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Abstract

An autonomous vehicle should be able to operate amidst numerous other human-driven ve-
hicles, each driving on its own trajectory. To safely navigate in such a dynamic environment,
the autonomous vehicle should be able to predict trajectories of the vehicles operating in its
vicinity and use these to plan its own path. Most related work uses a vehicle’s past trajec-
tory to model its behavior, based on which the future trajectory is predicted. However, they
do not focus on the influence of contextual features such as road structure from the scene
that may affect the vehicle’s future trajectory. This work proposes an approach to predict a
long-term vehicle trajectory using not only the past trajectory of a vehicle but also contextual
features from the driving scene. We model the road structure to help prediction on curved
road sections. A Recurrent Neural Network is used to learn vehicle behavior from past ve-
hicle trajectories and predict future trajectories while incorporating road structure. Using a
trajectory dataset collected from a test vehicle, we compare our model’s performance with
the conventional prediction approach based on only past vehicle trajectory.
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“You can’t cross the sea merely by standing and staring at the water.”
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Chapter 1

Introduction

Many traffic accidents occur every year leading to injury, loss of life and property. In 2014
alone there were about a million road accidents causing 1.3 million injuries and 26,000 fatalities
in Europe itself [4]. This includes vehicle to vehicle accidents and vehicle accidents with other
road users like pedestrians and cyclists. The majority of these accidents involve human
error caused by inattentiveness (due to tiredness, distraction or other reasons), misjudgment
(decision error), skill based error, observation error due to traffic occlusion as well as poor
lighting conditions and non observance of traffic laws [5, 6]. To reduce the number of accidents,
the dependence on human input can be limited by increasing the degree of automation in
the driving task. Many corporations as well as research institutions, have been working on
improving vehicle safety through added intelligence in vehicles.

The aim to reduce vehicular traffic accidents has led to a tremendous research in intelligent
vehicles, with the goal to make transportation completely autonomous. Driver Assistant
systems such as Adaptive Cruise Control, Collision Detection and Braking Systems as well as
Lane Change Assistance already automate the driving task especially on highway roads. To
fully automate vehicles, it is essential is to enable safe vehicle operation in complex scenarios
without the input from the human driver. This requires path planning through the vehicles
environment.

The environment of an autonomous vehicle contains numerous human driven vehicles which
act as dynamic obstacles. Potentially, the trajectory of each of these vehicles could intersect
with the planned trajectory of the ego-vehicle. That is, each vehicle in the vicinity could
be moving into a collision state with the autonomous vehicle. To ensure safety and prevent
planning its path into a collision, the autonomous vehicle needs to know the future trajectories
of vehicles in its vicinity. However, each of these dynamic obstacles follow their own planned
trajectories which are unknown to the autonomous vehicle. As a result, the vehicle needs to
predict the future trajectories of the vehicles operating in its vicinity.

The trajectory of a vehicle is the result of two contributing factors: First the behavior of a
vehicle’s driver, such as changing a lane that reflects maneuver intention. Secondly, external
factors such as road structure which affect the trajectory of the vehicle during driving in that
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2 Introduction

maneuver. Both can be inferred from clues or ’indicators’ obtained from the vehicle states
and the driving scene.

We categorize these indicators into four types: Motion Indicators, Infrastructure Indicators,
Object Indicators and Interaction Indicators. Motion Indicators consists of position, velocity,
acceleration and orientation of a dynamic object over past and current time frames. These
features can be used to recognize initiation of a maneuver such as acceleration or lane change.
Object indicators communicate the intention of a vehicle to execute a maneuver such as turn
and brake signals. Both Motion and

Object Indicators together capture behavior of an object. Infrastructure Indicators comprise
features in the road infrastructure that regulate the flow of traffic. This primarily includes
road geometry, pedestrian crossing, traffic signals and other traffic regulatory features. Lastly,
the Interaction Indicators includes the interaction between traffic participants i.e. vehicle to
vehicle or vehicle to pedestrian interactions. Infrastructure and Interaction indicators together
capture features which affect the behavior of the object.

A widely used approach for trajectory prediction is based on a vehicle’s past kinematic
states[7], i.e. only Motion Indicators. Such an approach does not consider the influence
of external factors like road structure or interaction with other traffic participants that may
cause change in a vehicle’s trajectory. As a result, prediction based on only Motion Indicators
may not perform well in complex driving scenarios and is limited to short-term prediction
[7]. Furthermore, another set of literature focuses on identifying vehicle maneuver intention.
For example, turning on an intersection [8, 9] or lane change [10, 11]. Trajectory prediction is
then done based on identified intention [12, 7]. These approaches use indicators like geometry
of the road, speed limit and driving style for identifying a vehicle’s intention. However, they
do not consider these indicators during the vehicle trajectory prediction.

The aim of this work is to consider Motion and Infrastructure Indicators in trajectory pre-
diction. Within the scope of this work, we only consider vehicles driving on a stretch of road
such that vehicles are unconstrained by other vehicles and intersections of the road.

Figure 1-1: Vehicle trajectory prediction on a curved road section
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A good example of a scenario this work addresses is shown in figure 1-1. The ego-vehicle (A)
is approaching a curve. On the opposite side of the road, another vehicle (B) is approaching
from the other direction. A prediction approach based only on past trajectory of vehicle B
would predict a path (1), which would collide with the intended path of the ego-vehicle. This
predicted path would call for an unnecessary evasive maneuver, since it can be expected that
vehicle B would follow path (2) which follows the road.

The above scenario is one of the motivations to focus on improving vehicle trajectory pre-
diction on curved road sections. In related work [18, 12], only limited attention is given to
predict vehicle trajectories considering the influence of road structure. Therefore, this work
will investigate how to incorporate the road structure into the modeling of the vehicle as well
as on how to model the vehicle.

The main contributions of this work are: First, the development of features for using Road
Structure as a context in trajectory prediction on curved road sections. Second, presenting a
modeling approach which can exploit the variety of indicators in addition to Motion Indicators
for reliable long term trajectory prediction.

The thesis is organized as follows: Chapter 2 describes our approach to model the road struc-
ture such that they can be it for trajectory prediction. Chapter 3 presents two models which
use the Motion and Infrastructure Indicator for trajectory prediction. These contributions
are evaluated experimentally in Chapter 4 and discussed in Chapter 5.

Master of Science Thesis G. Raipuria



4 Introduction

G. Raipuria Master of Science Thesis



Chapter 2

Road Structure as Infrastructure
Indicators

Consider a vehicle driving in the vicinity of an autonomous vehicle. To assure that the two
vehicles do not collide, the autonomous vehicle needs to predict the future trajectory of this
vehicle, while planning its own path. A prediction can be made using the vehicle’s kinematic
states, i.e. its position, orientation and velocity, as seen in figure 2-1(a). Based on this
information, the vehicle would be predicted to move straight along the current direction of
the vehicle velocity. However, if the road makes a turn, as seen in figure 2-1(b), the predicted
path is not correct. This is because, while making the prediction, no information about the
road structure was used.

Figure 2-1: Trajectory Prediction using (a) only vehicle motion history, (b) vehicle motion history
along with road structure
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6 Road Structure as Infrastructure Indicators

Vehicular traffic is constraint by an elementary traffic, to drive only on the predefined roadway.
For example, a vehicle driving on a curved road would move roughly along the road curvature,
to prevent going off-road. Rarely do vehicles leave this drivable roadway, except to halt or
under certain exceptional circumstances. It is reasonable to assume that vehicular traffic will
move along the predefined roadway path. This constraints vehicle motion by the structure of
the roadway.

A better path prediction can be made considering information about the structure of the
roadway. With this improved prediction ability, vehicle trajectories can be predicted more
accurately over a longer duration of time, with the assumption that vehicles will roughly
follow the road structure. The further in time an autonomous vehicle can reliably predict
the motion of a vehicle operating in its environment, the more time it would have to plan its
path. This is an important step towards safer autonomous driving.

This chapter describes how the influence of road structure on a vehicle trajectory can be
modeled, such that it can be incorporated into path prediction.

2-1 Curvilinear Coordinate System

Consider a vehicle moving on a curved path and assume that vehicles only move on the
roadway. The vehicle’s state would change along the geometry of road as the vehicle drives
forward. That is, the vehicle future states are constrained along the road structure, which is
called the Road Geometry Constraint [1]. However, the motion state in the Global Cartesian
Coordinate Systems (GCCS) changes freely along the Global X and Global Y axis. That is,
the Global Cartesian Coordinate Systems does not constraint the vehicle motion along the
road geometry.

A

Plausible motion

Road geometry model

Curve Tangent

(0,0)curviinear

Possible motion

A

(0,0) giobar X

Figure 2-2: The Curvilinear Coordinate System, image adopted from [1]
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2-1 Curvilinear Coordinate System 7

To incorporate this constraint, the vehicle motion can be described as a combination of motion
on an axis which runs along the roadway geometry (axis S) and an orthogonal axis (axis N).
The motion on axis S represents longitudinal vehicle motion, whereas motion on axis N
represents motion in the lateral direction. As a result, the motion description becomes a
function of the road geometry.

The two axes form an orthogonal space and introduce a new coordinate system, a Curvilinear
Coordinate System (CCS) [1], as shown in figure 2-2. In this coordinate system the driving
direction of the road is always aligned with the axis S of the coordinate system.

The significance of CCS can be seen from another perspective. Vehicles are non-holonomic in
nature and can maneuver only in certain directions. Not considering this causes the inclusion
of more degrees of freedom than the vehicle actually possesses, thereby increasing the com-
plexity of path prediction. Furthermore, the most probable motion of a vehicle is constrained
by the geometry of the road and the direction of the traffic flow on the road. As can be seen
in figure 2-2, a vehicle moving forward along the roadway would only maneuver in limited
directions, which is defined by the tangent to the roadway curve. Describing vehicle motion in
CCS provides this constraint by making the vehicle’s motion a function of the road geometry.
Thus allowing to infer the most probable direction of vehicle’s motion.

The CCS is used by [1] to improve tracking and classifying vehicle behavior using the roadway
geometry information. Specifically, CCS is used to differentiate between lateral vehicle motion
due to a lane change or lateral motion to follow a curved road. We further extend the use of
the CCS to incorporate the roadway geometry information in trajectory prediction. We use
the assumption that a vehicle would follow the curvature to predict the vehicle’s trajectory
along the road geometry.

2-1-1 Defining CCS

The Curvilinear Coordinate System is based on roadway geometry, and requires its represen-
tation in the form of a smooth continuous curve which forms the longitudinal axis S. The
distance on this roadway curve from the point of origin would be the x coordinate in CCS.
[1] uses a B-spline to define the roadway curve. We use a similar approach described in the
following paragraphs.

