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ABSTRACT 
Current systems design optimisation methodologies are one-sided, as these ignore the socio-technical 
integration between stakeholder preferences (‘what a human wants’) and the capability of technical 
assets (‘what a system can deliver’). Moreover, classical multi-objective optimisation methods contain 
fundamental mathematical flaws. Also, the often-used classical Pareto front does not provide a single 
best-fit design configuration, but rather a set of design alternatives. This leaves designers without a 
unique solution to their problems. Finally, current multi-objective optimisation processes are not well 
aligned with design practices, because they do not sufficiently involve decision makers and do not 
translate their interests into a single common preference domain to find an overall group optimum. 
This paper introduces a new Open Design Systems (Odesys) methodology and a new Integrative 
Maximisation of Aggregated Preferences (IMAP) method, implemented in the Preferendus tool. Its 
added value and use are exemplified in two infrastructure design applications, which show how to 
achieve the pure best-fit for common-purpose design results.
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1. Introduction

Why, so often, do people build what nobody wants? Why, 
so often, do engineers optimise their solution based only on 
physical capabilities and fail to consider the stakeholders’ 
desirabilities? Why, so often, do infrastructure managers 
keep the design/decision-making process non-transparent 
and non-participatory? The answer to these questions is that 
engineering design and decision-making are often solved 
from a one-sided point of view, without considering the fact 
that the problem is complex and multifaceted. Therefore, a 
participatory process that does justice to both the ‘hard’ 
technical and ‘soft’ social aspects of infrastructure systems 
development is needed. It is thus crucial to truly connect 
and bridge the gap between human preference interests and 
the engineering assets performances using transparent mod-
els for complex systems design and integration. The goal of 
such an Open Design Systems (Odesys) approach is to pro-
mote the use of the civil infrastructures that surround us 
every day through a multi-system level socio-technical 
approach, supported by sound mathematical open-glass box 
models as a means of observation and perception in collab-
orative decision-making.

Above all, zooming in on the design challenge of our con-
temporary (civil) infrastructures, it can be noted that this 
challenge is becoming increasingly complex due to environ-
mental demands, new transport modes, and other transi-
tions. This rapidly changing infrastructure context requires 

an optimal life-cycle value design within the framework of 
infrastructure asset management (see e.g. Balzer and Schorn 
(2016); Hastings (2015); Uddin, Hudson, and Haas (2013) or 
the NEN 15288 on system life-cycle processes (NEN, 2015)). 
Multi-objective optimisation is key to supporting informed 
decisions in infrastructure asset management (for an exten-
sive literature review and overview of optimisation methods, 
see L. Chen and Bai (2019)). Increasing stakeholder involve-
ment, combined with the multidisciplinary nature of infra-
structure design challenges, further necessitates a more 
effective and efficient participatory and supportive decision- 
making process (among others, see also W. Chen and Zheng 
(2021); Omar, Trigunarsyah, and Wong (2009); J. Wang, 
Liu, Wang, and Mei (2020)). In this context of asset manage-
ment decision-making, the focus of this paper is therefore 
on socio-technical design optimisation, where both the vari-
ous stakeholder preference interests (or societal values) and 
the technical system life-cycle capabilities are unified in a 
best-fit for common-purpose design configuration. To this 
end, a new so-called Odesys methodology is introduced, 
with a new preference-based multi-objective design optimisa-
tion method. This is required because the current design 
optimisation methods have intrinsic problems and/or short-
comings that make them unsuitable to provide the required 
unique and best-fit design solutions. These five fundamental 
problems and shortcomings together constitute Odesys’ 
development gap.
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The first problem with the current multi-objective design 
optimisation methodologies is the disconnect between the 
domain of human preferences (subject desirability) and the 
domain of the physical performance behaviour of the engin-
eering asset (object capability). Moreover, when applied in 
the classical systems engineering context, design optimisa-
tion is usually limited to a single objective design approach 
and/or to an a posteriori evaluation of design alternatives 
(Blanchard & Fabrycky, 2011; Cross, 2021; Dym & Little, 
2004). However, in a posteriori evaluation, there is no guar-
antee that the optimal design point has been found and a 
choice has to be made between sub-optimal compromise 
solutions (even when optimisation and a posteriori evalu-
ation are combined, see Mueller and Ochsendorf (2015)). 
Especially in complex engineering projects, the number of 
possible design alternatives is too large to evaluate them all 
and the optimal solution may thus be ignored.

Secondly, most multi-objective optimisation methodologies 
introduce fundamental mathematical operation and aggrega-
tion flaws because they: (1) use undefined measurement 
scales and apply mathematical operations where these are not 
defined (e.g. for variables that have neither an absolute zero 
nor one, such as time/potential energy/preference, the math-
ematical operations of addition and multiplication are not 
defined in the corresponding mathematical model which is 
the one-dimensional affine space); (2) produce an infinite 
number of non-equivalent ‘optimal’ outcomes (e.g. the defin-
ition of the aggregation algorithm does not prerequisite hav-
ing only normalised numbers); (3) outcomes do not take into 
account the relative scoring impact of other design alterna-
tives (e.g. in reality, the score of one alternative depends on 
the performance of all the other alternatives; the score is 
obtained by finding the best balance between the normalised 
and weighted scores for all sub-criteria given the set of alter-
natives). As a result, the outcomes of decision-making in 
engineering design may lead to sub-optimal design configura-
tions. The foundations of this second shortcoming are found 
in the principles of Barziali’s Preference Function Modelling 
(PFM) and its associated preference measurement theory 
(Barzilai, 2005, 2006, 2022).

A third problem with many of the classical multi-object-
ive design optimisation methods is that they do not have a 
consistent way of translating the different objective functions 
into a common domain to find a best-fitting aggregated opti-
mum. To get around this problem, these multi-objective 
design methods often use monetisation. In other words, all 
objective functions are expressed in terms of money. 
However, according to classical decision/utility theory, deci-
sions are not based on money, but on value or preference 
(where minimising expenditure or maximising profit can be 
one of the objectives). Here, preference is an expression of 
the degree of ’satisfaction’, and it describes the utility or 
value that something provides. Although some researchers 
have incorporated preference modelling into their multi- 
objective optimisation frameworks (see, for example, Lee, 
Park, Ok, and Koh (2011) or Messac (1996)), none of them 
use strong (preference) measurement scales or individually 
weighted preference functions (i.e. continuous functions 

linking an individually weighted preference to a specific 
objective). In addition, these approaches do not lead to a sin-
gle optimal design point and also contain the aggregation 
modelling errors mentioned above.

A fourth shortcoming of classical multi-objective design opti-
misation methods is that many of them consider the so-called 
Pareto front as a valid outcome (Marler & Arora, 2004). Apart 
from the fact that the Pareto front is often obtained in a math-
ematically incorrect way (see the aforementioned second short-
coming), it also generates an infinite set of possible, and 
supposedly equally desirable, design points (see, for example, 
Farran and Zayed (2015); Furuta, Kameda, Nakahara, 
Takahashi, and Frangopol (2006); Saad, Mansour, and Osman 
(2018)). However, this is inconsistent with the fundamental basis 
of an engineering design process, where each design point is 
(subjectively) interpreted by people in terms of preference (i.e. a 
statement of their individual interest) and where a search is per-
formed to find a single optimal design solution. These Pareto 
shortcomings are also noted by e.g. Bai, Ahmed, Li, and Labi 
(2015); Bakhshipour, Dittmer, Haghighi, and Nowak (2021); 
Golany, Hackman, and Passy (2006); Kim, Frangopol, and Ge 
(2022); Lee et al. (2011), amongst others. However, their pro-
posed (hybrid) solutions still rely on the Pareto front (with its 
mathematical flaws) and some form of a posteriori evaluation. 
Their modelling approaches therefore fail to provide a pure inte-
grative design approach and are not able to obtain a priori a sin-
gle best configuration.

A fifth shortcoming is that current multi-objective opti-
misation processes are rather disconnected from systems 
design practices, as they lack deep involvement of decision- 
making stakeholders (Guo & Zhang, 2022). In addition, the 
dynamic nature and the socio-technical interaction between 
stakeholder preferences (‘what a human wants’) and the per-
formance of technical assets (‘what a system can’) are often 
not considered in service life design.

