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ABSTRACT Vulnerable road users (VRUs), including pedestrians, cyclists, and motorcyclists, account
for approximately 50% of road traffic fatalities globally, as per the World Health Organization. In these
scenarios, the accuracy and fairness of perception applications used in autonomous driving become critical
to reduce such risks. For machine learning models, performing object classification and detection tasks,
the focus has been on improving accuracy and enhancing model performance metrics; however, issues
such as biases inherited in models, statistical imbalances and disparities within the datasets are often
overlooked. Our research addresses these issues by exploring class imbalances among vulnerable road
users by focusing on class distribution analysis, evaluating model performance, and bias impact assessment.
Using popular CNN models and Vision Transformers (ViTs) with the nuScenes dataset, our performance
evaluation shows detection disparities for underrepresented classes. Compared to related work, we focus
on metric-specific and cost-sensitive learning for model optimization and bias mitigation, which includes
data augmentation and resampling. Using the proposed mitigation approaches, we see improvement in
TIoU(%) and NDS(%) metrics from 71.3 to 75.6 and 80.6 to 83.7 for the CNN model. Similarly, for ViT,
we observe improvement in IoU and NDS metrics from 74.9 to 79.2 and 83.8 to 87.1. This research
contributes to developing reliable models while addressing inclusiveness for minority classes in datasets.
Code can be accessed at: BiasDet.

INDEX TERMS Behaviour metrics, class imbalance, data disparities, cost-sensitive learning, sample
representation, object detection, vision models.

I. INTRODUCTION the urban driving environments, the VRUs represent around

HE SAFETY of vulnerable road users (VRUs) such as

pedestrians, cyclists, and motorcyclists in the vehicular
ecosystem remains a challenge and global concern. World
Health Organization’s statistics describe the risk faced by
these groups in traffic-related incidents.! As per the WHO
report, VRUs account for more than 50% of road traffic
fatalities worldwide, with developing countries having even
higher numbers [1], [2]. The report also describes that in

The review of this article was arranged by Associate Editor Chen Wang.
1 https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

70% of total fatalities. These statistics and analysis become
concerning when the focus is on developing and deploying
connected and automated vehicle systems and services using
sensor suites and state-of-art object detection models. The
correctness of vision and perception applications is mea-
sured using the model performance metrics, which include
accuracy, precision (average, mean), recall, and intersection
over union (IoU) [3], [4], [S]. Metrics such as robustness,
uncertainty measure, and fairness of these vision applications
are often overlooked. These metrics help to identify and
quantify trustworthiness and AI model performance in

(© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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non-ideal conditions and real-world scenarios [6], [7], [8],
[9], [10]. Research studies have covered the existence of
biases, class imbalances and disparities in vision datasets,
including autonomous driving datasets, which could lead to
unfair object classification and false predictions of vulnerable
road users (VRU) [2], [11].

Class imbalance generally refers to the unbalanced or
unequal representation of different categories or classes
within a dataset [12], [13], [14], [15]. The imbalance
and class disparities often lead to over-representation for
a type of class; for example, in popular datasets, the
most represented class is vehicles and pedestrians, while
classes such as cyclists, motorcyclists, and especially
mobility-impaired individuals are classes that remain under-
represented [16]. Such an imbalance can lead to perception
systems that are less adept at recognizing minor Yyet
vulnerable classes [16], [17], [18]. Studies have shown that
this imbalance can lead to the inheritance of biases in Al
models from the datasets, where models preferentially detect
overrepresented classes [19]. Figure 1 shows a heatmap from
our tests, where images on the left are input images, and
gradients flow for a class are shown on the right. As shown
in the image, the bicycle class is overlooked or has a false
detection.

The consequences of such an imbalance and biases in the
dataset cannot be overlooked, as it can lead to incidents
like the self-driving car collision [20]. Ethical issues of
biased autonomous driving systems are significant, as even
with accurate perception applications and systems, there
is a growing requirement for equitable AI systems that
ensure the safety and fairness of all road users [21]. Also,
regulatory bodies are increasingly focusing on how these
technologies follow the safety standards, such as their ability
to detect and respond to diverse and representative [22]
scenarios in a given latency measure. Within this scope,
we aim to address class imbalances and possibilities of
bias inheritance in an AI model when trained with class
disparities. For study and test purposes, we use two major
datasets in the autonomous (vision) domain, nuScenes [23]
and Waymo [24]. This research emphasizes the need for
balanced, diverse and representative datasets that include a
wide range of scenarios, reflecting real-world complexity.
In this dataset imbalance context, our paper explores the
following questions:

o« How do class representation and disparities within
datasets influence the accuracy and reliability of Al
models in detecting vulnerable road users (VRUs)?

« In what ways do biases from under-represented classes
in training datasets gets inherited in machine learning
models for perception tasks?

o What are the impacts of class disparities on the model’s
performance metrics and the model’s ability to perform
across varied and unseen environments?

As compared to related works, which are based on

the analysis of “F-1 Score, False Positives(FP) and False
Negatives(FN)” for bias impact assessment tasks [3], [15],
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FIGURE 1. Results when one class is preferred during training, leading to the
‘unseen’ class being poorly detected.

[19], [25], [26], our research focuses on behavioural metrics
to study inclusiveness for minority classes within the datasets
and class disparities between majority and minority samples
by performing empirical tests on CNNs, DNNs and ViTs.
This approach complements the previous work, adding value
to the error analysis techniques. Our approach shows model
learning processes and behaviour towards a particular class
or representation during training. The key contributions are:

1) We explored behavioural metrics for CNNs [26] and
adopted it for 3d features, which can be implemented
on DNNs processing camera and lidar data. We further
used layer-wise relevance propagation for the vision
transformer to assess bias effectively.

2) We investigated the impact of class and sample
disparities on weight distribution during the model
learning process. We also evaluated the empirical
performance using metric-specific and cost-sensitive
learning.

3) We propose a framework integrating bias assessment,
mitigation strategies, and model recalibration, ensuring
model fairness and accuracy.

Il. RELATED WORK

Perception applications and tasks in autonomous driving have
evolved through extensive research and development and pro-
gression in sensor technology, algorithmic processing, and
machine learning models [5], [27]. Early perception systems
relied on rule-based algorithms and limited sensor input,
but the advancements in deep learning and improvements
in LiDAR, radar, and camera technologies have provided
next-generation solutions [28], [29], [30]. However, devel-
oping a supervised learning-based fair perception system
with object classification and detection that can reliably

591



KATARE et al.: ANALYZING AND MITIGATING BIAS FOR VRUs BY ADDRESSING CLASS IMBALANCE IN DATASETS

interpret diverse and unpredictable road scenarios remains
an important challenge [31], [32]. For supervised learning,
sample distribution within datasets plays an important role in
training and validating autonomous driving systems. Initial
vision datasets like KITTI [33] and Cityscapes [34] have
provided foundations for advancing the field, specifically
from 2d to 3d classification and detection. Recent popular
datasets like nuScenes and Waymo have offered more diverse
and complex model training and testing environments. These
datasets include various annotations for vehicles, pedestrians,
cyclists, and other classes, providing a rich foundation for
developing and evaluating perception algorithms.