Given the complexity of the roadway geometry which is often consisting of multiple curved
paths of varying curvature and length, the roadway path is broken into smaller sections. Each
section has a starting node and an end node (control points) which are shared with adjoining
curves, see figure 2-3(a). On each of these sections a spline curve is fit which is represented
by the following parametric equation:

X =a, %8 +by*8°+cp %8+ dy (2-1)

Y =a, * 53+ by x 52 +cyxs+d, (2-2)

where X and Y are the coordinates in GCCS, s is the parameter which varies from 0 to a value
k for each polynomial curve, ay, by, cz,ds, ay, by, ¢y, d, are constants. This gives a piecewise
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8 Road Structure as Infrastructure Indicators

polynomial curve, which is continuous in the 1st (velocity) and 2nd derivative (acceleration).
The lateral axis n is a perpendicular to this piecewise polynomial curve at every point on the
curve. The derivative of the curve is used to find the perpendicular axis.

Extending the CCS definition of [1], we define a separate curve for either direction of traffic
on the road, as seen in figure 2-3(a). This is due to two reasons. A vehicle would move only
in the right direction of traffic, i.e. the vehicle is not only constrained by its non-holonomic
motion but also additionally by the direction of traffic flow. Defining a single curve for the
entire roadway, would not allow differentiating between vehicles traveling in either direction
of the road. To provide this directional constraint, separate curves are fit on both sides of the
road. Thus, a vehicle’s motion is constrained to the positive direction of its curve tangent.

Furthermore, in certain situations, the road curvature may be different for either side of the
road. This can be visualized in figure 2-3(b). The radius of the curve varies for either direction
of the traffic flow, which changes the distance traveled along the curve. As a result fitting
a single curve for both sides of traffic flow would give an inaccurate description of the road
structure.

2-1-2 Using Curvilinear Coordinate System in Path Prediction

To incorporate the road geometry in path prediction, the vehicle trajectory needs to be trans-
formed from GCCS to CCS. After prediction, to use in further path planning, the predicted
trajectory can be converted back to the GCCS. This section describes the process to transform
a vehicle state from GCCS to CCS and back.

A vehicle state in the Curvilinear Coordinate system (CCS) is defined as (X, Y¢ , VXC VY, ¢©),
where X¢ and Y© are the position of the vehicle along the longitudinal axis S and the lateral

axis N. VX% VY are corresponding velocities and ¢ is the vehicle’s orientation in the
CCS. Similarly (X&, Y VX® VY, ¢%) are vehicles state in GCCS.

To aid the transformation of vehicle states between the two coordinate systems, we define
an intermediate Local Cartesian Coordinate System (LCCS), similar to GCCS. The origin of
LCCS is at the point ¢,, such that ¢, is the closest point on the roadway curve to vehicle
position in GCCS (X%, YY) on the roadway curve. Point cp is represented by (Xf , Yf) which
is a function of value s in the parametric equation 2-1 and (ch , Y;DC) in CCS, where ch is
equal to zero as the point lies on the longitudinal axis S itself. The X axis of this coordinate
system is aligned with the tangent to the roadway curve and the Y axis runs perpendicular
to the tangent. This is different from CCS in two ways: The origin of CCS is the starting
point of the roadway curve rather than point ¢,. the longitudinal axis of LCCS is the tangent
of the curve, whereas for CCS it is the roadway curve itself.

Transforming from GCCS to CCS

Given coordinates of a vehicle in GCCS (X Y&, VXE VY©, ¢%), XC, can be obtained by
finding the closest point ¢, on the roadway curve and the distance from the curve origin
to point ¢, along the curve. As shown in figure 2-4. Y, is obtained by calculating the
distance of vehicle position (in GCCS) from the point ¢, along the Y axis of LCCS which is

G. Raipuria Master of Science Thesis



2-1 Curvilinear Coordinate System 9

Map in Lat/Lon
52.0025
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Figure 2-3: a) Roadway Curve plotted on GPS map, b) Figure showing different Roadway Curve
for either side of the road
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Road Structure as Infrastructure Indicators

(0: 0)cuviiinear

v

(0: o)gtobal X

Figure 2-4: The Curvilinear Coordinate system, image adopted from [1]

perpendicular to the roadway curve tangent. Velocity VX¢ and VY® in the CCS are the
velocities of the vehicle along the tangent to the parametric curve and perpendicular to the
tangent direction. In the next paragraphs this process is described in more detail.

Obtaining X Coordinate in CCS - X¢

This includes finding the closest point ¢, to (X & YY) on the roadway curve represented by

s, and obtaining the distance along the curve from the curve origin to the point c,,.

To find point ¢, the following procedure is used:

e The two nodes of the roadway curve closest to X¢, Y are found,

this allows selection of the corresponding section C of the roadway curve that contains
the point ¢,. As we define a curve for either side of the road, it is essential that only
the correct set of control points are chosen. Traffic flow on either side of a road would
have an orientation closely aligned with the tangent to the curve as it follows the road
curvature. This along with the vehicle’s orientation ¢“ is used to select the correct set
of nodes.

Next, using the parametric equations representing the curve section C' obtained from
previous steps, closest point ¢, on the curve to the vehicle position X G YC is found.
This is achieved by using a non-linear optimization to minimize a function f.

f=(apxs® +bpxs>teorstd,—XO) 24 (ayx8®+by*s”+c,xs+d, —Y)? (2-3)

where s is the unknown parameter, a,, by, ¢z, dz, ay, by, ¢y, d, are constants representing
the parametric curve. The optimization procedure minimizes the distance between the
point (X% V%) and an unknown point ¢, (X]? , Y;)C) on the curve, solving for a s value
(see equation 2-1). This provides the location of point ¢p.

The next step is to obtain the distance of the point ¢, from the curve origin. For this, we
add the lengths of each section of the roadway curve until the section C' and the length of

G. Raipuria Master of Science Thesis



2-1 Curvilinear Coordinate System 11

the section C until point ¢,. Each section is defined by a set of parametric equations 2-1, and
arch length for each parametric curve section can be obtained as [13]:

s=k

L= dl (2-4)
0
where
dy 2
dl =41 -1 d 2-
+ ( dﬁ) (2-5)

This can be further resolved as:

dy 2
dl = l—i—() dx
dx

(#) " 9
(

() ()

This gives the length of a parametric curve as:

L= /Ok\l (‘2)2 + (2‘2)2& (2-7)

Thus the distance from the curve origin to point ¢, is given by

1=+ L, (2-8)
where L; is the length of curve 4, and L. is the length of curve C' until point c,.

Obtaining the Y Coordinate in CCS - Y©

Y ¢ represents the coordinate on a perpendicular axis to the tangent at point cp. Essentially
Y'¢ is the signed distance between point cp and (XG, Y%) in GCCS. To obtain Y¢, the tangent
to the curve at cp is found, followed by obtaining the distance of (X, Y%) from point cp
along a perpendicular to the curve tangent. The procedure is detailed as follows:

e The tangent at point ¢, is defined by the slope of the parametric curve at that point.
The slope is found using the following equation:
dy dt

l = 2 2-9
SOPE =0t da (2-9)
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12 Road Structure as Infrastructure Indicators

e To obtain Y, not only the distance between point ¢p and (X & Y%) is required, but
also the direction. Rather than merely taking the numerical distance, the LCCS is
used. (X% Y%) is transformed to the LCCS (X*,YT) using a translation and rotation
operation given by the equation .

¢ cos —sin ¢ _x¢
(-l e o] e

Where 6 is the slope of the tangent at point ¢,. Now, the Y coordinate of the object
location in this local coordinate system Y’ is also the Y©.

Obtaining Velocity in Curvilinear Coordinate System

The velocity of the object VX and VY © in CCS, are velocity components along the tangent
to the curve at point ¢, and perpendicular to tangent. To obtain these components, VX G
and VY© are transformed to the local Coordinate system using a 2D rotation matrix, given
by the equation

VXY lcos(0) —sin(0) VXC
lVYC] o |ﬁ’in(0) cos(0) ] * lvyG] (2-11)

Where 0 is the slope of the tangent at point ¢,. This velocity vector represents the velocity
of the object in CCS.

Transforming from CCS to GCCS

A vehicle position in CCS is the distance along the roadway curve and a distance perpendicular
to this curve. To find the position of a vehicle in GCCS from CCS, the first step is to find
the curve section C' of the piecewise polynomial road curve such that a closest point c, lies
on that curve section. Once the parametric curve is obtained, a corresponding value s can
be determined which represents the location of the point ¢, on the curve. This value s gives
gives the X using the parametric equation 2-1. Next, using the slope of the curve at Cp, A
point at distance Y¢ from point ¢, along the perpendicular line can be obtained. To find the
vehicle’s velocity in GCCS, VX and VY can be multiplied with the inverse of the rotation
matrix given by equation 2-11. The procedure is detailed in the following paragraphs:

e XC represents the distance of the closest point ¢p on the CCS X axis from the roadway
curve’s origin, as defined in the previous section. To obtain ¢,, we use equation 2-8. For
faster computation, a look-up table is prepared with cumulative lengths for parametric
curves starting from the road origin. This directly provides the parametric curve C
that contains point c,. The obtained value s from equation 2-8 can be plugged in the
parametric curve equation 2-1 to give the location of point ¢, in the GCCS. The X
coordinate of point ¢, is also the X coordinate of the vehicle location in GCCS.

e To find Y, the process used to find Y'¢(given by equation 2-10) is inversed, ie. the Y
coordinate is first rotated back about the point ¢, followed by a translation.

e The velocities are obtained by multiplying the velocity vector in CCS with the inverse
of the rotation matrix given in equation 2-11.
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2-1 Curvilinear Coordinate System 13

Conclusion

To incorporate the roadway geometry information into the path prediction, a vehicle trajec-
tory described in GCCS needs to be converted into CCS. This conversion makes the trajectory
a function of the road geometry curve and allows the prediction of future trajectories along
this curve. The prediction model can predict vehicle trajectory in this transformed motion
states. A prediction model can predict vehicle trajectories in CCS. The predicted trajectory
can then be transformed back to GCCS after prediction in CCS. The predicted trajectory
should be much more similar to the real vehicle trajectory, than predicting in GCCS.

2-1-3 Effect of CCS on vehicle motion description

Figure 2-5 and 2-6 show the motion of a vehicle in both GCCS and CCS. Observing vehicle
motion in GCCS (fig 2-5(a)), it is difficult to draw any conclusion on the vehicle’s driving
behavior. For example, is the vehicle following its lane or is it also moving laterally (lane
change)? This is because there is no information available about the road structure. However,
in CCS the axis S is aligned with the road geometry, and axis N is perpendicular to axis S;
which inherently provides information about the road structure. This allows distinguishing
between vehicle longitudinal motion (forward vehicle motion along the road geometry) and
lateral motion (vehicle motion away from or towards the lane center). That is, the vehicle’s
motion is now seen from the vehicle perspective itself. Figure 2-5(b), shows the corresponding
trajectory in CCS.