To overcome the aforementioned shortcomings and prob-
lems, and to enable pure human preference and asset perform-
ance systems design integration, the Odesys design 
methodology is introduced in this paper. Odesys builds further 
on the multi-stakeholder design optimisation methodology 
proposed by Zhilyaev, Binnekamp, and Wolfert (2022), who 
showed that the unambiguous solution to a multi-objective 
engineering design/decision problem is to translate each of the 
objective functions, as a function of the design variables, into 
an overarching preference domain. This can be done using 
stakeholder preference functions: i.e. the relationship between 
an individual preference and a specific objective, which then 
allow for the maximisation of the aggregated group preference, 
leveraging Barzilai’s PFM theory (see Binnekamp (2010) where 
this concept originated in its initial form, and Arkesteijn, 
Binnekamp, and De Jonge (2017) for its early social valid-
ation). However, all these aforementioned developments in the 
field of preference-based design, which so far only were 
applied in the context of real estate planning, still have three 
methodological deficiencies, and lack the following:

1. a generalised mathematical framework for multi-object-
ive socio-technical design optimisation: i.e. a threefold 
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modelling framework of integrative performance, 
objective and preference functions;

2. a connection between common socio-eco interests and 
the related subject preferences, and the physical/mechan-
ical object behaviour: i.e. a pure integration of technical 
design performance, social objective and preference 
functions;

3. a PFM-based solver: i.e. a search algorithm to find 
the optimal solution with the maximum aggregated 
preference.

As a conclusion to the five fundamental shortcomings of 
current multi-objective design optimisation methods and the 
three deficiencies of the preference-based design approach 
mentioned above, the Odesys development statement reads 
as follows:

There is a need for an open design/decision methodology enabling 
socio-technical systems integration on all relevant levels using a 
human-centred preference-based design performance approach 
supported by pure mathematical optimisation modelling.

This is the basis for the development of the Odesys 
methodology methods and tool, which will allow for the full 
integration between subject (un)desirability: ‘what a stake-
holder wants/does not want’, expressed via preference func-
tions, and object (in)capability: ‘what a system can/cannot’, 
expressed via design performance functions. This integration 
is schematically depicted in Figure 1. It is being achieved by 
constructing preference functions that are a direct function 
of both the stakeholder objective and the engineering asset 
design performance functions, which depend on the design 
and physical variables and their constraints. In other words, 
this unified set of preference functions, which at the lowest 
level is a function of the engineering design variables and 
the physical constraints, is a translation (a mapping) of the 
socio-technical system under consideration. Next, an auto-
mated algorithm is needed that searches for a feasible and 
optimal design synthesis solution where the aggregated 
group preference score is maximal. In reality, this search is 

an open-ended approach. This means that an iterative pro-
cess of technical-, social-, and purpose-cycles will have to 
take place. This implies that a best-fit for common-purpose 
design configuration can only be achieved through an itera-
tive socio-technical process given the final ‘idealised’ desires, 
objectives, interests, and requirements of the stakeholders.

This makes Odesys a pure socio-technical systems inte-
gration methodology where human preference-based design 
and engineering physics/mechanics converge, offering a 
wide range of potential applications within the context of 
(infra)structure systems engineering design. As part of this 
Odesys methodology, a new Integrative Maximised 
Aggregated Preference (IMAP) optimisation method for 
maximising aggregated preferences is introduced. This 
IMAP method forms the basis of a new software tool called 
the Preferendus and combines the state-of-the-art PFM 
principles with an inter-generational Genetic Algorithm 
(GA) solver developed specifically for this purpose. It should 
be noted that the Preferendus in its primary form was pub-
lished by Zhilyaev et al. (2022).

This paper continues by giving a general mathematical 
statement of the Odesys methodology. Next, a flow chart (or 
concept diagram) of the Preferendus software tool is 
described, in which the Odesys methodology is implemented. 
Finally, the use and added value of the Odesys methodology, 
the IMAP optimisation method, and the Preferendus tool are 
demonstrated for two infrastructure life-cycle design applica-
tions carried out in a real industrial context (a marine con-
tractor and a railway infrastructure service provider). The 
results are compared with single-objective design outcomes 
as well as with design outcomes resulting from the classical 
min-max goal attainment method.

2. Mathematical formulation of the Open Design 
Systems methodology

As described in the introduction, there is currently no opti-
misation framework that allows for pure integration of the 

Figure 1. Socio-technical interplay between (un)desirability and (in)capability.
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human preference domain (subject desirability) and the 
engineering asset physical performance behaviour domain 
(object capability). This disconnection will limit optimisa-
tion to sub-optimal results, as the interaction between these 
two levels is not considered. To overcome this, this paper 
introduces the following mathematical statement, which 
integrates subject desirability and object capability, and is at 
the core of the Odesys methodology:

Maximisex U ¼ T Pk, i Oi F1ðx, yÞ, F2ðx, yÞ, . . . , FJðx, yÞ
� �� �

, w0k, i
� �

for 

k ¼ 1, 2, . . . , K 
i ¼ 1, 2, . . . , I (1) 

Subject to:

gpðOiðF1, 2, ..., Jðx, yÞÞ, F1, 2, ..., Jðx, yÞÞ � 0 for p ¼ 1, 2, . . . , P
(2) 

hqðOiðF1, 2, ..., Jðx, yÞÞ, F1, 2, ..., Jðx, yÞÞ ¼ 0 for q ¼ 1, 2, . . . , Q
(3) 

With:

� T: The aggregated preference score determined using the 
PFM theory principles (see Barzilai (2022)).

� Pk, iðOiðF1, 2, :::, Jðx, yÞÞÞ : Preference functions that 
describe the preference stakeholder k has towards object-
ive functions, which are functions of different design 
performance functions and dependent on design and 
physical variables.

� OiðF1, 2, :::, Jðx, yÞÞ : Objective functions that describes the 
objective i, functions of different design performance func-
tions and dependent on design and physical variables.

� F1, 2, :::, Jðx, yÞ : Design performance functions that 
describe the object, depending on one or multiple design 
variables x (i.e. controllable endogenous variables) and 
one or multiple physical variables y (i.e. uncontrollable 
exogenous variables).

� x: A vector containing the (controllable) design variables 
x1, x2, :::, xN : These variables are bounded such that lbn �

xn � ubn, where lbn is the lower bound, ubn is the upper 
bound, and n ¼ 1, 2, :::, N:

� y: A vector containing the (uncontrollable) physical vari-
ables y1, y2, :::, yM:

� w0k, i : Weights for each of the preference functions. 
These weights can be broken down into weights for the 
stakeholders and weights for the objectives:

� wk: weights for stakeholders k ¼ 1, 2, :::, K: These 
weights represent the relative importance of 
stakeholders.

� wk, i : these weights represent the weight stakeholder 
k gives to objective i.  

The final weights w0k, i can be constructed via w0k, i ¼

wk � wk, i, given that 
P

w0k, i ¼
P

wk, i ¼
P

wk ¼ 1
� gpðOiðF1, 2, :::, Jðx, yÞÞ, F1, 2, :::, Jðx, yÞÞ : Inequality constraint 

functions, which can be either objective function and/or 
design performance function constraints.

� hqðOiðF1, 2, :::, Jðx, yÞÞ, F1, 2, :::, Jðx, yÞÞ : Equality constraint 
functions, which can be either objective function and/or 
design performance function constraints.

To further elaborate on this formulation, several impor-
tant remarks are made which are discussed below.

Remark 1: preference aggregation 
Here, the aggregated preference scores are determined based 
on the principles of PFM, expressed by the mathematical 
operator T. This operator is a solving algorithm that is 
based on finding/synthesising the aggregated preference 
score (i.e. the ‘best’ fit of all weighted (relative) scores for all 
the decision-making stakeholders’ objectives) that minimises 
the least-squares difference between this overall preference 
score and each of the normalised individual scores (on all 
criteria) by computing its closest counterpart (Barzilai, 2022; 
Zhilyaev et al., 2022). 

In this, preference is a statement of an individual stake-
holder’s interest and a measure of satisfaction, which is a 
score that is expressed as a real number (scalar or bare 
quantity) on a defined scale, e.g. 0 to 100, where 0 corre-
sponds to the ‘worst’ performing alternative and 100 to the 
‘best’ performing alternative. For the applications shown in 
this paper, Tetra is used as this preference aggregation 
solver. For more information on the Tetra solver, see 
Scientific Metrics (n.d.).  

