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This paper describes the preliminary results of an effort tocompile data from a large number of studies
that investigated the effects of variations in motion filter settings on pilot behavior. The main objective of
this study is to formulate a set of mathematical rules that wil allow for the tuning of behavioral pilot models
to a certain motion cueing setting. To achieve this, data fodifferent dependent measures such as tracking
performance, pilot-vehicle system crossover frequencigand pilot model parameters, taken from ten different
experiments that considered pilot tracking behavior undervarying rotational or translational motion cueing
settings, has been combined. By checking the correlation tifie variation in any of these dependent measures
and parameters that quantify the applied variation in motion cueing, a number of consistent relations has
been identified. The most consistent and clear effects thatefound from this analysis are variations in some
important dependent measures with the motion filter gain at Irad/s. Over the full range of motion filter gains
at 1 rad/s from 0 to 1, a reduction in pilot visual gain of around 20% is observed with reducing motion filter
gain, in combination with a 30% increase in the amount of visal lead equalization adopted by pilots.

Nomenclature

E Fourier transform oé K Motion filter gain

e Tracking error signal Ky, Pilot motion gain

fa Disturbance forcing function Kg Motion filter gain at 1 rad/s
I Target forcing function K, Pilot control scaling gain
H, Controlled dynamics K, Pilot visual gain

H.;,  Closed-loop disturbance-to-error dynamics n Remnant signal

H.y;,  Closed-loop target-to-error dynamics R Correlation coefficient

H,, Motion perception/equalization dynamics s Laplace operator

Hpp Motion filter dynamics

H,.m, Neuromuscular system dynamics
Hopd Disturbance open-loop dynamics
Hoi Target open-loop dynamics

Pilot visual response

Pilot motion response

H,, Simulator visual cueing dynamics
H Simulator motion cueing dynamics
Hy .  Controlled motion dynamics
H
J

Pilot visual lag time constant
Pilot visual lead time constant
Fourier transform ofi,.

Pilot control signal

Scaled pilot control signal
Fourier transform of:
Controlled element state
Generic motion fidelity metric
Motion feedback signal
Generic dependent measure

NS =B s S IS

. Controlled element dynamics
' Imaginary unit
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Symbols os Motion filter phase at 1 rad/s, deg

ay,,,  Linear regression offset w Frequency, rad/s

Linear regression coefficient wp Motion filter second break frequency, rad/s
5, Controlled element input We,d Disturbance crossover frequency, rad/s
¢n Motion filter damping ratio We,t Target crossover frequency, rad/s
Com Neuromuscular damping ratio wWn, Motion filter break frequency, rad/s
o2 Tracking error variance Wnm Neuromuscular frequency, rad/s
o2 P@Iot con'Frol gignal variance Subscripts
T Pilot motion time delay, s
To Pilot visual time delay, s - Normalized
Pm,d Disturbance phase margin, deg 1 ForKg =1
Pt Target phase margin, deg ref Predictor reference setting

[. Introduction

Much of our current knowledge on human manual control bairdvis come from the considerable database of
behavioral measurements that have been collected foesiagh compensatory tracking taskélsing this extensive
database, it has been shown that single-loop pilot tradk@tgvior during compensatory tracking tasks can be mod-
eled at high accuracy using quasi-linear pilot modéig.he fitting of such quasi-linear pilot models to measurement
of pilot tracking behavior has allowed for a quantitativalexation of changes in pilot dynamics due to a number of
different factors, thereby increasing our understandirtguonan operation during manual control. Furthermore srule
have been developed that allow for intuitive tuning of suclgle-loop models of pilot tracking behavior to the defin-
ing features of the considered control task, such as therdigseof the controlled element and the characteristics of
the applied forcing function signals? This set of rules thereby allows for prediction of pilot caribehavior during
tracking for certain combinations of controlled elementd &rcing function signals without having to resort to ex-
perimental evaluation of pilot control behavior and hasnghds merit in various areas of human-machine interaction
research.

The presence of physical motion feedback of the controllechent state has been shown to yield pilot control
behavior during compensatory control tasks that is maykéiffierent from that observed for single-loop tasks where
motion feedback is not availabte* A research question that is currently of interest to the figigmulation community
is how, and to what extent, pilot tracking behavior is aféecby the usage of simulator motion cueing strategies as
commonly adopted in full-motion flight simulatior® To answer this question, and to allow for the prediction of
changes in pilot behavior due to a selected simulator matiming strategy, a set of rough tuning rules for incorpo-
rating the approximate effects of cueing settings on pikdtdyior into pilot models — preferably validated through
extensive experimental measurements — would be a valuadileinfortunately, largely due to the complexity of hu-
man perceptual processes and manual control behavior itnmadlal environments, such a standardized set of rules
for pilot model tuning that includes the effects of the siggbphysical motion cues does not exists yet.

A large research project at Delft University of Technolotigmpts to contribute to solving this problem by tracing
observed changes in measured pilot tracking behavior garatking tasks with physical motion feedback back to
the selected flight simulator motion cueing settifgBhe final objective of this study is to use these measurements
of pilot behavior, and a comparison with measurements @& indflight tracking behavior, to define a behavioral
flight simulator motion fidelity criterion. Given a certaiomtrol task or maneuver, this criterion is meant to allow
for selecting a flight simulator motion cueing setting that wield pilot behavior that is as close to that observed in
real flight as possible. Despite not being representativalf@spects of aircraft control, compensatory trackirgisa
where physical motion feedback is available in additionisoial error information are used in this study to evaluage th
underlying multimodal motion perception and integratisagesses that are important during manual aircraft cantrol
Similar to the single-loop case studied by McRuer et #these multimodal tracking tasks have been shown to allow
for the modeling, and thereby the explicit quantificatiohcbanges in pilot control strategy by using quasi-linear
multimodal pilot models:8

This paper provides the first result of our effort in comglidata from a number of experiments from which
measurements of multimodal pilot behavior under varyindiomocueing conditions are available. Data have been
collected from a number of investigations performed at Dtiiversity of Technology®*?and from a number of
studies found in literaturé® 13-15This paper will provide a short overview of the scope andsefiall these different
experiments. The main objective of this paper, howeven isse the total set of collected data to identify consistent
trends in typical dependent measures of pilot controletraand the parameters that define the applied motion cueing
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setting. The main dependent measures by which the effeanafator motion cueing on pilot tracking behavior will
be evaluated in this paper are:

1. tracking performance and control activity
2. pilot-vehicle system crossover frequencies and phasginsa

3. identified multimodal pilot model parameters

A relation is sought between these different dependentunessf pilot tracking behavior and typical metrics that
quantify the level of simulator motion attenuation by thetimio filter. Examples of metrics that are considered are the
motion filter parameters (gain, break frequency) and mdiltar gain and phase distortion at a certain frequency, for
example, the 1 rad/s evaluation frequency proposed by &iin¥cA rudimentary set of pilot model tuning rules will
be obtained by fitting a linear regression through combiamatof dependent measures and motion fidelity metrics for
which a clear correlation is present.