140 T T T T T 20

= \/ghicle trajectory = \/ehicle trajectory
End Location End Location
120 |- ® Start Location 1 15 - ® Start Location

LN

80 -

Y [m]
N [m]

60 -

40t

20 -

100 150 200 250 300
X [m] S[m]

(a) (b)

Figure 2-5: Vehicle trajectory plotted (a) in GCCS (b) in CCS

For a vehicle traveling along the road, its longitudinal motion would be much larger than its
lateral motion, as seen in figure 2-5(b) and 2-6(b). Describing the vehicle’s motion in CCS
allows predicting the two motion types independently, which was not possible in GCCS. That
is, CCS allows to predict a vehicle to move with varying longitudinal velocity without directly
affecting the lateral motion. A vehicle with no lateral motion is thus represented by a 1D
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14 Road Structure as Infrastructure Indicators
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Figure 2-7: Example vehicle trajectory plotted on GPS map, along with the roadway curve
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2-2 Road Curvature 15

motion trajectory. This provides a powerful predictive ability. Furthermore, since we define
a separate curve for either driving direction on a road, a vehicle would always travel in the
positive direction of the S axis. This assumes that a vehicle never goes in the opposite traffic
direction.

Figure 2-6(b) shows the vehicle’s velocity in CCS. The velocity along the N axis varies on
either side of the axis with a near zero mean. Since the S axis is aligned with the road
geometry, such motion can easily be interpreted as lane following. Furthermore, distinguishing
between lateral and longitudinal motion allows to interpret behaviors like oscillation in the
lateral position (between 100 and 250 time step) as the vehicle negotiates the curve, which
was not possible directly from motion description in GCCS.

2-1-4 Conclusion

A vehicle is constrained by the road structure, which affects its motion. To predict the
vehicle’s future trajectory it is thus essential to consider the structure of the road a vehicle
drives upon. For this, we need to model the road structure such that it can be used by the
prediction model.

A curvilinear coordinate system based on the road geometry is used to incorporate a con-
straint on the vehicle’s motion due to its non-holonomy and direction of traffic flow. The
longitudinal axis of this coordinate system aligns with the road geometry. This allows dif-
ferentiating between longitudinal motion along the road and lateral motion, that provides
powerful inferencing ability to model and predict vehicle motion.

However, there is an important shortcoming of CCS. Consider a vehicle moving on a curved
path and another vehicle on a straight road. In CCS both motions would be described on
an axis along the road curvature. However, aligning of the longitudinal axis with the road
structure removes any information about the curvature of the road itself. Both the vehicle
motions appear essentially the same, and it is not possible to differentiate between a curved
road and straight road.

2-2 Road Curvature

Vehicles typically lower their speed as they approach a curved section of the road. This reduc-
tion in speed allows vehicles to safely negotiate the curve without going off-road. Similarly,
vehicles raise their speed towards the end of a curved section. The speed of a vehicle is thus
influenced by the curvature of the road it is traveling on. Figure 3-3(a) show variation in
speed of a vehicle as it negotiates a curved road section, plotted against road curvature.

Transforming the vehicle velocities to CCS (see figure 2-8(b)), it can be visualized that the
vehicle’s longitudinal velocity (along axis S) is the velocity component which causes this
variation in speed. Using the road curvature information, this variation in velocity of a vehicle
can be reasoned as the vehicle approaches or exits a curved section of the road. Furthermore,
this can be used in trajectory prediction to anticipate the effect that road curvature would
have on the future trajectory of a vehicle as it negotiates a curve.

Although CCS provides the structure of the road, it does not provide does information on the
curvature of the road itself. Without this information, a prediction model will have no means
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Figure 2-8: Vehicle velocity variation plot alongside road curvature. (a) A vehicle exhibits sharp
reduction in velocity as it traverses a very sharp curve (b) Smaller variations in road curvature
have minor impact on vehicle velocity

to learn the existence of a curve and to anticipate variations in vehicle velocity. Thus, it is
required that the road curvature is calculated separately, and used as an additional feature
for the prediction. By considering the road curvature as context, a trajectory prediction
model can anticipate the variation in velocity and make a better prediction of the vehicle’s
trajectory. This section defines the curvature of a curve and presents how it can be used to
improve path prediction.

Curvature Definition

The curvature of a curve is defined as the rate of change of the angle of the tangent to the
curve with respect to the curve length. This is denoted by the following equation:

slope = %b (2-12)

where ¢ is the angle of the tangent and [ is the curve length. It is also the inverse of the curve
radius at any position on the curve.

The curvature is essentially the rate of change of the tangent slope, however, the derivative is
with respect to the roadway length. That means, if the tangent slope changes by significantly
in short length of the curve, the curvature is large. Curvature represents how quickly does
the curve tangent changes along a length of the curve.

Obtaining Road curvature

The roadway curve in used to obtain the road curvature. This is the same parametric curve
which was also used to define the longitudinal axis of CCS.
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However, we do not have a direct relation between the road tangent angle and curve length.
For this we further resolve equation 2-12 as follows [14]:

 d¢/ds
~dl/ds (2-13)
do/ds

TV

dl

where x and y are obtained from the parametric curve equation 2-1, & = % and y = %
Further,
dy
t - 27
an(9) = 5
_dy/ds (2-14)
 dx/ds
_Y
&
and,
d 2 do
Jptan(@) = sec’—, (2-15)
Xy —yi
==
wherei:‘% andy:%
this gives,
do 1 d
r —(t
dt  sec?¢ dt( ane)
B 1 Ty — Y&
~ 1+tan2¢ 2 (2-16)
I R V2
1+ 5 &
Ty —yE
42 + 92
Combining equation 2-17 with equation 2-13, gives:
A R LA (2-17)

(3/2)
()
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18 Road Structure as Infrastructure Indicators

Using equation 2-17 and the roadway curve, a curvature value can be found for every location
of the roadway.

Using Road Curvature

The roadway curve can be used to obtain road curvature of the road section on which a
vehicle is traveling. Curvature information can then be used as a feature for a prediction
model. This allows the model to anticipate the variation in the vehicle’s velocity due to road
curvature and in turn better predict the vehicle’s position.

It is essential to mention here that a vehicle lowers its speed prior to actually entering a
curve, with a deceleration comfortable for the passengers. The reason for this is two-fold.
One, as soon as a vehicle enters the curve, the centrifugal forces start acting which can
throw the vehicle off-road. To maintain control, the velocity needs to be lowered before the
centrifugal forces becomes too high. Lowering velocity on entering the curve would require
sudden braking which is not desirable. Secondly, braking in the curve itself would increase
the forces on the passengers. Meaning that a driver does not lower the speed based on the
current curvature of the road, but rather curvature of the road ahead.

Given two vehicles both approaching a curve, one moving fast and the other moving slow,
the one traveling faster will need to brake earlier to reach a safe speed prior to entering the
curved road section. The faster the vehicle travels, the more distance is needed to reduce the
vehicle’s speed. Therefore, the speed reduction is based on the curvature of the road x meters
ahead, and the value x depend upon the velocity of the vehicle. A vehicle with a higher speed
should observe the curvature of the road further ahead in order to lower the speed in time
before reaching the curve. Thus to anticipate a vehicles velocity variation, a prediction model
needs the curvature information not from the current road section, but rather few meters
ahead. Using the curvature of the current section of the road as a feature, the model would
always lag behind in predicting the velocity variation.

In addition to the vehicle’s speed, the distance d. from the beginning of the curve section at
which a vehicle would begin to decelerate also depends upon the following factors:

e The maximum curvature of the curve
The Higher the maximum curvature, the higher the vehicle ’s deceleration needs to be.
Given a maximum deceleration for comfortable breaking (about 2m/s? [15]), a higher
reduction in speed would a require longer breaking distance.

e Frictional coefficient and Road Banking
The coefficient of friction between the road and the vehicle’s tires p as well as the road
banking effect the maximum centrifugal force a vehicle can take as it negotiates the
curve. This in turn dictates the maximum velocity that the vehicle can have on the
curved road, given by the following equation:

v = (e—l—:)*g (2-18)
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where e is the tangent function of banking angle, g is the gravitational acceleration, and
k is the road curvature. The lower the maximum velocity in the curve is, the larger the
braking distance required.

e Mass of the vehicle
A vehicle with higher mass would require a longer distance for breaking before entering
the curve. This is because a heavier vehicle has a higher momentum, which requires
higher forces to reduce speed.

e Driving style of the driver
Lastly, every driver may have different behavior while driving on a curved road. Some
drivers may only slow down to the maximum safe driving speed possible on the curve,
whereas some driver may further lower their vehicle’s speed.

Within the scope of this work, we perform vehicle trajectory prediction based on vehicle
kinematics and do not consider frictional coefficient, road banking and mass of the vehicle.
Furthermore, we do not explicitly model the driver’s driving style and influence of curvature
on the distance required to break. However, this can be learned by a data-driven prediction
model.

2-3 Conclusion

The road structure constraints vehicle motion as the vehicle drives along the roadway. To
predict a vehicle’s future trajectory, it is essential to incorporate the influence the road struc-
ture has on a vehicle’s trajectory. For this, we model the road structure using a Curvilinear
Coordinate System and road curvature value, which can be used by a trajectory prediction
model.

CCS provides the description of the road structure by using the roadway curve as coordinate
axis. This coordinate system distincts between vehicle motion along the road curvature and
lateral motion. The road curvature information enables reasoning and predicting vehicle
speed variations on a curved road section. A higher road curvature dictates lower vehicle
speed due to centrifugal forces.

The two together provide a powerful context to help trajectory prediction. A vehicle motion
in GCCS can be transformed to motion in CCS. A prediction model can use this motion
description to predict the vehicle’s future trajectory based on the past trajectory. As the
longitudinal axis of CCS follows the road geometry, the vehicle’s trajectory would be pre-
dicted as a function of the road geometry. This should immediately improve the predictive
ability of the prediction model with additional information about the road geometry. Further
improvement of the prediction can be brought about by using road curvature as a feature to
the prediction model.
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Chapter 3

Models for Path Prediction

An autonomous vehicle driving on a busy street would encounter numerous other vehicles
operating around it. For safe interaction with these traffic participants, the autonomous
vehicle will need to plan its path to avoid any potential collision. Therefore, it is essential that
the autonomous vehicle predicts the future path of the vehicles operating around it. Human
drivers make this prediction intuitively by observing the states of surrounding vehicles as well
as the environment. Autonomous vehicles can predict the future path of the surrounding
vehicles by using data on their past states to learn their behavior, as well as considering the
factors that could affect their future path such as road structure. This would require a model
that can analyze a vehicle’s past trajectory and predict a likely future trajectory.

Such a model would be tasked to learn the behavior of a vehicle from its past trajectory. For
example, whether a vehicle moves with roughly constant velocity or does it accelerates. To
incorporate road structure in trajectory prediction, the model should be able to exploit motion
description in Curvilinear Coordinate System as well as associate variations in the vehicle
trajectory with road curvature and reflect this in the trajectory prediction. For example, the
future trajectory of a vehicle driving on a curve can be predicted by obtaining its velocity
and acceleration from the past trajectory and anticipating the slowing of the vehicle due to
the road curvature as it follows the curve.

This chapter describes the modeling approaches which can use both Motion as well as other
indicators for long-term vehicle path prediction.