Remark 2: preference functions 
Preference functions describe the relationship between an 
individual stakeholder’s preference and a specific objective 
(where a stakeholder is defined as one of the participants 
in the design/decision-making process). The theory of prefer-
ence functions (often also called utility functions) for a posteri-
ori multi-criteria decision evaluation is a branch of the social 
science in itself. However, the preference functions are needed 
as input to the design/decision system to enable a priori multi- 
objective design optimisation. Here, the elicitation of the pref-
erence functions and associated weights is handled pragmatic-
ally using ‘static’ expert judgement, whereas in practice this is 
inherently a dynamic and iterative process that helps stake-
holders better understand the impact of their input on the 
optimisation outcome (see Arkesteijn et al. (2017) for the spe-
cifics of this elicitation as part of the design cycle). 

Finally, note that an objective Oi can be associated with 
multiple stakeholder preference functions Pk, i (as k � i). 
However, it is not required that a stakeholder expresses a 
preference for all objectives. This is modelled by giving a 
stakeholder’s objective a weight of zero, which means that 
some elements of the wk, i matrix can be zero.  

Remark 3: bound preference scores 
Here, a preference score is bounded by 0 � Pk, i � 100: A 
constraint can be added to the objective functions to pre-
vent preference scores which lay outside these bounds.  

Remark 4: design variables in objective functions 
A design variable x can be directly linked to an objective 
function O. In this case, the design performance function F 
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is just equal to the design variable x. Moreover, these design 
performance functions F can also only relate to an exogen-
ous physical variable y.  

Remark 5: rewrite equality constraints 
Equality constraints are quite common in the object 

behaviour domain. However, as the Preferendus uses a GA, 
equality constraints can complicate the convergence of the 
optimisation, as especially the simpler constraint handlers 
for GAs have problems with handling equality constraints 
(Homaifar, Qi, & Lai, 1994; Kramer, 2017). Therefore, when 
modelling a system of interest, the equality constraints can 
be rewritten as inequality constraints, as is often done in lit-
erature (Coello, 2002; Kramer, 2017). This is often done in 
the form of Equation (4). 

For the proposed Odesys methodology, it is possible to 
rewrite most equality constraints directly into inequality 
constraints, as the methodology aims to reduce ‘waste’ in 
the result. For example, the length of a beam supporting a 
floor will usually have a fixed length: the length of the span. 
Since a length greater than the length of the span will result 
in more costs, material consumption, carbon emissions, etc., 
this equality constraint can safely be rewritten as an inequal-
ity constraint. This makes modelling easier, since the toler-
ance � does not have to be set and tuned for each problem.

jh1, 2, ..., QðO1, 2, ..., IðF1, 2, ..., Jðx, yÞÞ, F1, 2, ..., Jðx, yÞÞj − e � 0 (4)   

Remark 6: soft and hard constraints 
Finally, a distinction can be made between soft and hard 
constraints. The former result from the sociological aspect of 
a design process and are negotiable. They can be adapted 
during the process based on discussions with other stakehold-
ers or new insights. The latter are fixed and non-negotiable. 
They are given by, among others, laws of nature, material 
composition, environmental conditions, etc. 

2.1. Conceptual threefold framework 

The mathematical statement with the aforementioned 
remarks provides a general framework in which it is pos-
sible to connect the subject desirability level (preference 
functions) with the object capability level (design perform-
ance functions) via the integrative subject-object conciliation 
level (objective functions). Note that there will be three 
types of functional values and/or outcomes of interest: (1) 
degrees of capability - design performances (technical); (2) 
degrees of freedom - design variables (technical); (3) degrees 
of satisfaction - preferences and objectives (social). 

To better understand and further detail this specific 
social-technical systems integration, the different functions 
as part of the mathematical formulation are conceptualised 
in a threefold modelling framework, as shown in Figure 2. 
Note that the different functions are linked (an ordering 
principle) and that maximisation is not yet part of this 
threefold. 

3. The Preferendus & IMAP 

In this section, the so-called Preferendus tool and its opti-
misation method IMAP are described as part of the Odesys 
methodology. Here, the conceptual functioning will be 
introduced (as an extension and further development of the 
Preferendus as described by Zhilyaev et al. (2022)) and in 
the following section, design applications using the state-of- 
the-art Preferendus tool are demonstrated. 

The Preferendus tool is based on the IMAP optimisation 
method presented in this paper. It combines proper prefer-
ence aggregation with preference maximisation, as described 
by the mathematical formulation of the Odesys problem 
statement in the previous section. 

3.1. Preference aggregation (IMAP part 1: synthesis) 

Following the Odesys methodology, it is argued that the over-
arching goal of multi-objective design optimisation is to find 
the highest overall group preference score that represents the 

Figure 2. Conceptual threefold framework of the Odesys mathematical state-
ment, where subject desirability (preference functions) and the object capability 
(design performance functions) are integrated subject-object (objective func-
tions). Note: the shapes of the curves are arbitrary.
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design synthesis. However, for these design syntheses to be 
possible, the individual preference scores first need to be 
aggregated. 

Since preference scores are defined in an affine space, 
aggregation should also take place in this space. This means 
that, according to the basic principles of PFM theory, the 
correct way of aggregating preference scores is to find the 
aggregated preference score that provides the ‘best’ fit to all 
the weighted (relative) scores of the different preference 
functions (Pk, i). Here, the preference functions are the inte-
gration of objective functions and design performance func-
tions. The final preference score aggregation is performed 
by the aforementioned PFM-based solving approach (see 
remark 1 of the previous section), as an integral part of the 
overall design optimisation algorithm. 

3.2. Preference maximisation (IMAP part 2: synthesis) 

To finally find the design configuration that reflects the 
maximum group preference aggregation, it is also necessary 
to use a maximisation algorithm. To do this, a GA is used 
that is specifically adapted to work with Tetra. This is neces-
sary because it is not possible to directly compare one gen-
eration of the GA with another, as the aggregated 
preference scores contain only information about the alter-
natives of a single generation. To overcome this, a GA is 
developed that combines widely available elements and is 
extended with a so-called inter-generational solver. The 
details and the operation of this GA solver are given in 
Appendix A. 

The final result is an Odesys-based design optimisation 
tool, the Preferendus, which incorporates the IMAP method. 
The concept diagram of the Preferendus is shown in Figure 
3. This is an open-source tool available via GitHub (see data 
availability statement). 

3.3. Interlude min-max goal attainment (min-max: 
compromise) 

To compare and validate the results and added value of the 
IMAP multi-objective optimisation method, the following 
section first compares the results with those of the single- 
objective optimisation. In addition, a comparison is made 
with the classical min-max goal attainment multi-objective 
optimisation method (Marler & Arora, 2004). This method 
does not generate group results based on overall aggrega-
tion, but rather optimises, i.e. equalises, each individual 
result so that it is as close as possible to a ‘utopian’ design 
point. In other words, the min-max method tries to minim-
ise the maximum dissatisfaction for all individual scores 
(expressed by the distance to this utopia point). The result 
of this method, which does not conflict with the fundamen-
tal PFM principles, is a solution that gratifies each stake-
holder equally. 

In order to make a like-for-like comparison between 
IMAP and min-max, the mathematical formulation of the 
Odesys problem statement needs to be modified (i.e. 
Equation (1) needs to be changed). First, this means that in 
this case the min-max method will try to minimise the dis-
tance to a score of 100 for all different preference scores Pk, i 
(i.e. the best-scoring utopian point has been defined as 100). 
Then, the preference score Pk, i with the greatest (weighted) 
dissatisfaction must be found and minimised, which math-
ematically can be read as Equation (5).
Minimisex U ¼ maxk, i w0k, i � 100 − Pk, i Oi F1ðx, yÞ, F2ðx, yÞ, . . . , FJðx, yÞ

� �� �� �� �
for 

k ¼ 1, 2, . . . , K 
i ¼ 1, 2, . . . , I (5)  

It should be noted that the min-max goal attainment 
method, as part of a larger group of multi-objective opti-
misation methods, does not violate the PFM principles. 
However, this method treats the scores of all design alterna-
tives as absolute values, ignoring the dynamic interplay 

Figure 3. The workflow of the Preferendus, presented as a concept diagram.

6 H. J. HEUKELUM ET AL.



between them. In other words, this method focuses on mak-
ing each stakeholder as ‘happy’ as possible, even though this 
may not be beneficial for the group as a whole. This is why 
this optimisation is called a compromise method, because it 
finds a design configuration based on a compromise 
between stakeholders rather than a synthesis. 

