency range around resonance.

model these are, respectively:

E(t) = E2 + E1e
−t/τr (2-71)

J(t) = 1
E2
− E1
E2(E1 + E2)e

−t/τc (2-72)

E′(ω) = E2 + E1
ω2τ2

r

1 + ω2τ2
r

(2-73)

E′′(ω) = E1
ωτr

1 + ω2τ2
r

(2-74)

A plot of the storage and loss modulus as a function of frequency is shown in figure 2-12.

2-4-3 The loss tangent

The loss tangent is a measure of the internal friction of the material, and therefore the
dissipation. It can be obtained in three different ways based on the results derived in the
previous sections.

1. Method 1 makes use of the expressions found for E′ and E′′, see equations 2-73 and 2-74.
The loss tangent is defined as tan δ = E′′/E′ (see equations 1-8 and 1-9). Figure 2-13
shows the loss tangent as a function of frequency. Near the resonance frequency, the loss
tangent decreases as the excitation frequency increases. At resonance, tan δ = 0.050.

2. Method 2 relies on the introduction of a complex Young’s Modulus E∗ = E′ + iE′′ in
the Duffing equation [83]. The Duffing term is proportional to the Young’s Modulus:
k3 = CE, where C is a constant [65]. Near the resonance frequency and for harmonic
motion x = x0e

−iωnt, this becomes:

CEx3 = CE′x3 + CE′′

ωn
x2ẋ = αx3 + νx2ẋ (2-75)
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Figure 2-13: Loss tangent determined from the storage and loss modulus. Inset: tan δ for a
selected frequency range around resonance.

Figure 2-14: Loss tangent determined from equation 2-76 for different drive forces. The dotted
line indicates the value of the loss tangent when the weighted averages of α and ν (equations
2-58 and 2-59) are used.

Therefore, the loss tangent is directly related to the nonlinear fit parameters as

tan δ = ν

α
(2-76)

Using equation 2-76, the loss tangent can be calculated for each drive force. This is
shown in figure 2-14. Alternatively, the averaged values of α and ν can be used to
find one value for the loss tangent. This result in a loss tangent of tan δ = 0.0743. In
Ref. [83], tan δ = 0.15 was found for a single layer graphene resonator. The lower loss
tangent seen in this work could be due to the fact that more strain energy can be stored
in a system with multiple graphene layers.
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3. Method 3 is to determine the loss tangent from the force-displacement loops. The loss
tangent is a ratio between energy lost and energy stored in the system. Both energies
can be calculated from the force displacement loop, as indicated in figure 2-15 for a
certain frequency of excitation. Note that, for nonlinear systems, the loop does not
have to be symmetric. Moreover, as the excitation frequency is increased, the loop will
rotate due to the phase change between force and displacement. The storage energy Ws

is given by [84]:

Ws1 = 1
2x

2
max + 1

4αx
4
max (2-77)

Ws2 = 1
2x

2
min + 1

4αx
4
min (2-78)

Ws = Ws1 +Ws2 (2-79)

where xmax and xmin are the maximum and minimum displacement. The dissipated
energy is represented by the area enclosed by the loop. A force-displacement curve
can be made for every excitation frequency. Therefore, a loss tangent dependent on
frequency is obtained. Figure 2-16 shows the loss tangent for three different drive forces
around the resonance frequency. The loss tangent is highest at resonance, and reaches
up to 0.046 for the highest drive force.

2-5 Conclusion

In this chapter, the equation of motion of a graphene membrane was derived using an energy
approach. By introducing a viscoelastic material model that operates in the geometrically
nonlinear regime, an amplitude-dependent damping term was obtained. This form of non-
linear damping is widely used in phenemonoligcal approaches as well. Therefore, nonlinear
damping in graphene resonators could be induced by geometric nonlinearities.

Figure 2-15: Force-displacement loop for a certain frequency of excitation. As the frequency is
increased, the loop changes. The areas underneath the two triangles, indicated withWs1 andWs2,
represent the storage energy. The area enclosed by the loop is the amount of energy dissipated.
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Figure 2-16: Loss tangent as obtained from the force displacement loops for three different drive
forces. The highest loss tangent reaches up to 0.046 for the highest drive force when the system
is at resonance frequency.

A fitting algorithm was developed that could automatically obtain the values of the coef-
ficients of the equation of motion for each nonlinear response curve. The coefficients were
correlated back to viscoelastic properties of the material, from which a loss tangent of 0.050
was obtained. Two other methods for obtaining the loss tangent were shown as well and
resulted in tan δ = 0.0743 and tan δ = 0.046. These values are relatively high for a crystalline
material, comparable to polymers. A possible explanation for such a high loss tangent could
be that during the exfoliation process, polymer particles contaminated the graphene sample.
For a comparison to other materials, see figure 2-17.

Figure 2-17: Stiffness-loss map. Graphene, indicated with the red dot, was measured to have a
loss tangent comparable to that of polymers. Adapted from: [7].



Chapter 3

Paper: Nonlinear dissipation in
graphene optomechanics



Nonlinear dissipation in graphene optomechanics

Justin A. Smid∗

Department of Precision and Microsystems Engineering
Delft University of Technology

(Dated: February 7, 2019)

Graphene resonators shows signs of nonlinear dissipation at relatively small amplitudes. However,
only very little is known about its origin. Here we investigate the influence of the optical field on
nonlinear dissipation in a single-layer graphene resonator that is coupled to an optical cavity to
detect its motion. The resonator is actuated by a separate laser through the photothermal force.
We observe that nonlinear dissipation is negative when the laser powers are low, but turns positive
as the laser powers increase. This effect is attributed to the optical field. We find that the nonlinear
dissipation is sensitive to the equilibrium position of the membrane, and could explain the negative
nonlinear dissipation.

