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This paper describes the preliminary results of an effort tocompile data from a large number of studies
that investigated the effects of variations in motion filtersettings on pilot behavior. The main objective of
this study is to formulate a set of mathematical rules that will allow for the tuning of behavioral pilot models
to a certain motion cueing setting. To achieve this, data fordifferent dependent measures such as tracking
performance, pilot-vehicle system crossover frequencies, and pilot model parameters, taken from ten different
experiments that considered pilot tracking behavior undervarying rotational or translational motion cueing
settings, has been combined. By checking the correlation ofthe variation in any of these dependent measures
and parameters that quantify the applied variation in motion cueing, a number of consistent relations has
been identified. The most consistent and clear effects that are found from this analysis are variations in some
important dependent measures with the motion filter gain at 1rad/s. Over the full range of motion filter gains
at 1 rad/s from 0 to 1, a reduction in pilot visual gain of around 20% is observed with reducing motion filter
gain, in combination with a 30% increase in the amount of visual lead equalization adopted by pilots.

Nomenclature

E Fourier transform ofe
e Tracking error signal
fd Disturbance forcing function
ft Target forcing function
Hc Controlled dynamics
He,fd Closed-loop disturbance-to-error dynamics
He,ft Closed-loop target-to-error dynamics
Hm Motion perception/equalization dynamics
Hmf Motion filter dynamics
Hnm Neuromuscular system dynamics
Hol,d Disturbance open-loop dynamics
Hol,t Target open-loop dynamics
Hpv

Pilot visual response
Hpm

Pilot motion response
Hsv Simulator visual cueing dynamics
Hsm Simulator motion cueing dynamics
Hÿ,x Controlled motion dynamics
Hc Controlled element dynamics
j Imaginary unit

K Motion filter gain
Km Pilot motion gain
KS Motion filter gain at 1 rad/s
Ks Pilot control scaling gain
Kv Pilot visual gain
n Remnant signal
R Correlation coefficient
s Laplace operator
TI Pilot visual lag time constant
TL Pilot visual lead time constant
Uc Fourier transform ofuc

u Pilot control signal
uc Scaled pilot control signal
X Fourier transform ofx
x Controlled element state
Y Generic motion fidelity metric
ÿ Motion feedback signal
Z Generic dependent measure
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Symbols

αYref
Linear regression offset

β Linear regression coefficient
δc Controlled element input
ζn Motion filter damping ratio
ζnm Neuromuscular damping ratio
σ2
e Tracking error variance

σ2
u Pilot control signal variance

τm Pilot motion time delay, s
τv Pilot visual time delay, s
ϕm,d Disturbance phase margin, deg
ϕm,t Target phase margin, deg

φS Motion filter phase at 1 rad/s, deg
ω Frequency, rad/s
ωb Motion filter second break frequency, rad/s
ωc,d Disturbance crossover frequency, rad/s
ωc,t Target crossover frequency, rad/s
ωn Motion filter break frequency, rad/s
ωnm Neuromuscular frequency, rad/s

Subscripts

Normalized
1 ForKS = 1
ref Predictor reference setting

I. Introduction

Much of our current knowledge on human manual control behavior has come from the considerable database of
behavioral measurements that have been collected for single-loop compensatory tracking tasks.1 Using this extensive
database, it has been shown that single-loop pilot trackingbehavior during compensatory tracking tasks can be mod-
eled at high accuracy using quasi-linear pilot models.1, 2 The fitting of such quasi-linear pilot models to measurements
of pilot tracking behavior has allowed for a quantitative evaluation of changes in pilot dynamics due to a number of
different factors, thereby increasing our understanding of human operation during manual control. Furthermore, rules
have been developed that allow for intuitive tuning of such single-loop models of pilot tracking behavior to the defin-
ing features of the considered control task, such as the dynamics of the controlled element and the characteristics of
the applied forcing function signals.1, 2 This set of rules thereby allows for prediction of pilot control behavior during
tracking for certain combinations of controlled elements and forcing function signals without having to resort to ex-
perimental evaluation of pilot control behavior and has shown its merit in various areas of human-machine interaction
research.

The presence of physical motion feedback of the controlled element state has been shown to yield pilot control
behavior during compensatory control tasks that is markedly different from that observed for single-loop tasks where
motion feedback is not available.3, 4 A research question that is currently of interest to the flight simulation community
is how, and to what extent, pilot tracking behavior is affected by the usage of simulator motion cueing strategies as
commonly adopted in full-motion flight simulation.5, 6 To answer this question, and to allow for the prediction of
changes in pilot behavior due to a selected simulator motioncueing strategy, a set of rough tuning rules for incorpo-
rating the approximate effects of cueing settings on pilot behavior into pilot models – preferably validated through
extensive experimental measurements – would be a valuable tool. Unfortunately, largely due to the complexity of hu-
man perceptual processes and manual control behavior in multimodal environments, such a standardized set of rules
for pilot model tuning that includes the effects of the supplied physical motion cues does not exists yet.

A large research project at Delft University of Technology attempts to contribute to solving this problem by tracing
observed changes in measured pilot tracking behavior during tracking tasks with physical motion feedback back to
the selected flight simulator motion cueing settings.7 The final objective of this study is to use these measurements
of pilot behavior, and a comparison with measurements of true in-flight tracking behavior, to define a behavioral
flight simulator motion fidelity criterion. Given a certain control task or maneuver, this criterion is meant to allow
for selecting a flight simulator motion cueing setting that will yield pilot behavior that is as close to that observed in
real flight as possible. Despite not being representative for all aspects of aircraft control, compensatory tracking tasks
where physical motion feedback is available in addition to visual error information are used in this study to evaluate the
underlying multimodal motion perception and integration processes that are important during manual aircraft control.
Similar to the single-loop case studied by McRuer et al.,1 these multimodal tracking tasks have been shown to allow
for the modeling, and thereby the explicit quantification, of changes in pilot control strategy by using quasi-linear
multimodal pilot models.4, 8