A. CLASS IMBALANCE
Data augmentation, re-sampling, and cost-sensitive learning
are some known techniques that are used to address class
imbalance [15], [17], [41]. The goal includes balancing the
representation of classes in training data [42] and developing
fair and accurate models across all categories [19], [43].
To detect imbalanced classes, a scenario-based simulation
approach is proposed by Hahner et al. [44]. Targeting
imbalanced representation, an approach that combines visual
codebook generation with deep features and a non-linear
Chi®> SVM classifier, is proposed in [14]. This method tackles
the issue of imbalanced datasets, where algorithms often fail
to detect minority classes. The approach extracts low-level
deep features using transfer learning with the ResNet-50
pre-trained model and k-means clustering to create a visual
codebook. Each image is then represented as a Bag-of-
Visual-Words (BOVW), derived from the histogram of visual
words in the vocabulary. The Chi*> SVM classifier is used for
classifying these features, showing optimized performance in
empirical analysis. This method shows better accuracy, F1-
score, and AUC metrics results than state-of-the-art methods,
validated on two datasets: Graz-02 and TF-Flowers [14].

He et al. [6], addresses the issue of fairness in cooperative
driving strategies. By integrating fairness considerations
into cooperative driving mechanisms used in congested on-
ramps, the study shows via simulation results that balancing
fairness and traffic efficiency is possible. Focusing on
fairness in demand prediction for ride-hailing services, a
socially-aware neural network (SA-Net) is introduced by
Zheng et al. [8]. The study integrates socio-demographic data
to improve prediction fairness. The SA-Net, supplemented
by a bias-mitigation regularization, reduces prediction dispar-
ities between underprivileged and privileged communities,
showing improvements in both the accuracy and fairness
of estimation. Exploring the impact of data management
in vehicular networks, Figueiredo et al. [43] propose an
algorithm to optimize the inclusion of extra object data
in Collective Perception Messages (CPMs). The algorithm
improves the efficiency and effectiveness of data trans-
mission within vehicular networks, showing potential for
substantial improvements in object information transmission
with minimal additional network delay.

With a focus on training methods to address the challenges
of learning from imbalanced data, a new loss function
592

that mitigates the impact of samples leading to overfitted
decision boundaries is proposed in [45]. This loss function
has been shown to enhance the performance of various
imbalance learning methods. The proposed approach is
robust and can be integrated with existing resampling, meta-
learning, and cost-sensitive learning methods to tackle class
imbalance problems [45]. An approach for predicting driver
behaviour critical for safely integrating autonomous vehicles
into human-dominated traffic is discussed in [25]. The
proposed method addresses the research gaps in existing
predictive models, which lack transparency (deep neural
networks) or are not explainable (rule-based models). The
authors introduce a model that embeds the Intelligent
Driver Model (IDM), a rule-based approach, into deep
neural networks. This hybrid model combines the long-term
coherence and interpretability of rule-based models with
the expressiveness of deep learning, aiming to accurately
predict driver behaviour in complex scenarios like merging.
The method is an attempt to bridge the gap between two
modelling paradigms. It enhances the interpretability of
neural network predictions while maintaining accuracy, a
critical factor for real-time decision-making in autonomous
driving. The model’s transparency is particularly beneficial
for debugging and understanding its predictions.

Existing tools and frameworks that address the issue
of class imbalance to train unbiased ML models include
AIF360 [31], an open-source library that includes multiple
algorithms specifically designed to reduce bias in datasets
and models. AIF360 includes techniques like reweighting,
which modifies the weights of training instances to address
the underrepresentation of a particular class or classes.
Similarly, Fairlearn [32], another open-source toolkit, pro-
vides interactive visualizations and algorithms to explore
and mitigate bias, focusing on balancing fairness and model
performance. Ghosh et al. [37] provides a detailed overview
of the challenges of class imbalance in machine learning.
The author proposes various resampling and algorithmic
adjustment techniques, such as SMOTE (synthetic minority
over-sampling technique), and their effectiveness in manag-
ing class disparities. The analysis shows the need for more
adaptive resampling methods tailored to specific machine-
learning scenarios to enhance the performance and fairness
of predictive models. Chen et al. [38], proposes an ensemble
technique to address model learning challenges associated
with imbalanced datasets. Balancing class influence during
model training enhances model performance across various
datasets. The paper’s empirical test shows the ensemble
strategy’s effectiveness, though the authors discussed that
extending this approach to more complex architectures could
provide model learning knowledge. Table 1 compares related
baseline work with our proposed method.

B. MODEL LEARNING AND REPRESENTATION

Wang et al. [35] introduce a deep attention-based method

for imbaanced image classification (DAIIC), using an atten-

tion mechanism within a logistic regression framework

to prioritize minority classes in prediction and feature
VOLUME 6, 2025
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TABLE 1. Comparison of related work on bias identification and mitigation in vision datasets.

Study H Methodology Bias Type Mitigation Approach Contribution

DAIIC [35] Deep attention-based  Class imbalance Cost-sensitive learning Improved minority class detec-
classification tion and representation

Tejani et al. [36] Theoretical Systematic and cogni-  Diverse data representation  Framework to mitigate bias
framework tive biases and model monitoring across Al development stages

Ghosh et al. [37]

Review and compari-

son

Class imbalance

Resampling and algorithmic

adjustments

Highlights the need for adap-

tive resampling methods

Chen et al. [38]

Ensemble technique

Class imbalance

Balancing class influence dur-

ing training

Enhances model performance
across various datasets

SMOTE [39]

Synthetic ~ minority

over-sampling

Class imbalance

Generating synthetic samples

Advances in minority class

representation

REVISE [19]

Dataset analysis tool

Object-based, gender-
based

Preemptive dataset analysis

Identifying under representa-

tions in visual datasets

BAdd [40] Bias addition Spurious correlations  Bias inducing attributes with ~ Learning bias-neutral repre-
Model architecture sentations
This Work Behavioral metric  Class imbalance Cost-Sensitive learning and  Error analysis and Model
analysis Data augmentation learning representations

Intelligent Transportation

representation. It automatically determines misclassification
costs to aid discriminative feature learning. Robust across
different networks and datasets, the DAIIC method has
proven effective, surpassing several benchmarks in single-
label and multi-label contexts [35]. The background and
related work in autonomous driving technologies, datasets,
and the challenges of class imbalance and bias show the
importance of this research area. Our study builds upon
these foundations, aiming to contribute to the development
of more equitable and reliable autonomous driving systems.
By addressing class imbalance and bias in key datasets,
we seek to enhance the safety and fairness of these
technologies for all road users. In this scope, libraries such
as AIF360 [31] also include state-of-the-art bias mitigation
methodologies such as adversarial debiasing, which enhances
the learning of more equitable representations by scoping the
model to overlook protected classes or attributes. Similarly,
Fairlean [32] offers a visualization suite that enables an
in-depth examination of model predictions across differ-
ent groups, highlighting potential biases and facilitating
the application of mitigation strategies. Tejani et al. [36]
explores the origin and impact of biases in imaging Al
systems, proposing a framework to mitigate these biases.
The paper identifies that biases can emerge at various
stages of Al development, from data handling to model
deployment, and suggests that these biases can contribute to
health disparities. The recommended strategies for mitigation
include ensuring diverse data representation and ongoing
monitoring of models post-deployment. While providing a
thorough theoretical discussion on systematic and cognitive
biases, the paper suggests that real-world applications and
empirical validations could further provide novel insights.
Elreedy et al. [39] proposed SMOTE as an approach in
addressing class imbalances by generating synthetic samples.
This technique is complemented with random over-sampling
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in enhancing the minority class representation. The authors
discuss both the theoretical framework and practical appli-
cations of SMOTE.