Due to their high sensitivity, mechanical resonators
made from graphene sheets are widely researched for
their potential applications. Examples include pressure
sensors [1, 2], gas sensors [3] and mass sensors [4, 5].
Their atomically thin nature makes these resonators
highly susceptible to nonlinear effects at relatively small
driving forces [6]. Most notable of these effects is the
onset of the Duffing nonlinearity, which describes a non-
linear restoring force. Nonlinear dissipative behavior has
also been observed in graphene resonators when driven
into the nonlinear regime [7]. To further improve device
response and sensitivity, it is essential to understand the
dissipative processes. A variety of physical mechanisms
can contribute to linear dissipation in nanomechanical
resonators [8–13]. For graphene resonators specifically,
Ohmic dissipation due to trapped charges in the graphene
sheet or substrate can add to the dissipation process [14],
as well as sidewall adhesion [15] and interlayer slippage
[16, 17]. On the other hand, only a few theories have
been proposed to correctly describe nonlinear dissipa-
tion. It has been hypothesized that a combination of
a standard dissipation channels, such as clamping losses,
and geometrical nonlinearities could result in nonlinear
dissipation [7]. Other possible explanations are the cou-
pling between flexural modes and in-plane phonons [18],
and nonlinear mode coupling [19, 20]. Negative nonlinear
damping was observed in a multilayer graphene resonator
at low temperature [21]. However, the origin of nonlinear
dissipation remains largely unknown.

In this paper, we show that nonlinear dissipation in
a graphene resonator could arise from optical effects.
The circular resonator is part of an interferometric setup,
where it acts as a moving mirror in a Fabry-Pérot cavity
in order to actuate and detect its motion [22–25]. The
amplitude-frequency response is fitted using a normalized
van der Pol-Duffing equation. The nonlinear damping
parameter is extracted and correlated back to theoreti-
cal models which we built, accounting for the effect of the
optical field. We find that for low laser powers, negative

∗ J.A.Smid@student.tudelft.nl

nonlinear damping is observable, which turns positive as
the laser power is increased. We think that the optical
field lies at the root of observing the negative nonlinear
damping.

In principle, when a graphene resonator is coupled to
an optical cavity, the linear response is modified. The
light field then induces an optomechanical damping ef-
fect too. Depending on the wavelength of the light, the
cavity geometry and the position of the membrane, the
optomechanically induced damping can be positive or
negative and increases or decreases with the laser power,
respectively. In fact, it is even possible to induce self-
oscillations in the system if the optomechanical damping
is negative and the laser power is high enough [26]. How-
ever, optomechanically induced nonlinear damping has
not yet been explored.

In our experiments, the circular graphene resonator
consists of a single layer of chemical vapor deposited
graphene that is suspended over a cavity, which was cre-
ated by etching in a 300 nm thick layer of silicon diox-
ide (SiO2). The resulting membrane has a radius of
a = 1.5µm. More details on the sample fabrication can
be found in Ref. [25]. The graphene membrane and the
silicon substrate form a Fabry-Perot cavity. Detection of
the membrane motion is done using a 633 nm wavelength
red Helium-Neon laser. The membrane acts as a mov-
ing mirror, and causes interference of the waves that are
reflected off of the membrane and the substrate. A photo-
diode (PD) is used to detect the intensity of the reflected
light. A 405 nm wavelength blue diode laser of which
the intensity is modulated is used for actuation. The
membrane is periodically heated, and provided that the
membrane is not perfectly straight, thermal expansion
forces deflect the membrane in the out-of-plane direction
[27]. A vector network analyzer (VNA) is also used to
measure both the photodiode signal and the modulation
signal of the blue diode laser. The measurement setup is
shown schematically in Fig. 1a. All measurements were
done at low pressures of no more than 0.02 µbar and at
room temperature.

The motion amplitude of the resonator was calibrated
by a nonlinear optical transduction technique [27]. The
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experimental result is shown in Fig. 1b for different DC
powers of the blue laser while the red laser is kept con-
stant. At the lowest blue laser power, the response is
linear, while at the three other powers, the response is
nonlinear. Similar curves were obtained for other values
of the red laser power (see Supporting Information I).
When nonlinear dissipation is present within the system,
the normalized van der Pol-Duffing equation is oftentimes
used to describe the nonlinear response [28]:

ẍ+Q−1ẋ+ x+ ηx3 + ξx2ẋ = G cos(Ωt). (1)

Here, Q is the Q-factor, η is the Duffing parameter, G
is the force amplitude and Ω is the ratio between the
excitation frequency ω and the fundamental frequency
ωn. The term ξx2ẋ is used as a phenomenological ansatz
to describe amplitude-dependent nonlinear damping in
nanomechanical resonators [7, 25, 28].

To quantify nonlinear behavior of the graphene res-
onator, the following strategy is employed. First, a
Lorentzian is fitted to the linear response (Fig. 2a). From
this, the Q-factor and ωn are obtained. The nonlinear re-
sponse curves are then fitted by using Eq. (1), while the
Q-factor is kept constant since nonlinear damping is as-
sumed to dominate linear damping in this regime. The
normalized force G is first determined by looking at verti-
cal offset from the horizontal axis (Fig. 2b). The Duffing
parameter η determines the degree of hardening in the
frequency response and is found second (Fig. 2c). Non-
linear damping parameter ξ only affects the position of
the limit point that is associated with the jump in ampli-
tude, and can be found last (Fig. 2d). The results for Q,
ωn, η and ξ obtained from fitting are listed in Supporting
Information II.