4. Real-life service life design applications 

The Odesys methodology, the associated IMAP optimisation 
method and the use of the Preferendus are demonstrated in 
two real-life infrastructure design applications: (1) a railway 
level-crossing life-cycle design and (2) a floating wind tur-
bine installation design. The source code and results of these 
applications are available on GitHub, see the data availabil-
ity statement. 

Both of these design applications were conducted within 
a real-life infrastructure design context. The first in collab-
oration with ProRail, a Dutch railway infrastructure service 
provider, and the second within Boskalis, an internationally 
operating maritime contractor. Especially within Boskalis, 
several socio-technical cycles were carried out to validate the 
Odesys results and the added value of the Preferendus with 
various stakeholders involved. In addition, here the 
Preferendus has also been validated for a dredging applica-
tion with promising validation results (but beyond the scope 
of this paper). 

Although both design applications are simplified for illus-
trative purposes, they still provide insight into the added 
value and principles of the Odesys methodology, the IMAP 
method and the use of the Preferendus tool. For further 
substantial extensions of both design application cases as 
they are presented here, see Shang, Binnekamp, and Wolfert 
(2023) and Van Heukelum, Steenbrink, Colom�es, 
Binnekamp, and Wolfert (2023). 

For both design applications, the threefold diagram of 
design performance, objective, and preference functions is 
presented. Preference functions are ultimately a direct func-
tion of both stakeholder objective and engineering asset 
design performance functions, which in turn are related to 
the design variables and their constraints. These functions 
are derived from an idealised design configuration (i.e. a 
tangible design representation) and from the common pref-
erence interests of the stakeholders involved. The goal is 
then to find, within the feasibility space, the candidate solu-
tion with the highest aggregated group preference. 

In real-life design practices, this quest is an open-ended 
approach. This means that an iterative process of technical-, 
social-, and purpose-cycles will have to take place, implying 
that a best-fit for common-purpose design configuration 
can only be achieved through an iterative socio-technical 
process given the final ‘idealised’ desires, objectives, inter-
ests, and requirements of the participating stakeholders. 
In this paper, for demonstration purposes, only one socio- 
technical cycle per design application is included. It should 
be noted that in the real-life design application 2 (‘floating 
wind installation’), as carried out within Boskalis, the 
stakeholders were asked to adjust their preference and/or 

objective functions (social context) to achieve a better result. 
This open-ended process was repeated several times for 
‘idealised’ purposes. Within this socio-technical context, the 
Preferendus served as a design/decision support tool to 
arrive at the best-fit for common-purpose design. To show 
the real potential of Odesys’ Preferendus, the IMAP results 
are compared both with single-objective design outcomes 
and with the min-max goal attainment outcomes. 

4.1. Design application 1: a rail level-crossing service 
life design 

Technical context: Railways and roads often cross each other 
at level-crossings. Because heavy vehicles must also be able 
to cross, the railway crossing is often cast in a concrete 
foundation. The mechanical properties of this concrete 
foundation are very different from the foundation of the 
other parts of the railway track. As a result, transitional 
radiation occurs during the passage of a train, potentially 
resulting in faster degradation of the local rail system or a 
negative passenger experience due to vibrational hindrance 
(Metrikine, Wolfert, & Dieterman, 1998; Wolfert, Metrikine, 
& Dieterman, 1998). Therefore, a transition zone is created 
by varying the number of sleepers and the distance between 
them to contribute to a smoother transition, which should 
have a positive effect on both operational performance and 
passenger comfort. 

Social context: In this application, a Multi-Objective 
Design Optimisation (MODO) of the transition zone is 
demonstrated, based on several conflicting interests of mul-
tiple stakeholders: i.e. (1) capital investment and (2) oper-
ational maintenance expenditures, and (3) travel comfort 
objective functions. It is assumed that these three objectives 
are linked to three different stakeholders. Take for instance 
the Dutch ProRail organisation, where there is both a pro-
ject delivery and a service operations department. They are 
linked to the capital and operational expenditure objectives, 
respectively. The Dutch train passenger is represented as the 
stakeholder linked to the travel comfort objective. 

Now, the integrative design problem is firstly described 
by working through the conceptual threefold framework, see 
Figure 2, resulting in design performance, objective and 
preference functions. 

4.1.1. Design performance functions 
In reality, this design depends on a multitude of design vari-
ables, but for now, it will be limited to just two of them:

1. F1 ¼ x1ð> 0Þ : the distance between the sleepers. 
Sleepers are the concrete (or sometimes wooden) beams 
that support the rails, as part of the ballast bed.

2. F2 ¼ x2ð� 1Þ : the number of sleepers in the transition 
zone. The transition zone consists of a different type of 
sleeper than the rest of the track.

Note that (1) in order to be consistent with the general 
mathematical statement from section 1, the design 
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performance functions F1 and F2 are added here, equal to x1 
and x2 respectively, and (2) from the practical application 
context, the design variables are bounded by 0:3m � x1 �

0:7m and 4 � x2 � 15, which defines the design space (i.e. 
the solution space defined by the design variables).

The key design performance functions describing the 
dynamic behaviour of the track at the level-crossing transi-
tion zone are the force F3 ¼ Fðx1, x2Þ and the acceleration 
F4 ¼ aðx1, x2Þ: These are usually the result of extensive 
numerical finite element and/or analytical calculations. For 
this design application, the physical/mechanical relationships 
between the design variables are simplified by using inter-
polation of discrete numerical calculations derived from a 
finite element based structural dynamic model (Shang, 
Nogal, Teixeira, & Wolfert, 2023). These interpolated results 
are the input to the design performance functions.

4.1.2. Objective functions
As mentioned before, three objective functions are investi-
gated in this design application: maintenance costs, travel 
comfort and investment costs. Given these three objectives, 
the optimal design for the level-crossing zone is determined.

Objective maintenance costs (OPEX). The design of the 
transition zone is mainly driven by the associated mainten-
ance costs. Large forces and accelerations will have a nega-
tive effect on the degradation of the track and foundations, 
resulting in increased maintenance costs. Hence, this object-
ive can be written as a function of the force and acceler-
ation. For that purpose, the force and acceleration are 
normalised and combined via the root sum of the square. 
The final maintenance costs per year objective reads as:

OM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
N þ a2

N

q

� 15 000 (6) 

where

FN ¼
F − Fmin

Fmax − Fmin
(7) 

aN ¼
a − amin

amax − amin
(8) 

and where OM expresses the OPEX per year in EUR. Note 
that at the level of design performance functions (i.e. capabil-
ity-object level), it holds that F3 ¼ F and F4 ¼ a respectively.

Objective travel comfort. Passenger comfort is an important 
consideration in railway design. When the dynamic behav-
iour (due to transition accelerations) during a passage of a 
level-crossing is substantial, it may lead to a negative travel 
experience or, in the worst case, to minor mishaps in the 
train (falling while walking, spilling drinks, etc.). To inte-
grate this into the design problem, an objective is added 
that describes travel comfort as a function of the normalised 
acceleration:

OC ¼ 1 − aN (9) 

with aN as given in Equation (8).

Objective investment costs (CAPEX). Finally, the investment 
costs must be considered. The installation of more sleepers 
will result in higher investment costs. However, more 
sleepers spread out over a greater distance will also mean 
that the investment costs for other parts of the rail will be 
reduced. Therefore, the investment costs objective can be 
represented as follows:

OI ¼ 1000x2 − 350x1x2 (10) 

where OI expresses the CAPEX in EUR.

4.1.3. Preference functions
The preference functions for this design application are con-
structed based on the input from relevant stakeholders 
(Shang, Nogal, et al., 2023; Shang, Nogal, Wang, & Wolfert, 
2021). The three resulting functions, which describe the 
relations between different values for P1::3, 1::3 and O1::3, are 
shown as blue curves in Figure 5. Note that the preference 
function elicitation was performed using the fundamentals 
of PFM research by Arkesteijn et al. (2017).

The systems design integration problem statement is now 
conceptualised with the threefold diagram in Figure 4.