3-1 Ciriteras for selecting prediction model

The following section lists and detais the criterea for selecting a prediction model. The criteria
are:

e The model can operate on Sequential data
For the path prediction task, the input to the model and the expected output is a
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sequence of data which is temporally related. It is thus essential that a model should
be able to make temporal relationships not just within the input data and output data,
but between the two.

The model can work with variable input and output time steps

An autonomous vehicle would need to predict the trajectory of a vehicle as soon as
the vehicle is observed. At the same time, the autonomous vehicle could have a longer
motion history of the vehicles around it, which can be used to improve the predicted
trajectory. To allow such functionality, the prediction model should be able to accept
variable lengths of input. Also, the vehicle may need to predict for different time
horizons, which the model should also allow.

The model can handle non-linearities

The motion of vehicle can be non-linear as it maneuvers along the road, for example
acceleration is quadratic on position. To predict such motion, the models should be
able to model non-linear behavior.

The model can operate on kinematic as well as non-kinematic features

The model should not be limited to predicting trajectories only based on the past
kinematic states (position, velocity and acceleration). Rather, the model should also
be able to associate variation in vehicle states with non-kinematic features such as road
curvature and use these to improve prediction performance.

The model can be easily extended to incorporate new features
The model should be able to add a new (dimension) feature to the input data to allow
flexibility and easy adaptation to predict trajectories in more complex scenarios.

3-2 Modeling approaches

We distinguish three modeling approaches:

e Deterministic Models

A deterministic model [16, 17] is based upon differential equations which describe the
kinematics (or dynamics) of a vehicle. The output of these models is fully determined
by the kinematic equations and the initial conditions. Deterministic models assume
that the states of a vehicle is perfectly known and the differential equations are perfect
representation of the vehicle’s motion. However, such models do not consider uncer-
tainties in the vehicle’s states, for example due to the sensor noise. This significantly
limits the utility of deterministic models.

Stochastic Models

Stochastic Models do not assume that vehicle states are deterministic, but rather
take into consideration uncertainties on the vehicle state and its evolution. Gaussian
Noise Simulation and Monte Carlo Simulation are two common stochastic modeling
approaches used for path prediction [7]. Both these approaches use a kinematics model
which represents the expected motion of the vehicle.
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However, similar to Deterministic Models, Stochastic Models also need to be hand de-
signed based on the expected motion of the vehicle and sensor characteristics. However,
it may be difficult to describe vehicle motion in complex situations with motion equa-
tions. This limits the complexity of Stochastic models to a designer’s understanding
of vehicle motion. Furthermore, incorporating new features such as the effect of road
curvature on the vehicle velocity may require expensive redesigning of the motion model.

e Data Driven Model

Unlike Deterministic and Stochastic models, Data Driven Models [18, 12] are not based
on kinematic equations. Rather, they learn to map a set of inputs to expected outputs,
based on training data. Depending on their complexity, they may be powerful enough
to generalize from limited training data and learn patterns which are difficult to model
with kinematic equations. Furthermore, they are easier to retrain with new data each
time an additional feature dimension needs to be added, to model more complex driving
scenarios.

However, these have two limitations; one the data-driven models are not based on
kinematic relations which may produce unexpected outputs. Secondly training these
models requires a considerable amount of data, which may not be easily available.

For this work, we select two models for vehicle trajectory prediction, a baseline model based
on a Bayesian modeling approach and a Data Driven Neural Network model.

3-3 Bayesian Modeling

Bayesian modeling is a widely used approach to track objects, specifically Kalman filtering.
A Kalman filter is an stochastic estimator based on a First Order Markov Chain that infers
parameters of interest from uncertain observations. It assumes all measurement noise is
obtained from a Gaussian distribution.
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Figure 3-1: Kalman filter equations.

Figure 3-1 gives the equations for a Kalman Filter. Where x is the state vector, u is the input
vector, z is the observation vector, A is a the dynamic (motion) model, H is the observation
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matrix, B is the input matrix, P is the covariance matrix, () and R are the Covariances of
the process noise and the measurement noise respectively, X~ and P~ are the uncorrected
predicted state and covariance, X and P are the corrected predicted state and covariance.
Subscript £ — 1 and k represents time steps.

A Kalman Filter (KF) predicts the states of an object using a motion model and then updates
its prediction based on real measurements. This gives the best estimate of the object’s state
at the current time step which is also used as a prior for the next time step. When no
measurements are available, the prediction by the motion model can be directly used as the
best estimate. This can be used as a prediction model. Thus, initially the model will track
the object as long as measurement of the vehicle’s states are available, followed by predicting
the vehicle’s state based on the motion model with the last corrected estimate.

Assuming a point object, constant velocity and constant acceleration are two possible motion
types exhibited. Each of these motion types can be modeled by a separate motion model of a
Kalman Filter. Equation 3-1 and 3-2 describe the motion equation for constant velocity and
constant acceleration Kalman filter respectively.

X, 1 0 dt 0 X1
Ye| [0 1 0 4t Vi1
Xl |00 1 0 X1 (3-1)
Vi 00 0 1 Vi1
Xi] 1 0 dt 0 1/2%dt2 0 1 [Xi_1]
Yy, 01 0 dt 0 1/2 * dt? Vi1
Xg| (00 1 0 dt 0 Xp_1
Yi| 00 0 1 0 dt || Vi (3-2)
X5 00 0 0 1 0 X1
V] [0 0 0 0 0 1| Yl

A maneuvering vehicle may change between the two motion types. For such a maneuvering
vehicle, a Constant Velocity model based Kalman Filter (CV-KF) can track a vehicle moving
with constant velocity well. However, when tracking an accelerating object, CV-KF would
need to continuously update its velocity based on the measurements. Although a CV-KF
would be able to catch up with changing the value of velocity, it would require several time
steps to do so. As a result, the KF would lag. Furthermore, for prediction, when no (velocity)
measurement are available, the KF would predict a vehicle’s position to increase linearly even
if the object was last seen accelerating.

On the other hand, a Constant Acceleration Kalman Filter (CA-KF) would have no lag in
tracking an accelerating object. However, it would give a very noisy tracking output when the
vehicle moves with (near) constant velocity. This is because small variations in the vehicle
velocity, possibly due to noise, would be perceived as acceleration. That is, the CA-KF
would have difficulty differentiating between an accelerating vehicle and velocity measurement
noise. Furthermore, when predicting, if the model perceives a small acceleration, this would
accumulate over time to give a very high velocity and thus a poor trajectory prediction.
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Figure 3-2 and 3-3 show tracking and prediction of a maneuvering vehicle using a CV-KF and
a CA-KF. The vehicle is initially tracked for the first 3 seconds followed by prediction. For
simplicity, 1D motion corresponding to longitudinal motion of a vehicle, is used. The vehicle
initially exhibits constant velocity, followed by deceleration and then again constant velocity.
Both the maneuvering happened within the duration of the tracking. Gaussian noise is added
to the measurements, with variance obtained from LIDAR based object detection.
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Figure 3-2: Tracking and predicting 1D (longitudinal) motion of a maneuvering vehicle using
Constant Velocity Kalman Filter. The object is tracked for the first 75 time steps, followed by
predicting the trajectory for the next 75 time steps. Each time step corresponds to 1/25th of a
second. a) Vehicle Position b) Vehicle Velocity
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Figure 3-3: Tracking and predicting 1D (longitudinal) motion of a maneuvering vehicle using
Constant Acceleration Kalman Filter. The object is tracked for the first 75 time steps, followed
by predicting the trajectory for the next 75 time steps. Each time step corresponds to 1/25th of
a second.

Neither KF model is solely suitable for tracking and predicting the trajectory of a maneuvering
vehicle, which exhibits a combination of the two motion types. Thus a model is required that
switches between the two motion types depending on the current observable motion. Given
the fact that the system can be described with one of two well-defined models, an Interactive
Multiple Model filter is suitable for this task.
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3-3-1 Interactive Multiple Model Filter

An Interactive Multiple Model (IMM) filter consists of a bank of (sub)filters. In our case,
Kalman Filters, each designed to perform well for tracking a certain type of motion. Each
KF is executed in parallel to track a maneuvering vehicle. The filter output at each time step
is obtained using a weighted sum of the output from each KF, where the weights are based
on the probability of the models fitting the current motion.

Similar to KF, an IMM is typically used for tracking an object [1, 19]. This work extends
IMM for predicting object states.

Working of IMM

An IMM filter can be separated into four steps, Interaction between Kalman Filters, execu-
tion of individual Kalman Filters, obtaining model probabilities, and mixing of output from
individual Kalman Filters. Figure 3-4, gives a schematic representation of the functioning of
the IMM.

Previous .
Interaction EXECUtI.ng Model Prob. Next
State Kalman Filters Calculation States
xp(le) i . P.*(k)
o CAKF ! »O- o)
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P2+(k—1) on(k-l)
Combination

X(k), P(k)

Figure 3-4: Interactive Multiple Model Filter [1]

The first step calculates the mixed states and the covariance by combining corrected output
of each Kalman Filter from the previous time step. The second steps involves executing in-
dividual Kalman Filters with the mixed state and covariance as the last corrected states and
covariance. The third and fourth step calculates the probability of each model representing
the current observed vehicle motion, and based on these model probabilities the corrected
predicted state and covariance is calculated.

The following describes in detail the four steps[19] : -

e The first step combines the corrected state estimates and the covariances of the indi-
vidual Kalman Filters from the previous time step. The combination is based on model
probability u; and model transition probability p;;. Model probability w; is the probabil-
ity of model i to be best suited for the current object motion and transition probability
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pij is the probability that the object would transition from a model 7 to model j motion
type. Equations 3-3 to 3-5 represent this interaction step between individual KFs.

X7 o *w(k—1)

Uij(k—1) = (3-3)

XJ(k—1) =%, X;"(k— 1)« Uy;(k — 1) (3-4)

Po(k—1) = zgleij(k1)<Pi+(k1)+[Xi+(k1)X§?(k1)][Xi+(k1)X;?(k;1)]T)

(3-5)
Where i, j, [ represent different Kalman Filters, r is the total number of Kalman Filters,
subscript k and k—1 represent the time stamp, u;(k—1) represent the model probabilities
at previous time step (k — 1), U;; is the conditional probability of an object to exhibit
motion mode i transiting from motion model j, X;"(k—1), and P;" (k—1) are the updated
state and covariance from the previous time step, while X?(k — 1) and P’(k — 1) are
the mixed state and mixed covariance.

e The second step involves executing the individual KFs based on their motion model
represented by equations 3-6 and 3-7.

X (k)=Aj«Xj(k—1)

- (3-6)
Py (k)= Aj = P)(k—1) = F]' + Q,

KJ =P« Hj (Hjx P, (k)= H] + R;)™"
X5 (k) = X5 (k) + K (Z(k) = Hj x X5 (k) (3-7)
P (k) = (I — K; * Hj) * P; (k)

The subscripts j represent the jth Kalman filter. For further details see figure 3-1.

e The third step updates the model probabilities, given by equations 3-8 and 3-9. The
model probabilities are based on how likely motion model j is suited for the current
object motion. The residue Z(k) — H,X; (k) provides this measure. A lower residue
signifies a better match between object motion and the motion model (KF).