II. Background

IILA.  Simulator Motion Fidelity

Due to severe limitations on the motion capabilities of fligimulators, motion washout algorithms are required for
attenuating and limiting the simulated aircraft motion. akde diversity in washout algorithms has been developed
over the years’™'° One of the biggest challenges facing the flight simulatiomenity, however, has been finding
an appropriate criterion for the evaluation of simulatotimo cueing fidelity and defining the minimum requirements
for simulator motion cueing for pilot training and other fiigsimulator applications.

One of the first efforts to define a structured and practicahodaology for the assessment of simulator motion
fidelity was the work of Sinacof who proposed a motion fidelity criterion based on the contimnaof motion
filter gain and phase distortion introduced by motion fillars frequency of 1 rad/s. This frequency, though still the
topic of much debate, was selected as much of the activitjgumanual aircraft control was thought to be centered
around this frequency range. The criterion proposed byc®maas later modified and validated by Schroé8lasing
subjective motion fidelity assessments for various hetieofasks.

Hess et af! defined a more analytical methodology for evaluating sitaulanotion fidelity from the effect
of a motion filter on the dynamics of the combined simulataigraft, and pilot system in a flight simulator. For
a helicopter lateral translational maneuver, Hess et abwsH that their chosen criterion was indeed sensitive to
variations in motion cueing fidelity. Hess and MarcR&kiter showed this analytical method to also be applicable to
other types of aircraft and maneuvers.

The most recent effort into the formulation of a standardtfier assessment of flight simulator motion fidelity is
the work of Advani and Hosmad¥. Their proposed motion fidelity criterion, which is currgnieing included in the
ICAO 9625 manual for the qualification of flight simulator d=s, considers the dynamics of the simulator motion
hardware in addition to those of the motion cueing algoritand evaluates the total motion cueing dynamics over a
frequency range that is thought to be important for manueiait control.

The work described in this paper is part of a research effiattattempts to develop a framework for assessing sim-
ulator motion fidelity from measurements of pilot controhbeior! By measuring changes in pilot control behavior
that result from applied changes in simulator motion cugasgopposed to relying on subjective motion fidelity rating
procedures, it is hoped that some experimental validatfahe criteria proposed for evaluating simulator motion
fidelity can be provided.

[I.B. Pilot Tracking Behavior

Fig. 1 shows a generalized and extensive schematic repagisenof a closed-loop aircraft manual tracking task
performed in a flight simulator environment, which is valat the tracking tasks performed in all of the studies into
the effects of motion filter dynamics on pilot behavior caiesed in this paper. The target and disturbance forcing
function signals that induce pilot tracking behavior aneréby define the type of tracking task under consideration
(target following, disturbance rejection, or the combioabf both) are depicted in Fig. 1 with the symbdjsand f,
respectively. As can be verified from Fig. 1, a distinctiomiade between simulator, pilot, and controlled element
dynamics. Simulator dynamics include the characteristitise simulator visual and simulator motion cueing systems
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Figure 1. Schematic representation of a compensatory tradkg task with motion feedback.

(Hs,(jw) andHy,, (jw), respectively), in addition to the dynamics of the applieation filter which are indicated by
the H,,, s (jw) block.

As can be verified from Fig. 1, this study considers contrsksdor which pilot control behavior can be represented
as the sum of two parallel responses to visual and motiomrimdtion® The pilot visual respons#,,, (jw) captures
pilots’ control dynamics in response to presented trackimgrse, while the pilot motion responsé,,  (jw) models
pilots’ responses to cued motion informatign The remnant signal, which accounts for all nonlinear contributions
to the pilot control input:,> completes this quasi-linear model of pilot tracking bebavi

The controlled element dynamics are defined to consist ofseyarate parts: the controlled dynamics and the
motion dynamics. The formef].(jw), are the dynamics that drive the vehicle state that is cthetrby the pilot,z.
The motion dynamicg7; . (jw) define the transformation from the controlled state the variable that enters the
pilot’s motion response channAl,, (jw). WhenH,, (jw) captures pilots’ responses to angular or translationa cue
perceived through the vestibular system (through the sesular canals or otoliths, respectivet§)- as is the case for
most control tasks considered in this paper — motion cueingiges pilots with feedback of the acceleration of the
controlled element state, 6; . (jw) = (jw)?. However, more extensive transformations between cdettastate
and motion feedback quantities exist in some studies, &iaite for the aircraft pitch control tasks with variatian i
the coupled heave motion cueing considered in Refs. 11 andN@g that a further scaling of pilot control inputs,
resulting from a control scaling gaifi,, is present in some of the considered studies.