The fitting results show that linear dissipation de-
creases (Q increases) with increasing red laser power.
On the other hand, nonlinear dissipation increases with
red laser power, as shown in Fig. 3a. Moreover, nega-
tive nonlinear damping can be observed at low powers
for all actuation levels. The obtained values are not ab-
solute however, and a slight variation in Q or F could
lead to different values for ξ. Therefore, histograms were
made, presented in 3b, by varying both Q and G up to
±10% and observing the value for ξ that could still fit
the response. Similar sensitivity analyses were done for
all laser powers where negative nonlinear damping was
found. The result is shown in Fig. 3c, where the error
bars indicate one standard deviation. Although the er-
ror bars are relatively large for Pb = −20 dBm at low
red laser powers, the analysis clearly shows that negative
values of the nonlinear damping persist. Further indi-
cations are given by the responsivity plot in Fig. 3d.
The increase in responsivity for the curves related to
Pb = −20 dBm and Pb = −10 dBm with respect to the
linear curve suggests the presence of negative nonlinear
damping [28]. Although nonlinear damping can be nega-
tive, the net damping of the system has remained positive
for all laser powers and is shown in Fig. 3e. To obtain

(a)

(b)

FIG. 1: (a) Experimental setup. The graphene resonator is
part of a Fabry-Perot interferometer. (b) Response curves
corresponding to four different DC actuation powers. The

red laser power stays constant at PDC,r = 1.66 mW.
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FIG. 2: Example of the fitting procedure. (a) A Lorentzian
is used to fit the linear response. (b) Eq. (1) is used to fit
the nonlinear response. G determines the offset from the hor-
izontal axis. (c) The duffing parameter η is determined from
the hardening effect. (d) Nonlinear damping ξ is determined

by finding the correct position of the limit point.
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FIG. 3: (a) Results from the fitting procedure showing linear
and nonlinear dissipation. Linear dissipation is a decreasing
with increasing with red laser power, while nonlinear dissipa-
tion increases. (b) Histogram showing the normal distribu-
tion of values of ξ when a 10% variation in both Q and G
is allowed. Here, PDC,r = 1.66 mW and Pb = −10 dBm. (c)
Sensitivity of the nonlinear dissipation to a ±10% change in
both Q−1 and force G. The error bars indicate one standard
deviation. (d) Responsivity plot for PDC,r = 1.66 mW. The
increase in responsivity suggests negative nonlinear damping.

(e) Effective damping stays positive for all laser powers.

the net damping, we used:

χnet = Q−1 +
1

4
ξX2 (2)

where X is the amplitude of motion.

To explain both the power dependence of the dissi-
pation and the negative nonlinear damping, we looked
at the influence of of the optical field on the nonlinear
parameters of the system. The force acting on the mem-
brane is due to photothermal action and is modeled as a

time-delayed photon-induced force [29, 30]:

F (x(t), t) = Fph(x0)+

∫ t

0

(
∂Fph
∂x

∂x

∂t′
+
∂Fph
∂t′

)
h(t−t′)dt′,

(3)
where Fph is the photon-induced force and h(t) is a de-
lay function. The delay is due to the fact that it takes
a finite amount of time for the heat to conduct along
the membrane and change the temperature. This time
is characterized by the thermal time constant τ , which
was determined in our experiment using the technique
proposed in Ref. [25], and is equal to 28.3 ns. The pho-
tothermal force is directly related to the power that is
absorbed by the graphene membrane through a propor-
tionality constant B, which can be obtained experimen-
tally by looking at the Q-factor for different red laser
powers as shown in Supplementary Information V. For
large-amplitude vibrations, the absorbed power is a func-
tion of the membrane position in the optical cavity. This
can be calculated using [31]:

Pabs = APi = (1 −R− T )Pi, (4)

where A is the fraction of energy absorbed, R is the
reflectivity, T is the transmittance and Pi is the inci-
dent power. Expressions for R and T were found by
using the matrix method, as shown in Supporting In-
formation III. For the graphene layer, refractive indices
ñλ=633 nm = 2.73 + 1.36i and ñλ=405 nm = 2.71 + 1.13i
were used. Following this method, the fraction of ab-
sorbed energy can be expressed as a function of mem-
brane position in the cavity for both the red and blue
laser. Simple harmonic functions can be used to fit both
curves. The result is then Taylor expanded, retaining
terms up to the third order so that it can accurately de-
scribe the position-dependent absorbed power up to am-
plitudes of 30 nm. (See Supplementary Information IV.)
Eq. (4) is filled in into Eq. (3), which after normalizing is
written on the right hand side of Eq. (1). By writing the
equation in the frequency domain and grouping in terms
of ω, the optomechanically induced effects become visible
in the equation of motion. A detailed derivation is given
in Supporting Information IV. The effective coefficients
for the linear and nonlinear dissipation become:

Q−1
eff = Q−1

in +Q−1
op,r +Q−1

op,b, (5)

ξeff = ξin + ξop,r + ξop,b, (6)

with

Q−1
op,r =

BPi,rτβrγr cos(γrg + φr)

(1 + ω2τ2)mωn
, (7)

Q−1
op,b =

BPi,bτβbγb cos(γbg + φb)

(1 + ω2τ2)mωn
, (8)

ξop,r = −BPi,rτβrγ
3
r cos(γrg + φr)a

2

2(1 + ω2τ2)mωn
, (9)

ξop,b = −BPi,bτβbγ
3
b cos(γbg + φb)a

2

2(1 + ω2τ2)mωn
, (10)
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FIG. 4: (a) Q-factor against red laser power. The blue laser
component is omitted since it was found to be negligible. The
increase in Q is due to optomechanical damping. The intrinsic
Q stays constant at 125. (b) Nonlinear dissipation against red
laser power. The influence of the optical field is not found to
be significant. For the case where Pb = −10 dBm. (c) Nonlin-
ear dissipation against red laser power, where the equilibrium
position of the membrane starts at 316 nm and increases lin-

early with red laser power.

where Q−1
in and ξin refer to the intrinsic linear and non-

linear dissipation respectively. Subscript op refers to the
optical contribution, subscripts r and b refer to the red
and blue laser, β, γ, φ are the fit parameters from the
absorption model, m is the resonator mass and g is the
gap size of the cavity, which is approximately 300 nm.