Sj(k) = Hj * P; (k) « H] + R;
(k) = Z(k) — Hj » X; (k)

35 (
3 (k) = §;(k)" % Sj(k) =" = g;(k) (3-8)
n (= P B0/
’ 125 7 % 85 (k)|

Uj(k — 1) x A;(k)
ST U, (k — 1) % Ay(k)

[

uj(k) =

(3-9)
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Subscript ¢ and j represents the jth Kalman filter, A; is the probability density function
of the normally distributed measurement estimate Hj x X~ (k) with Z(k) as mean and
covariance as S;(k). u;j(k —1) and u;(k) are the model probabilities at time step k — 1
and k

e The final step combines the corrected state X;r(k) and covariance Pj+ (k) from individual
Kalman Filters are combined using equation 3-10 and 3-11.

X (k) = X7 X (k) % uj(k) (3-10)

P(k) = X5_yu;(k) [P (k) + [X] (k) — X (R)][X] (k) — X (k))"] (3-11)
X (k) and P(k) are the combination of states and covariance of r Kalman filter, and
output of the IMM.

3-3-2 Using IMM for Path prediction

During tracking, the individual Kalman Filters of the IMM are provided with noisy sensor
measurements from which they output a corrected state estimate. Based on the residues of
the individual KF models, the model probabilities are calculated, which lead to obtaining the
mixed states and covariances. When no measurement is available, that is during prediction,
the Kalman Filters are simply updated without a measurement, as done with individual
Kalman filters. Furthermore, since now it is not possible to obtain a residue to update the
model probabilities, the model probabilities remain unchanged from the last calculated value.
The prediction is made based on these models probabilities.

Figure 3-5 shows the performance of the IMM filter in tracking and prediction a maneuvering
vehicle. The IMM uses the same model of CA-KF and CV-KF, as was used to predict a
maneuvering vehicle trajectory in figure 3-2 and 3-3. As compared to a CV-KF, the IMM
shows much-reduced lag during tracking. At the same time, the IMM is able to predict the
vehicle to move with constant velocity where the CA-KF failed.

Figure 3-5(c) gives the model probabilities over time, the CA model probability increases
when the maneuvering vehicle is observed to decelerate and then reduces back at the end of
the maneuver. This switch allows the IMM to track the vehicle well during the maneuver.
When no measurements are available to track the vehicle, the last model probabilities are
used to predict the vehicle’s trajectory based on a two CA and CV motion models.

3-3-3 Conclusion

An IMM prediction model can reasonably track and predict the trajectory of a maneuvering
vehicle that switches between different motion types. The model is able to extract the vehicle
motion behavior during tracking the object. This extracted motion information is then used
to predict the vehicles future trajectory.
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Figure 3-5: Tracking and predicting 1D (longitudinal) motion of a maneuvering vehicle using
the Interactive Multiple Model Filter. The object is tracked for the first 75 time steps, followed
by predicting the trajectory for next 75 time steps. Each time step corresponds to 1/25th of a

second.
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As the IMM can be used to predict vehicle motion in CCS, this would allow incorporating the
road geometry constraint. However, consider a scenario where the vehicle is approaching a
curved road section, the velocity of the vehicle would be a function of the road curvature. The
higher curvature, the higher reduction in speed, directly affecting the vehicle’s motion. The
vehicle would decelerate to a minimum velocity proportional to the maximum road curvature
and then accelerate towards the end of the curve. To make this association, the prediction
model should be able to use the road curvature as an input feature and alter the vehicle’s
speed proportionally. However, the described IMM model can only function with motion data
i.e. the kinematic state of the vehicle and is not designed to directly work with data of any
other kind like road curvature. Although, the IMM can be extended to incorporate this input
by adding to its motion model; this would require a complex low level mathematical modeling
of the vehicle dynamics and the road geometry.

This brings forth another limitation of IMM; to adapt an IMM for more complex modeling,
the IMM needs to be carefully redesigned each time. For example considering a vehicle turning
behavior (represented by a constant turning motion model), or considering a new feature like
the influence of road curvature on the trajectory of a vehicle. Redesigning is often non trivial,
making the model inflexible and limiting its application.

3-4 Recurrent Neural Network

Recurrent Neural Networks are ’connectionist’ [3] models designed for sequential machine
learning tasks i.e. problems whose input and/or output data is sequentially related. For
example in Video classification [20], Action Recognition [21] or Natural Language Processing
tasks like Machine Translation[22]. Recurrent Neural Networks (RNN) are able to selectively
pass information over an arbitrarily long context window, which allows them to establish
temporal dependencies between the input and output data.

In the domain of trajectory prediction, RNNs have been successfully used for object tracking
[23] with performance comparable to Kalman Filters. Furthermore, RNNs have also shown
to perform well in predicting trajectories of pedestrians [24] and predict the future location
of vehicles on highways [18] using past trajectories. This makes RNNs a suitable choice to
investigate their performance for vehicle trajectory prediction.

3-4-1 Working of a Recurrent neural Network

Figure 3-6 gives the architecture of a standard single layer RNN. The key to the RNN func-
tioning is the hidden state h;, which is passed forward at each time step. This hidden state is
used along with the current input to compute the output. Following set of equations govern
the computation of a RNN:

he = f(Wha * x¢ + Whp, % hi—1)

(3-12)
Yt = Wyh * hy

where z; is the input, h;_1 is the hidden state from previous time step, h; is the hidden state
from the current time step, y; is the output, f is an activation function, (Whe, Whn, Wyn)
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Figure 3-6: Recurrent neural Network [2]
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are trainable weights. The weights are trained using a backpropogtion algorithm [25]. Back
propagation works in a supervised setting to obtain the derivative of a loss function with
respect to each parameter in the network, followed by adjusting the weights by gradient
descent to reduce loss.

The hidden states of a network can be thought of as memory of the network, which is used
to capture information from the previous time steps. At each time step, the hidden state is
updated to include the newly available information. The RNN can capture long range time
dependencies, theoretically for any number of time steps [3]. Using this memory, the network
can infer sequential relations between inputs over several time steps.

A RNN essentially performs the same task at each time step, that is, produce a desired output
based on the current input and the hidden state. This allows the RNN to use the same set
of parameters across all time steps, as shown in figure 3-6. This offers multiple advantages,
one, the number of parameters to be trained are significantly reduced; furthermore, a RNN
can work with data of any length starting at any time step, because it performs the same
operation at each time step.

RNN fulfills all criteria for an ideal model. A RNN is non-linear by design as it uses non-linear
activations, it operate on sequential data, optimizes its internal weights through supervised
learning using backpropogation and can operate on data spanning over various time steps.
Furthermore, a RNN model is not explicitly designed to compute motion information and can
accept non motion information as well, for example word embeddings in a machine translation
task [3].

3-4-2 Sequence to Sequence Model

Figure 3-7 describes four widely used RNN architectures, categorized by length of input and
output. For predicting a vehicle trajectory, a RNN would accept past vehicle states along
with contextual features over several time steps as input, and output a sequence of predicted
vehicle states. That is, the input and output are both sequences of data of different lengths.
For a trajectory prediction task, both the input and output for the trajectory prediction tasks
are a sequence of temporally related data. As a result a many to many architecture (model
d in figure 3-7), also called as sequence to sequence model [22], is best suited.
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P00 Goo0s

Figure 3-7: Recurrent Neural Network architectures [3].The figure shows different RNN archi-
tectures. The blue boxes represents the input, red boxes represents the output and green box are
the hidden layers. a) Conventional Neural Network Architecture, b)Many to One architecture,
used in text and video classification c) One to Many architecture, used in Image Captioning d)
and e) Many to Many architecture, used in machine translation and generative text modeling
respectively.

A sequence to sequence (seq2seq) model is specifically designed to map an input sequence
data to an output sequence of data. The model consists of two RNNs in series. An encoder
RNN reads the input sequence data to obtain a fixed dimensional vector representation in
form of the hidden state; the second RNN, the decoder, uses this vector representation to
extract the output sequence. The two RNNs, have the same architecture in terms of number
of layers and neurons, but do not share the same set of parameters.

Long Short Term Memory

A seq2seq RNN is designed to work with long term dependencies over the input and output
sequences. For example, translating a paragraph of words from one language to another.
Standard RNN cells, given by the equation 3-14, suffer from the vanishing gradient problem
[26] making it difficult to train the neural network on data with long term temporal depen-
dencies. To deal with this, a sequence to sequence model uses Long Short Term Memory
(LSTM) [27] units instead of standard RNN units. LSTMs are better able to capture long
term dependencies and do not suffer from the vanishing gradient problem.

LSTM cells consists of an additional ’cell’ state ¢; along with the hidden state h;, which is
transformed using the following set of equations:
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i = oz U+ hy W)

— f f
f=o(x U + hy W) (3-13)
0=0(xU°+ hi—1W?)
g = tanh(zU? + hy— W)
=fOcq_1+10
q=fOc1+10g (3_14)

hy = 0 ® tanh(cy)

where ¢;—; and hy;_1 are cell state and hidden state at previous time step, x; is the in-
put, (U7, ul,ue,us, wi, wf we, W) is the set of trainable parameters, ® and o represents
pointwise multiplication and sigmoid nonlinearity respectively.
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Figure 3-8: Long Short Term Memory cell chain

The cell state ¢; is additively altered, based on the values of hidden state h;—; and input x;.
1 and f can be described as input and forgets gates, whose value are based on a nonlinear
function. The forget gate operates on the cell state from the previous time step ¢;—1 to ’forget’
a fraction of value from the previous cell state. The input gate adds to this value to give the
new cell state ¢;. The hidden state is obtained as a function of the output gate o, and the
current cell state. The hidden state h; is passed to the cell in the next time step as well as
output to the higher layer of the network.

In a traditional RNN cell, the hidden state is transformed through a nonlinear operation at
each time step. However, in a LSTM, the gated mechanism allows control over how much of
the cell state is ’forgotten’ and replaced at each time step. As a result, the network can learn
to 'remember’ certain dependencies over a long period of time by storing it in the cell state,
and then forget them when no longer required.
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Furthermore, only a fraction of the cell state leaks out at the output h; of the LSTM cell.
This allows the LSTM to keep certain long term dependencies, which are not relevant in the
current time step, without affecting the current output.

3-4-3 Sequence to Sequence model for path prediction task

For the trajectory prediction task, the seq2seq model would read the noisy past vehicle states
1, T9...x¢—1 along with other non motion features ki, ko...k;—1, and a output sequence of ve-
hicle states y¢, Y¢+1...yt, see figure 3-9. The goal of the encoder network would be to determine
information about the vehicles motion from the noisy vehicle states and associate them with
the non-kinematic features. The information about the vehicle’s motion pattern would be
encoded in the hidden state of the encoder network, which is then passed to the decoder. The
decoder can use this information to predict the vehicle’s future trajectory.