This paper provides the first result of our effort in compiling data from a number of experiments from which
measurements of multimodal pilot behavior under varying motion cueing conditions are available. Data have been
collected from a number of investigations performed at Delft University of Technology7, 9–12 and from a number of
studies found in literature.4, 8, 13–15This paper will provide a short overview of the scope and setup of all these different
experiments. The main objective of this paper, however, is to use the total set of collected data to identify consistent
trends in typical dependent measures of pilot control strategy and the parameters that define the applied motion cueing
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setting. The main dependent measures by which the effect of simulator motion cueing on pilot tracking behavior will
be evaluated in this paper are:

1. tracking performance and control activity

2. pilot-vehicle system crossover frequencies and phase margins

3. identified multimodal pilot model parameters

A relation is sought between these different dependent measures of pilot tracking behavior and typical metrics that
quantify the level of simulator motion attenuation by the motion filter. Examples of metrics that are considered are the
motion filter parameters (gain, break frequency) and motionfilter gain and phase distortion at a certain frequency, for
example, the 1 rad/s evaluation frequency proposed by Sinacori.16 A rudimentary set of pilot model tuning rules will
be obtained by fitting a linear regression through combinations of dependent measures and motion fidelity metrics for
which a clear correlation is present.

II. Background

II.A. Simulator Motion Fidelity

Due to severe limitations on the motion capabilities of flight simulators, motion washout algorithms are required for
attenuating and limiting the simulated aircraft motion. A large diversity in washout algorithms has been developed
over the years.17–19 One of the biggest challenges facing the flight simulation community, however, has been finding
an appropriate criterion for the evaluation of simulator motion cueing fidelity and defining the minimum requirements
for simulator motion cueing for pilot training and other flight simulator applications.

One of the first efforts to define a structured and practical methodology for the assessment of simulator motion
fidelity was the work of Sinacori,16 who proposed a motion fidelity criterion based on the combination of motion
filter gain and phase distortion introduced by motion filtersat a frequency of 1 rad/s. This frequency, though still the
topic of much debate, was selected as much of the activity during manual aircraft control was thought to be centered
around this frequency range. The criterion proposed by Sinacori was later modified and validated by Schroeder20 using
subjective motion fidelity assessments for various helicopter tasks.

Hess et al.21 defined a more analytical methodology for evaluating simulator motion fidelity from the effect
of a motion filter on the dynamics of the combined simulator, aircraft, and pilot system in a flight simulator. For
a helicopter lateral translational maneuver, Hess et al. showed that their chosen criterion was indeed sensitive to
variations in motion cueing fidelity. Hess and Marchesi22 later showed this analytical method to also be applicable to
other types of aircraft and maneuvers.

The most recent effort into the formulation of a standard forthe assessment of flight simulator motion fidelity is
the work of Advani and Hosman.23 Their proposed motion fidelity criterion, which is currently being included in the
ICAO 9625 manual for the qualification of flight simulator devices, considers the dynamics of the simulator motion
hardware in addition to those of the motion cueing algorithm, and evaluates the total motion cueing dynamics over a
frequency range that is thought to be important for manual aircraft control.

The work described in this paper is part of a research effort that attempts to develop a framework for assessing sim-
ulator motion fidelity from measurements of pilot control behavior.7 By measuring changes in pilot control behavior
that result from applied changes in simulator motion cueing, as opposed to relying on subjective motion fidelity rating
procedures, it is hoped that some experimental validation of the criteria proposed for evaluating simulator motion
fidelity can be provided.

II.B. Pilot Tracking Behavior

Fig. 1 shows a generalized and extensive schematic representation of a closed-loop aircraft manual tracking task
performed in a flight simulator environment, which is valid for the tracking tasks performed in all of the studies into
the effects of motion filter dynamics on pilot behavior considered in this paper. The target and disturbance forcing
function signals that induce pilot tracking behavior and thereby define the type of tracking task under consideration
(target following, disturbance rejection, or the combination of both) are depicted in Fig. 1 with the symbolsft andfd,
respectively. As can be verified from Fig. 1, a distinction ismade between simulator, pilot, and controlled element
dynamics. Simulator dynamics include the characteristicsof the simulator visual and simulator motion cueing systems
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Figure 1. Schematic representation of a compensatory tracking task with motion feedback.

(Hsv (jω) andHsm(jω), respectively), in addition to the dynamics of the applied motion filter which are indicated by
theHmf (jω) block.

As can be verified from Fig. 1, this study considers control tasks for which pilot control behavior can be represented
as the sum of two parallel responses to visual and motion information.8 The pilot visual responseHpv

(jω) captures
pilots’ control dynamics in response to presented trackingerrorses, while the pilot motion responseHpm

(jω) models
pilots’ responses to cued motion informationÿs. The remnant signaln, which accounts for all nonlinear contributions
to the pilot control inputu,2 completes this quasi-linear model of pilot tracking behavior.

The controlled element dynamics are defined to consist of twoseparate parts: the controlled dynamics and the
motion dynamics. The former,Hc(jω), are the dynamics that drive the vehicle state that is controlled by the pilot,x.
The motion dynamicsHÿ,x(jω) define the transformation from the controlled statex to the variable that enters the
pilot’s motion response channelHpm

(jω). WhenHpm
(jω) captures pilots’ responses to angular or translational cues

perceived through the vestibular system (through the semicircular canals or otoliths, respectively)24 – as is the case for
most control tasks considered in this paper – motion cueing provides pilots with feedback of the acceleration of the
controlled element state, soHÿ,x(jω) = (jω)2. However, more extensive transformations between controlled state
and motion feedback quantities exist in some studies, for instance for the aircraft pitch control tasks with variation in
the coupled heave motion cueing considered in Refs. 11 and 25. Note that a further scaling of pilot control inputs,
resulting from a control scaling gainKs, is present in some of the considered studies.