[I.C. Motion Fidelity and Tracking Behavior

As can be verified from Fig. 1, the closed-loop pilot-vehigystem dynamics in a closed-loop control task will be
affected by the presence of a motion filter. For instance,foflewing relations can be derived from Fig. 1 for
the disturbance and target open-loop responses, whossovessfrequencies and phase margins can be used for
assessing closed-loop pilot-vehicle system performandestability for disturbance rejection and target-follogj
respectively*

Hovalge) == g(% = [, (jo)Hy, (je0) + Hyo (j00) Hyng (j0) He,, (o) Hy, ()] Ko He(jeo) (1)
Ho (o) = SU%) H,, (jw) H,, (jw) K H.(jw) o

B(jw) 1+ Hyo(jw)Hums(jw)Hs,, (j0) Hp,, (jw) K He(jw)

m

Similarly, the corresponding closed-loop forcing funatio error responses, which are indicative of the success
of the closed-loop system depicted in Fig. 1 in attenuafingnd following f;, are given by:

Sy E(jw) _ —H.(jw)
Heral0@) = F050) = T4 [, GV By, G) + Hy o () Hong () o, GV, GO KoL ) )

v v

EQw) _ 1+ Hy o (jw)Hmy (jw)Hs,, (jw)Hp,, (jw) KsHe(jw)
Fi(jw) 1+ [Hs, (jw)Hp, (Jw) + HK",w(jw)Hmf(jW)Hsm (jw)Hyp,,, (Jw)] KsHe(jw)

Heaft (]CU) = (4)

First of all, Equations (1) to (4) indicate that the effectld motion filter dynamicéi,,, ;(jw) on these open-loop
and closed-loop relations depends on the dynamics of afr@lements shown in Fig. 1. In addition, compared to
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the case where no motion filter is preseft,((jw) = 1), pilots may adapt their control dynamics in response to a
motion filter with certain dynamics being introduced to (ly) compensate for the effect the motion filter dynamics
have on the closed-loop system. The most elementary exéghgilean be given is the case where motion cues are
attenuated by a pure gaif,, s (jw) = K. As long as the gain does not cause the motion cues to becoatlesthan
human motion perception threshofdspilots could simply respond to the lower magnitude motidioimation ()
with a higher gain. If they succeed in increasing the gaidpf (jw) with aroundl/K, this means the governing
open-loop and closed-loop dynamics remain approximaltesame, as can be verified from Eqgs. (1) to (4).

Much like the work of Hess et atl, this project is concerned with the effects of the presenca mibtion filter
on the dynamics of the closed-loop pilot-vehicle systemegsiaded in Fig. 1. However, unlike previous work on this
topic, the focus is on how these changes in the closed-l@mkitrg task dynamics induce changes in pilot control
behavior, to partially alleviate the effects of the motidtefidynamics on the closed-loop characteristics, and tainb
quantitative measurements of these changes in pilot betheim human-in-the-loop evaluatiofis.

lll.  Method

III.LA. Selection Criteria: Dependent Measures

A large number of studies have been dedicated to the evatuafithe effects of simulator motion cueing on pilot
performance, motion perception, and control behavior. Acekent recent overview of a large number of these
studies is given by Schroeder and Graifor the current paper, only a specific subset of the large bblitgrature on

the effects of motion filters is of interest due to the focusr@asured changes in pilot behavior. The main requirement
for a study to be included in this overview is that it shouldypde some behavioral measurement over a number of
different motion cueing conditions, most preferably trgbumodels of pilots’ dynamical responséds,( (jw) and
H,, (jw), as defined in Fig. 1). These dynamical pilot responses preally modeled with linear models that can be
deduced from or are equivalent to the equations given by:

) (14 Trjw)* _. .
H = K, JwTUHnm 5
po (Jw) T 7w (Jw) (5)
Hy,, (jw) = KmHm(jW)e_jWTmHnm(jw) (6)
. 1
Hym(jw) = . 2 (7)
() + Zeomo 1

Eqg. (5) defines the most elaborate form of the modeled pilgparse to visual cues considered in this study,
consisting of a pure gain, a lead-lag equalization elenzeptire delay term, and the low-pass neuromuscular actuation
dynamics model given by Eq. (7). As detailed in Ref. 26 thHéald-lag equalization element shown Eq. (5) is required
for capturing pilot dynamics during control of certain centional aircraft pitch dynamics, but may, for instance, be
reduced to a pure first-order lead or a pure gain for conttalements that have approximately double or single
integrator dynamics in the crossover region, respectively

For modeling of pilots’ responses to motion informatiorpitally models of the form of Eq. (6) are adopted.
Similar to the model for the pilot visual response, these ef@élso include pure gain and pure delay terms and the
same neuromuscular actuation model. In addition, Eq. (@udes the further unspecifield,,, (jw) terms, which
represents further possible contributions to the pilotiomtlynamicsH,, (jw) such as (vestibular) sensory dynamics
and possible equalization dynamics, similar to the legdelament in Eq. (5). In this study, we limit ourselves to the
measurements of the pilot motion gdif,, and delayr,,, that is, changes in these further dynamics of pilots’ nrotio
responses are not considered.

Table 1 lists the full set of dependent measures selectetidéavverview of motion filter effects provided by this
paper. In addition to the parameters of the considered batahwmodels of pilot behavior listed in the final column of
Table 1, two additional groups of dependent measures aedared: performance measures and pilot-vehicle system
crossover characteristics. In many studies into the effetimotion cueing on pilot behavior, performance measures
such as the variance of the recorded tracking error and aosittnals are considered as dependent measures, as
these metrics are often found to signal underlying changpgat behavior. Similarly, pilot-vehicle system crossov
parameters reveal how possible changes in pilot behaentdihe dominant characteristics of the combined opep-loo
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Table 1. Considered dependent measures.

Performance Measures Crossover Characteristics PilotB&ral Parameters
Symbol  Definition Symbol  Definition Symbol  Definition
a? Tracking error variance we q Disturbance crossover frequency K, Pilot visual (error) gain
o Control input variance  we,¢ Target crossover frequency Ty Pilot visual lead time constant
Pm.d Disturbance phase margin Ty Pilot visual lag time constant
Pm,t Target phase margin K,Tr, Pilot visual lead gain
K, Pilot motion gain
Tm Pilot visual delay
Tm Pilot motion delay
Wnm Neuromuscular system natural frequency
Cnm Neuromuscular system damping ratio

pilot-vehicle system in the important frequency range atbgain crossove'r. Note that due to the different open-
loop response definition for target-following and disturbe-rejection task$,see Equations (1) and (2), crossover
frequencies and phase margins for both target-followirdydisturbance-rejection loops are separated. Furthermore
this implies that for studies that consider pure targdbfaing or disturbance-rejection tasks only one set of aress
frequencies and phase margins is available.