Encoder Decoder
Ve Yes1 Yee2 Y3 Yera

[ et N o o N N o B e

T e

[Xe-3, Ke-s] [Xe.2, ks2] [Xe1, kea] [ V-1, kea] [ .kl [ Fera, Kesa [ Yesz, kes2] [ ess, kesal

Figure 3-9: Sequence to Sequence Recurrent neural Network

In addition to the hidden state of the encoder, the decoder also requires the input g;_1, which
represents the vehicle state at each time step, and corresponding the non motion feature k.
7:—1 can be obtained in two ways, either as the output y;_1 of the model itself or as the true
vehicle state at the time t. During training, when true (future) vehicle states are available,
they can be used as decoder inputs. During deployment, when true (future) vehicle states
are not available, the model output are used as decoder inputs.

However, this causes discrepancy in training and inference, which leads to poor performance
[28]. To deal with this, [28] provides a scheduled sampling training. By this approach, during
training, the model output is selected as §;—1 with a probability n. That is, if n = 1, the
network is trained before, and is n = 0, the network is trained with the same setting as
inference.

The seq2eq model used for path prediction differs from the model deployed for machine
translation [22] in an important way; the Seq2seq model for machine translation maps each
word from one language to one or more words in another, That is there is a direct mapping
between an input and output value. However, for path prediction, there is no direct mapping
between an input and an output, rather the output sequence is a continuation of the input
series. This leads to two design changes in the model:

1. Consider a machine translation task in which both input and output sequence is 10
words long. Since there is a direct mapping between input and output value, for each
word the corresponding output would be 10 time steps ahead. As result, the LSTM cells
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will have to remember data for each word for 10 time steps. To tackle this, [22] reverses
the order of the output, that is the sentence is reversed. As a result, the last input can
be first translate and the first input last. Now in case of 10 input and output words, the
LSTM cells would only need to remember semantics of one word for 10 time step, for
the rest words the 'remembrance * horizon is reduced. This improves the performance
of the network in the machine learning task. However, since in a path prediction task
the input and output are a continuous series, the output sequence is not revered.

2. For machine translation, the first input to the decoder is a special token, which cor-
responds to the end of the input series. This token in the input sequence maps to an
end of the sentence in the output sequence, which is also represented by the same token
value. However, in trajectory prediction task, there is no specific end to a trajectory
like a language sentence, rather the input and output form a continuous trajectory. As
a result, no such special token is used, rather, the last vehicle state (and non-kinematic
features) is used as first input to the decoder.

When deploying a seq2seq RNN on an autonomous vehicle for trajectory prediction, each time
an additional state x; of a surrounding vehicle is observed, the encoder can process this data
along with hidden state h;_1 to obtain a new hidden state vector. This vector can then be
used by the decoder network to predict future vehicle states. Furthermore, this data driven
model can be further optimized on the go, i.e. the neural network can be further trained on
new data observed by the autonomous vehicle. This can be done one by predicting a vehicle
trajectory, and then obtaining a loss by observing the vehicle’s real trajectory over next few
seconds.

3-5 Conclusion

To predict the trajectories of vehicles operating in its vicinity, an autonomous vehicle re-
quires a model that can extract information about the behavior of these vehicles. Based on
the extracted behavior, the future trajectory of vehicles can be predicted. We selected two
modeling approaches, a stochastic approach - Interactive Multiple Model Filter and a data
driven modeling approach - Recurrent Neural Networks.

Interactive Multiple Model Filter is a tracker based on Bayesian modeling and is extended
for prediction task. However, the IMM has shortcomings, specially the inability to work with
non-kinematic features. This limits its prediction ability, as the prediction would solely be
based on motion features. The RNN was selected to improve upon the limitations of IMM. A
Sequence to Sequence architecture with LSTM was found to be the best suited RNN design
for path prediction. Such a model can learn to obtain information from input trajectory and
output a predicted trajectory based on both past vehicle motion and contextual features. The
neural network is trained in a supervised manner using backpropogation algorithms.

The ability of an RNN to associate the vehicle’s motion with contextual features is key.
This allows the model to anticipate the changes in the vehicle motion during prediction.
For example, using the road curvature, RNN can anticipate slowing down of a vehicle on
turns. Furthermore, a RNN offers flexibility, as the network can be retrained each time a new
contextual features is added, to provide a better predictive ability.
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Chapter 4

Experiments

The contributions of this work consists of two parts; First, the use of Road Structure as an
Infrastructure Indicators in trajectory prediction. Second, a modeling approach for trajec-
tory prediction using these Infrastructure Indicators along with Motion Indicators. These
contributions are evaluated in this chapter.

4-1 Dataset

The dataset used for the experiments consists of vehicle trajectories with road infrastructure
information. The data is collected from the test vehicle - WURbie, in the region of Wagenin-
gen, The Netherlands, under natural driving conditions. The test vehicle is equipped with 6
IBEO LUX LIDAR sensors, each with a 110 degree (horizontal) FOV and 4 vertical planes.
IBEO sensors are installed on the vehicle, three facing forward and three backward. Data
from these LIDAR sensors is used to detect, classify and track vehicles moving around the
test vehicle.

Figure 4-1 shows the road sections for which the vehicle trajectories are recorded. The road
sections are selected such that the only external factors affecting the driving is the road
structure itself. Features like Pedestrian crossings, complex road design like roundabouts,
traffic signals are avoided, because this work does not model the effects of these features on
driving behavior.

The test vehicle has a maximum operational speed of 25 km/h, which affects other vehicles
operating in the vicinity especially on roads with higher speed limits. To prevent any variation
in behavior of vehicles due to presence of the test vehicle, the test vehicle was parked on the
road side such that the LIDAR sensors had a good view on the road length.

The LIDAR sensors provide vehicle position (X,Y), velocity (X,Y) and heading angle 6
in the WEpods (ego-vehicle) frame. The vehicle states are convert to the Global coordi-
nate - Universal Transverse Mercator (UTM) coordinate system, using the ego-vehicle state
(position, velocity and heading) obtained from GPS based localization. The LIDAR and Lo-
calization module are unsynchronized, as a result the (time-wise) closest ego-vehicle state is
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Figure 4-1: Figure shows road sections (in red) on which vehicle trajectories are recorded
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used for each LIDAR measurement. Of the five states, only the position and velocity is used
for prediction, as heading is found to be inaccurate and very noisy.

4-2 Experiment 1

The Curvilinear Coordinate System (CCS) provides the road geometry constraint, as de-
scribed in chapter 2. This allows a prediction model to consider the roadway structure, which
is lacking in the Global Cartesian Coordinate System. This experiment examines the im-
provement obtained in trajectory prediction when predicting using vehicle motion description

in CCS.

Therefore, we compare trajectory prediction done using the vehicle states described in GCCS
and CCS. We predict a trajectory in both coordinate systems and then plot them in GPS co-
ordinates. The prediction model in either case was provided with solely motion information,
one described in GCCS and the other in CCS. The model is provided with 2 seconds (50 time
steps) of vehicle states as input data and predicts the trajectory for next 8 seconds (200 time
steps). The Interactive Multiple Model Filter is used as the prediction model.

For the prediction in CCS, the input trajectory is first converted to CCS from GCCS, prior to
the prediction. Post prediction, the obtained vehicle states are transformed back to GCCS,
and then to GPS coordinates.

Figures A-1, A-2, A-3 shows the position and velocity plots of three (real) examples of vehicle
trajectories predicted in GCCS and CCS. In the first the trajectory, fig. A-1(a), the road
makes a sharp 90 degree turn, and in the second figure A-2(a) the roadway makes two con-
secutive turns of about 30 and 45 degrees. Finally, the third figure A-3(a) gives a trajectory
of a vehicle on a straight road.

4-3 Experiment 2

Before, applying the seq2seq model to path prediction, an experiment is designed to establish
that the model can satisfactorily perform regression in a non-linear space. Sine-wave predic-
tion is chosen as the regression task. The space is single dimensional, and describes the value
of the function a * sin(2w ft + ¢). Where, a is amplitude, f is frequency, ¢ is phase and t is
independent variable.

The training dataset consists of randomly generated sine waves with random amplitude,
frequency and phase. The first 25 samples of the wave are provided as input to the model,
which then predicts the next 25 samples. To make this prediction, the three variables a, f, ¢
need to be estimated internally by the model.

The seq2seq model consists of one hidden layer of 40 LSTM cells. The neural network is
trained using Adams optimization [29], with Mean Squared Error loss. Figure 4-2, shows the
loss over training epochs for the training and test set 1.

Figure A-4 shows some predicted sin wave from test set samples.

!The test loss is calculated after every 10 epochs
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Figure 4-2: Train and Test loss over training epochs.
test loss: 0.003538
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4-4 Experiment 3

The third experiment compares the performance of an RNN against an IMM model, including
the RNN’s ability to exploit Road Curvature as an additional feature. For this we train two
RNNs, one with only motion features (described in CCS) as input, and another with both
motion features as well as road curvature. The performance of these two and IMM is then
compared.

To make the performance comparison, the models are provided with input data for 25 time
steps (1 second), and the error is reported for the predicted vehicle position at 25, 50, 100
and 150 time steps. All the trajectories are described in the Curvilinear Coordinate System.
Any error in velocity would be reflected in position, as a result the velocity predictions are
not scrutinized separately.

The trajectory data is segregated into a training and test set, with 4:1 ratio. Following
this, trajectories with a length of 175 time steps (25 + 150) are extracted for each recorded
trajectory. For trajectories of longer duration, multiple trajectories are extracted such that
each new trajectory starts after 75 time steps of the beginning of the previous trajectory. This
is done separately for both training and test set. This provides 496 trajectories for training
and 143 for testing.

For all trajectories, the X positions are normalized by subtracting the initial  position. For
Y position and the velocities, their absolute value is of significance. The Y position typically
does not vary more than the road width. Furthermore the value of velocity on X is directly
affected by the curvature of the road. Thus these three values are not normalized.

4-4-1 Training RNN

Two seq2seq RNNs are trained with the only difference of road curvature as input feature.
We call the RNN model without road curvature 'Motion RNN’, and the other model is called
"Curvature RNN’. Both RNNs have an output dimension of 4 (X,Y, X,Y). For Curvature
RNN, since the input and output have different dimensions (the network does not output
the road curvature), the decoder network is provided with the road curvature as an auxiliary
input at each time step

The seq2seq network is designed to have one or more hidden LSTM layers. The output layer
consists of (four) standard RNN cell with Rectified Linear unit (ReLu) non-linearity 2, that
are unbounded in first quadrant. This is because, the desired outputs are not bounded, for
example a vehicle may potentially travel a distance in range of [0-inf] during period prediction,
depending on the vehicle speed and the duration of prediction.

To address the fact that only a limited amount of data could be collected, we compared the
two training regimes; One where the network is directly trained with data collected from test
vehicle. Another setting where an RNN is first trained on artificial data and then trained on
real data (transfer learning). The artificial data consists of vehicle trajectories emulating lane
following behavior on straight as well as curved roads. Using a simple dynamic modeling of
a vehicle on a curved road section, the reduction in longitudinal velocity of the vehicle was

2ReLu activation represented by f(z) = maz(z,0)
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simulated. Gaussian noise was added to all states, with mean and variance obtained from
LIDAR measurements. More details on the artificial data set can be found in appendix B.