4.1.4. Design optimisation results & conspection
To generate the design points (i.e. design configuration 
results) for the different multi-objective optimisation meth-
ods (MODO min-max and IMAP), the weights for each 
objective must first be determined. Since traditional (contrac-
tor) design offices often give a dominant weight to invest-
ment costs alone and less to the quality of service (QoS) 
oriented interests of maintenance and travel performance, 
here it is deliberately done ‘the other way round’, resulting 
in w1, M ¼ 0:4 for maintenance, w2, C ¼ 0:4 for travel comfort 
and w3, I ¼ 0:2 for investments. For evaluation purposes, the 
design points for the different (1 … 3) Single-Objective 
Design Optimisations (SODO) are also determined for main-
tenance-, investment costs and travel comfort respectively.

The outcomes of the different design points/configurations 
per optimisation method are first plotted in the preference 
functions showing the different objective values (O1::3) and 
their corresponding individual preference values (P1::3, 1::3), 
see Figure 5 and Table 1. Note that, the results for IMAP 
were obtained with the new Preferendus tool and the other 
design optimisation results were obtained using specific 
standard Python routines (see the data availability statement 
for the repository containing the design application’s code).

Secondly, the numerical results of the different design 
points/configurations per optimisation method (SODO and/or 
MODO) can be read from Table 2. In this table, one can find 
the aggregated preference score that was used to determine the 
overall score/ranking via the PFM-based MCDA tool Tetra 
(the resulting aggregated preference scores are re-scaled 
between scores of 0 and 100, where 0 reflects the ‘worst’ scor-
ing configuration/alternative and 100 the ‘best’, see Appendix 
A for further details). Note that at least three alternatives are 
needed for such an overall evaluation (e.g. one reference con-
figuration and two different MODO configurations).
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Figure 4. Conceptual threefold diagram, describing the systems design integration for the rail level-crossing design application. Note: the aim of this figure is to 
illustrate the relationship between the different functions and some curves may not represent the actual function.

Figure 5. The three stakeholder preference functions (P1::3, 1::3) for different objectives (O1::3) for the level-crossing design application, including the results of the 
different optimisations. The numerical results can be found in Table 1.
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Since there are only two design variables in this design 
application, the two-dimensional design space (sometimes 
referred to as solution space, see Dym and Little (2004)) 
containing the design points/configurations per optimisation 
method can be plotted, see Figure 6.

The following three conclusions can be drawn from these 
figures and tables:

1. The IMAP configuration is either equal to or closest to 
the best result on all single objectives (the SODO con-
figurations). Only for the single-objective investment 
costs, IMAP is second best, since it also aims to opti-
mise the other two objectives OM and OC. For these 
objectives, a low sleeper spacing (x1) is expected, while 
the number of sleepers (x2) has a relatively small influ-
ence on the outcome of these objectives. For this design 
application in particular, and given the different objec-
tives and associated stakeholder preferences, a low 
sleeper spacing (x1) is expected to have a significant 
impact on objectives OM and OC, while the number of 
sleepers (x2) will have a smaller impact. 

However, for objective OI, the influence of x2 will be signifi-
cant, because for lower x2 the investment costs decrease. 
Furthermore, the influence of x1 on OI is opposite to its influ-
ence on the other two objectives. Therefore, the design config-
uration that is optimised for investment costs only is not 
representative. A MODO optimisation is expected to find the 
ideal balance for the sleeper spacing (x1), with the number of 
sleepers on the lower bound (i.e. x2 ¼ 4). The result of the 
IMAP optimisation does indeed reflect this best-fit for com-
mon-purpose balance. As a result, IMAP may be characterised 
as a pure synthesis multi-objective design method.
2. The IMAP configuration achieves better or equal indi-

vidual preference function values (P1::3, 1::3) and, more 
importantly, much better overall scores than the 
MODO min-max method result. This is because, 
according to the min-max principle, this method will 
not be able to outperform the one objective score that 
shows the maximum attainable minimum distance to 

100 (i.e. the minimum dissatisfaction). Thus, the min- 
max method inherently produces a sub-optimal com-
promise design configuration which, depending on the 
specific input parameters, can at best perform as well as 
the synthesis IMAP method. This limits the applicabil-
ity of the min-max method as a real multi-objective 
design optimisation method.

3. From the design space figure it is seen that, perhaps 
counter-intuitively, both the SODO 1 and 2 and the 
MODO min-max results fall within the design space 
(x1; x2 equals 0.35/0.39 and 5 respectively) and that the 
MODO IMAP and SODO 3 results lie on the edge and 
in a corner point of the design space respectively. This 
is because the set of design points that fall within the 
design space are the result of optimising the ’technical’ 
design performance only. In other words, this means 
that these optimal solutions move to an optimum only 
within the feasibility space (i.e. a solution space defined 
by the physical engineering variables only, and which is 
a subset of the design space) and lie on the classical 
Pareto front. Note that in this case a possible Pareto 
front, which defines an edge of the feasibility space as a 
function of F and a, results only from the minimisation 
of OM and OC. Despite the fact that SODO 3 actually 
does find the edges of the design space (corner point), 
it still scores low overall because it is by far the lowest 
on the other two objectives (1 and 2). MODO IMAP 
gives the overall best design point on the edge of the 
design space (x1 and x2 equal 0.38 and 4 respectively), 
and can therefore be considered the pure best-fit for 
common-purpose design point.

Note that when the emphasis in the design application is on 
optimising the integrated socio-technical problem, the overall 

Table 1. Results of the objective functions (O1::3) and the corresponding 
preference functions (P1::3, 1::3) of the level-crossing design application.

Optimisation methods OM [e] PM OC PC OI [e] PI

Single objective OM (SODO 1) 3942 94 0.75 83 4319 76
Single objective OC (SODO 2) 4297 90 0.76 84 4381 75
Single objective OI (SODO 3) 18243 0 0.27 36 3020 100
MODO min-max 4305 90 0.76 84 4382 75
MODO IMAP 3974 94 0.75 83 3466 91

Table 2. Evaluation of different design configurations per optimisation 
method and their relative ranking (based on aggregated preference scores) 
for the level-crossing design application.

Optimisation methods x1 [m] x2

Aggregated preference  
score

Single objective OM (SODO 1) 0.39 5 84
Single objective OC (SODO 2) 0.35 5 81
Single objective OI (SODO 3) 0.70 4 0
MODO min-max 0.35 5 81
MODO IMAP 0.38 4 100

Figure 6. The design space of the level-crossing design application and the 
design configuration/points for the different optimisation methods. The numer-
ical results can be found in Table 2.
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best configuration will be found within and/or on the edge of 
the design space. When optimising solely on cost or technics, 
one can either end up at the classical Pareto front or in a corner 
point of the design space (see also the next design application).

4.2. Design application 2: a floating wind farm 
installation design

Technical context: A promising solution for wind energy 
production in deep waters could be the use of floating wind 
turbines (FWT). Rather than being placed on a fixed 
monopile, these turbines are placed on a platform moored 
to the seabed by anchors. The floating wind farm considered 
in this design application consists of 36 FWTs and 108 suc-
tion anchors (i.e. 3 anchors per FWT).

Social context: This application illustrates a MODO approach 
for the installation of multiple FWTs, taking into account several 
conflicting interests of multiple stakeholders: i.e. (1) project dur-
ation, (2) installation costs, (3) fleet utilisation, and (4) CO2 emis-
sions. Given these four overall interests, an energy service 
provider (stakeholder one, e.g. Shell) requires a marine contractor 
(stakeholder two, e.g. Boskalis) to determine the optimal installa-
tion design plan. While cost remains a significant factor in the off-
shore industry, the energy service provider’s primary concern lies 
in minimising delivery time to expedite resource income gener-
ation. Secondly, the energy service provider will have an interest 
in reducing the CO2 emissions of the project, as this will benefit 
its carbon footprint and the societal acceptance of the project. The 
marine contractor’s primary focus will be on reducing the costs, 
as this will make it more competitive. Secondly, the fleet manage-
ment department may express a preference for optimising fleet 
utilisation to maximise operational efficiency.

Now, the integrative problem is firstly described by 
working through the conceptual threefold framework, see 
Figure 2, resulting in design performance, objective, and 
preference functions.