II.C. Motion Fidelity and Tracking Behavior

As can be verified from Fig. 1, the closed-loop pilot-vehiclesystem dynamics in a closed-loop control task will be
affected by the presence of a motion filter. For instance, thefollowing relations can be derived from Fig. 1 for
the disturbance and target open-loop responses, whose crossover frequencies and phase margins can be used for
assessing closed-loop pilot-vehicle system performance and stability for disturbance rejection and target-following,
respectively:4

Hol,d(jω) = −
Uc(jω)

δc(jω)
= [Hsv (jω)Hpv

(jω) +Hÿ,x(jω)Hmf (jω)Hsm(jω)Hpm
(jω)]KsHc(jω) (1)

Hol,t(jω) =
X(jω)

E(jω)
=

Hsv (jω)Hpv
(jω)KsHc(jω)

1 +Hÿ,x(jω)Hmf (jω)Hsm(jω)Hpm
(jω)KsHc(jω)

(2)

Similarly, the corresponding closed-loop forcing function to error responses, which are indicative of the success
of the closed-loop system depicted in Fig. 1 in attenuatingfd and followingft, are given by:

He,fd(jω) =
E(jω)

Fd(jω)
=

−Hc(jω)

1 + [Hsv (jω)Hpv
(jω) +Hÿ,x(jω)Hmf (jω)Hsm(jω)Hpm

(jω)]KsHc(jω)
(3)

He,ft(jω) =
E(jω)

Ft(jω)
=

1 +Hÿ,x(jω)Hmf (jω)Hsm(jω)Hpm
(jω)KsHc(jω)

1 + [Hsv (jω)Hpv
(jω) +Hÿ,x(jω)Hmf (jω)Hsm(jω)Hpm

(jω)]KsHc(jω)
(4)

First of all, Equations (1) to (4) indicate that the effect ofthe motion filter dynamicsHmf (jω) on these open-loop
and closed-loop relations depends on the dynamics of all other elements shown in Fig. 1. In addition, compared to
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the case where no motion filter is present (Hmf (jω) = 1), pilots may adapt their control dynamics in response to a
motion filter with certain dynamics being introduced to (partially) compensate for the effect the motion filter dynamics
have on the closed-loop system. The most elementary examplethat can be given is the case where motion cues are
attenuated by a pure gain,Hmf (jω) = K. As long as the gain does not cause the motion cues to become smaller than
human motion perception thresholds,10 pilots could simply respond to the lower magnitude motion information (̈ys)
with a higher gain. If they succeed in increasing the gain ofHpm

(jω) with around1/K, this means the governing
open-loop and closed-loop dynamics remain approximately the same, as can be verified from Eqs. (1) to (4).

Much like the work of Hess et al.,21 this project is concerned with the effects of the presence ofa motion filter
on the dynamics of the closed-loop pilot-vehicle system as depicted in Fig. 1. However, unlike previous work on this
topic, the focus is on how these changes in the closed-loop tracking task dynamics induce changes in pilot control
behavior, to partially alleviate the effects of the motion filter dynamics on the closed-loop characteristics, and to obtain
quantitative measurements of these changes in pilot behavior from human-in-the-loop evaluations.7

III. Method

III.A. Selection Criteria: Dependent Measures

A large number of studies have been dedicated to the evaluation of the effects of simulator motion cueing on pilot
performance, motion perception, and control behavior. An excellent recent overview of a large number of these
studies is given by Schroeder and Grant.5 For the current paper, only a specific subset of the large bodyof literature on
the effects of motion filters is of interest due to the focus onmeasured changes in pilot behavior. The main requirement
for a study to be included in this overview is that it should provide some behavioral measurement over a number of
different motion cueing conditions, most preferably through models of pilots’ dynamical responses (Hpv

(jω) and
Hpm

(jω), as defined in Fig. 1). These dynamical pilot responses are typically modeled with linear models that can be
deduced from or are equivalent to the equations given by:

Hpv
(jω) = Kv

(1 + TLjω)
2

1 + TIjω
e−jωτvHnm(jω) (5)

Hpm
(jω) = KmHm(jω)e−jωτmHnm(jω) (6)

Hnm(jω) =
1

(

jω
ωnm

)2

+ 2ζnm

ωnm
jω + 1

(7)

Eq. (5) defines the most elaborate form of the modeled pilot response to visual cues considered in this study,
consisting of a pure gain, a lead-lag equalization element,a pure delay term, and the low-pass neuromuscular actuation
dynamics model given by Eq. (7). As detailed in Ref. 26 the full lead-lag equalization element shown Eq. (5) is required
for capturing pilot dynamics during control of certain conventional aircraft pitch dynamics, but may, for instance, be
reduced to a pure first-order lead or a pure gain for controlled elements that have approximately double or single
integrator dynamics in the crossover region, respectively.1

For modeling of pilots’ responses to motion information, typically models of the form of Eq. (6) are adopted.
Similar to the model for the pilot visual response, these models also include pure gain and pure delay terms and the
same neuromuscular actuation model. In addition, Eq. (6) includes the further unspecifiedHm(jω) terms, which
represents further possible contributions to the pilot motion dynamicsHpm

(jω) such as (vestibular) sensory dynamics
and possible equalization dynamics, similar to the lead-lag element in Eq. (5). In this study, we limit ourselves to the
measurements of the pilot motion gainKm and delayτm, that is, changes in these further dynamics of pilots’ motion
responses are not considered.

Table 1 lists the full set of dependent measures selected forthe overview of motion filter effects provided by this
paper. In addition to the parameters of the considered behavioral models of pilot behavior listed in the final column of
Table 1, two additional groups of dependent measures are considered: performance measures and pilot-vehicle system
crossover characteristics. In many studies into the effects of motion cueing on pilot behavior, performance measures
such as the variance of the recorded tracking error and control signals are considered as dependent measures, as
these metrics are often found to signal underlying changes in pilot behavior. Similarly, pilot-vehicle system crossover
parameters reveal how possible changes in pilot behavior affect the dominant characteristics of the combined open-loop
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Table 1. Considered dependent measures.