Chen et al. [46] provided an evaluation of bias mitiga-
tion techniques by discussing the performance of machine
learning models. Through empirical testing, it was found
that these methods often reduce the performance of models
in an attempt to enhance fairness, with a decrease in
machine learning performance observed in over half of the
scenarios tested. This study shows the variability in the
effectiveness of bias mitigation techniques, which largely
depends on the specific machine learning tasks, models,
and fairness metrics used. The research covered 17 bias
mitigation methods, 11 performance metrics, 4 fairness
metrics, and 20 types of fairness-performance trade-offs
across various decision-making tasks. The paper’s critical
insight shows that no single method provides an end-to-
end solution, highlighting the requirement of joint-optimized
mitigation solutions specific to applications. However, the
study also notes that improvement in fairness could poten-
tially compromise model performance, suggesting a complex
trade-off that must be achieved in practical applications.
BAdd [40] introduces a method for reducing bias in machine
learning by incorporating biased attributes into the training
process to achieve a fair model representations. The test
and analysis shows improvement in model accuracy across
benchmarks with single and multi-attribute biases, such as
FB-Biased-MNIST and CelebA, showing its efficiency over
existing methods. Based on the subsection discussion and our
scope of supervised learning, the current challenges in biases
occurrence in the datasets and inheritance in AI models can
be described as:

1) Class Disparities: Ensuring fair representation of
classes and samples in training datasets to improve the
fairness and accuracy of perception systems.
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Dataset Analysis &
Class Distribution 0

Models and Behaviour Bias Mitigation
Metrics
Model Behaviour

Selection Metrics

Cost-Sensitive Learning

Data Augmentation dﬂ Data Augmentation

Bias Impact Assessment

Bias Assessment and
Model Recalibration Error Analysis;

FIGURE 2. Proposed methodology for bias analysis.

Learning Pattern

2) Model Interpretability: Improving the understandabil-
ity of complex machine learning models to facilitate
debugging, understanding, and learning patterns.

3) Adaptive Performance: Developing systems that reli-
ably interpret and react to dynamic, unpredictable
environments such as varying weather conditions and
traffic scenarios.

4) Regulatory and Ethical Compliance: Aligning with
safety standards and ethical considerations, including
addressing privacy, accountability, and socio-economic
impacts.

lll. METHODOLOGY

When an imbalanced dataset D with an unjustified distri-
bution of classes Ci, Ca,...,C, is used to train machine
learning models, specifically neural networks and Vision
Transformers (ViTs), the models are likely to inherit biases
because of class representation in the dataset. These biases
may arise due to imbalanced class representation and
a predominance of normal conditions as compared to
challenging real-world scenarios. For neural networks, we
anticipate biases to be reflected in neurons’ sensitivity and
selectivity scores, while for vision transformers, biases may
manifest in the attention allocation. Therefore, we propose a
methodology consisting of statistical analysis for analyzing
and mitigating biases using dataset analysis, bias impact
assessment, bias mitigation, metrics behaviour analysis, and
bias assessment and model re-calibration, as shown in
Figure 2. The following subsections detail and discuss the
concepts and terminologies used in our methods and tests.

A. DATASET AND CLASSES

In this paper, we use nuScenes as the case study, focusing on
the Pedestrian, Cyclist, and Motorcyclist classes. However,
the approach can be tested and validated on other driving
datasets, e.g., the Waymo dataset [24], where the samples
and classes can be varied.

A) Class Distribution Analysis: We perform statistical
analysis on the frequency of the specified classes in the
nuScenes and Waymo datasets to identify class imbalances.
The datasets are analyzed to understand the context (urban
versus rural settings, diverse weather and lighting conditions)
in which these classes are represented, highlighting any
underrepresented scenarios.

Pedestrian Class: nuScenes dataset includes a major
proportion of pedestrian annotations, with 149,921 instances
labelled as “human.pedestrian.adult” accounting for 21.61%
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of all annotations. This substantial representation highlights
the importance of pedestrian detection in autonomous driv-
ing systems. However, other pedestrian sub-categories like
children (1,934 annotations, 0.28%), construction workers
(13,582 annotations, 1.96%), and individuals with personal
mobility devices (2,281 annotations, 0.33%) are less rep-
resented. These differences shows gaps in dataset and
subsamples diversity.

Cyclist Class: It is categorized as “vehicle.bicycle” and
has around 17,060 annotations, comprising 2.46% of the
total dataset. This relatively lower representation compared
to pedestrians impacts the class weight calculation and,
therefore, the model’s ability to accurately detect cyclists, a
safety concern in urban driving scenarios.

Motorcyclist Class: It is annotated as ‘“vehi-
cle.motorcycle” and has around 16,779 annotations,
making up 2.42% of the dataset. This class is slightly
underrepresented compared to pedestrians but is on par
with cyclists. The lesser representation of cyclists and
motorcyclists indicates an area for improvement in class
balance, especially considering the different dynamics and
associated risks.

The standard metrics used for model performance eval-
uation in nuScenes are mean average Precision (mAP),
Intersection over Union (IoU), and nuScenes Detection Score
(NDS). mAP and IoU are well-known metrics used in
3d object detection and segmentation tasks [23], and are
calculated using the fundamentals of precision, recall, area of
overlap and intersection over union respectively. Similarly,
NDS combines several metrics, including the mAP, to
provide a model performance score for the object detection
models. The NDS metric is calculated as:

NDS = |5 mAP+ > (A —min(l,mTP))| (1)
10 mTPETP

B) Data Augmentation/Re-sampling: Given the class
representations, particularly for the less represented sub-
categories of pedestrians and overall lower representation of
cyclists and motorcyclists, following strategies can be used
for model training and evaluation.

Resampling Technique: Addressing class imbalances
in the datasets for underrepresented classes, like cyclists
and motorcyclists, is essential for unbiased training in
autonomous driving models. We apply both “Random
Oversampling” and “Undersampling” from resampling tech-
niques”. Random Oversampling duplicates instances from
minority classes, ensuring models have sufficient data to
learn from these critical yet less frequent road users. While,
undersampling reduces the dominance of over-represented
classes, like pedestrians, to prevent bias inheritance in
models. Both methods are balanced to maintain data diver-
sity [47].