4.2.1. Design performance functions
Several types of vessels are available for the installation of 
the FWTs and their suction anchors. The amounts of vessels 
used in the project are the initial three design variables:

1. F1 ¼ x1ð0 � x1 � 3Þ : small offshore construction ves-
sels (OCV), capable of carrying up to 8 anchors.

2. F2 ¼ x2ð0 � x2 � 2Þ : large offshore construction ves-
sels, capable of carrying up to 12 anchors.

3. F3 ¼ x3ð0 � x3 � 2Þ : self-propelled crane barges, cap-
able of carrying up to 16 anchors.

Note that the lower bound of these three design variables is 
equal to zero. Therefore, a design performance constraint is 
required to ensure that the sum of all vessels on the project is 
greater than one (reflecting that at least one vessel is required):

g1 ¼ −ðF1 þ F2 þ F3Þ þ 1 � 0 (11) 

This design application also considers the design of the 
anchors themselves. To do this, design performance 

functions are defined that describe: (1) the resistance of the 
anchor to the forces acting on it, and (2) the amplitude of 
the forces acting on the anchor.

The resistance of the anchors considered in this design 
application can be estimated using analytical design calcula-
tions according to Arany and Bhattacharya (2018); Houlsby 
and Byrne (2005); Randolph and Gourvenec (2017). These 
calculations usually depend on several design variables, only 
two of which are considered here:

1. F4 ¼ x4ð> 0Þ : Diameter of the suction anchor in 
meters.

2. F5 ¼ x5ð> 0Þ : Penetration length of the suction anchor 
in meters.

For practical reasons, these variables are bounded by 
1:5m � x4 � 4m and 2m � x5 � 8m: The other design vari-
ables are uncontrollable variables y in this design applica-
tion, where y ¼ [working point Fa, mooring configuration, 
anchor type, soil conditions, mooring line properties]. 
Consequently, the anchor resistance can be mathematically 
formulated as F6 ¼ Raðx4, x5, yÞ: The soil is assumed to be 
clay with an undrained shear strength of su ¼ 60kPa and a 
submerged weight of c0 ¼ 9kN=m3

: The coefficient of fric-
tion between the anchor shaft and the soil is a ¼ 0:64: The 
mooring line consists entirely of a chain with a nominal 
diameter of 240mm: This chain is attached to the anchor at 
a depth of 0.5 times the penetration length. Furthermore, 
the coefficient of friction between the seabed and the chain 
is taken as l ¼ 0:25 and the active bearing area coefficient 
AWB ¼ 2:5:

While anchor resistance can be determined by analytical 
calculations, the forces acting on the anchor cannot be 
determined in the same manner. This is due to their 
dependence on various variables such as platform type, 
mooring line characteristics, pre-tension, and anchor radius. 
To obtain accurate normative forces, numerous numerical 
time-domain calculations must be performed, as outlined in 
DNV (2021). These calculations are beyond the scope of 
this paper. Instead, the relevant design variables are consid-
ered as uncontrollable physical variables y, resulting in the 
following (assumed) force on the anchors: F7 ¼ FaðyÞ ¼
3:8MN, where y ¼ [platform type, mooring line characteris-
tics, pre-tension, mooring line length, anchor radius].

The two design performance functions F6 and F7 are 
related through a design performance constraint. This con-
straint describes (part of) the feasibility space of the 
‘technical’ design by defining the boundary where the resist-
ance of the anchor is greater than or equal to the force on 
the anchor:

g2 ¼ F7ðyÞ − F6ðx4, x5, yÞ ¼ Fa − Ra � 0 (12) 

4.2.2. Objective functions
As mentioned before, four objectives are investigated in this 
design application: project duration, installation costs, fleet 
utilisation, and CO2 emissions. Given these four objectives, 
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the optimal design plan for installing the FWTs is 
determined.

4.2.2.1. Objective project duration. The project duration 
depends on the number of vessels involved in the project, 
their deck capacity and the speed at which they can install 
anchors, which is assumed to be one anchor/day/vessel. In 
addition, after all the anchors on board have been installed, 
the vessels will have to load new anchors. This process takes 
1.5 days for the small OCV, 2 days for the large OCV, and 
2.5 days for the barge.

To obtain the overall project duration, a discrete event 
simulation (DES) was incorporated into the model, which 
depends on the type and number of vessels (i.e. x1::x3). See 
the data availability statement for the code of the DES. In 
conclusion, the objective function for the project duration 
can be expressed as follows:

OPD ¼ f ðx1, x2, x3Þ (13) 

where f is the DES and OPD is expressed in days.

4.2.2.2. Objective installation costs. The project’s installation 
costs objective depends on two components: (1) the day 
rates of the vessels, and (2) the cost of the anchors. The fol-
lowing theoretical day rates R are assumed:

1. Small OCV (x1): R1 ¼ e47, 000=day
2. Large OCV (x2): R2 ¼ e55, 000=day
3. Barge (x3): R3 ¼ e35, 000=day

The cost per anchor can be divided into a fixed part 
(e40,000/anchor) and a variable part, where the variable 
part depends on the material costs (e815/t). This results in 
the following objective cost function:

OC ¼ ð815Ma þ 40, 000Þna þ
X3

i¼1
xitiRi (14) 

where OC is expressed in EUR, na is the number of anchors 
(i.e. na ¼ 108), ti the time a vessel is needed (result from the 
DES), and Ma the mass of the anchors, which is defined as:

Ma ¼ px5x4t þ
p

4
x2

4t
� �

Wsteel (15) 

with Wsteel is the weight of steel, assumed as 78:5t 
(‘tonnes’).

4.2.2.3. Objective fleet utilisation. For a marine contractor, 
optimal fleet utilisation is a key driver. Consequently, this 
objective focuses on evaluating the probability of a vessel 
being better utilised in another project (e.g. specialised ves-
sels are preferred to multi-purpose vessels). For this pur-
pose, the following values are assumed:

1. Small OCV (x1): p1 ¼ 0:7
2. Large OCV (x2): p2 ¼ 0:8
3. Barge (x3): p3 ¼ 0:5

The fleet utilisation objective is then defined as:

OF ¼
Y3

i¼1
pxi

i (16) 

where OF is expressed as the combined chance with a value 
between [0, 1].

4.2.2.4. Objective CO2 emissions. Sustainability is becoming 
an increasingly important aspect within offshore (wind) pro-
ject development. Most of the emissions will be generated 
by the vessels, for which the following theoretical average 
emission rates are assumed:

1. Small OCV (x1): E1 ¼ 30t=day
2. Large OCV (x2): E2 ¼ 40t=day
3. Barge (x3): E3 ¼ 35t=day

As other sources of emissions are neglected, the emission 
objective is defined as:

OS ¼
X3

i¼1
xiEiti (17) 

where OS is expressed in tonnes and with ti the time a vessel 
is needed (result from the DES).

Note that the Odesys mathematical statement allows for 
the direct integration of design performance and objective 
functions. However, in certain cases, design performance 
functions will not only directly link to the objective func-
tions but can also connect through (in)equality design per-
formance constraints. This indirect linking is common in 
design problems where, for example, force constraints play 
an important role. In such cases, these constraints define 
the feasibility space, and together with directly linked design 
performance functions, they span the design (i.e. solution) 
space.

4.2.3. Preference functions
The preference functions for this design application were 
developed with floating wind project experts within 
Boskalis, based on the input from an energy service pro-
vider. The four resulting functions, which describe the rela-
tions between different values for P1::2, 1::4 and O1::4), are 
shown as blue curves in Figure 8. Note that the preference 
function elicitation was again (like in the previous design 
application) performed using the fundamentals of PFM 
research by Arkesteijn et al. (2017).

The systems design integration problem statement is now 
conceptualised with the threefold diagram shown in Figure 7.

4.2.4. Design optimisation results & conspection
To generate the design points (i.e. design configuration 
results) for the different multi-objective optimisation meth-
ods (MODO min-max and IMAP), the weights for each 
objective must first be determined. Traditionally, installation 
costs have been the main driver for offshore projects and/or 
tender bids. However, with the introduction of the Odesys 
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Figure 8. The four stakeholder preference functions (P1::4, 1::4) for different objectives (O1::4) for the floating wind design application, including the results of the dif-
ferent optimisations. The numerical results can be found in Table 3.

Figure 7. Conceptual threefold diagram, describing the systems design integration for the floating wind turbine design application. Note: the aim of this figure is 
to illustrate the relationship between the different functions and some curves may not represent the actual function.
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design optimisation methodology, it is now possible to opti-
mise the design considering other relevant objectives that 
reflect the shared value of the installation plan for both the 
energy service provider and the contractor. The following 
weight distributions were chosen to model this joint plan: 
w1, PD ¼ 0:30 for project duration, w1, S ¼ 0:20 for sustain-
ability (emissions), w2, C ¼ 0:35 for the installation costs, 
and w2, F ¼ 0:15 for fleet utilisation.