Performance Measures Crossover Characteristics Pilot Behavioral Parameters

Symbol Definition Symbol Definition Symbol Definition

σ2
e Tracking error variance ωc,d Disturbance crossover frequencyKv Pilot visual (error) gain

σ2
u Control input variance ωc,t Target crossover frequency TL Pilot visual lead time constant

ϕm,d Disturbance phase margin TI Pilot visual lag time constant

ϕm,t Target phase margin KvTL Pilot visual lead gain

Km Pilot motion gain

τm Pilot visual delay

τm Pilot motion delay

ωnm Neuromuscular system natural frequency

ζnm Neuromuscular system damping ratio

pilot-vehicle system in the important frequency range around gain crossover.1 Note that due to the different open-
loop response definition for target-following and disturbance-rejection tasks,4 see Equations (1) and (2), crossover
frequencies and phase margins for both target-following and disturbance-rejection loops are separated. Furthermore,
this implies that for studies that consider pure target-following or disturbance-rejection tasks only one set of crossover
frequencies and phase margins is available.

III.B. Predictors: Motion Fidelity Measures

For attenuating the simulated aircraft motion and for washing out flight simulator motion typically a combination of
pure gain attenuation and high-pass filtering is adopted in flight simulation.17 Due to the fact that the required amount
of attenuating and filtering is highly dependent on the vehicle, maneuver, simulator axis, and perhaps even the pilot
who is executing the maneuver, there is quite some variationin the dynamics of the adopted washout filter dynamics
(Hmf (jω) in Fig. 1). For the studies considered in this paper, washoutdynamics vary from 0th order (pure gain) to 3rd

order high-pass filters:

0th order: Hmf (s) = K (8)

1st order: Hmf (s) = K
s

s+ ωn
(9)

2nd order: Hmf (s) = K
s2

s2 + 2ζnωns+ ω2
n

(10)

3rd order: Hmf (s) = K
s2

s2 + 2ζnωns+ ω2
n

s

s+ ωb
(11)

The washout filter order has a dominant effect on the level of fidelity of the supplied simulator motion cues. For
constant parameter settings, motion fidelity decreases with increasing filter order, as increasingly more low-frequency
motion is attenuated and phase distortion increases rapidly for higher order filters. The level of motion fidelity is
of course also affected by the parameters of the different washout filters listed in Eq. (8) to (11) define the level of
supplied motion fidelity. Generally higher filter gainsK and lower (dominant) break frequenciesωn correspond to
higher fidelity motion cueing.16

The objective of this study is to relate measured changes in any of the dependent measures listed in Table 1 to some
important measure of simulator motion fidelity. If a clear correlation exists between some combination of dependent
measure and fidelity measure, this means this fidelity measure can be used as a predictor of the observed change in the
dependent measure. A natural first choice for measures of motion fidelity are of course the washout filter parameters:
the filter gainK, the filter break frequencyωn, the filter damping ratioζn, and the additional first-order filter break
frequencyωb. The dominant parameters with the largest effect on the washout filter dynamics are the filter gainK and
the filter break frequencyωn. Hence, these two parameters were selected as a first set of possible predictor variables.

Filter parameters, however, do not account for the effect offilter order. This makes comparison of the level of
motion fidelity by evaluating these parameters between studies with different order washout filters difficult. This was
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Figure 2. Compiled translational and rotational motion filter settings from literature.

also recognized by Sinacori, who therefore proposed the usage of the gain and phase distortion at a frequency of 1
rad/s induced by the motion filter as indicators of motion fidelity:

KS = |Hmf (jω)| with ω = 1 rad/s (12)

φS = 6 Hmf (jω) with ω = 1 rad/s (13)

The motion filter gain and phase distortion at a certain evaluation frequency are, of course, a function of the filter
order in addition to the filter parameters. Furthermore, it should be noted that in addition to the filter order,φS is only
affected by the washout dynamics and hence the selected value ofωn (assuming constantζn andωb). The absolute
value ofHmf (jω), however, is not only affected by the filter gainK, but also by the filter break frequencyωn. This
makesKS a metric that captures, to some extent, the cumulative effect of variations in filter gain and break frequency.

In addition to the motion filter gain and phase distortion at 1rad/s as given by Eqs. (12) and (13), also other
evaluation frequencies – such as 0.5 and 2, and 3 rad/s – were considered as fidelity metrics in this study. This paper,
however, will only analyze trends in the dependent measuresas a function ofKS andφS , as the other evaluation
frequencies were not found to yield markedly different results for the considered set of experimental measurements.

III.C. Selected Studies

Table 2 presents the details of the ten studies that have so far been included in the data base considered in this paper.
Note that in Table 2 a distinction is made between studies that investigated translational and rotational motion cueing.
In addition to a short description of the considered controltask, Table 2 presents the motion filter dynamics and the
different sets of motion filter parameters evaluated in eachstudy. Fig. 2 further depicts the motion filter dynamics
evaluated in all studies in the form of the motion fidelity criterion proposed by Sinacori,16 using the definition of the
different fidelity regions proposed by Schroeder.20

Note from Table 2 and Fig. 2 that more studies that evaluated pilot tracking behavior with variations in rotational
cueing are available. Furthermore, translational motion is typically a lot more problematic with respect to the cueing
in flight simulators than rotational motion, due to the largestroke required for presenting, especially low-frequency,
aircraft translational motion. This is also observable from Fig. 2, which shows that the motion filter settings that
were evaluated for rotational cueing (Fig. 2b) were typically less restrictive – that is, were closer to the dark gray
high-fidelity region – than those considered for translational cueing experiments (Fig. 2a).
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Table 2. Studies with translational or rotational motion cueing variation included in the literature overview.