Data Augmentation: Another key approach is the use
of geometric transformations, such as rotating and flipping
images. This technique represents various class orientations,
which is crucial for autonomous driving where objects are
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IEEE Open Journal of
Intelligent Transportation
Systems

encountered from multiple directions. These transforma-
tions prevent the model from developing orientation-specific
biases and enhance its ability to adapt to diverse real-
world scenarios. Additionally, this approach contributes to
increasing the dataset’s diversity and size, thereby improving
the model’s robustness and generalization capabilities for
more accurate and reliable perception tasks [48].

Combination of Strategies: For varied training, test-
ing, and to increase the samples/sub-classes diversity, we
combine resampling and data augmentation to balance the
training dataset. This approach integrates the strengths of
both Resampling (Random undersampling/Oversampling)
and Transformations, such as rotating and flipping images,
to optimize the representation and variability of data.

B. MODELS AND BEHAVIOURAL METRICS

We strategically use popular models such as ResNetl8
[49], SqueezeNet [50] from the CNN, Centerpoint [51],
FS3D [52] from DNN and ViT [29] from the transformer
family for evaluation. The selection of these models is
intended to provide an understanding of how different
architectures perform on biased datasets and to compare
their ability to generalize across various classes, especially
after the implementation of bias mitigation. Using these
models, we further gain insights across different neural
network architectures, ensuring robustness and reliability in
our findings.

Model Selection: ResNet18 [49] is a well-known architec-
ture and performs fairly in perception tasks due to its ability
to capture spatial hierarchies, but it can show a tendency of
bias towards common textures and patterns. SqueezeNet [50],
is a compact model and focuses on global image features
but risks inheriting biases from non-diverse datasets [26].
Vision Transformers (ViTs) process images by analyzing
sequences of patches, adeptly focusing on relevant image
parts due to their attention mechanisms [29]. While ViTs
are proficient at capturing dependencies, these models may
struggle to focus on underrepresented classes/unique scenar-
ios adequately. Each model’s inherent strengths and learning
mechanisms influence classification and learning, highlight-
ing the need for tailored bias detection and mitigation
strategies.

Behaviour Metrics: Sensitivity and selectivity scores of
neurons are used to evaluate biases in models like ResNet and
SqueezeNet. Sensitivity scores measure a neuron’s response
to changes in input from specific classes, indicating potential
biases. For example, a ResNet neuron more sensitive to
vehicles than cyclists might show a vehicle-detection bias.
Selectivity scores, on the other hand, assess the specificity
of a neuron’s response to a class, with high selectivity
indicating specialized recognition capabilities. This helps
identify whether models effectively differentiate between
classes or show biases, such as a score showing higher
selectivity for pedestrians over motorcyclists, potentially
indicating a feature recognition bias. The formula for the
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measures is described as follows:
Sensitivity Score = da/dx 2)
where a is activation of neuron, and x is the input feature.

iy ac—a
Selectivity Score = — %

3)

max (dc, dayg)

where a. is activation of the neuron for the target class and
aavg is the average activation for all classes.

Traditional convolutional neural networks (CNNs) process
2D image data, thus applying sensitivity and selectivity
metrics to measure the neural response per pixel or feature
map does not require specific adaptation. However, 3D
object detection deep neural networks (DNNs) such as
CenterPoint and FS3D manage complex data types or
modalities, including 3D point clouds and fused data from
lidar and cameras. These models require metrics that can
accommodate the unique 3D spatial relationships, intensities,
and RGB data present in their inputs. The adaptation of
sensitivity metrics for these 3D DNNs involves modifying
the traditional approach to account for 3D spatial features or
fusion features. This includes changes in point positions or
attributes and their impact on detection confidence. Hereby,
in this paper, we represent sensitivity scores for 3D data
contexts as follows:

dDetection Confidence

Sensitivity S 3D) = !
ensitivity Score (3D) dPoint Feature @

This formula helps quantify how minor changes in input
features influence the model’s output, providing insights into
potential biases or model dependencies. For selectivity, while
CNNss evaluate activation differences due to traditional image
features, 3D DNNs focus on distinguishing objects based
on 3D spatial features or sensor fusion data. The selectivity
score for 3D DNNs can be expressed as:

|ac, 3D — davg, 3D|

max(ac, 3D, Aavg, SD)

Selectivity Score (3D) = 5)

where a. is the activation for the target class, and ag, is
the average activation across all classes, adjusted for 3D
data. The application of these metrics requires visualization
techniques, such as 3D Grad-CAM or point cloud saliency
mapping, which shows sensitivity and selectivity in a
three-dimensional context. These visual tools are essential
for understanding how models prioritize some features
over others, potentially influencing their decision-making
processes and dominance while learning.

In Vision Transformers (ViTs), attention map analysis is
key for identifying model focus areas and potential decision-
making biases. This involves extracting attention weights
from each Transformer layer, which indicates the model’s
focus on different image parts. These heatmaps, created using
the scaled dot-product attention mechanism, help determine
if the model disproportionately focuses on some features,
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potentially signalling bias. For ViTs the attention weights

are calculated as:
T
A= softrnax(QK )V (6)
Vi
where Q (Query), K (Key), and V (Value) are matrices
derived from the input, and dy is the dimension of the Key
vectors. By analyzing these attention maps across different
layers and attention heads, we can identify whether the model
disproportionately focuses on certain features or misses
critical aspects, potentially indicating bias.

Layer-wise Relevance Propagation (LRP) offers another
approach, starting from the output layer and backpropagating
the relevance score of the predicted class through the
network. LRP redistributes each layer’s relevance to its
inputs, particularly in self-attention layers, where relevance
among patches is allocated based on attention weights [53].
The relevance for a patch in a layer, highlighting the model’s
decision-making basis is calculated as:

0 (0) pU+1)
RY =" AR (7)
i

where Rj(l) is the relevance of patch j in layer /, Ag) are the
attention weights from patch j to patch i in the self-attention
mechanism, and R§l+1) is the relevance in the next layer.

C. BIAS IMPACT ASSESSMENT

This section describes model errors (false positives and neg-
atives) and examines learning patterns and bias inheritance,
which are fundamentals for identifying potential biases in
model performance.

A) Error Analysis: We focus on false positives (e.g.,
incorrectly identifying objects as belonging to a target class)
and false negatives (e.g., failing to detect cyclists). We
further use Class-specific error analysis, which includes
evaluating how well the model detects pedestrians, cyclists,
and motorcyclists under various scenarios. We also examine
if there is a tendency to overlook vulnerable classes and
how this impacts overall model performance. The correlation
between these errors and previously identified biases, such as
neurons’ sensitivity or selectivity scores, is also explored to
understand the underlying causes and guide bias mitigation
strategies using bias correlation.