Eqs. (7)-(10) were determined around resonance fre-
quency where ω ≈ ωn. The results for the Q-factor are

shown in Fig. 4a. At higher red laser powers, the in-
crease in Q is entirely due to the optical field of the red
laser. The effect of the blue laser on the Q-factor is triv-
ial. The disentanglement of Q−1

in from Q−1
op,r and Q−1

op,b

helps us to nullify the decrease that was observed in Q−1
eff

in Fig. 3a, resulting in a constant Q of 125. The in-
fluence of the optical field on the nonlinear dissipation
is far less significant. Fig. 4b shows this for the case
where Pb = −10 dBm. Similar results were obtained for
Pb = −20 dBm and Pb = 0 dBm, showing only very little
effect on nonlinear damping. We found that the equilib-
rium position of the graphene membrane can have a big
influence on ξin. The constant illumination from both the
red and blue laser can bulge the membrane, causing an
offset and increasing the effective gap size. Trapped gas
molecules and imperfections from the flat configuration
are other reasons that could lead to a statically deformed
configuration about the initial equilibrium position, thus
further increasing the gap between the membrane and the
silicon substrate. We hypothesize that due to an increase
in equilibrium position with red laser power, the effect of
the optical field on nonlinear damping can become sig-
nificant. This is shown in Fig. 4c for the case where
Pb = −10 dBm. The effective gap size is increased with
16 nm compared to the initial flat configuration of the
membrane, and increases linearly with red laser power.
More experimental work is needed to confirm this effect.

In conclusion, we investigated dissipation in single-
layer graphene membranes. From fitting the frequency
response curves, negative nonlinear damping was found
and a sensitivity analysis was done to confirm its pres-
ence. As a possible source of the power dependence of the
linear and nonlinear dissipation, the influence of the op-
tical field on both parameters was examined. Although
it clearly affects the linear dissipation, the influence on
its nonlinear counterpart was not significant. However,
the change in equilibrium position of the membrane due
to laser illumination as well as geometric imperfections
can lie at the root of such negative nonlinear damping
behavior at low laser powers.
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Supporting Information

I. DEVICE RESPONSE FOR DIFFERENT RED LASER POWERS

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. S1: Experimentally obtained frequency response curves. Each subfigure shows the response for four
different blue laser powers Pb = −40 dBm, Pb = −20 dBm, Pb = −10 dBm and Pb = 0 dBm. Red laser power

varies from 3.32 mW down to 0.834 mW.
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II. LINEAR AND NONLINEAR FITS

A. Linear fits

The linear response curves were obtained for a blue laser actuation power of Pb = −40 dBm.

The red laser powers were varied from 0.83 mW to 3.32 mW. The fits were obtained using a

Lorentzian function. This results in a Q-factor and a fundamental frequency. The results are

presented in Table S1. The fits are shown in the Fig. S2.

PDC,r [mW] Q f0 [MHz]

3.32 550 16.46
2.64 340 16.58
2.09 250 16.54
1.66 205 16.44
1.32 180 16.50
1.05 180 16.46
0.83 150 16.41

TABLE S1: Results from fitting the linear response curves. PDC,r is the red laser power, Q is the Q-factor
and f0 is the fundamental frequency.
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B. Nonlinear fits

The nonlinear response curves were obtained at three different blue laser powers: Pb = −20 dBm,

Pb = −10 dBm and Pb = 0 dBm. At each actuation power, the red laser power was varied from

0.83 mW to 3.32 mW. The Duffing equation with an amplitude-dependent damping term added to

it described the nonlinear response:

m¨̃x+ Γ ˙̃x+ kx̃+ αx̃3 + νx̃2 ˙̃x = F cos(ωt̃), (S-1)

Scaling time with t = ωnt̃ and amplitude with x = x̃/a, Eq. S-1 is rewritten as

ẍ+Q−1ẋ+ x+ ηx3 + ξx2ẋ = G cos(Ωt), (S-2)

Q−1 =
Γ

mωn
(S-3)

η =
αa2

mω2
n

(S-4)

ξ =
νa2

mωn
(S-5)

λ =
F

mω2
na

(S-6)

Ω =
ω

ωn
(S-7)

Eq. S-2 was used to fit the nonlinear response curves. From the fits, values for η and ξ were

obtained. The results are presented in Table S2. The fits are shown in the Figs. S3, S4 and

S4 for a DC blue laser power of Pb = −20 dBm, Pb = −10 dBm and Pb = 0 dBm respectively.

PDC,r [mW] Pb = −20 dBm Pb = −10 dBm Pb = 0 dBm
η ξ η ξ η ξ

3.32 420.0 16.5 490.0 25.5 610.0 47.0
2.64 510.0 35.0 570.0 33.5 660.0 52.0
2.09 515.0 -75.0 510.0 -3.0 550.0 25.0
1.66 530.0 -130.0 520.0 -15.0 570.0 13.0
1.32 510.0 -130.0 620.0 -23.0 660.0 18.0
1.05 420.0 -120.0 550.0 -18.5 620.0 14.0
0.83 520.0 -475.0 470.0 -74.0 600.0 -9.0

TABLE S2: Results from fitting the nonlinear response curves. PDC,r is the red laser power, Pb is the blue
laser power, η is the nonlinear stiffness parameter and ξ is the nonlinear dissipation parameter.
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The fits were obtained using the bifurcation and continuation software package AUTO [1]. This

software package uses the pseudo-arclength method to trace all solution branches of the differential

equation.
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III. OPTICAL MODEL

One way to obtain an expression for the position dependent absorbed power is to use the

matrix method in thin film spectroscopy [2]. The mathematical derivation follows here, and will

be applied to graphene optomechanics. Throughout the text, s-polarization of the monochromatic

light is used.

Consider the multilayer system in Fig. S6, where the incident medium is a vacuum, followed

by a layer of graphene, another vacuum, and a silicon substrate. The refractive indices of the

media are all different, depending on the z-coordinate of the system: n = n(z) and ε = ε(z), where

ε is the dielectric function. The first step is to find expressions for the field amplitudes of the

electromagnetic wave. The electromagnetic wave is expressed as:

E = E0e
−iωt, H = H0e

−iωt (S-8)

In case of s-polarization, the electric and magnetic fields have the following components:

E =




0

Ey

0


 , H =




Hx

0

Hz


 (S-9)

FIG. S6: Multilayer system of a graphene, vacuum and silicon layer. The refractive index of each layer is
indicated by n.
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From Maxwell’s equations:

∇×E = −∂B
∂t

, ∇×H =
∂D

∂t
(S-10)

with B = µ0H and D = εε0E+P , where µ0 is the permeability of free space ε0 is the permittivity

of free space and P is the polarization. This leads to the following system of equations:

iωµ0Hx = − ∂

∂z
Ey (S-11)

iωµ0Hy = 0 (S-12)

iωµ0Hz =
∂

∂x
Ey (S-13)