Symb. Ref. Control Task Filter Filter Settings

T.A 11

Conventional aircraft pitch control
task (target-following and disturbance-
rejection, latter dominant), Cessna
Citation controlled element dynamics,
varying translational heave cueing,
heave cues represent motion wrt. aircraft
center of gravity, additional 1-to-1
rotational pitch motion on/off

K s2

s2+2ζnωns+ω2
n

s
s+ωb

T.A1 : K = 0.0

T.A2 : K = 0.6 ωn = 1.25 r/s ζn = 0.7 ωb = 0.3 r/s

T.A3 : K = 1.0 ωn = 1.25 r/s ζn = 0.7 ωb = 0.3 r/s

T.A4 : K = 0.6

T.A5 : K = 1.0

T.B 12

Conventional aircraft pitch control
task (target-following and disturbance-
rejection), Boeing 747 controlled
element dynamics, varying translational
heave cueing, heave cues represent
motion wrt. aircraft center of gravity,
additional 1-to-1 rotational pitch motion
on/off

K s2

s2+2ζnωns+ω2
n

s
s+ωb

T.B1 : K = 0.0

T.B2 : K = 0.5 ωn = 0.5 r/s ζn = 0.7 ωb = 0.3 r/s

T.B3 : K = 0.7 ωn = 1.25 r/s ζn = 0.7 ωb = 0.3 r/s

T.B4 : K = 0.3 ωn = 0.85 r/s ζn = 0.7 ωb = 0.3 r/s

T.C 15

Helicopter translational heave control
task, varying heave motion cueing, sep-
arate target-following and disturbance-
rejection tasks, helicopter dynamics with
“good” and “slightly degraded” vertical
responses

K s2

s2+2ζnωns+ω2
n

T.C1 : K = 1.0 ωn = 0.2 r/s ζn = 0.7

T.C2 : K = 1.0 ωn = 0.5 r/s ζn = 0.7

T.C3 : K = 1.0 ωn = 1.25 r/s ζn = 0.7

T.D 9

Conventional aircraft pitch attitude
target-following task, Cessna Citation
controlled element dynamics, varying
translational heave cueing, heave cues
represent motion wrt. aircraft center
of gravity, three levels of additional
rotational pitch cueing (K = 0.0, 0.5,
and1.0)

K s2

s2+2ζnωns+ω2
n

T.D1 : K = 0.0

T.D2 : K = 0.1 ωn = 0.75 r/s ζn = 0.7

T.D3 : K = 0.5 ωn = 2.0 r/s ζn = 0.7

R.A 7

Conventional aircraft roll control
task (combined target-following and
disturbance-rejection task), Cessna
Citation controlled element dynamics,
varying rotational roll cueing, no com-
pensation for lateral specific force cues
resulting from simulator roll

K s
s+ωn

R.A1 : K = 0.0

R.A2 : K = 0.5 ωn = 0.5 r/s

R.A3 : K = 1.0 ωn = 0.5 r/s

R.A4 : K = 1.0 ωn = 0.0 r/s

R.B 10

Pitch attitude control task (domi-
nant target-following and dominant
disturbance-rejection tasks performed
separately), double integrator controlled
element dynamics, pure scaling of the
supplied pitch motion cues (no washout)

K

R.B1 : K = 0.25

R.B2 : K = 0.5

R.B3 : K = 0.75

R.B4 : K = 1.0

R.C 8

Roll attitude control task (combined
target-following and disturbance-
rejection task), two controlled elements:
K/(s(s + 10)) andK/s2, priority III
conditions

K s
s+ωn

R.C1 : K = 1.0 ωn = 0.5 r/s

R.C2 : K = 1.0 ωn = 1.0 r/s

R.C3 : K = 1.0 ωn = 2.0 r/s

R.D 13

Two-axis pitch and yaw attitude
disturbance-rejection task, single inte-
grator controlled element dynamics in
both axes, pure scaling of the supplied
pitch motion cues (no washout)

K

R.D1 : K = 0.0

R.D2 : K = 0.0625

R.D3 : K = 0.125

R.D4 : K = 0.25

R.D3 : K = 0.5

R.D4 : K = 1.0

R.E 4

Conventional aircraft roll attitude con-
trol task (combined target-following and
disturbance-rejection task), controlled
element representative of a fighter air-
craft

K s
s+ωn

and

K s2

s2+2ζnωns+ω2
n

R.E1 : K = 1.0

R.E2 : K = 1.2 ωn = 0.85 r/s ζn = 0.7 2nd order

R.E3 : K = 1.0 ωn = 1.0 r/s

R.E4 : K = 0.7 ωn = 0.4 r/s

R.E5 : K = 0.53

R.E6 : K = 0.0

R.F 14

Conventional aircraft pitch and roll at-
titude disturbance-rejection tasks (per-
formed separately), controlled element
representative of a DC9-10 in the land-
ing/approach configuration

K s2

s2+2ζnωns+ω2
n

R.F1 : K = 1.0 ωn = 0.2 r/s ζn = 1.0

R.F2 : K = 1.0 ωn = 0.25 r/s ζn = 1.0

R.F3 : K = 1.0 ωn = 0.5 r/s ζn = 1.0

R.F4 : K = 0.0
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III.D. Pilot Model Tuning Rule Development

III.D.1. Data Normalization

The goal of this study is to obtain a quantitative indicationof the magnitude of pilot behavioral adjustments in response
to the presence of a motion filter with certain dynamics. The collected behavioral measurements from the studies listed
in Table 2 will therefore be used to see if consistent variations in any of the dependent measures listed in Table 1 and
any of the predictor variables introduced in Section III.B can be found. For a dependent measureZ and a predictor
variableY , this means we are looking for a prediction equationZ(Y ).