[Il.B. Predictors: Motion Fidelity Measures

For attenuating the simulated aircraft motion and for wagtdut flight simulator motion typically a combination of
pure gain attenuation and high-pass filtering is adoptedghtfsimulation'’” Due to the fact that the required amount
of attenuating and filtering is highly dependent on the Vehimaneuver, simulator axis, and perhaps even the pilot
who is executing the maneuver, there is quite some variatitimee dynamics of the adopted washout filter dynamics
(H,n s (jw) in Fig. 1). For the studies considered in this paper, wastipaamics vary from ¥ order (pure gain) to'$
order high-pass filters:

o"order:  H,(s) =K (8)

1Storder:  Hy,p(s) = K- +Swn 9)

2"order:  Hyyp(s) = K — i > (10)
52 4+ 2Cwn s + w2

39order:  H,(s) i i (11)

=K
§%2 4+ 2Cwns + w2 s+ wp

The washout filter order has a dominant effect on the leveldefify of the supplied simulator motion cues. For
constant parameter settings, motion fidelity decreasésiméteasing filter order, as increasingly more low-freguen
motion is attenuated and phase distortion increases yafuidhigher order filters. The level of motion fidelity is
of course also affected by the parameters of the differeshwat filters listed in Eq. (8) to (11) define the level of
supplied motion fidelity. Generally higher filter gaifs and lower (dominant) break frequencies correspond to
higher fidelity motion cueing®

The objective of this study is to relate measured changeasjintthe dependent measures listed in Table 1 to some
important measure of simulator motion fidelity. If a clearretation exists between some combination of dependent
measure and fidelity measure, this means this fidelity measur be used as a predictor of the observed change in the
dependent measure. A natural first choice for measures adbmiidelity are of course the washout filter parameters:
the filter gaink, the filter break frequency,,, the filter damping rati@,,, and the additional first-order filter break
frequencyw,. The dominant parameters with the largest effect on the agdtter dynamics are the filter gaild and
the filter break frequenay,,. Hence, these two parameters were selected as a first setsibleopredictor variables.

Filter parameters, however, do not account for the effediltef order. This makes comparison of the level of
motion fidelity by evaluating these parameters betweeriesudith different order washout filters difficult. This was
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Figure 2. Compiled translational and rotational motion filter settings from literature.

also recognized by Sinacori, who therefore proposed thgeusthe gain and phase distortion at a frequency of 1
rad/s induced by the motion filter as indicators of motionlfige

Kg = |Hpys(jw)| with w=1rad/s (12)
¢s = LHps(jw) with w=1rad/s (13)

The motion filter gain and phase distortion at a certain ataa frequency are, of course, a function of the filter
order in addition to the filter parameters. Furthermorehitdd be noted that in addition to the filter ordég, is only
affected by the washout dynamics and hence the selected obdy, (assuming constary, andw;). The absolute
value of H,,, ¢ (jw), however, is not only affected by the filter galfy but also by the filter break frequeney,. This
makesK s a metric that captures, to some extent, the cumulativetedfe@riations in filter gain and break frequency.

In addition to the motion filter gain and phase distortion atd/s as given by Egs. (12) and (13), also other
evaluation frequencies — such as 0.5 and 2, and 3 rad/s — wesé@lered as fidelity metrics in this study. This paper,
however, will only analyze trends in the dependent measases function ofK's and ¢, as the other evaluation
frequencies were not found to yield markedly different tessior the considered set of experimental measurements.

III.C. Selected Studies

Table 2 presents the details of the ten studies that have seéa included in the data base considered in this paper.
Note that in Table 2 a distinction is made between studiddikastigated translational and rotational motion cueing
In addition to a short description of the considered cortask, Table 2 presents the motion filter dynamics and the
different sets of motion filter parameters evaluated in estady. Fig. 2 further depicts the motion filter dynamics
evaluated in all studies in the form of the motion fidelityterion proposed by Sinacot§,using the definition of the
different fidelity regions proposed by Schroeder.

Note from Table 2 and Fig. 2 that more studies that evaluatetitpacking behavior with variations in rotational
cueing are available. Furthermore, translational motsaiypically a lot more problematic with respect to the cueing
in flight simulators than rotational motion, due to the lasgi@ke required for presenting, especially low-frequency
aircraft translational motion. This is also observablaexfrBig. 2, which shows that the motion filter settings that
were evaluated for rotational cueing (Fig. 2b) were typychdss restrictive — that is, were closer to the dark gray
high-fidelity region — than those considered for transtaiacueing experiments (Fig. 2a).
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Table 2. Studies with translational or rotational motion cueing variation included in the literature overview.

Symb. Ref. Control Task Filter Filter Settings

Conventional aircraft pitch control

task (target-following and disturbance- T.Al1: K =0.0
rejection, latter dominant), Cessna T.A2: K=06 w,=125r/s (n=07 w,=03r/s
Citation controlled element dynamics 52 s

T.A 11 ; it O 5 : = = 3 = = 5
varying translational heave cueing, s2+2¢nwnstw? stwp TA3: K=10 wn=125r/s (n =07 wp=03r1/s
heave cues represent motion wrt. aircraft T.A4: K =06
center of gravity, additional 1-to-1 T.A5: K=1.0

rotational pitch motion on/off

Conventional aircraft pitch control
task (target-following and disturbance-

rejection), Boeing 747 controlled T.B1: K =00

TB 12 elementdynamics, varying translationa) s2 s T.B2: K=05 w,=051r/s ( =07 w,=031/s

' heave cueing, heave cues represents?+2inwnstw? ST9 T RB3. K =07 w, =1.25 r/s (n =07 wp =0.31/s

motion wrt. aircraft center of gravity, TB4: K—=0.3 — 0.851/s — 0.7 — 0.31/s
additional 1-to-1 rotational pitch motion T o wn B5r/s Cn e 31/s
on/off
Helicopter translational heave control
tasl:, vtaryintgfhlelzav_e motic:jn (;:_u?ing, sep- ) T.Cl: K=1. wn =0.21/s Cn =07

Tc 15 arate target-following and disturbance s . _ — 05 /s _
rejection tasks, helicopter dynamlcswnlg( s242¢nwnstwd T.C2: K=10 w,=051/s (u=07
“good” and “slightly degraded” vertical T.C3: K=10 w,=1251r/s (o =07
responses