B) Learning Patterns and Bias Inheritance: Different
model architectures lead to varied learning behaviours and
potential biases. CNNs like ResNet may focus on textures
and local patterns, which could introduce biases if such
features are not uniformly present across all classes. This
can result in misclassification, especially when distinguishing
features are missing. In comparison, Vision Transformers
(ViTs) may develop biases based on how attention is
distributed across an image.

Bias Inheritance from Data: A model’s performance
can vary depending on the diversity/samples encountered
in training. For instance, a model trained predominantly
on urban pedestrian images might underperform in rural
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settings. Understanding this bias inheritance is crucial for
ensuring that perception systems are adaptable to diverse
real-world conditions and can guide necessary adjustments
in data representation and model training.

Comparative Analysis: By comparing how different
models like ResNet, SqueezeNet, and ViTs respond to
the same dataset, we can uncover specific biases inher-
ent in each architecture. This comparative approach helps
identify which models are more prone to biases, help-
ing categorise the most suitable model for bias-sensitive
applications.

Interpretation and Visualization: Layer-wise Relevance
Propagation (LRP) provides insights into what drives a
model’s decisions by highlighting influential input features.
For example, if a model consistently focuses on irrelevant
background features for decision-making, it indicates a bias
that needs correction [54]. Analysis of these scores, using
visual tools like heatmaps and attention maps, helps in
interpreting these complex models, offering an understanding
of their decision-making processes, and adjusting the training
process to mitigate identified biases. Overall, this process
involves the analysis of learning patterns, data bias inheri-
tance, comparative model analysis, and visualization, which
can help discover bias occurrence/inheritance in different
model architectures.

D. BIAS MITIGATION TECHNIQUES

We explore the strategies mentioned below to mitigate biases
inherited from sample representation and address these class
disparities. These techniques are necessary for addressing
the disparities and ensuring that the model’s performance is
equitable and reliable.

A) Cost-Sensitive Learning: Customized cost-sensitive
learning offers a robust approach to mitigating these issues
by adjusting the model’s loss function according to the
representation of each class. The class weights calculation
and loss function are discussed below.

Class Weights Calculation: Based on the dataset statis-
tics, we calculate the weights for the pedestrian w), cyclist
we, and motorcyclist wy, classes using the inverse of their
respective representation percentages. This approach assigns
higher weights to underrepresented classes, emphasizing
their importance during training. The calculated weights are:

1 1 1
T2161% T 246% " T 2.422%

These weights are then normalized to ensure they con-
tribute proportionally and maintain stability during training.
Loss Function: We integrate these calculated weights into
the model’s loss function, utilizing a weighted multi-class
cross-entropy loss. For each instance i, the loss is defined:

Wp

Li = —wpyip IOg(Pip) — WeYie logic) — WinYim 10g(Dim) (8)

Here wy,, w¢, and w,, are the weights for pedestrians,
cyclists, and motorcyclists. y;, is a binary indicator of
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whether instance i belongs to a class x. p;, is the model’s
predicted probability for instance i belongs to a class x.

Implementing Focal Loss [10] provides another practi-
cal mechanism that focuses on hard-to-classify instances
by reducing the loss contribution from easily classified
examples. This dynamic adjustment is controlled through
a tunable focusing parameter, which can lead to faster
and more effective learning on datasets where intra-class
variation in example difficulty is significant. By mitigating
the influence of numerous easy examples, Focal Loss
can enhance the model’s learning efficiency, allowing for
a more nuanced understanding and handling of complex
class imbalances. However, the Weighted loss functions,
particularly weighted cross-entropy, offer a straightforward
and easily implementable solution. By assigning weights
inversely proportional to class frequencies, they directly
compensate for imbalances, ensuring that minority classes
have a proportionally higher influence during the training
process. This method simplifies the implementation for the
models selected for experimental evaluation and further
enhances the stability and predictability of the training
process, making it a robust choice for preliminary model
training where simplicity and direct addressing of class
imbalances are prioritized. Therefore, the selection between
these two loss functions depends on the dataset’s specific
requirements and the desired balance between simplicity and
dynamic learning efficiency.

Dynamic Adjustment Evaluation: To ensure continual
model adaptability, we propose dynamically adjusting these
weights based on performance metrics. This approach can
be tested using a validation set to monitor performance
improvements for underrepresented classes and to prevent
overfitting. By using this approach, we aim to reduce the
biases inherent in the AI model from the imbalanced dataset,
ensuring an equitable and robust model performance across
all classes, which is critical for the reliability and safety of
perception applications.

Reweighing: In our methodology, we propose to use
an extended version of reweighing algorithm [55], which
extends the traditional class frequency adjustments by
performing reweighting of the classes in a dataset that has a
diverse representation of samples and classes. Recognizing
the complexity of bias in autonomous driving scenarios, our
weights are dynamically calculated not only based on the
underrepresentation of classes but also considering factors
such as error sensitivity and historical bias measures. For
example, if historical data indicates that certain classes,
such as cyclists, are consistently prone to higher false neg-
ative rates, our model significantly increases their weights.
Additionally, we factor in the predictive importance of
each class in the overall model performance, ensuring that
critical classes influencing safety-critical decisions receive
appropriate attention during training.

Cross-Metric Optimization: As the proposed method
includes model learning observation using behavioural met-
rics and evaluation using performance metrics, in our
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method, we also consider an approach to enhance model
performance by implementing cross-metric optimization,
which extends the methodology focus of weighting(class)
from balanced class representation to also including sen-
sitivity, selectivity and model performance metrics in the
weighting process. This approach allows for model tuning,
debiasing and addressing performance through a choice of
class representation and model calibration.

B) Data Augmentation Based on Model Analysis: We
use a targeted data augmentation strategy to address biases
identified in ViTs through attention map analysis and
Layer-wise Relevance Propagation (LRP). This approach
specifically addresses under-representation issues in cyclists
and motorcyclists within the nuScenes dataset.

Attention-Guided Augmentation: Insights from attention
maps guide this augmentation strategy. For instance, if
the model frequently overlooks pedestrians under night or
varied lighting conditions, then there is a need for more
class samples highlighting these scenarios. Techniques such
as zooming or adjusting brightness/contrast are used to
emphasize these aspects. Similarly, additional variations of
poses or orientations for motorcyclists are incorporated to
improve model recognition abilities in these contexts.

LRP-Informed Sampling: Layer-wise Relevance
Propagation provides an understanding of which features
contribute most to the model’s decisions. Using insights
from LRP, the dataset can be augmented to enhance the
representation of features critical for correct classifications.
Augmentation for this case includes scenarios where
the model typically misclassifies images, like partially
occluded subjects or specific textures and patterns, enhancing
the model’s ability to differentiate between relevant and
misleading features.

Implementation: This strategy involves iterative dataset
refinement based on continuous model analysis. By align-
ing augmentation closely with model performance, we
aim to mitigate biases, ensuring balanced and fair model
performance. This is critical for perception systems, where
the accurate detection of all road users, particularly those
underrepresented like cyclists and motorcyclists.

E. BIAS ASSESSMENT AND MODEL RE-CALIBRATION
Effective bias mitigation requires continuous evaluation and
adjustment of models. This section describes our approach
to bias assessment and model re-calibration.