It should be noted that differences in the defining characteristics of the compensatory control tasks (for example,
controlled element dynamics, forcing function signals, and adopted display formats) naturally lead to large offsets in
some of the dependent measures listed in Table 1. For instance, a controlled element with double integrator dynamics
as used in Ref. 10 requires markedly more pilot lead equalization (higherTL) than typical aircraft pitch and roll
dynamics as controlled in the experiment of Ref. 14. As the relative change in the considered dependent measures
due to changes in motion filter dynamics is of interest to thisstudy, the data from all dependent measures has been
normalized with the mean of this dependent measure over all conditions for each experiment. For values of a dependent
measureZ taken from an experiment withNz different motion filter conditions, this gives:

Z[n] =
Z[n]

1
Nz

∑Nz

k=1 Z[k]
with n = 1 . . .Nz (14)

To illustrate the necessity of this normalization, Fig. 3 shows a side-by-side comparison of the raw data and the
result of the normalization of all measurements for the pilot visual lead time constantTL. Note from Fig. 3b that due to
the normalization according to Eq. (14), the normalized dependent measure represents the percentage-wise variation
in the dependent measure over the range of the selected predictor.

motion filter gain at 1 rad/s (KS), -

T
L

,s

(a) Raw data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

motion filter gain at 1 rad/s (KS), -

T
L

,−

(b) Normalized data

0 0.2 0.4 0.6 0.8 1
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1.3

1.4

1.5

Ref. 11: no pitch
Ref. 11: pitch
Ref. 12: no pitch
Ref. 12: pitch
Ref. 9: no pitch
Ref. 9: half pitch
Ref. 9: pitch
Ref. 7
Ref. 10: disturbance
Ref. 10: target
Ref. 8
Ref. 4
Ref. 14: pitch
Ref. 14: roll

Figure 3. Example of data normalization for pilot visual lead time constantTL according to Eq. (14).

III.D.2. Linear Regression Modeling

For all dependent measures, the normalized data were testedfor correlation with the considered measures of motion
filter characteristics (see Section III.B) by calculating Pearson’s correlation coefficientR.27 For absolute values ofR
of 0.3 and higher, the correlation between both variables was defined to be strong enough (“medium” correlation or
stronger27) to allow for modeling of the trend in the data using a linear regression. This linear regression represents a
relation between the normalized dependent measureZ and the independent (predictor) variableY given by:

Z(Y ) = β(Y − Yref ) + αYref
(15)

In Eq. (15),Yref represents the reference value of the predictor variableY , with respect to which the trend inZ
is to be predicted. The symbolsβ andαYref

are the linear regression coefficient and offset, which are determined by
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fitting the model of Eq. (15) to the normalized data using a least-squares fitting procedure. It should be noted that for
data as presented in Fig. 3b a different choice inYref (for instanceKS = 0 or KS = 1) affects the value ofαYref

for the corresponding regression model, but not the value ofβ. When converting Eq. (15) back to the non-normalized
dependent measureZ(Y ) (note thatαYref

= Z(Yref ) and use Eq. (14)) an equation results that can be used for linear
prediction of the considered dependent measure based on theparameters of the fitted linear regression:

Z(Y ) = Z(Yref )

[

β

αYref

(Y − Yref ) + 1

]

(16)

In Eq. (16),Z(Yref ) represents the value of the dependent measure at the reference value ofY . For a control task
where pilot behavior and pilot-vehicle system performanceand crossover characteristics are known for a reference
predictor setting,Z(Yref ), this allows for prediction of changes inZ for other values ofY according to Eq. (16). Note
from Eq. (16) that the coefficient that defines the magnitude of the change inZ due to a variation inY is given as the
fraction ofβ andαYref

, and hence is dependent on the choice of the reference predictor valueYref .

IV. Results

IV.A. Predictor Variable Selection

As explained in Section III.D, four different variables were considered as predictors for observed trends in the depen-
dent measures listed in Table 1: the motion filter gainK, the (dominant) motion filter break frequencyωn, the motion
filter gain at 1 rad/sKS , and the motion filter phase distortion at 1 rad/sφS . For all combinations of dependent mea-
sure and predictor variables plots as those depicted in Fig.3 were evaluated to investigate possible correlation between
the two considered metrics. Furthermore, the correlation coefficientsR calculated for all considered combinations of
dependent measures and predictors were calculated and are presented in Table 3.

Table 3. Correlation coefficients for all considered combinations of dependent measure and predictor. Bold font indicates |R| > 0.3.

Predictor
Dependent Measures Mean

σ2
e σ2

u ωc,d ωc,t ϕm,d ϕm,t Kv TL TI Km τv τm ωnm ζnm KvTL |R|

K -0.30 0.53 0.37 -0.09 -0.02 0.05 0.40 -0.33 -0.62 -0.11 0.32 -0.42 0.28 0.25 0.01 0.27

ωn 0.47 0.12 -0.61 0.57 0.49 -0.47 -0.15 -0.07 -0.23 0.32 -0.41 -0.22 0.06 -0.50 -0.40 0.34

KS -0.60 0.54 0.69 -0.26 -0.30 0.28 0.60 -0.49 -0.33 -0.11 0.40 -0.30 0.35 0.27 0.09 0.37
φS 0.18 -0.17 -0.52 0.38 0.41 -0.42 -0.16 0.05 -0.57 -0.09 -0.25 -0.05 -0.22 -0.03 -0.09 0.24

Each column in Table 3 presents the values ofR for one of the considered dependent measures (see Table 1). The
final column of Table 3 shows the average absolute correlation coefficient calculated across all dependent measures.
As can be verified from this final column, the strongest average |R| across all dependent measures is present for the
motion filter gain at 1 rad/s (KS). Based on this strongest average correlation across all dependent measures – although
a number of medium and strong correlations are also found forthe other predictors and considering that the average
correlation coefficient forωn is nearly as high as found forKS – the choice is made in this paper to focus onKS as
the most promising predictor variable.

Another reason for favoringKS as the predictor in this paper can be observed from Table 2 andFig. 2. Some of
the included studies considered pure-gain motion filter dynamicsK,10, 13 so no variation inωn andφS was available
for these experiments. Furthermore, as explained in Section III.B, KS is the only considered predictor variable that is
a function of both the motion filter gain (K) and filter characteristics (ωn). Though different combinations ofK and
ωn can still give the same value for this predictor,KS is still selected here as the most promising of the considered
predictor variables because of this property. All results presented in this section, and also the derived pilot model
tuning rules, will utilizeKS as the predictor.

It should be noted that the frequency of 1 rad/s at whichKS was selected for correspondence with the fidelity
criteria of Sinacori16 and Schroeder,20 but that evaluation of the filter dynamics at other frequencies in the range of
interest to manual control (see Section III.B) yielded highly similar results.