Conventional aircraft pitch attitude
target-following task, Cessna Citation
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controlled element dynamics, varying TDl: K =0.0
translational heave cueing, heave cu s2
TD 9 ¢ ). R : - - =
represent motion wrt. aircraft center s2+2¢nwns+w? T.D2: K =01 wn=0751/s (n=07
of gravity, three levels of additional TD3: K=05 wp=20r/s (n=07
rotational pitch cueingkX = 0.0, 0.5,
and1.0)
Conventional aircraft roll  control
task (combined target-following and R.A1: K =0.0
disturbance-rejection  task), Cessna RA2: K =05 —05
R.A 7 Citation controlled element dynamicsK 555 ’ e “n e r/s‘
varying rotational roll cueing, no com- RA3: K=10 w,=051/s
pensation for lateral specific force cues RA4: K=10 w,=00r/s
resulting from simulator roll
Pitch attitude control task (domi- ) _
nant target-following and dominant RBl1: K=025
disturbance-rejection tasks performeg- R.B2: K =0.5
R.B 10 X
separately), double integrator controlled R.B3: K =0.75
element dynamics, pure scaling of the RB4: K=1.0
supplied pitch motion cues (no washout) T '
Roll attitude control task (combined
target-following  and  disturbance- R.Cl: K=10 w,=051/s
R.C 8 rejection task), two controlled elementsf S7%— R.C2: K=10 w,=10r1/s
K/(s(s+10)) andK/s?, priority Ill RC3: K=10 wy,=20r/s
conditions
R.Dl: K =00
Two-axis pitch and yaw attitude R.D2: K = 0.0625
disturbance-rejection task, single inte- R.D3: K —0.125

R.D 13 grator controlled element dynamics id<
both axes, pure scaling of the supplied R.D4: K =025
pitch motion cues (no washout) R.D3: K =0.5

RD4: K=1.0

RE1: K=1.0

Conventional aircraft roll attitude con- s RE2: K=1.2 wn =0.85r/s  (p =0.7 224 order
trol task (combined target-following and ~~ s+twn RE3: K=1.0 —1.0r/s
RE 4 disturbance-rejection task), controlled and .E4 - ’ n N /s
element representative of a fighter air—K25722 R.E4: =07 wp=04r1/s
craft sTHAnwnstwp R.E5: K =0.53
R.E6: K =0.0
Conventional aircraft pitch and roll at- RFl1: K=10 w,=02r/s Cn =1.0
titude disturbance-rejection tasks (per- 2 RF2: K=1.0 —0.25 - 1.0
R.F 14 formed separately), controlled elemer ——=———+ o Hwn 251/s Cn ’
. . s2+2¢nwnstwy RF3: K=10 w,=0.51/s ¢n =1.0
representative of a DC9-10 in the land- e ' n "
ing/approach configuration R.F4: K =0.0
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[I1.D. Pilot Model Tuning Rule Development
[11.D.1. Data Normalization

The goal of this study is to obtain a quantitative indicatdbthe magnitude of pilot behavioral adjustments in respons
to the presence of a motion filter with certain dynamics. Tdikected behavioral measurements from the studies listed
in Table 2 will therefore be used to see if consistent vaiediin any of the dependent measures listed in Table 1 and
any of the predictor variables introduced in Section lll@& de found. For a dependent measidrand a predictor
variableY’, this means we are looking for a prediction equati(iy’).

It should be noted that differences in the defining charsties of the compensatory control tasks (for example,
controlled element dynamics, forcing function signals) adopted display formats) naturally lead to large offsets i
some of the dependent measures listed in Table 1. For irestarmontrolled element with double integrator dynamics
as used in Ref. 10 requires markedly more pilot lead equalizghigherT}) than typical aircraft pitch and roll
dynamics as controlled in the experiment of Ref. 14. As thativee change in the considered dependent measures
due to changes in motion filter dynamics is of interest to shisly, the data from all dependent measures has been
normalized with the mean of this dependent measure ovesadliions for each experiment. For values of a dependent
measureZ taken from an experiment witlV, different motion filter conditions, this gives:

— Z[n]
Zn|l= ————
" o 2l 21K

To illustrate the necessity of this normalization, Fig. ®wh a side-by-side comparison of the raw data and the
result of the normalization of all measurements for thetpilsual lead time constafit, . Note from Fig. 3b that due to
the normalization according to Eq. (14), the normalizedethelent measure represents the percentage-wise variation
in the dependent measure over the range of the selectedforedi

withn =1...N, (14)

(a) Raw data (b) Normalized data
1.2
1.1
1 O Ref. 11: no pitch
0.9 -+ Ref. 11: pitch
: <> Ref. 12: no pitch
0.8 -/ Ref. 12: pitch
</ Ref. 9: no pitch
%] 0.7 < Ref. 9: half pitch
3 0.6 -« Ref. 9: pitch
&~ O Ref. 7
0.5 -+ Ref. 10: disturbance
0.4 <> Ref. 10: target
A Ref. 8
03 <2 Ref. 4
0.2 > Ref. 14: pitch
= Ref. 14: roll
0.1
0 0.5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
motion filter gain at 1 rad/sKg), - motion filter gain at 1 rad/sKg), -

Figure 3. Example of data normalization for pilot visual lead time constant7’;, according to Eq. (14).

[11.D.2. Linear Regression Modeling

For all dependent measures, the normalized data were tiestedrrelation with the considered measures of motion

filter characteristics (see Section I11.B) by calculatirepPson’s correlation coefficieft.?” For absolute values dt

of 0.3 and higher, the correlation between both variables dedined to be strong enough (“medium” correlation or

stronget’) to allow for modeling of the trend in the data using a linesgression. This linear regression represents a
relation between the normalized dependent meaguaed the independent (predictor) variablagiven by:

Z(Y)=B(Y = Yyer) + ay,,, (15)

In Eq. (15),Y;.s represents the reference value of the predictor varigbiith respect to which the trend i
is to be predicted. The symbatsanday,, are the linear regression coefficient and offset, which aterchined by
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fitting the model of Eq. (15) to the normalized data using atlsguares fitting procedure. It should be noted that for
data as presented in Fig. 3b a different choic&’igy (for instancek's = 0 or K5 = 1) affects the value ofvy,

for the corresponding regression model, but not the valy® ©¥¥hen converting Eq. (15) back to the non-normalized
dependent measut&(Y) (note thaty,,, = Z(Y,.r) and use Eq. (14)) an equation results that can be used far line
prediction of the considered dependent measure based patammeters of the fitted linear regression:

Z(Y) = Z(Yres) [—2— (Y = Yiep) +1 (16)

Oéymf
In Eqg. (16),Z(Y,s) represents the value of the dependent measure at the refer@ne ofY”. For a control task
where pilot behavior and pilot-vehicle system performaaiee crossover characteristics are known for a reference
predictor settingZ (Y. ), this allows for prediction of changes iifor other values o according to Eg. (16). Note
from Eq. (16) that the coefficient that defines the magnitddeechange irZ due to a variation i is given as the

fraction of 3 anday, ,, and hence is dependent on the choice of the reference fmedidueY’.. ;.