∂

∂z
Hx −

∂

∂x
Hz = −iωεε0Ey (S-14)

∂

∂y
Hz = 0 (S-15)

∂

∂y
Hx = 0 (S-16)

(S-17)

Differentiating Eqs. (S-11) and (S-13) again with respect to their spatial coordinates and summing

up gives the following wave equation:

∂2

∂x2
Ey +

∂2

∂z2
Ey = −ω

2

c2
ε(z)Ey (S-18)

Applying separation of variables Ey = X(x)U(z) yields:

1

X

d2X

dx2
= − 1

U

d2U

dz2
− ω2

c2
ε(z) = C (S-19)

C is a constant. For convenience, it will be rewritten as C = −k2
0η

2, with k0 = ω
c = 2π

λ0
. From

Eq. S-19, X = eik0ηx. Using Maxwell’s equations again, the expressions for the components of the

electric and magnetic field become:

Ey = U(z)eik0ηx (S-20)

Hx = −V (z)eik0ηx (S-21)

Hz = −W (z)eik0ηx (S-22)
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This results in the following system of equations for the field amplitudes:

dU

dz
= iωµ0V (z) (S-23)

dV

dz
= iωε0(ε− η2)U(z) (S-24)

µ0W (z) +
η

c
U(z) = 0 (S-25)

Introducing different functions for U and V :

u = U, v =

√
µ0

ε0
V (S-26)

This results in:

du

dz
= ik0v (S-27)

dv

dz
= ik0(ε− η2)u (S-28)

Note that functions u and v have the same dimension. Now let z = 0 be the position of the

interface between the vacuum and the graphene layer. Then, u(0) = u0 and v(0) = v0. Assuming

the solution u1(z), v1(z) (corresponding to the boundary conditions u1(0) = 1 and v1(0) = 0) and

u2(z), v2(z) (corresponding to the boundary conditions u2(0) = 0 and v2(0) = 1), it follows that

[2]:


u0

v0


 = M


u(z)

v(z)


 =


v2(z) −u2(z)

v1(z) v2(z)




u(z)

v(z)


 (S-29)

For the case where the incident electromagnetic wave hits the interface perpendicular, the solutions

for u1, v1, u2 and v2 that are consistent with equations S-27 and S-28 are:

u1 = cos(k0n̂z) (S-30)

v1 = in̂ sin(k0n̂z) (S-31)

u2 =
i

n̂
sin(k0n̂z) (S-32)

v2 = cos(k0n̂z) (S-33)
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Therefore, the M -matrix, or characteristic matrix, of a single film is:

M =


 cos(2πn̂z/λ0) − i

n̂ sin(2πn̂z/λ0)

−in̂ cos(2πn̂z/λ0) cos(2πn̂z/λ0)


 (S-34)

For a film stack, where each individual film i has a thickness di = zi+1 − zi, we can write:


u0

v0


 = M1(d1)M2(d2)...MN (dN )


u(zN )

v(zN )


 (S-35)

So the characteristic matrix of a film stack with N film layers is:

M =


m11 m12

m21 m22


 =

N∏

i=1

Mi(di) (S-36)

The four elements of the M -matrix are related to the reflectance and transmittance coefficients in

the following way:

r =
(m11 +m12ns)n0 − (m21 +m22ns)

(m11 +m12ns)n0 + (m21 +m22ns)
(S-37)

t =
2n0

(m11 +m12ns)n0 + (m21 +m22ns)
(S-38)

where ns and n0 are the refractive indices of the substrate (silicon) and incident medium respec-

tively. The intensity coefficients can be calculated now as well:

R = |r|2 (S-39)

T =
R(ns)

R(n0)
|t|2 (S-40)

The absorption would then be equal to:

A = 1−R− T (S-41)

By varying the thickness of the second film (the vacuum between the graphene and substrate), a

position-dependent energy absorption is obtained. For monochromatic light with λ = 633 nm and
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FIG. S7: Position dependent absorption.

λ = 404 nm, the result is shown in figure S7. Finally, the absorbed power is simply:

Pabs = APi (S-42)

A simple harmonic function is fitted to these curves. For the red and blue laser light:

Pabs,r(x) = Pi,r [αr + βr sin(γr(x+ g) + φr)] (S-43)

Pabs,b(x) = Pi,b [αb + βb sin(γb(x+ g) + φb)] (S-44)

Note that the intensity of the blue laser is actually modulated. Using the appropriate trigonometric

relations, the equations become:

Pabs,r(x) = Pi,r [αr + βr (sin(γrg + φr) cos(γrx) + cos(γrg + φr) sin(γrx))] (S-45)

Pabs,b(x) = Pi,b [αb + βb (sin(γbg + φb) cos(γbx) + cos(γbg + φb) sin(γbx))] (S-46)
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IV. OPTOTHERMAL FORCE

A. Equation of Motion

In this section, the influence of the optical field on the coefficients of the equation of motion of

the optothermally excited graphene membrane is investigated. It is known that for these kind of

systems, the optical field influences the effective linear damping and stiffness [3]. Here, the analysis

is extended to include the influence on nonlinear terms as well. The derivation given here closely

follows Ref. [4].

In general, a membrane vibrating in the nonlinear regime can be described by the Duffing

equation. A Duffing term αx3, which could already be seen in Eq. (S-1), describes a nonlinear

restoring force that is responsible for the hardening behavior observed in these systems. To account

for nonlinear dissipation, an amplitude-dependent dissipation term νx2ẋ is added to the equation.

Therefore, the equation of motion is:

mẍ+ Γẋ+ kx+ αx3 + νx2ẋ = F (S-47)

where m is the mass, Γ is the linear damping coefficient, k is the linear stiffness coefficient, and F

is a force acting on the membrane. The left hand side of Eq. S-47 represents the mechanical part

of the system. Any effects from the optical field come from F and will be on the right hand side.