For prediction of changes in behavior due to variations in motion cueing, here the condition where no motion filter
is present, yielding 1-to-1 presentation of motion cues, will be considered as the baseline. For the selected predictor
variable this corresponds to the case whereKS = 1. Naturally, tuning rules could also be defined with respect to the
no-motion case (KS = 0), but for interpreting the effects of motion filters on pilotbehavior, the chosen convention
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(a) Tracking error variance

motion filter gain at 1 rad/s (KS), -

σ
2 e
,−

Normalized data,R = −0.60

Linear regression,β = −0.38, α1 = 0.79
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(b) Control input variance
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Normalized data,R = 0.54

Linear regression,β = 0.19, α1 = 1.11
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Figure 4. Variation in tracking performance and control activity as a function of KS .

was thought to be more intuitive. Substitution ofY = KS andYref = KSref
= 1 in Eq. (16) results in the following

structure for the linear prediction equations that will be derived in this paper:

Z(KS) = Z(1)

[

β

α1
(KS − 1) + 1

]

(17)

In Eq. (17),Z(1) represents the value of the considered dependent measure for the reference case whereKS = 1.
The symbolsβ andα1 are the parameters of the fitted linear regression model (seeSection III.D.2).

IV.B. Notable Trends in Dependent Measures

IV.B.1. Tracking Performance and Control Activity

Fig. 4 presents the normalized tracking error and control input variance data for the studies included in this overview.
Fig. 4 depicts the normalized data for both dependent measures as black markers, while the linear regression that was
fit through the data is shown as a solid gray line.

As can be verified from Fig. 4, for bothσ2
e andσ2

u a strong correlation (|R| > 0.5) with the variation inKS is
present. Fig. 4 shows that an increase inKS is found to yield improved tracking performance (lowerσ2

e ) and increased
control activity (higherσ2

u). Substitution of the fitted values ofβ andα1 (indicated in the bottom legend entries in
Fig. 5) in the prediction equation given by Eq. (17) yields the following tuning rules forσ2

e andσ2
u:

σ2
e(KS) = σ2

e(1) [−0.48 (KS − 1) + 1] (18)

σ2
u(KS) = σ2

u(1) [ 0.17 (KS − 1) + 1] (19)

In Eqs. (18) and (19),σ2
e(1) andσ2

u(1) represent the level of tracking performance and control activity for the case
whereKS = 1, respectively. As can be verified from Fig. 4a and Eq. (18), tracking performance on average worsens
by 48% forKS = 0 compared toKS = 1. Similarly, Eq. (19) shows that control input variance is found to decrease
by 17% under the same variation ofKS.

IV.B.2. Pilot-Vehicle System Crossover Frequencies

For the phase margins of the disturbance and target open-loop responses (Eqs. (1) and (2)) –ϕm,d andϕm,t, re-
spectively – no|R| > 0.3 with KS was observed, as can be verified from Table 3. For the corresponding crossover
frequenciesωc,d andωc,t the normalized collected data and fitted linear regressionsare depicted in Fig. 5. Fig. 5a
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(a) Disturbance crossover frequency

motion filter gain at 1 rad/s (KS), -
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Normalized data,R = 0.69

Linear regression,β = 0.25, α1 = 1.11
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(b) Target crossover frequency
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Figure 5. Disturbance and target loop crossover frequency as a function ofKS .

shows a strong positive correlation betweenωc,d andKS , indicating disturbance crossover frequencies are typically
found to increase with increasingKS . Though not a medium correlation, as|R| < 0.3, the target crossover frequency
data presented in Fig. 5b still show a much smaller opposite trend withKS . As these trends are consistent with the re-
sults reported in a number of the individual studies that were included,10, 11, 15, 25the following tuning rules are defined
for ωc,d andωc,t:

ωc,d(KS) = ωc,d(1) [ 0.23 (KS − 1) + 1] (20)

ωc,t(KS) = ωc,t(1) [−0.043 (KS − 1) + 1] (21)

Eq. (20) indicates a variation of around 23% over the range ofKS values from 0 to 1 forωc,d. For the target
crossover frequencyωc,t, see Eq. (21), this variation is found to remain below 5%.

IV.B.3. Pilot Behavioral Parameters

Fig. 6 shows the normalized measurement data as a function ofKS for the five most interesting pilot model parameters
with respect to the effects of motion cueing variations: thepilot visual gainKv, the pilot visual lead time constant
TL, the pilot motion gainKm, and the pilot visual and motion time delays,τv andτm, respectively. For the remaining
parameters, either too little data was thought to be available for identifying consistent trends (TI , only Refs. 11 and
12 provide data) or no consistent or meaningful effects as a function ofKS were found (KvTL, ωnm, andζnm, see
Table 3).

Fig. 6 shows a strong positive correlation withKS for the pilot visual gainKv, while forTL andτv medium values
for the correlation coefficient are found (0.3 > R ≥ 0.5). Pilot visual gains are consistently found to be higher for
higher values ofKS , indicating pilots respond with a higher gain to visually presented tracking errors when motion
cueing is of higher fidelity, a finding that is indeed reportedin many studies. Here, an average change inKv of nearly
20% is found over the full range ofKS.

One of the most consistent effects that is reported in many studies that investigate the effects of motion feedback
on manual control behavior is that the presence of motion feedback allows for a reduction in the amount of visual lead
equalization that pilots need to adopt.7, 10, 11, 24–26, 28This reduction in visual lead stems from the fact that the motion
cues, which are, for instance, perceived with the vestibular system, provide information on the rates of the controlled
element state directly, thereby removing the requirement to generate lead visually.3, 24 Fig. 6b shows that this is also
apparent from the collected data of all experiments listed in Table 2. Values for the visual lead time constantTL are
seen to increase with decreasingKS , with a total variation of 29% over the full range ofKS = 0 to 1.