Training the network with the transfer learning regime gave an 8% improvement in perfor-
mance. We used this network for further results. We used Adams [29] optimization algorithm
to train the network. The loss is calculated using as Mean Squared Error over the four output
states (XY, X, Y) The network is trained with a constant learning rate of 1073.

4-4-2 Results

To evaluate the performance of the models, we segregated the test trajectories into three
groups based on road curvature values. The first subset of trajectories are vehicle paths on
near straight roads, the second subset consists of curved road sections with small curvature
values (< 0.1). Finally the last subset consists of vehicle trajectories on sharp curves, that is
higher curvature values (> 0.1).

Figure 4-3 gives the error in meters on X and Y axis for the three models - IMM, Motion
RNN, and the Curvature RNN with all three test scenarios. The error is reported after 1, 2, 4
and 6 seconds of prediction. Appendix A gives additional plots to compare the three models.

Table 4-1 and 4-2 gives the mean error for the three models.

IMM | Motion RNN | Curvature RNN
1sec | 0.95 0.82 0.87
2 sec | 1.90 1.78 1.55
4 sec | 4.87 3.98 3.19
6 sec | 9.47 7.61 6.20

Table 4-1: Mean error [m] on the X axis for all test trajectories

IMM | Motion RNN | Curvature RNN
1sec | 0.70 0.73 0.80
2sec | 1.39 0.86 0.90
4 sec | 2.91 1.24 1.30
6 sec | 4.48 1.33 1.38

Table 4-2: Mean error[m] on the Y axis for all test trajectories
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Figure 4-3: Prediction Error (in m) on the X and Y axis for test trajectories over prediction
time. Figure a) and b) show error on the X and Y axis for straight road trajectories (curvature <
0.001), figure c) and d) show error on the X and Y axis for roads with 0.001 < curvature < 0.1,
figure e) and f) show error on the X and Y axis for high curvature roads (curvature > 0.1)
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4-5 Experiment 4

In this experiment we examine the effect of varying the length (number of time steps) of the
input data on Sequence to Sequence RNN model’s performance. For this, separate RNNs are
trained with training data of an input length of 5, 12 | 25 and 50 time steps. The performance
of each of these RNNs is reported for test trajectories with 5, 12 , 25 and 50 time steps of
input length. The performance is measured by error in X and Y position after 6 seconds of
prediction. The RNNs are provided with both past vehicle states as well as road curvature
information as input. The network parameters (weights and biases) used are the same as
obtained in experiment 3 for Curvature RNN model.

The same training and test set (in 1:4 ratio) are used in each setup, with the difference that
the total trajectory length in each setup differs. Tables 4-3 and 4-4 show the error of each
trained RNN on data with varying input length.

Input length during Testing Input length during Testing
Input 5 12 | 25 50 Input 5 12 | 25 |50
length 5 | 6.25 | 24.26 | 32.64 | 38.36 length 5 | 1.22] 133|147 | 1.71
during 12 | 26.60 | 6.17 | 11.70 | 16.25 during 12 | 1.58 | 1.29 | 1.34 | 1.54
Training 25 | 21.05 | 7.13 | 6.16 | 7.04 Training 25 | 1.33 | 1.27 | 1.35 | 1.52
50 | 40.96 | 23.0 | 15.57 | 6.16 50 | 1.75 | 1.49 | 1.60 | 1.56
Table 4-3: Error on X axis [m] Table 4-4: Error on Y axis [m]

Table 4-5: Performance of Sequence to Sequence Recurrent neural Network with varying number
of time steps in input data
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Chapter 5

Discussion

This work aims at improving the accuracy of vehicle path prediction over a longer duration of
time in complex urban settings. Conventional methods use past vehicle motion information
to learn the vehicle behavior, and predict only based on motion information. This allows to
predict a linear future trajectory. However, vehicles rarely exhibit linear motion.

Non-linearity in vehicle motion is caused by external factors, of which the Road structure is an
important cause. The road structure causes non-linearity at two levels, one due to variation
in velocity direction as the road itself changes direction, and second, variation in vehicle speed
to safely negotiate a curve. This work uses Infrastructure Indicators to linearize both these
non-linearities in form the Curvilinear Coordinate System and Road Curvature.

For making the prediction itself, using motion and road structure information, two models
are selected - the Interactive Multiple Model Filter and the Sequence to Sequence Recurrent
Neural Network. The IMM is used as a base model whereas the RNN is selected as the
advanced model, to improve upon the limitations of the IMM.

5-1 Curvalinear Coordinate System

Trajectory prediction using the motion description of a vehicle in Global Cartesian Coordinate
Systems offer no information about the road structure. As a result the prediction model is
solely based on the vehicle’s motion. This doesn’t affect the prediction on a straight road, as
the road does not significantly change direction and the vehicle state evolves almost linearly
in X and Y, as seen figure A-3(a). However, when predicting the trajectory of a vehicle on a
curved road section, the vehicle’s motion is strongly conditioned by the road structure and is
no more linear in X and Y. This results in poor prediction, when using motion in the Global
Coordinate System (GCCS) for curved road sections, as seen in figure A-1(a) and A-2(a).

Alternatively, the Curvilinear Coordinate System describes vehicle motion as a function of
the road structure. This eliminates the non-linearity in the vehicle trajectory caused by
the curved road section. As a result the trajectory prediction becomes less complex for
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the prediction model. When transformed back to GCCS, the trajectory prediction is more
accurate. Essentially, the transformation of motion from GCCS to CCS linearizes the effect of
road geometry on vehicle state. This linearlization effect can be observed in figure 2-7 and 2-5.
When converting vehicle states back to GCCS, the non linearity is reintroduced. The effect of

predicting in CCS is vizualized in figure A-1(a), A-2(a) and A-3(a). In the case of predicting
a vehicle trajectory on a straight road, the two predicted trajectories are overlapping and
CCS does not provide an advantage. However, on curved roads sections, prediction in GCCS
is unable to keep up with the curved roadway geometry. The model predicts the vehicle to
have a linear motion, and the trajectory goes off road, whereas when predicting in CCS, the
predicted trajectory is non linear and evolves along the roadway geometry. This can also be

visualized from velocity plots A-1(b) and A-2(b). In GCCS, the IMM model predicts the
velocity to evolve linearly, whereas the ground truth trajectory is only linear for a very short
duration, and then evolves non-linearly due to change in the direction of the road. CCS adds
this non-linearity to the predicted motion. Without the road geometry constraint in CCS,

the trajectory prediction is accurate for a short duration of time until the vehicle exhibits
linear motion (locally). Thus, by adding the road structure through CCS, we assure better
prediction over a longer duration of time by allowing prediction of non linear vehicle motion.
This already provides a considerable improvement over predicting a vehicle trajectory using
only motion information. Interestingly, the velocity plots (A-1(b) and A-2(b)) show that

even though the predicted velocity is non-linear in GCCS, its profile is very different from the
ground truth. The predicted velocity quickly changes between time step 100 and 150, however,
the ground truth velocity changes with much lower acceleration over a longer duration of time.
Comparing with motion in CCS, see figure 5-1(a), this difference in the velocity profiles can
be associated with reduction in the velocity along the S axis.

By associating the vehicle’s longitudinal velocity with the road structure (see figure A-1(a)),
it can be observed that the non-linear motion is caused when the vehicle takes the curve. To
better understand this behavior of the vehicle we plot the vehicle velocity and curvature on a
graph in figure 5-1(b). The vehicle lowered its speed as it approached the curved section and
then raised the speed again towards the end of the curve. However, the CCS itself does not
provide any information about the road curvature value. As a result the prediction model
has no means to anticipate this non-linearity in motion due to the road curvature. That is, to
the prediction models, the space appears to be linear which leads to poor prediction. Higher
curvature causes more non-linearity in the prediction space. The prediction can thus only
be improved, by further linearizing the space using the feature dimension which adds the
non-linearity i.e. road curvature.

5-2 Models for Path prediction and effect of Road Curvature Fea-
ture

Recurrent Neural Networks provide the ability to linearize the prediction space using non-
kinematic features such as road curvature. This linearization allows improved trajectory
prediction. Figure 4-3(a),4-3(c) and 4-3(e), show the performance of three models, IMM,
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Figure 5-1: a) Predicted and ground truth vehicle velocities on a curved road b) Predicted and

ground truth longitudinal vehicle velocities plotted alongside road curvature.
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Motion RNN and Curvature RNN on different road curvatures. The effect of using road
curvature as additional input to RNN can be best observed on the road section with high
curvature (figure 4-3(e)). Curvature RNN gives an average error of 6.44 meters in longitudinal
direction after 6 seconds of prediction, which is nearly twice better than Motion RNN (gives
an error of 11.65 meters) that does not use the road curvature as a feature. Furthermore, of
total 21 test trajectories, 20 were better predicted by Curvature RNN, with up to 15 meter
less error.

The mean velocity for the 21 test trajectories is 8.7 m/s, which means on average the vehicles
traveled about 52 meter during 6 seconds of prediction. The Curvature RNN gives an error
of about 12% after 6 seconds of prediction, vs 22% for Motion RNN. This proves the road
curvature was indeed the cause of the non-linearity in the motion, which the Curvature RNN
is able to linearize and hence make better predictions.

Figure A-6 and A-7 show the improvement in prediction by Curvature RNN. In both trajec-
tories, the vehicle travels on roads with a sharp curve, which causes reduction in longitudinal
velocity of the vehicle. Curvature RNN is able to anticipate this behavior using the curva-
ture information. Furthermore, Curvature RNN is also able to predict a rise in longitudinal
velocity as the curvature value reduces.

The difference in error on Y axis between Curvature RNN and Motion RNN is insignificant.
From trajectory A-6 and A-7, there are small deviations in the vehicle’s lateral positions as
the vehicle negotiates the curve. However, the Curavture RNN does not learn this behavior
but rather predicts the vehicle’s lateral velocity to be near a mean value of zero, similar to
Motion RNN.

The improvement obtained by using road curvature as an Infrastructure Indicator tops on
the improvement in prediction performance by the RNN models itself over IMM. For all
three scenarios of varying curvature, RNN performs better than IMM. The difference in the
error on X axis increases with higher curvature values. This is because the RNN learns the
driving behavior like a vehicle typically does not drive for significant duration at very low
(longitudinal) velocity such as 1m/s (see figure A-8), or if a vehicle’s velocity oscillates, it
would resettle close to its previous stable value A-10.