In this case, F has two contributions:

F = Fth(t) + Fph(x(t)) (S-48)

where Fth(t) is an effective thermal force due to Brownian motion and Fph(x(t)) is a position depen-

dent photon-induced force such as radiation pressure or a photothermal force. In the remainder,

Fth(t) is assumed to contribute much less than Fph(x(t)) and will be neglected. In general, photon-

induced forces show a delay with respect to a change in the position of the membrane. From here

on, radiation pressure is assumed to be negligible compared to the photothermal force, which has

shown to be true for similar systems [5].

Furthermore, it is assumed that the photothermal force responds to a discrete change in mem-

brane position xn − xn−1 with a single time delay τ . This is depicted in Fig. S8. For N position
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FIG. S8: Modeling of the photon-induced force. The force can not follow the change in position of the
membrane instantly, but is delayed by a finite time.

steps, F can be modeled as a summation of all force increments:

F (xN (t)) = Fph(x0) +

N∑

n=1

h(t− tn) [Fph(xn)− Fph(xn−1)] (S-49)

where h(t) is a function that describes the time delay. In the limit where xn − xn−1 → 0, this can

be rewritten as a continuous integral in time:

F (x(t)) = Fph(x0) +

∫ t

0

dFph(x(t′))
dt′

h(t− t′)dt′ (S-50)

= Fph(x0) +

∫ t

0

(
∂Fph
∂x

∂x

∂t′

)
h(t− t′)dt′ (S-51)

Eq. S-51 holds if the photothermal force has no explicit time dependence, i.e. when the there is

constant illumination. For weakly modulated illumination, the photon-induced force is written as:

F (x(t), t) = (1 + ε(t))Fph(x(t)) (S-52)

Consequently, the continuous time integral describing the photothermal force in this case becomes:

F (x(t), t) = Fph(x0) +

∫ t

0

dFph(x(t′), t′)
dt′

h(t− t′)dt′ (S-53)

= Fph(x0) +

∫ t

0

(
∂Fph
∂x

∂x

∂t′
+
∂Fph
∂t′

)
h(t− t′)dt′ (S-54)

The term Fph(x0) has no time dependence, and will eventually only lead to a static deflection.
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From here on, this term will be dropped. For the system under consideration, a red laser with

constant illumination was used for readout of the motion, and an intensity modulated blue laser

was used for actuation. Therefore, the total photon-induced force is:

F (x, t) =

∫ t

0

(
∂Fph,r
∂x

∂x

∂t′
+
∂Fph,b
∂x

∂x

∂t′
+
∂Fph,b
∂t′

)
h(t− t′)dt′ (S-55)

=

∫ t

0

(
∂Fph,r
∂x

∂x

∂t′

)
h(t− t′)dt′ +

∫ t

0

(
∂Fph,b
∂x

∂x

∂t′

)
h(t− t′)dt′ +

∫ t

0

(
∂Fph,b
∂t′

)
h(t− t′)dt′

(S-56)

where the subscripts r and b refer to the red and blue laser, respectively.

It is assumed that the photothermal force is proportional to the power absorbed by the graphene

layer:

Fph = BPph (S-57)

where B is the proportionality constant and Pph is the (position-dependent) absorbed power. The

proportionality constant depends on the thermal expansion, thermal conductivity and the geometry

of the resonator, and can be determined experimentally. This will be done in the next section.

The expressions for Pph,r and Pph,b that were obtained earlier in equations S-45 and S-46 can

now be used. These expressions are approximated by Taylor expansions. The maximum amplitude

of the graphene nanodrum in the experiments was 25 nm. To accurately describe the position

dependent absorption, it is sufficient to include terms up to the third order. See Fig. S9. This

results in:

Pph,r ≈ Pi,r
[
αr + βr

(
sin(γrg + φr)(1−

γ2
rx

2

2
) + cos(γrg + φr)(γrx−

γ3
rx

3

6
)

)]
(S-58)

Pph,b ≈ Pi,b
[
αb + βb

(
sin(γbg + φb)(1−

γ2
bx

2

2
) + cos(γbg + φb)(γbx−

γ3
bx

3

6
)

)]
(S-59)

where Pi is the incident power, g is the cavity gap size and α, β, γ and φ are the optical fit

parameters. Taking the derivative with respect to x gives:

∂Pph,r
∂x

= Pi,rβr

(
sin(γrg + φr)(−γ2

rx) + cos(γrg + φr)(γr −
γ3
rx

2

2
)

)
(S-60)

∂Pph,b
∂x

= Pi,bβb

(
sin(γbg + φb)(−γ2

bx) + cos(γbg + φb)(γb −
γ3
bx

2

2
)

)
(S-61)

Eqs. S-57 to S-61 can now be filled in into Eq. S-56. The result is converted to the frequency
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domain by using the convolution property of the Laplace transform, which says that:

L
{∫ t

0
f(t′)g(t− t′)dt′

}
= fωgω (S-62)

where we used s = iω, and the subscript ω refers to the frequency domain. Applying this property

to Eq. S-56 results in:

−mω2x2
ω+iωΓxω + iωνx3

ω + kxω + αx3
ω =

B

[
iωxω

(
∂Pr
∂x

)

ω

+ iωPb,ω + iωxω

(
∂Pb
∂x

)

ω

]
hω

(S-63)

The time delay function is still unknown. By assuming that, after the graphene membrane changes

to a new equilibrium position, the response of the heat flow due to the absorbed laser power is

exponential in nature, h(t) and its transform hω are:

h(t) = 1− e−t/τ (S-64)

hω =
1

iω(1 + iωτ)
=

1− iωτ
iω(1 + ω2τ2)

(S-65)

FIG. S9: Fraction of absorbed power versus membrane position. The functions are approximated with
Taylor series. Terms up to the third order are retained.
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where τ is the thermal time constant. Using this expression for the delay function leads to:

−mω2x2
ω+iωΓxω + iωνx3

ω + kxω + αx3
ω =

B

[
xω

(
∂Pr
∂x

)

ω

+ Pb,ω + xω

(
∂Pb
∂x

)

ω

]
1− iωτ
1 + ω2τ2

(S-66)