For evaluation purposes, both the single-objective opti-
misation of OC (SODO costs) and the MODO min-max 
optimisation design points are also determined. Note that 
the other SODOs (single-objective optimisations on OPD, 
OF, and OS) cannot be included in the integral evaluation as 
they are not dependent on x4 and x5 (but only on x1::x3).

The outcomes of the different design points/configura-
tions per optimisation method are first plotted in the differ-
ent preference functions showing the different objective 
function values (O1::4) and their corresponding individual 
preference function values (P1::2, 1::4), see Figure 8 and Table 
3. Secondly, the numerical results of the different design 
points/configurations per optimisation method can be read 
from Table 4. In this table, one can also find the aggregated 
preference score, which was used to determine the overall 
score/ranking via the PFM-based MCDA tool Tetra (the 
resulting aggregated preference scores are re-scaled between 
scores of 0 and 100, where 0 reflects the ‘worst’ scoring con-
figuration/alternative and 100 the ‘best’, see Appendix A for 
further details).

The following three conclusions can be drawn from these 
figures and tables:

1. Comparing the IMAP configuration with the SODO 
design point on installation costs, IMAP outperforms 
the SODO on three of the four objectives. This differ-
ence is most evident when the result of the project dur-
ation objective is compared with the result of the 
installation cost objective. These objectives are opposite 
by the impact of the number of vessels (x1::3) on them. 
More vessels lead to faster project completion but 
higher costs. Therefore, a design configuration that 
scores well on cost will not score well on project dur-
ation, as can be seen for the SODO on installation 
costs. This result illustrates that considering cost alone 
(single stakeholder and single objective approach) is not 

an accurate reflection of the real planning challenge. In 
contrast, IMAP demonstrates a balanced approach by 
considering multiple objectives, including both the tech-
nical design and economics.

2. The overall score of the IMAP configuration is substan-
tially higher than that of the min-max method. As the 
min-max method tries to minimise the distance to a 
score of 100 for all different preference scores P1::2, 1::4, it 
can result in very low preference scores for conflicting 
objectives. In this design application, this is the case for 
the project duration (OPD) and installation costs (OC) 
objectives. As a result, the min-max solution scores low 
for these two objectives. This is in contrast with the 
IMAP design solution, which can find higher preference 
scores P1::2, 1::4 for these two objectives. The presence of 
these conflicting interests thus limits the applicability of 
the min-max method, as also shown in the first design 
application. Note that it can still perform well for a 
‘single’ interest, as shown by the positive reflection of the 
fleet utilisation objective with the use of more barges.

3. Table 4 shows that all three solutions have the same 
result for design variables x4 and x5. This indicates that 
this particular combination of x4 and x5 yields the low-
est anchor cost without violating the design performance 
constraint g2. In other words, for all three methods, 
there would be no difference in the optimisation if lim-
ited to a purely technical optimisation within the feasi-
bility space. However, the added value of IMAP is 
evident from the results for design variables x1, x2, and 
x3, where IMAP can arrive at an overall better design 
solution than the other two methods by including both 
technical and vessel-related installation planning con-
cerns. Note that also the best outcome within the feasi-
bility space for x4 and x5 will change if objectives in the 
managerial (subject desirability) domain favour technical 
over dimensioning of the suction anchors. In such cases, 
the solution may be selected away from the edge of the 
feasibility space (i.e. the Pareto front) as it offers greater 
benefits to the overall planning and design performance.

5. Discussion & further developments

Although both design applications are simplified for meth-
odological illustration purposes, they already demonstrate the 

Table 3. Results of the objective functions (O1::4) and the corresponding preference functions (P1::4, 1::4) of the floating wind design application.

Optimisation methods OPD [days] PPD OC [e] PC OF PF OS [t] PS

Single objective OC (SODO costs) 110.5 5 9.96E6 69 0.50 60 3868 73
MODO min-max 91 43 10.45E6 38 0.04 97 7135 15
MODO IMAP 72.5 70 10.47E6 37 0.35 74 3722 79

Table 4. Evaluation of different design configurations per optimisation method and their relative ranking (based on aggregated pref-
erence scores) for the floating wind design application.

Optimisation methods x1 x2 x3 x4 [m] x5 [m] Aggregated preference score

Single objective OC (SODO costs) 0 0 1 2.2 8.0 69
MODO min-max 1 0 2 2.2 8.0 0
MODO IMAP 1 0 1 2.2 8.0 100
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added value of the Preferendus/IMAP in the field of multi- 
objective design optimisation. In addition, the Preferendus/ 
IMAP demonstrates its practical value through its application 
and validation in the following real-life projects: (1) the pri-
mary design and construction/production management proc-
esses of the marine contractor Boskalis (Van Heukelum, 
Steenbrink, et al., 2023); (2) the EU NRG-Storage research 
project (Zhilyaev et al., 2022); (3) several PhD/MSc thesis 
project applications (Shang, Nogal, et al., 2023; Shang et al., 
2021; Van Eijck & Nannes, 2022). In all projects, stakeholders 
with decision-making power (on both the developer and con-
tractor side) are predominantly positive about the unexpected 
design solutions they could not have achieved without the 
use of this computer-aided design ‘engine’, the Preferendus, 
as part of the Odesys methodology.

For both design applications (rail level-crossing and float-
ing wind turbine), a major extension of the models is cur-
rently underway to better fit the design/decision problem in 
practice, so that both more realistic design performance and 
also better preference functions will be included. For the 
floating wind application, this means that OpenFAST, an 
open-source wind turbine simulation tool, is linked via a 
surrogate model and integrated at the level of design 
performance functions. For the level-crossing application, the 
modelling input will be refined at all levels (focus on the pref-
erence and objective functions). In addition, for the floating 
wind application, but also for a dredging application, valid-
ation sessions will be carried out to refine the modelling 
inputs (especially the performance functions) and to evaluate 
the results, especially of the new IMAP and the existing min- 
max methods. This is done in the form of a serious game, 
using the Preferendus as design support ‘engine’, with the 
aim of increasing the internal acceptance and the link with 
the iterative group design engineering process.

Based on these current developments, at least three main 
focuses for the further development of the Preferendus can 
be formulated:

1. The output depends not only on the best possible 
design performance functions, but also on a good 
reflection of human objectives and preferences. 
Especially for the latter, further preference elicitation 
research is needed to arrive at balanced preference 
functions with corresponding individual preferences as 
input.

2. The result of the optimisation may also be an empty 
design solution space: i.e. a so-called stalemate situation. 
In this case, additional decision support functionality 
will need to be provided to support stakeholders to 
achieve the best possible negotiation to still arrive at an 
acceptable design solution space.

3. The design performance functions are currently deter-
ministic. However, for more realistic applications, prob-
abilistic design modelling techniques will need to be 
integrated, e.g. for the offshore design application, 
uncertainty in working hours or operational weather 
slots. Improvements to the current Discrete Event 

Simulator (DES) may be required, particularly for 
repetitive production and installation operations.

In addition, the Preferendus and the IMAP method will 
be applied in other systems design and management applica-
tions, such as dynamic preference and performance-based 
mitigation control (MitC) of large construction projects and 
optimal planning of flood defence system reinforcements 
(see e.g. Kammouh, Nogal, Binnekamp, and Wolfert (2022); 
Klerk, Kanning, Kok, and Wolfert (2021)). For application 
within the European NRG-Storage project (European 
Commission NRG-STORAGE project (no. GA 870114)), the 
current Preferendus model will be evaluated against the min- 
max optimisation approach in a real-life context. This will 
be done as an extension of an MSc thesis project in which 
the added value of the Preferendus within the so-called social 
cycle of an urban planning project was studied in more 
detail within a municipality (Van Eijck & Nannes, 2022).

Furthermore, the added value within the so-called con-
current engineering and design developments in the field of 
‘Early Contractor Involvement’ is also investigated. In par-
ticular, the Preferendus will be used to support and evaluate 
the new so-called two-phase contract for infrastructure proj-
ects, in which the activities of the Dutch national infrastruc-
ture service provider (RWS) and its contractors are further 
intertwined, in order to avoid major contract changes that 
are the result of the classic serial, non-participative design 
and engineering process.