Importantly, significant improvement is obtained in (lateral) Y axis error, when using the
RNN model, over the IMM. This is observed for all three scenarios. (Motion) RNN gives 3
to 4 times less error than IMM, see figure 4-3. If the IMM observes the velocity on Y axis
to accelerate, or even have initial constant positive or negative velocity, the IMM predicts
the vehicle to continue this behavior for the duration of the predictions. This can be seen
figure A-10 and A-7. However, we know that, even a small constant velocity on the Y axis
would very quickly lead the vehicle off road. A vehicle would make a counter maneuver in
opposite direction to prevent going off-road. The IMM is not able to capture this behavior,
and gives a higher error which increases linearly with time. However, the RNN picked up this
behavior from training; that a vehicle typically does not exhibit either a positive or negative
velocity on the Y axis for any significant amount of time. From figure A-10 and A-7 it can
be seen that the RNN rather predicted the velocity close to zero (mean), which causes a
much smaller error than IMM. The error on the Y axis for RNN initially increases, and then
becomes constant (see figure 4-3). The RNN learnt to keep the the Y axis position bounded,
that is the vehicle will not typically go off road. This is a big improvement over IMM.
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Overall within CCS, for curved roads we obtained an error of 12% (6.44m over 6 seconds)
by using Curvature RNN, which is 3 times better than 32% (16.65 m) over using IMM, on
the X axis. Furthermore, an error of 6.44m is in the vicinity of a typical car length (about
4.5m). However, an error of 16m is considerably larger and can make the difference between
planning a safe or unsafe path by an autonomous vehicle. Similarly, the error on Y axis is 3
times less for Curvature RNN than for IMM. This, coupled with the improvement obtained
by the linearization effect using CCS, makes trajectory prediction considerably better.

5-3 Deployablity

In real driving scenarios, it maybe required to predict a vehicle’s trajectory within a small
duration of first observing the vehicle. Also, a vehicle’s state over longer duration of time
maybe available to models it’s behavior and predict a likely future trajectory.

Table 4-3 and 4-4 show the performance of the Curvature RNN model for predicting tra-
jectories with different length of input. Error in prediction at the 150th time step (after 6
seconds of prediction) is nearly the same for each RNN when each RNN is trained as well as
tested with the same lengths of input trajectory. However the performance deteriorates as
the number of input time steps are increased or decreased.

The model is capable of predicting well with different lengths of input, when the training
and test samples have similar input lengths in all four setups. However, when the input is
significantly of different length during testing, the encoder network of the RNN is unable to
extract features that represent the vehicle behavior. It can thus be inferred that the encoder
network is not able generalize over different length of input data. This is understandable,
because the network did not see any sample during training other than a fixed input length.

The encoder network of the Sequence to Sequence model repeats its operation each time a
new input is observed, using the same set of weights and biases. As a result, it is possible
to train the network with training data of different input lengths. This is would allow the
encoder to better generalize over different lengths of input and extract features from the input
trajectory which best represent the vehicle behavior.

5-4 Limitation of RNN

The RNN provides the ability to exploit non-kinematic features such as road curvature, that
gives a significant improvement over the IMM. However, unlike IMM, the RNN is not based
on a kinematic model to track and predict the vehicle states. Rather, the RNN learns its
internal parameters to best match the output values observed during training. As a result,
the position and velocity generated as the output of the neural network are not related by the
vehicle kinematics i.e. x = v * t. This can be observed in figure A-8. Both Motion RNN and
Curvature RNN predict a very similar longitudinal velocity profile, however, the end position
of the trajectory predicted by the Curvature RNN is much closer to the ground truth than
the end position predicted by the Motion RNN.

To better visualize this, we calculate an alternate velocity prediction by differentiating the
position output, as well as an alternate position by integrating the output velocities. We
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call these ’Alternate Position’ and ’Alternate Velocity’ Figure A-16 plots these along with
the RNN output positions and velocities, for the same trajectory as A-8. The Alternate
Position prediction is very different from the output position prediction, the same applies to
the Alternate Velocity Prediction.

Interestingly, during deployment the decoder network of the Sequence-to-Sequence model uses
the velocity outputs from the previous time step directly as input for current time step. This
means, at each time step the velocity and position predicted at previous time step is available
to the RNN. However, the network predicts the position based on an alternate velocity rather
than based on the (decoder) input velocity itself. This alternate velocity can be thought of
as a cell state in the LSTM cells that is not directly output. This shows that the network
is unable to learn the kinematic relation between position and velocity. Rather maintains a
separate cell state for each output independently, based on which the outputs are calculated.

This lack of kinematic modeling is an important shortcoming of data driven models like RNN,
compared to stochastic models that have these relations built in by design. To improve this
shortcoming of RNN, an additional term in the loss function that enforces the kinematic
equation = [wu(y)dt is required. However, this still does not ensure the network will learn
the kinematic relation.

5-5 Future work

A Sequence-to-Sequence model was able to work on a non-linear space (in CCS) using the
road curvature information, to already providing a significant improvement over IMM as well
as Motion RNN. However, the road curvature is only one of many dimensions which add non-
linearity to a vehicle’s trajectory. For example, the recorded data used for training is obtained
from observation of vehicle’s on roads with different speed limits. This directly affects the
maximum speed. A vehicle on a 25km/h road would typically not exceed this speed limit.
However, on a 40km/h road, a vehicle can be expected to reach higher speeds. Inclusion of
this knowledge, i.e. the maximum permissible speed for the road section would thus provide
a better predictive ability to the model.

Another cause of non-linearity in vehicle motion is the presence of intersections. Vehicles slow
down as they approach intersections, and speed up while driving away from them. This is
encountered in a small portion of the trajectories collected. To predict this behavior, a feature
that describes the vehicle distance from the intersection can be provided as input to the RNN.
Of course, to enable a neural network to learn the association between these features and the
vehicle kinematic states, a larger amount of training data is required.

With more data, the RNN can be trained to model more complex maneuvers. For example,
stopping of a vehicle for a pedestrian crossing. With a correct set of features like distance
to the pedestrian crossing as input to the RNN, such complex maneuvers can be predicted.
Furthermore, RNNs predicting trajectories of individual vehicles can be made to interact with
each other to model vehicle interactions. For example, a reduction in speed of a fast moving
vehicle due to a slower moving preceding vehicle. This flexibility to adapt the model to include
more features without explicit low level modeling is a key advantage. Thus allowing to model
more complex driving scene and predicting accurate vehicle trajectories.
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Chapter 6

Conclusion

The aim of this work was to improve vehicle path prediction on curved road sections by
incorporating road structure as Infrastructure Indicator along with Motion Indicators. Our
approach to use a Curvilinear Coordinate System significantly improved the prediction perfor-
mance by predicting vehicle trajectories along the road geometry. Furthermore, we model road
curvature as a feature for predicting velocity variation, as a vehicle negotiates a curved road
section. Using this as feature we trained a Sequence-to-Sequence Recurrent Neural Network
with trajectory data collected from a test vehicle. The neural network extracts information
on the vehicle’s behavior from an observed trajectory and predict its future trajectory consid-
ering the influence of non-kinematic features such as road curvature. Experiments performed
on collected trajectory data show that this prediction model gave three times less error in
longitudinal driving direction when using road curvature as a feature. Our prediction model
was also able to predict a vehicle to stay within the road width. Thus, this work achieved
a significant performance improvement over the existing trajectory prediction approaches for
curved road sections.
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A-3 Results of Experiment 3
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Figure A-9: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models
a) Vehicle Position plots, b) Vehicle Velocity plots, c¢) Road Curvature
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Figure A-10: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models
a) Vehicle Position plots, b) Vehicle Velocity plots, c¢) Road Curvature
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a) Vehicle Position plots, b) Vehicle Velocity plots, c¢) Road Curvature
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Figure A-12: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models

a) Vehicle Position plots, b) Vehicle Velocity plots, c¢) Road Curvature
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Figure A-13: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models

a) Vehicle Position plots, b) Vehicle Velocity plots, c¢) Road Curvature
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Figure A-14: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models

a) Vehicle Position plots, b) Vehicle Velocity plots, c) Road Curvature
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Figure A-15: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models

a) Vehicle Position plots, b) Vehicle Velocity plots, c) Road Curvature
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Figure A-16: Vehicle Trajectory predicted using IMM, Motion RNN and Curvature RNN models

a) Vehicle Position plots, b) Vehicle Velocity plots, c) Road Curvature
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Appendix B

Artificial Dataset

The performance of a neural network largely depends on the dataset that is used to train
the model. For the neural network to generalize over the dataset and prevent overfitting, it
is essential that the dataset must have a large number of samples. However, for this work,
only a limited amount of trajectory data could be collected from the test vehicle. To address
this, the Sequence-to-Sequence Recurrent Neural Network is trained under a transfer learning
setting. The model is first trained on an artificial dataset and then on the dataset of recorded
trajectories. We describe the artificial dataset in this chapter.

The artificial consists of trajectories of a maneuvering vehicle in the Curvilinear Coordinate
System. The trajectories have motion only on the S axis, this representing the longitudinal
vehicle motion. Gaussian noise is added two motion on the both axis based on covariances
obtained from the LIDAR, sensor used to collect real vehicle trajectories.

There are two types of trajectories represented in the artificial dataset, vehicle trajectories
on straight roads and vehicle trajectories on curved roads section. We describe each of these
separately in the following sections.

B-1 Vehicle Trajectories on straight roads

These trajectories represent different vehicle (longitudinal) maneuvers on a straight road, such
as vehicle acceleration to a constant velocity, or breaking. Figure B-1, B-2, B-3 shows a few
sample trajectories. Each trajectory is formed by a combination of the constant velocity or
the constant acceleration motion, such that the duration and the sequence of both the motion
types is chosen randomly. We assume maximum comfortable acceleration of a vehicle to be
2m/s [15]. The curvature value for all these trajectories is zero (inverse of infinity radius).

In each trajectory, the vehicle only maneuvers in the input sequence that is input to a pre-
diction model, and has a linear behavior further on. This is done because the only feature we
consider to cause a non-linearity in motion described in the CCS is road curvature. However,
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Artificial Dataset

these set of trajectories simulate a vehicle’s motion on a straight road. As a result, a predic-
tion model would not have any means to anticipate a maneuver such as accelerating to higher
speed during prediction, and this would not lead to optimization of the network parameters.
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Figure B-1: Example trajectory for a vehicle motion on straight road, a) Vehicle position and b)
Velocity on S axis of CCS
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Figure B-2: Example trajectory for a vehicle

Velocity on S axis of CCS

Figure B-3: Example trajectory for a vehicle motion on
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B-2 Vehicle Trajectories on curved roads

This set of trajectories represent the vehicle motion curved road sections of different radius.
To simulate these vehicle trajectories, we find the maximum velocity v;mq. that a vehicle can
safely travel with on a curve road using the following equation:

exg
k

v =

(B-1)

where p is coefficient of friction, g is gravitational acceleration, and k is road curvature.

We randomly select an inital vehicle velocity as well as a velocity close to vimq, as the intended
velocity of the vehicle for negotiating the curve. Based on these velocities!, a trajectory
is obtained by combining constant velocity and constant acceleration motion type on the
longitudinal axes. This is done for curves of four radii values, 12.5m, 15m, 20m, 25m, each of
which gives different v,,qz -

Figure B-4 gives a sample trajectory.
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Figure B-4: Example trajectory for a vehicle motion on curved road, a) Vehicle position and b)
Velocity on S axis of CCS

1We assume that a vehicle would decelerate to near Vi,as velocity prior to approaching the curve.
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