Bias Assessment: In this step, we use behaviour metrics,
specifically sensitivity and selectivity scores for each class,
to measure the impact of our mitigation efforts. Comparing
these metrics before and after mitigation measures provides
insights into changes in model behaviour. Additionally, we
analyze error rates, particularly false positives and negatives,
to assess improvements in the model’s predictive accuracy
across different classes. For Vision Transformers, attention
map analysis is used to verify if attention distribution is now
more balanced across various classes and scenarios.
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Model Re-calibration: This involves dynamically adjust-
ing class weights within the loss function, guided by
real-time performance metrics. The step ensures the model
stays optimized for any shifts in class representation or
emerging imbalances. When new class samples or data
become available, the model undergoes re-training to stay
aligned with the evolving operational context. The last step
includes an iterative refinement, monitoring and updating
bias mitigation strategies based on the latest performance
assessments.

IV. EXPERIMENTAL EVALUATION

This section covers training, testing and evaluation methods.
The overall dataset comprises approximately 1.4 million
images, with annotations across several classes. Our focus
is on the Pedestrian (149,921), Cyclist (17,060), and
Motorcyclist (16,779) classes, as it provides a rich source
for analyzing biases in object detection.

Preprocessing Steps: Data preprocessing involved nor-
malization of image pixel values to the [0,1] range, aligning
annotations to ensure consistency, and resizing images to
standard dimensions suitable for input requirements of
chosen models.

Model Architectures: The study uses SqueezeNet
and ResNetl8 from the CNN family alongside Vision
Transformer: ViT. SqueezeNet, known for its compressed
size and robustness in feature extraction, and ResNetl8,
recognized for its efficiency in learning from residual
connections, are expected to provide insights into traditional
CNN performance. ViT, representing the Transformer family,
is included to evaluate the effectiveness of its attention-based
mechanism in handling class imbalances.

A. HYPERPARAMETER OPTIMIZATION

Initial hyperparameters were set as follows: learning rate of
0.001, batch size of 32, and weight decay of 0.0001 for CNN
models. For ViT we configured the training with a batch size
of 32 and an initial learning rate of le-3, following a linear
decay to le-5. The model was trained for 30 epochs using
the Adam optimizer. A dropout rate of 0.1 and a weight
decay of 0.03 is applied to avoid overfitting.

Optimization Techniques: Hyperparameter tuning is per-
formed using a grid search approach, systematically varying
learning rates, batch sizes, and dropout rates to identify the
optimal combination [18]. The optimal set of hyperparame-
ters was chosen based on the highest average scores across
these metrics as followed in [23], focusing on improvements
in detecting classes.

B. TRAINING PROCESS

Our sample size is small, so CNN models were trained for 50
epochs using an Adam optimizer. A learning rate scheduler
was used to reduce the learning rate by 10% every 10
epochs. Regularization techniques such as dropout and data
augmentation (rotations and flipping) were used to prevent
overfitting [56].
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FIGURE 3. Layerwise selectivity for the Classes.

The dataset is divided into 70% training, 15% validation,
and 15% test splits, ensuring a fair representation of scenar-
ios in each set. Training is conducted on a high-performance
computing cluster with a combination of NVIDIA Tesla
V100 GPUs using Open MPI and PyTorch as the deep
learning framework.

C. MODEL EVALUATION

Models were evaluated using average precision, mAP (mean
average precision), %IloU and NDS (Intersection over Union,
NuScenes Detection Score), alongside sensitivity and selec-
tivity scores for class analysis.

Baseline Comparison: Model performances pre and post-
implementation of bias mitigation strategies were compared.
Baseline models were trained with respect to data conditions.

Class-specific Analysis: Performance metrics for each
class were used to assess improvements in detecting pedes-
trians, cyclists, and motorcyclists. For analysis, attention is
given to false positive or negative rate changes for these
classes. The tests for CNN can be performed using layer-
wise analysis and by varying data diversity where one class
has a dominant presence.

Layer-wise Analysis: This analysis shows whether spe-
cific layers are biased towards particular classes, which
provides strategies for bias mitigation. For instance, if
early layers are biased towards detecting pedestrians more
than cyclists or motorcyclists, there will be a need to
adjust the training data with inclusiveness. Figure 3 shows
Selectivity scores at various layers of SqueezeNet under
different conditions: Normal, Night, and Weather. The plot
shows that selectivity increases in deeper layers, with the
highest scores observed under normal conditions and com-
paratively lower scores during Night and Weather scenarios.
A similar analysis can be done at the epoch level, where
performance metrics, training loss and accuracy can be anal-
ysed with behavioural metrics, thus allowing feature learning
progression.

D. BIAS IMPACT ANALYSIS

Error Analysis: Figure 4 shows error analysis for the
discussed classes. The ResNetl8 model showed a higher
tendency for false positives in all classes than the ViT model,
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FIGURE 4. Visualization of class-wise error rate for ResNet and ViT according to
False Negatives and False Positives in model validation.

FIGURE 5. Figure showing heatmap for all three classes.

suggesting a preference toward overprediction. Also, the
ViT model shows fewer false positives but has a higher
number of false negatives, particularly with Pedestrians and
Cyclists, highlighting a less effective detection strategy for
the class. The ViT model shows a more balanced result
for the Motorcyclist class with significantly reduced false
negatives than ResNet18, indicating more reliable detection.

Visualizations: Figure 5 shows heatmap visualization to
represent the models’ focus areas and any changes before
the mitigation strategies. When trained with unbalanced
classes, the tests show that both CNN models falsely classify
motorcyclist and cyclist classes.

E. VRU ANALYSIS WITH VEHICLE CLASS

As one of the most represented class in the vision datasets
is vehicle also sometimes used as Car, we further evaluate
models and respective performance for detailed performance
analysis by including vehicle class (Car) with vulnerable
road users. As the sample representation of the Vehicle class
in the dataset is around 36.6%, our class weight calculations
are adjusted as:

1 1 1 1
Wy = ——— Wp —
36.6% 2.4%

T 206% VT 24w T

F. DISCUSSION OF RESULTS
For measuring IoU, mAP and NDS scores mentioned in
Table 2 and Table 4, we used a subset approach, where the
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TABLE 2. NDS and %loU of VRU with ResNet18.