By grouping Eq. S-66 in terms of ω, the equation of motion including optomechanically induced

terms is obtained. The modulated part of the blue laser, ε(t)Fph,b(x(t)), only has a small effect on

the coefficients of the equation of motion compared to the other terms. By neglecting the terms

coming from the modulated part, the following final expression is obtained:

−mω2x2
ω + iωΓeffxω + iωηeffx

2
ω + iωνeffx

3
ω + keffxω + µeffx

2
ω + αeffx

3
ω = f (S-67)

with:

Γeff = Γ +
BPi,rτβrγr cos(γrg + φr)

1 + ω2τ2
+
BPi,bτβbγb cos(γbg + φb)

1 + ω2τ2
(S-68)

ηeff = −BPi,rτβrγ
2
r sin(γrg + φr)

1 + ω2τ2
− BPi,bτβbγ

2
b sin(γbg + φb)

1 + ω2τ2
(S-69)

νeff = ν − BPi,rτβrγ
3
r cos(γrg + φr)

2(1 + ω2τ2)
− BPi,bτβbγ

3
b cos(γbg + φb)

2(1 + ω2τ2)
(S-70)

keff = k − BPi,rβrγr cos(γrg + φr)

1 + ω2τ2
− BPi,bβbγb cos(γbg + φb)

1 + ω2τ2
(S-71)

µeff =
BPi,rβrγ

2
r sin(γrg + φr)

1 + ω2τ2
+
BPi,bβbγ

2
b sin(γbg + φb)

1 + ω2τ2
(S-72)

αeff = α+
BPi,rβrγ

3
r cos(γrg + φr)

2(1 + ω2τ2)
+
BPi,bβbγ

3
b cos(γbg + φb)

2(1 + ω2τ2)
(S-73)

f =
BPi,b(1− iωτ) (αb + βb sin(γbg + φb))

1 + ω2τ2
(S-74)

B. Determining the proportionality constant B

The proportionality constant B relates the absorbed power to the photothermal force. As such,

it is a function of the thermal expansion, thermal conductivity and geometry of the membrane.

The value of B can be determined in the following way. From the linear response, the Q-factor

can be extracted by fitting a Lorentzian to the linear curves. In this regime, the blue laser power

is very low, and the contribution of the blue laser to the optomechanically induced damping is
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negligible. The Q-factor is related to Γeff through:

Γeff = mωnQ
−1 (S-75)

where ωn is the natural frequency of the fundamental mode of the membrane. Fig. S10 shows the

measured values for Γeff for different values of the red laser power. A linear line with gradient ∇l
is fitted to the data. It then follows from Eq. S-68 that:

B =
(1 + ω2

nτ
2)∇l

τβrγr cos(γrg + φr)
(S-76)

where ω ≈ ωn was used. For g = 300 nm, it was found that B ≈ 7.0× 10−6 Nm2W−1.

FIG. S10: The effective values of the linear dissipation rate Γ, which were obtained at low actuation, versus
red laser powers. B is determined by fitting a straight line through these values.
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Appendix A

Nonlinear parameter identification

In Chapter 2, a nonlinear parameter identification method based on the harmonic balance
method was introduced. A detailed explanation on how this method is implemented in this
thesis is given below. The method closely follows Ref. [79].

The membrane is modeled as a single degree-of-freedom system. The equation of motion is
given by equation 2-42:

meff ¨̃x+ c1 ˙̃x+ k1x̃+ k3x̃
3 + c3x̃

2 ˙̃x = ξF cos(ωt̃) (A-1)

This equation can be rewritten by normalizing the motion amplitude with the membrane’s
thickness h, and scaling time t̃ with the excitation frequency ω:

x = x̃/h (A-2)
t = ωt̃ (A-3)
d

dt̃
= d

dt

dt

dt̃
= ω

d

dt
(A-4)

Applying these relations results in the following expression:

meffω
2hẍ+ c1ωhẋ+ k1hx+ k3h

3x3 + c3ωh
3x2ẋ = ξF cos(t) (A-5)

Finally, by expressing the natural frequency as ωn =
√
k/m, introducing a dimensionless

frequency Ω = ω/ωn and dividing all terms in the equation with meffω
2
nh, the equation of

motion becomes:

Ω2ẍ+Q−1Ωẋ+ x+ αx3 + νΩx2ẋ = λ cos(t) (A-6)
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with:

Q−1 = c1
meffωn

(A-7)

α = k3h
2

meffω2
n

(A-8)

ν = c3h
2

meffωn
(A-9)

λ = ξF

meffω2
nh

(A-10)

Note that at this point, there are 2 unknowns, which are the non-dimensional parameters
α and ν. The goal is to to identify these parameters using the frequency response curves.
In order to do so, the steady state solution of equation A-6 can be found by assuming the
following solution for x(t):

x = A cos(t− φ) = A sin(φ) sin(t) +A cos(φ) cos(t) = x1 sin(t) + x2 cos(t) (A-11)

From this solution, expressions for ẋ, ẍ, x2 and x2ẋ are derived. These can be filled in into
equation A-1. Using the appropriate trigonometric identities, and grouping the sin(t) and
cos(t) terms, the following two equations are obtained:

x1(1− Ω2)−Q−1Ωx2 + 3
4αx1A

2 − 1
4νΩx2A

2 = 0 (A-12)

x2(1− Ω2) +Q−1Ωx1 + 3
4αx2A

2 + 1
4νΩx1A

2 = λ (A-13)

where A =
√
x2

1 + x2
2.

Note that equations A-12 and A-13 are obtained for any frequency step Ωi. So if Ω consists
of M̄ frequency steps, the total number of equations obtained is 2M̄ . Therefore, the system
of equations can be written as:

Ax = b (A-14)

where A is a 2M̄ × 2 matrix, x is a 2× 1 vector that contains the parameters to be identified,
and b is a 2M̄ × 1 vector with known terms. Explicitly, the linear system looks like:

...
...

3/4 x1A
2 −1/4 Ωix2A

2

3/4 x2A
2 1/4 Ωix1A

2

...
...