Finally, the Odesys methodology has already been taught, 
and further tested and validated in several MSc courses in 
Systems Engineering Design at the Faculty of Civil 
Engineering & Geosciences at Delft University of Technology 
this year. The purpose is to further explore the added value 
and potential improvements of the Preferendus as soon as 
possible. Within these courses, MSc students develop a 
Preferendus/IMAP-based model of a self-chosen real-life sys-
tem of interest as part of the so-called Open Design Learning 
(ODL) response (for more details on the ODL response, see 
Wolfert, van Nederveen, and Binnekamp (2022)). Some find-
ings from these courses have already been incorporated into 
the current Preferendus code, see the data availability state-
ment for further details.

6. Conclusions

The aim of the Odesys methodology is to promote the 
adoption of engineering artefacts in our future society by 
following an open space/source design and systems integra-
tion approach supported by sound mathematical open glass 
box optimisation models. This as a means to achieve well 
informed decision-making leading to the best-fit open-ended 
solutions for socio-eco purpose. This requires systems think-
ing and a stakeholder-oriented focus to explore different sol-
utions within an open-ended optimisation process, uniting 
both capability (technological) derived from the engineering 
asset’s performance and desirability (sociological) derived 
from each stakeholder’s preferences. This results in an open 
dialogue and a co-design approach that enables a priori 
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best-fit for common-purpose design synthesis dissolutions 
rather than a posteriori design compromise absolutions.

This paper presents a pure a priori socio-technical sys-
tems integration and design methodology, together with a 
new Integrative Maximised Aggregated Preference (IMAP) 
optimisation method. Furthermore, IMAP has been inte-
grated into the Preferendus tool, which combines state-of- 
the-art principles of PFM with a specifically developed 
inter-generational GA optimisation solver. Two specific 
engineering systems design applications have been worked 
out by first using the threefold diagram to formulate the 
mathematical problem statement. The resulting outcomes of 
these applications clearly demonstrate the added value of 
IMAP/Preferendus.

Firstly, it provides a single best-fit for common-purpose 
design point, unlike a Pareto front where a systems designer 
still has to choose the final design because the front does 
not define a single optimal design point. This solves an 
important modelling error, in addition to the fact that clas-
sical design optimisation methods leading to these Pareto 
fronts contain fundamental aggregation errors, namely that 
design configurations lying on the Pareto front cannot all 
have the same preference scores.

Secondly, IMAP returns the best design configuration in 
all design applications compared to a set of single-objective 
design configurations and a design configuration obtained by 
the classical multi-objective min-max method. This allows 
IMAP to be characterised as a real synthesis multi-objective 
design method that ensures a best-fit for common-purpose 
point within the design space, rather than a sub-optimal 
one-sided corner point and/or a best point in the feasibility 
space only.

Finally, IMAP/Preferendus truly unites design perform-
ance functions (supply), via the level of inter-play objective 
functions, with stakeholder’s preference functions (demand), 
synthesising for the best-fit for common-purpose solution 
and outperforming one-sided design approaches that focus 
only on the technical domain. This means that the IMAP/ 
Preferendus is either equal to other design methodologies in 
the technical domain but outperforms methodologies within 
the management domain (see design application 2: a float-
ing wind turbine installation) or outperforms other design 
methodologies in both the technical and the management 
domains (see design application 1: a rail level-crossing ser-
vice life design).
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Appendix A. The inter-generational GA solver

To find the design configuration that reflects the integrative maximum 
aggregation of reference, it is necessary to use an optimisation algorithm. 
Furthermore, this algorithm must also be able to interact with the Tetra, 
the multi-criteria decision analysis (MCDA) software tool based on 
Preference Function Modelling (PFM). The algorithm of the non-linear 
Tetra solver is based on minimising the least-squares difference between 
the overall preference score and each of the individual scores (on all deci-
sion criteria) by computing its closest counterpart (for more information 
on the Tetra software, see Scientific Metrics (n.d.)).

For this purpose, a Genetic Algorithm (GA) has been developed 
that is specifically tailored to work with a PFM solver (like Tetra) and 
its specific features of normalised scores and relative ranking. First, 
these features are described.
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A.1. normalised scores

Preference scores are expressed as numbers on a defined scale, here 
ranging from 0 to 100, where 0 is the ‘worst’ scoring design configur-
ation/alternative and 100 is the ‘best’. This means that the best alterna-
tive will always have a score of 100 and the worst alternative will 
always have a score of 0. Since a GA typically checks whether the best 
score of the current generation (Gn) outperforms the previous one 
(Gn−1), normalised scores will lead to convergence problems; the GA 
cannot determine whether an improvement occurs, since the best alter-
native will always have a score of 100.

Also, in the case of constrained problems, where the alternative with 
a score of 100 may be infeasible and should be disregarded, conver-
gence problems persist. In this case, it is possible that the best feasible 
design alternative will have a lower preference score in generation Gn 
compared to generation Gn−1: This is because, due to normalisation, 
the score of one alternative always depends on the performance of all 
other alternatives. This must be taken into account in the GA solver.

A.2. Rank reversal

Rank reversal, the notion that ranks might change when an alternative 
is added or removed from the population, is common in various 
MCDA models and is also present in Tetra (Aires & Ferreira, 2018; 
Y.-M. Wang & Luo, 2009). This phenomenon is commonly observed 
when non-competitive (i.e. irrelevant) alternatives are added or 
removed from the population (Aires & Ferreira, 2018). In short, espe-
cially when extreme or ’irrelevant’ (i.e. without any real meaning) 
alternatives are added/removed, rank reversal can occur, potentially 
leading to convergence problems in finding the best solution by evalu-
ating whether the generation (Gn) outperforms the previous one 
(Gn−1). Furthermore, since an initial population is generated (quasi) 
randomly, it is not unlikely that extreme or irrelevant alternatives will 
be part of the first generation evaluated by the GA. These alternatives 
would never be considered in reality, creating a discrepancy between 
the GA solver and real-life design alternatives that should be mitigated 
to achieve convergence.

A.3. Modifications to the GA

To solve the aforementioned issues arising from normalisation and 
rank reversal, the following modifications were applied, resulting in a 
so-called inter-generational GA solver:

1. An additional step must be added to the evaluation of a gener-
ation. After determining the aggregated preference scores for the 

entire population, the member with the highest rank is added to a 
list. This list contains the best members of all generations 
(Gn, Gn−1, :::, G0) and is evaluated separately to obtain an aggre-
gated preference score for all members in this list. If the aggre-
gated preference score associated with generation Gn is lower than 
that of Gn−1, no improvements are made. However, if the score 
of generation Gn equals is 100, the GA has either improved or, if 
the score of generation Gn−1 is also 100, has found a temporary 
optimum.

2. The initial population can be built from user-defined initialised 
solutions. These solutions can be chosen arbitrarily or guided by 
the single objective and/or min-max design optimisation results. 
this means that the initial population is no longer (quasi) random 
and reflects true potential design points, reducing the probability 
of non-convergence from the start. After the first (initial) popula-
tion has been evaluated, mutation will begin to diversify the 
population during the creation of the next generation, making it 
possible to reach another optimal solution even though the initial 
population is directionally determined.
Note that this implementation of ’arbitrary’ initialised solutions is 
also very useful for validating the results. Running the same prob-
lem with different starting points can confirm that the result is 
indeed optimal.

3. After the initial evaluation of the function U (see Equation (1)), an 
additional re-evaluation is introduced by feeding the GA with as 
many potential real-life design points as possible. This is done by 
re-evaluating the population in such a way that the very worst 
alternatives that (potentially) reflect irrelevant, non-competitive 
alternatives are excluded. This means that after the population has 
been evaluated for a first time, only alternatives with an aggregated 
preference score higher than a certain lower limit P� (which can 
be set by the designer, here fixed at 20) are re-evaluated a second 
time, thus improving GA convergence.

These three modifications have been added to a fit-for-purpose 
inter-generational solver GA, incorporating key elements from stand-
ard available GA Python packages, allowing the aggregated results of 
one generation to be compared with another. See the data availability 
statement for details on how to access the code of this solver.

Note that the aforementioned modifications are the result of prag-
matic engineering judgement using the principle of reflection and after 
validation of a large number of example problems. As a possible spe-
cific step for further research, it may be of interest (also from the per-
spective of improved solving speed) to investigate whether other 
optimisation algorithms than a GA might be more suitable for this 
specific purpose.
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