%loU of Classes Data
Pedestrian | Cyclist | Motorcyclist NDS Condition
86.1 53.6 76.4 72.0 Normal
78.5 8.3 40.7 425 Night
67.3 7.5 18.9 31.2 Weather
85.7 52.8 76.1 71.5 Rotated
72.1 12.4 21.4 353 Mixed
TABLE 3. NDS and %loU for classes with ResNet18.
%loU of Classes Data
Car | Pedestrian | Cyclist | Motorcyclist NDS Condition
71.0 68.1 53.6 56.4 64.9 Normal
73.1 64.5 8.9 38.7 45.6 Night
72.8 61.3 7.8 20.9 39.2 Weather
76.7 67.9 52.8 56.1 62.5 Rotated
714 65.1 12.9 17.6 36.8 Mixed
TABLE 4. mAP of VRUs with SqueezeNet.
Pedestrian | Cyclist | Motorcyclist | Total | Data Condition
86.3 54.7 77.8 72.9 Normal
78.1 75 383 41.3 Night
67.0 8.3 19.7 31.6 Weather
85.9 523 752 71.1 Rotated
732 14.8 22.1 36.7 Mixed

representation of one class (e.g., pedestrian) is kept at 67%
and the other two classes have equal representation. This
ratio is adjusted during iterations until all classes have the
same representation. The purpose is to capture metrics in a
scenario where the weighted class functions are normalized.
Table 2 shows the Intersection over Union (%IoU) for
different classes and the NuScenes Detection Score (NDS)
across various conditions for ResNet18. Pedestrian detection
remains relatively high in all conditions, with %IoU above
70% except when combined adverse conditions are present.
Cyclist detection suffers significantly in all but normal
conditions, with %IloU dropping to as low as 7.5% during
adverse weather. Motorcyclist detection is also affected by
these conditions but to a lesser extent. The overall NDS
reflects these trends, with the highest score of 72.0 in normal
conditions and the lowest of 31.2 during adverse weather.
The rotated condition only slightly impacts the %IoU for
pedestrians and motorcyclists but more so for cyclists. Mixed
conditions present a scenario with a noticeable decrease in
%loU across all classes and a resultant NDS of 35.3.
Table 4 shows the mean average precision (mAP) of
pedestrian, cyclist, and motorcyclist detection under various
conditions. Under normal conditions, pedestrian detection
is high at 86.3%, while cyclist detection lags at 54.7%.
Motorcyclist detection is reasonably high at 77.8%, leading
to an overall mAP of 72.93%. However, model performance
drops for the night and adverse weather conditions, with
the lowest cyclist mAP at 7.5% and 8.3%, respectively.
furthermore, rotating images in normal conditions slightly
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TABLE 5. Mean average precision (mAP) of different classes with SqueezeNet under
various conditions.

Car Pedestrian | Cyclist | Motorcyclist | Total | Condition
76.1 | 67.3 8.7 27.8 449 Normal
74.7 | 58.1 5.5 22.3 39.9 Night
73.2 | 49.0 4.3 19.7 35.7 Weather
75.8 | 65.6 79 21.2 42.1 Rotated
749 | 61.8 4.6 24.1 40.8 Mixed
TABLE 6. Class-wise performance on the CNN models.
Class Model %loU | NDS Sens. | Sel.
Pedestrian ResNet18 65.3 64.1% | 0.74 0.78
Cyclist ResNet18 68.4 79.5% | 0.65 0.67
Motorcyclist | ResNetl8 70.2 80.3% | 0.70 0.72
Car ResNet18 75.1 78.1% | 0.78 0.83
Pedestrian SqueezeNet | 78.1 854% | 0.81 0.83
Cyclist SqueezeNet | 72.6 82.7% | 0.73 0.75
Motorcyclist | SqueezeNet | 74.0 83.2% | 0.76 0.77
Car SqueezeNet | 78.1 85.4% | 0.81 0.83

Sens. = Sensitivity Score, Sel = Selectivity Score

reduces pedestrian and motorcyclist detection by about 1%,
but impacts cyclist detection, dropping to 52.3%. Combining
all adverse conditions reduces overall performance to a mAP
of 36.7%, highlighting the challenges the models face in
less-than-ideal scenarios.

As shown in Table 3 and Table 5, the inclusion of the
vehicle class in our model evaluations using ResNet18 and
SqueezeNet shows the tradeoff in model performance metrics
under various data conditions. Specifically, the presence of a
well-represented vehicle class impacts the learning process
and representation of vulnerable road users (VRUs) such
as cyclists and motorcyclists, particularly under challenging
conditions like night and adverse weather. Normal and
Rotated data conditions maintain relatively high performance
across all classes, there is a decrease in %IoU and NDS
values when vehicles are included, suggesting a shift in
model selectivity towards the more frequently represented
class. Under Night, Weather, and Mixed conditions, the
performance drop for cyclists and motorcyclists is higher,
which provides information on potential model overfitting
or bias towards vehicles. This adjustment in class weights to
include a dominant vehicle category requires a recalibration
to prevent overlooking of minority classes. Statistical parity
and optimization could benefit from experimenting with
different class weighting strategies, enhancing data augmen-
tation for underrepresented classes, and possibly adjusting
model architecture to balance detection accuracy across
diverse operational scenarios.

Class-wise Performance Metrics: Table 6 shows class-
wise performance metrics for two models, ResNetl8 and
SqueezeNet. For the pedestrian class, SqueezeNet shows
better performance than ResNet18, with a higher %IoU and
NDS. Cyclists and motorcyclists also see better %IloU and
NDS scores with SqueezeNet. Sensitivity and selectivity
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TABLE 7. Baseline vs post-mitigation performance.

Model Metric (Avg) | Baseline | Post Mitigation
ResNetl18 | %IoU 71.3% 75.6%
ViT 9%loU 74.9% 79.2%
ResNet18 | NDS 80.6% 83.7%
ViT NDS 83.8% 87.1%

TABLE 8. Performance analysis on Argoverse2.

Models baseline performance
Method APped | APcyc | APmotor-cyc | mAP
CenterPoint 48.6 26.5 37.1 37.4
FS3D 61.4 34.5 51.7 49.2
Post mitigation performance
CenterPoint-1 54.8 38.8 42.0 452
FS3D-1 62.8 36.4 56.7 51.9

scores, which measure the models’ ability to identify and
differentiate classes, are consistently higher for SqueezeNet
across all classes, indicating a more refined recognition
capability. These metrics show overall better performance
from SqueezeNet models in distinguishing and correctly
identifying the classes.

Baseline vs Post-Mitigation Performance: Table 7 shows
average Intersection over Union (IoU) and NuScenes
Detection Score (NDS) before and after applying bias mitiga-
tion techniques for ResNet18 and Vision Transformer (ViT).
Both models show an improvement in %IoU and NDS after
mitigation, with ViT having a high NDS score. ResNet18’s
IoU improved by 4.3%, and its NDS by 3.1%, while ViT’s
IoU and NDS improved by 4.3% and 3.3%, respectively.
This shows the effectiveness of the bias mitigation strategies.

Table 8 compares the performance of object detection
models CenterPoint and FS3D on the Argoverse2 dataset
before and after mitigation efforts. Initially, CenterPoint had
a mAP of 37.4%, which improved to 45.2% post-mitigation,
with gains across all categories—pedestrians up to 54.8%,
cyclists to 38.8%, and motorcyclists to 42.0%. FS3D started
with a higher baseline mAP of 49.4% and rose to 51.9%
after mitigation, showing slight improvement in pedestrian
detection to 62.8% and a significant increase for motorcy-
clists to 56.7%. These results indicate the effectiveness of
the mitigation strategies in enhancing detection accuracies.