The final correlation withR > 0.3 is found for the pilot visual delayτv. Even though the trend in this dependent
measure is not as large as those found forKv andTL (only 7% variation forKS ranging from0 to 1), still a highly
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(a) Pilot visual gain
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(b) Pilot visual lead time constant
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(c) Pilot motion gain
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(d) Pilot visual delay
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(e) Pilot motion delay
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Figure 6. Variation in important multimodal pilot model par ameters as a function ofKS .
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consistent increase inτv is observed with increasingKS . This effect is often seen to occur in series with a reduction
in the amount of visual lead equalization (lowerTL), and is believed to result from the fact that due to the added
information from motion feedback, a control strategy that requires less workload, but induces more high-frequency
phase lag in the pilot visual control responseHpv

(jω), is permissible without significant effect on the dominant
closed-loop characteristics.

The collected data for the pilot motion gainKm andτm are not found to yield values of|R| > 0.3 (thoughτm
is close). Especially the nearly constant values ofKm under a variation ofKS are notable, as this implies that pilots
appear to be unable to increase theirKm to compensate for reductions in motion cue magnitude, as suggested in
Section II.C. These results for the pilot motion gain therefore suggest a reducing contribution of motion feedback to
pilot control behavior with reducingKS .

The linear pilot model parameter tuning equations that can be derived from the linear regression models fit to the
data presented in Fig. 6 are given by:

Kv(KS) = Kv(1) [ 0.19 (KS − 1) + 1] (22)

TL(KS) = TL(1) [−0.29 (KS − 1) + 1] (23)

Km(KS) = Km(1) (24)

τv(KS) = τv(1) [ 0.069 (KS − 1) + 1] (25)

τm(KS) = τm(1) (26)

Again, Eqs. (22) to (26) indicate the change in the values ofKv to τm relative to the case whereKS = 1. Hence,
the parametersKv(1) to τm(1) indicate the values of these pilot model parameters that would be suitable for pilot
control behavior whenKS = 1.

V. Discussion

This paper presented the first results of an effort to developsome rudimentary tuning rules for adaptation of pilot
behavioral tracking model parameters to variations in motion feedback. Data from a number of studies that investigated
the effects of variations in motion cueing settings on pilottracking behavior and performance were compiled, compared
to selected measures of motion cueing fidelity, and used to fitlinear regression models for those combinations of
predictor variables and dependent measures for which a sufficiently strong correlation was observed. Using the motion
filter gain at 1 rad/s as the predictor variable, a set of mathematical equations was obtained that allows for tuning
multimodal pilot model parameters to a selected motion filter setting, granted that the pilot dynamics for the control
task where no motion filter is present in the motion feedback path are known.

The choice of the predictor variable to use for pilot model tuning rules as attempted in this paper is a very impor-
tant and complicated one, as it essentially requires a single numerical metric that summarizes the total motion filter
dynamics. Here the motion filter gain at 1 rad/s (KS) was selected as the most promising predictor variable, as this
metric is indeed affected by both variations in motion cue scaling (motion filter gainK) and motion cue filtering
(motion filter break frequencyωn). However, it should be noted that this choice of metric alsohas some drawbacks.
For instance, the choice of the 1 rad/s evaluation frequencyimplies that all motion filters for whichωn ≪ 1 rad/s
essentially become pure gain attenuation filters, as in thatcaseKS is not affected by the filter dynamics governed by
ωn. Therefore, a more in-depth investigation of this effect ofthe frequency at whichKS is evaluated than described
here, and the testing of further possible predictor variables, is thought to be valuable to the work described in this
paper.

In this paper, only linear regression models were fit to the collected data, thereby yielding a set of linear prediction
or interpolation equations to adjust pilot model parameters. In reality, it is unlikely that only linear variations of
parameters that define pilot control behavior with respect to a selected predictor variable will occur. However, for
investigating for which dependent measures this might be appropriate and for deriving valid higher-order prediction
models from collected data as used in this study, a significantly larger number of available measurements is needed.

The observed trends in the dependent measures for which tuning equations have been derived in this paper are
mostly highly consistent over the different experiments considered in this study. There are, however, some exceptions
that result from differences in the defining elements of the considered control tasks, which should be taken into account

14 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 2

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

1-
63

22
 



when applying the equations from this paper. One notable example is the observed reduction in the pilot visual lead
time constantTL with increasingKS . This trend is consistent over studies in which the controlled element state is
the dominant motion cue that is perceivable to the pilot. Forcontrol tasks for which this is not the case, most notably
for pitch tracking tasks with conventional aircraft as considered in a number of previous studies,9, 12, 25where heave
motion is the dominant motion cue rather than rotational pitch motion, an opposite trend inTL is observed. This
is believed to be a result of the fact that this heave motion provides less useful motion feedback to pilots than only
rotational pitch motion would. Such effects, however, are not yet explicitly included in the tuning rules as described
in this paper.

It should be noted that predicting human manual control behavior is always going to remain a difficult problem,
mainly due to the sheer number of factors that affect the adopted control strategy.2 Hence, the equations for predicting
changes in tracking performance, pilot-vehicle crossoverfrequencies, and behavioral pilot model parameters as devel-
oped in this paper should always be used with some caution. The tuning rules developed in this paper will be updated
when new sets of data are added to the database. In addition, future work will include applying the rules formulated
in this paper to an experiment that is planned for the end of 2011, for which we will attempt to measure pilot tracking
behavior for a large variation in motion filter parameter settings and motion filter orders.

VI. Conclusions

Using data from ten different investigations into the effects of motion filter characteristics on pilot tracking be-
havior and performance, this paper developed a rudimentaryset of tuning rules that can be used to adjust pilot model
parameters to a selected motion filter setting. The motion filter gain at 1 rad/s, which is also used as a metric in a
well-known criterion for evaluating simulator motion cueing fidelity, was found to be the most promising metric to
use for the prediction of changes in pilot control strategy.Consistent changes in pilot behavior due to variations in
motion filter dynamics that were revealed for the data used inthis study include increased pilot visual gains, reduced
pilot visual lead equalization, and increased pilot visualresponse delays when the predicted level of motion fidelity is
increased. Linear regression models were fit to data for these parameters to define a set of mathematical equations that
can be used to predict the values of these parameters for a specific motion filter setting.
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