IV. Results

IV.A. Predictor Variable Selection

As explained in Section III.D, four different variables wearonsidered as predictors for observed trends in the depen-
dent measures listed in Table 1: the motion filter g&irthe (dominant) motion filter break frequengy, the motion

filter gain at 1 rad/d<g, and the motion filter phase distortion at 1 ragl{s For all combinations of dependent mea-
sure and predictor variables plots as those depicted irBRigere evaluated to investigate possible correlation betwe
the two considered metrics. Furthermore, the correlatamificientsR calculated for all considered combinations of
dependent measures and predictors were calculated anceasnfed in Table 3.

Table 3. Correlation coefficients for all considered combiations of dependent measure and predictor. Bold font indicees |R| > 0.3.

. Dependent Measures Mean
Predictor 5 )
O¢ Ou Wed Wet $Pm,d Pmit Ky T Ty Km Tv Tm  Wnm  Cnm  KuTL |R‘
K -0.30 0.53 0.37-0.09 -0.02 0.05 0.40 -0.33 -0.62-0.11 0.32 -042 0.28 0.25 0.01 0.27
wn 0.47 0.12 -0.61 0.57 049 -047-0.15 -0.07 -0.23 0.32 -0.41 -0.22 0.06 -0.50 -0.40 0.34
Kg -0.60 054 0.69-0.26 -0.30 0.28 0.60 -0.49 -0.33-0.11 0.40 -0.30 0.35 0.27 0.09 0.37
bs 0.18 -0.17 -0.52 0.38 0.41 -0.42-0.16 0.05-0.57 -0.09 -0.25 -0.05 -0.22 -0.03 -0.09 0.24

Each column in Table 3 presents the value®dbr one of the considered dependent measures (see Tablad). T
final column of Table 3 shows the average absolute correlatefficient calculated across all dependent measures.
As can be verified from this final column, the strongest avef&j across all dependent measures is present for the
motion filter gain at 1 rad/d(s). Based on this strongest average correlation across@hdient measures — although
a number of medium and strong correlations are also founthéother predictors and considering that the average
correlation coefficient fow,, is nearly as high as found fdt's — the choice is made in this paper to focusigp as
the most promising predictor variable.

Another reason for favoringls as the predictor in this paper can be observed from Table Fan®. Some of
the included studies considered pure-gain motion filteradyies K ,% 12 so no variation inu,, and¢g was available
for these experiments. Furthermore, as explained in Selti®, K5 is the only considered predictor variable that is
a function of both the motion filter gairf{) and filter characteristicsus(,). Though different combinations df and
wy, can still give the same value for this predictéfg is still selected here as the most promising of the consilere
predictor variables because of this property. All resutisspnted in this section, and also the derived pilot model
tuning rules, will utilizeK's as the predictor.

It should be noted that the frequency of 1 rad/s at which was selected for correspondence with the fidelity
criteria of Sinacof® and Schroedet but that evaluation of the filter dynamics at other frequesén the range of
interest to manual control (see Section 111.B) yielded hygtimilar results.

For prediction of changes in behavior due to variations itiomocueing, here the condition where no motion filter
is present, yielding 1-to-1 presentation of motion cued, lvéi considered as the baseline. For the selected predictor
variable this corresponds to the case whgge= 1. Naturally, tuning rules could also be defined with respec¢hée
no-motion caseK s = 0), but for interpreting the effects of motion filters on pile¢havior, the chosen convention
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(a) Tracking error variance (b) Control input variance

2.4 |
* Normalized dataR = —0.60 1.5+ * Normalized dataR = 0.54
2.2 - Linear regression3 = —0.38, a1 = 0.79] 4 —— Linear regression3 = 0.19, a; = 1.11
1.4¢
2 * g *
1.31
1.8
1.2t * ¥
e ‘ x ¥ *
1.1
N 14 o3 ¥ x5 ¥ *
N S * *
1t * Ky *
1.2 ey *
* * * % *
1 0.9¢ ¥ *
0.8 0.8} % *
06 R 07 -
* *
0.4 ‘ ‘ ‘ ‘ ‘ ] 0.6f . ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
motion filter gain at 1 rad/sKg), - motion filter gain at 1 rad/sKs), -

Figure 4. Variation in tracking performance and control activity as a function of Kg.

was thought to be more intuitive. Substitution¥of= Ks andY,..; = K, ., = 1in Eq. (16) results in the following
structure for the linear prediction equations that will legided in this paper:

2(9) = 20| 2165 - 1) +1] a7)
1
In Eq. (17),Z(1) represents the value of the considered dependent meastine feference case whekg; = 1.
The symbols? anda, are the parameters of the fitted linear regression modeSgeton 111.D.2).

IV.B. Notable Trends in Dependent Measures
IV.B.1. Tracking Performance and Control Activity

Fig. 4 presents the normalized tracking error and contpmiivariance data for the studies included in this overview.
Fig. 4 depicts the normalized data for both dependent measisrblack markers, while the linear regression that was
fit through the data is shown as a solid gray line.