α

ν

 =


...

−x1(1− Ω2
i ) +Q−1Ωix2

−x2(1− Ω2
i )−Q−1Ωix1 + λ

...

 (A-15)

For any number of frequency steps where M̄ > 1, there are more equations than unknowns.
The system of equations is then overdetermined. For this system, the least squares method
will give the best approximate solution. For a certain solution x, the least squares error is
minimized when

x =
(
ATA

)−1 (
ATb

)
(A-16)

In practice, it was found that, although the obtained value for α seemed to be very reasonable,
the value for ν could sometimes be clearly incorrect. A solution to this problem is to force
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the nonlinear damping term ν to be such that the the maximum amplitude as obtained from
the frequency response function is the same as the maximum amplitude as obtained from the
data. This will be shown below.

First, the Frequency Response Function (FRF) is derived. From equation A-12, x1 can be
expressed in terms of x2 as:

x1 =
Q−1Ω + 1

4νΩA2

(1− Ω2) + 3
4αA

2x2 (A-17)

Filling in into equation A-13 gives:

x2

[(
(1− Ω2) + 3

4αA
2
)2

+
(
Q−1Ω + 1

4νΩA2
)2
]

= λ

[(
1− Ω2

)
+ 3

4αA
2
]

(A-18)

Likewise, equation A-13 can be rewritten and filled in into equation A-12 to obtain:

x1

[(
(1− Ω2) + 3

4αA
2
)2

+
(
Q−1Ω + 1

4νΩA2
)2
]

= λ

[
Q−1Ω + 1

4νΩA2
]

(A-19)

Squaring equations A-18 and A-19 and summing up leads to the FRF of the system:

A2
[(

(1− Ω2) + 3
4αA

2
)2

+
(
Q−1Ω + 1

4νΩA2
)2
]

= λ2 (A-20)

Equation A-20 is an analytical approximation of the FRF based on the harmonic balance
method. It should be able to describe the frequency response curves from the data, given the
correct parameters. The backbone curve can be created by taking the derivative of the FRF
with respect to the dimensionless frequency Ω:

d

dΩ(eq. A-20) = 2AdA
dΩ

[(
(1− Ω2) + 3

4αA
2
)2

+
(
Q−1Ω + 1

4νΩA2
)2
]

+ 2A2
(

(1− Ω2) + 3
4αA

2
)(
−2Ω + 3

2αA
dA

dΩ

)
+ 2A2

(
Q−1Ω + 1

4νΩA2
)(

Q−1 + 1
4νA

2 + 1
2νΩAdA

dΩ

)
= 0

(A-21)

Note that the amplitude A is a function of Ω, and dA
dΩ = 0 when the maximum amplitude

Amax is reached. The corresponding frequency is named Ωmax. Using this, and dividing the
whole equation by −4A2

maxΩmax, the equation reduces to:

− 1
32ν

2A4
max −

1
4νQ

−1 − 1
2Q
−2 + (1− Ω2

max) + 3
4αA

2
max = 0 (A-22)

From equation A-22, the following expressions can be written:

(1− Ω2
max) + 3

4αA
2
max = 1

32ν
2A4

max + 1
4νQ

−1A2
max + 1

2Q
−2 (A-23)

Ω2
max = 1 + 3

4αA
2
max −

1
32ν

2A4
max −

1
4νQ

−1A2
max −

1
2Q
−2 (A-24)
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Filling these expressions in into the FRF equation A-20, a relation between ν and the maxi-
mum amplitude Amax, Q, α and λ is obtained:

A2
max

( 1
32ν

2A4
max + 1

4νQ
−1A2

max + 1
2Q
−2
)2

+

A2
max

(
1 + 3

4αA
2
max −

1
32ν

2A4
max −

1
4νQ

−1A2
max −

1
2Q
−2
)(

Q−1 + 1
4νA

2
max

)2
= λ2

(A-25)

Equation A-25 is a 4th order polynomial for ν as a function of Amax, Q, α and λ:

β1ν
4 + β2ν

3 + β3ν
2 + β4ν + β5 = 0 (A-26)

with

β1 = −A
8
max

1024 (A-27)

β2 = −A
6
maxQ

−1

64 (A-28)

β3 = 3A6
maxα

64 + A4
max
16 − 3A4

maxQ
−2

32 (A-29)

β4 = 3A4
maxQ

−1α

8 + A2
maxQ

−1

2 − 2A2
maxQ

−3

8 (A-30)

β5 = Q−2 − Q−4

4 + 3A2
maxQ

−2α

4 − λ2

A2
max

(A-31)

Knowing all these parameters, equation A-26 can be solved for ν. It was found that one of
the roots always corresponded to a reasonable value for ν.
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Nonlinear fits of the electrostatically
actuated graphene membrane

B-1 Fits for each curve individually

The fits that were obtained for each curve are shown below. Here, α and ν are different for
each curve.

Figure B-1: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.20 nN and F = 0.23 nN.
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Figure B-2: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.25 nN and F = 0.29 nN.

Figure B-3: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.32 nN and F = 0.36 nN.
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Figure B-4: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.40 nN and F = 0.45 nN.

Figure B-5: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.51 nN and F = 0.57 nN.
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Figure B-6: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.64 nN and F = 0.80 nN.

Figure B-7: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.90 nN and F = 1.0 nN.



B-2 Fits using averaged coefficients 69

B-2 Fits using averaged coefficients

The fits that were obtained for each curve are shown below. Here, an average value of α and
ν was used to fit every curve with, corresponding to E = 400.58 GPa and τ = 463.70 ps.

Figure B-8: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.20 nN and F = 0.23 nN.

Figure B-9: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.25 nN and F = 0.29 nN.
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Figure B-10: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.32 nN and F = 0.36 nN.

Figure B-11: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.40 nN and F = 0.45 nN.
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Figure B-12: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.51 nN and F = 0.57 nN.

Figure B-13: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.64 nN and F = 0.80 nN.
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Figure B-14: Two nonlinear response curves and their fits. The drive forces belonging to these
curves are F = 0.90 nN and F = 1.0 nN.
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