As can be verified from Fig. 4, for both? ando? a strong correlation| 2| > 0.5) with the variation inK g is
present. Fig. 4 shows that an increas&inis found to yield improved tracking performance (lowé) and increased
control activity (higherr2). Substitution of the fitted values ¢f and«; (indicated in the bottom legend entries in
Fig. 5) in the prediction equation given by Eq. (17) yields fbllowing tuning rules for? ando?:

02 (Ks) = 02(1)[<0.48 (K5 — 1) + 1] (18)

02(Ks) =o2(1)[ 0.17(Kg — 1)+ 1] (19)

u

In Egs. (18) and (19)72(1) ando2 (1) represent the level of tracking performance and contraliactor the case
whereKs = 1, respectively. As can be verified from Fig. 4a and Eq. (18cking performance on average worsens
by 48% for K's = 0 compared tad's = 1. Similarly, Eq. (19) shows that control input variance isiid to decrease
by 17% under the same variation &fs.

IV.B.2. Pilot-Vehicle System Crossover Frequencies

For the phase margins of the disturbance and target opgnrisponses (Egs. (1) and (2))gr,.« and gy, ¢, re-
spectively — ndR| > 0.3 with K¢ was observed, as can be verified from Table 3. For the comelspg crossover
frequenciesv. ¢ andw,,, the normalized collected data and fitted linear regressinaslepicted in Fig. 5. Fig. 5a
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(a) Disturbance crossover frequency

(b) Target crossover frequency

14 1.25f
* Normalized dataR = 0.69 * Normalized dataR = —0.26
1.3 - Linear regression = 0.25, a1 = 1.11 1.2} —— Linear regression? = —0.04, «; = 0.98| 4
| *
12 * *i 115 *
* *
1.1
1.1 *
* *
\— . | 1.05f * Ky *
= iy *
S 3 M &
3 3 * ¥
0.9 ¥ x %
0.95f ¥ %
0.8 * 1 * *
* 0.91 *
* *
0.7 1 0.85f
* *
0.6, ‘ ‘ ‘ ‘ ] 08, ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

motion filter gain at 1 rad/sKg), - motion filter gain at 1 rad/sK g), -

Figure 5. Disturbance and target loop crossover frequencysa function of Kg.

shows a strong positive correlation betweern; and K g, indicating disturbance crossover frequencies are tjlpica
found to increase with increasirfgs. Though not a medium correlation, g8 < 0.3, the target crossover frequency
data presented in Fig. 5b still show a much smaller oppasiteltwith K g. As these trends are consistent with the re-
sults reported in a number of the individual studies thaewecluded? 1% 152%he following tuning rules are defined
for we ¢ andwe ¢

wc,d(Ks) = wad(l) [ 0.23 (KS — 1) + 1] (20)

wet(Kg) = we(1)[—0.043 (Kg — 1) + 1] (21)

Eq. (20) indicates a variation of around 23% over the rang& gfvalues from 0 to 1 fotu. 4. For the target
crossover frequenay. +, see Eq. (21), this variation is found to remain below 5%.

IV.B.3. Pilot Behavioral Parameters

Fig. 6 shows the normalized measurement data as a functig édr the five most interesting pilot model parameters
with respect to the effects of motion cueing variations: pilet visual gaink,,, the pilot visual lead time constant
T, the pilot motion gaink,,,, and the pilot visual and motion time delays,andr,,, respectively. For the remaining
parameters, either too little data was thought to be aveiltv identifying consistent trendg, only Refs. 11 and
12 provide data) or no consistent or meaningful effects asation of K¢ were found K,77, wnm, and,.,,, see
Table 3).

Fig. 6 shows a strong positive correlation withy for the pilot visual gaink,,, while for 7, andr, medium values
for the correlation coefficient are found.§ > R > 0.5). Pilot visual gains are consistently found to be higher for
higher values of{s, indicating pilots respond with a higher gain to visuallgented tracking errors when motion
cueing is of higher fidelity, a finding that is indeed reporitethany studies. Here, an average changk jrof nearly
20% is found over the full range dfs.

One of the most consistent effects that is reported in mardies that investigate the effects of motion feedback
on manual control behavior is that the presence of motiodifaek allows for a reduction in the amount of visual lead
equalization that pilots need to addpt® 11:24-26.28This reduction in visual lead stems from the fact that theiomot
cues, which are, for instance, perceived with the vestitsylatem, provide information on the rates of the controlled
element state directly, thereby removing the requirenegenerate lead visualfy?* Fig. 6b shows that this is also
apparent from the collected data of all experiments liste@able 2. Values for the visual lead time const@ptare
seen to increase with decreasifig, with a total variation of 29% over the full range &fs = 0 to 1.

The final correlation withR? > 0.3 is found for the pilot visual delay,. Even though the trend in this dependent
measure is not as large as those foundi@rand}, (only 7% variation forK ¢ ranging from0 to 1), still a highly

12 of 16

American Institute of Aeronautics and Astronautics



Downloaded by TECHNISCHE UNIVERSITEIT DELFT on February 28, 2013 | http://arc.aiaa.org | DOI: 10.2514/6.2011-6322

Ky, —

Tuy —

15

14

1.3

1.2

1.1

0.9

0.8

0.7

0.6

1.4

1.3

1.2

11

0.9

0.8

(a) Pilot visual gain

* Normalized dataR = 0.60
—— Linear regressiond = 0.21, a1 = 1.11

T, —

*
¥ *
*
0 0.2 0.4 0.6 0.8 1

motion filter gain at 1 rad/sKg), -

1.7F
1.6f
151
1.4}
1.3}
1.2¢

1.1¢

0.9f
0.8}

0.7f

(b) Pilot visual lead time constant

* Normalized dataR = —0.49
—— Linear regression3 = —0.25, a; = 0.87| |

*

0.2 0.4 0.6 0.8 1
motion filter gain at 1 rad/sK s), -

(c) Pilot motion gain

* Normalized dataR = —0.12
1.8} = Linear regression3 = —0.07, a1 = 0.97| {
*
1.6
1.41
*
1.2f *
*
*
% * * *
1t * *
¥ * % %
* *
0.8f % * *
0.6f *
0 0.2 0.4 0.6 0.8 1

motion filter gain at 1 rad/sKg), -

(d) Pilot visual delay

* Normalized datakR = 0.40
- Linear regression3 = 0.07, «; = 1.04

*

Tmy —

0 0.2 0.4 0.6 0.8

motion filter gain at 1 rad/sKg), -

1

1.3}

1.2t

11r

0.9f

0.8f

(e) Pilot motion delay

* Normalized dataR = —0.30

—— Linear regression3 = —0.10, a3 = 0.96] |
*
* * *
* *
* *
—t
* *
L * 5
*
* x

* *

0 0.2 0.4 0.6 0.8 1

motion filter gain at 1 rad/sKs), -

Figure 6. Variation in important multimodal pilot model par ameters as a function ofK g.
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consistent increase i, is observed with increasing s. This effect is often seen to occur in series with a reduction
in the amount of visual lead equalization (lowEr), and is believed to result from the fact that due to the added
information from motion feedback, a control strategy trejuires less workload, but induces more high-frequency
phase lag in the pilot visual control respondg, (jw), is permissible without significant effect on the dominant
closed-loop characteristics.

The collected data for the pilot motion galti,, andr,, are not found to yield values ¢f2| > 0.3 (thoughr,,
is close). Especially the nearly constant value&@f under a variation ofs are notable, as this implies that pilots
appear to be unable to increase thEis, to compensate for reductions in motion cue magnitude, agesigd in
Section II.C. These results for the pilot motion gain therefsuggest a reducing contribution of motion feedback to
pilot control behavior with reducing’s.

The linear pilot model parameter tuning equations that @addrived from the linear regression models fit to the
data presented in Fig. 6 are given by:

Ky(Ks) = K,(1)[ 0.19(Ks — 1) +1] (22)
Ti(Ks) =Tr(1)[-0.29 (Ks — 1) + 1] (23)
K (Kg) = Kn(1) (24)

7o(Ks) = 7,(1)[ 0.069 (Kg — 1)+ 1] (25)
Tm(Ks) = (1) (26)

Again, Egs. (22) to (26) indicate the change in the valuek pfo 7, relative to the case wheig€s = 1. Hence,
the parameter®’, (1) to 7,,,(1) indicate the values of these pilot model parameters thaidvoe suitable for pilot
control behavior wher(s = 1.

V. Discussion

This paper presented the first results of an effort to devedmpe rudimentary tuning rules for adaptation of pilot
behavioral tracking model parameters to variations in amofgedback. Data from a number of studies that investigated
the effects of variations in motion cueing settings on gilatking behavior and performance were compiled, compared
to selected measures of motion cueing fidelity, and used tméiar regression models for those combinations of
predictor variables and dependent measures for which aisufly strong correlation was observed. Using the motion
filter gain at 1 rad/s as the predictor variable, a set of nm#tieal equations was obtained that allows for tuning
multimodal pilot model parameters to a selected motionrfiteting, granted that the pilot dynamics for the control
task where no motion filter is present in the motion feedbathk pre known.

The choice of the predictor variable to use for pilot modelig rules as attempted in this paper is a very impor-
tant and complicated one, as it essentially requires aesimgmerical metric that summarizes the total motion filter
dynamics. Here the motion filter gain at 1 radl$«) was selected as the most promising predictor variablejias t
metric is indeed affected by both variations in motion cualisg (motion filter gainK’) and motion cue filtering
(motion filter break frequenay,,). However, it should be noted that this choice of metric &las some drawbacks.
For instance, the choice of the 1 rad/s evaluation frequéanplies that all motion filters for whickv,, < 1 rad/s
essentially become pure gain attenuation filters, as incthsg K ¢ is not affected by the filter dynamics governed by
wy. Therefore, a more in-depth investigation of this effecthaf frequency at whiclis is evaluated than described
here, and the testing of further possible predictor vaeisbis thought to be valuable to the work described in this
paper.

In this paper, only linear regression models were fit to tHiected data, thereby yielding a set of linear prediction
or interpolation equations to adjust pilot model paransetdn reality, it is unlikely that only linear variations of
parameters that define pilot control behavior with respec selected predictor variable will occur. However, for
investigating for which dependent measures this might Ipeagriate and for deriving valid higher-order prediction
models from collected data as used in this study, a significiarger number of available measurements is needed.

The observed trends in the dependent measures for whichgt@ojuations have been derived in this paper are
mostly highly consistent over the different experimentssidered in this study. There are, however, some exceptions
that result from differences in the defining elements of trestdered control tasks, which should be taken into account
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when applying the equations from this paper. One notablmplais the observed reduction in the pilot visual lead
time constanfl’;, with increasingK's. This trend is consistent over studies in which the corgtbélement state is
the dominant motion cue that is perceivable to the pilot. deortrol tasks for which this is not the case, most notably
for pitch tracking tasks with conventional aircraft as ddesed in a number of previous studie$’ 2>where heave
motion is the dominant motion cue rather than rotationaltpinotion, an opposite trend ifi; is observed. This

is believed to be a result of the fact that this heave motiavides less useful motion feedback to pilots than only
rotational pitch motion would. Such effects, however, aseyet explicitly included in the tuning rules as described
in this paper.

It should be noted that predicting human manual control biehés always going to remain a difficult problem,
mainly due to the sheer number of factors that affect the ediopontrol strategy.Hence, the equations for predicting
changes in tracking performance, pilot-vehicle crosséreguencies, and behavioral pilot model parameters ad-deve
oped in this paper should always be used with some cautiomturing rules developed in this paper will be updated
when new sets of data are added to the database. In addittare fvork will include applying the rules formulated
in this paper to an experiment that is planned for the end of 2for which we will attempt to measure pilot tracking
behavior for a large variation in motion filter parametetiags and motion filter orders.

VI. Conclusions

Using data from ten different investigations into the efffeaf motion filter characteristics on pilot tracking be-
havior and performance, this paper developed a rudimer#ryf tuning rules that can be used to adjust pilot model
parameters to a selected motion filter setting. The motiter fjain at 1 rad/s, which is also used as a metric in a
well-known criterion for evaluating simulator motion cagifidelity, was found to be the most promising metric to
use for the prediction of changes in pilot control strateGpnsistent changes in pilot behavior due to variations in
motion filter dynamics that were revealed for the data useHisstudy include increased pilot visual gains, reduced
pilot visual lead equalization, and increased pilot vigeaponse delays when the predicted level of motion fidedity i
increased. Linear regression models were fit to data foethagmeters to define a set of mathematical equations that
can be used to predict the values of these parameters focdispeotion filter setting.
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