Table 9 shows performance metrics (average precision) for
pedestrian, cyclist, and motorcyclist detection using models
CenterPoint and FS3D across the baseline dataset and their
results CenterPoint-1 and FS3D-1 with class representation
modification. With modified class sample representation for
training, the model shows improvements in sensitivity and
selectivity, particularly for pedestrians and motorcyclists. For
example, selectivity for pedestrians in FS3D-1 increased
from 0.82 to 0.89, indicating precise detection with fewer
false positives. Motorcyclist detection also improved, with
sensitivity rising from 0.70 to 0.76 in FS3D-1, enhancing the
detection rate. Cyclists, however, showed minimum gains,
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TABLE 9. Class performance on the Argoverse2.

Class Model AP Sens. | Sel.
Pedestrian CenterPoint 48.6 | 0.73 0.77
Cyclist CenterPoint 26.5 | 0.63 0.68
Motorcyclist | CenterPoint 37.1 | 0.69 0.74
Pedestrian FS3D 61.4 | 0.77 0.82
Cyclist FS3D 345 | 0.64 0.69
Motorcyclist | FS3D 52,5 | 0.70 0.78
Pedestrian CenterPoint-1 | 54.8 | 0.81 0.82
Cyclist CenterPoint-1 | 38.8 | 0.62 0.69
Motorcyclist | CenterPoint-1 | 42.0 | 0.73 0.75
Pedestrian FS3D-1 62.8 | 0.85 0.89
Cyclist FS3D-1 36.4 | 0.65 0.70
Motorcyclist | FS3D-1 56.7 | 0.76 0.80

Sens. = Sensitivity Score, Sel = Selectivity Score

TABLE 10. Performance analysis on Waymo level 1.

AP/APH Vehicle Ped Cyc mAP/mAPH
CenterPoint 75.1/77.6 | 78.2/ 749 | 71.8/ 70.4 75.0/ 74.3
FS3D 77.5/ 772 | 80.9/ 742 | 76.1/75.3 78.1/ 75.5
Post mitigation performance
CenterPoint-1 | 77.6/ 78.1 80.5/ 76.2 | 73.1/ 70.6 77.0/ 74.9
FS3D-1 78.1/77.5 | 81.6/75.2 | 77.0/ 76.1 78.9/ 76.2
TABLE 11. ML performance metrics comparison.
Class Model Precision | Recall | mAP
Car CenterPoint | 0.88 0.76 0.80
Pedestrian CenterPoint | 0.83 0.75 0.69
Cyclist CenterPoint | 0.58 0.42 0.47
Motorcyclist | CenterPoint | 0.55 0.39 0.41
Post mitigation performance
Car CenterPoint | 0.85 0.70 0.77
Pedestrian CenterPoint | 0.81 0.68 0.63
Cyclist CenterPoint | 0.57 0.34 0.45
Motorcyclist | CenterPoint | 0.52 0.31 0.37

mAP = Mean Average Precision

highlighting the ongoing challenge of accurately detecting
class which has common features. These results show the
benefits of bias mitigation in enhancing detection accuracy
and model fairness.

Table 10 shows a pre and post-mitigation performance
analysis on the Waymo dataset. In this test case, we
used vehicle, pedestrian and cyclist classes to evaluate
performance metrics. As shown in the table, post-mitigation
models (CenterPoint-1 and FS3D-1) show improvement in
metrics. For e.g., the APH for vehicles increased from 77.6
to 78.1 in CenterPoint-1 and from 77.2 to 77.5 in FS3D-
1. The pedestrian class also has improvements in the AP
and APH, with FS3D-1 showing an increase from 74.2 to
75.2 in APH. However, for the cyclists class, the metrics
improvements are low compared to the other classes, as also
observed in the Argoverse2 dataset.

Table 11 shows a detailed results from the ML
performance metrics Precision, Recall, and Mean Average
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Precision (mAP) for classes including Cars, Pedestrians,
Cyclists, and Motorcyclists as evaluated using the
CenterPoint model. Before mitigation efforts, the Car class
has the highest Precision (0.88) and mAP (0.80), showing
the model’s ability to identify and predict car class and
subclass accurately. Pedestrian class, which has the second
highest presence in the data subset, also showed robust
model performance with Precision at 0.83 and mAP at 0.69.
However, Cyclists and Motorcyclists shows significantly
lower metrics, with Cyclists showing a particularly low
mAP of 0.47, reflecting the challenges the model faces
in handling less represented classes. After implementing
mitigation strategies, all classes has a decrease in Precision
and Recall, suggesting that the mitigation process affects the
model’s sensitivity and specificity. For e.g., the Precision for
Cars decreased to 0.85 and mAP to 0.77, while Pedestrians
has a reduction in Precision to 0.81 and mAP to 0.63.
Cyclists and Motorcyclists shows lower performance metrics
post-mitigation, with Cyclists’ mAP further reducing to
0.45. These changes show the model’s challenge in accu-
rately detecting less represented classes even post-mitigation,
highlighting the need for more refined strategies that can
enhance performance without compromising detection accu-
racy across all classes.

Visualizations: Figure 6 shows attention heatmap for the
model before sampling and mitigation strategies. Here, high
density can be seen in the pedestrian (‘person’) class and
then on a bicycle, which shows the potential impact of high
representations present during model training. Figure 7 and
Figure 8 show mean and attention maps for the motorcyclist
class by still capturing features from the cyclist present in the
input image. Even after using post-mitigation strategies, the
attention heatmap is not uniform across the cyclist class. The
model used for testing the images has dominant weights from
the motorcyclist class, thus failing to capture the features
of the cyclists. Figure 9 show the results from the test after
the sampling and mitigation strategies, which have an equal
number of classes. The overall attention response of the
model across the entire scene can be visualised here, as the
model processes complex scenes involving multiple objects
and VRUS. The attention and density are concentrated on
areas with dynamic objects, which are critical, but as can
be seen from the image, the model also assigns weights
to features represented by cyclists and pedestrians to other
classes. The overall key takeaways can be described as:

o For CNN models, error analysis shows ResNetl8 has
higher false positive rates than SqueezeNet.

« Post-mitigation performance, which involves resam-
pling approaches, shows improvements in both CNN
(ResNet18) and ViT.

o Under all conditions, the pedestrian class had higher
detection in VRUs. However, overall post-mitigation
performance shows a decrease, requiring robust model
development.

601



KATARE et al.: ANALYZING AND MITIGATING BIAS FOR VRUs BY ADDRESSING CLASS IMBALANCE IN DATASETS

Original Image

400

1000

0 250 500 750 1000 1250 1500 1750

FIGURE 6. Figure showing mean for all three classes.
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FIGURE 7. Head-wise attention maps for motorcyclist class.
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FIGURE 9. Head-wise attention weights for all classes.

o Equal number of samples from classes in a subset,
does not necessarily ensure an equal representation of
behaviour metrics during model learning.

G. METHODOLOGY ADAPTATION TO OTHER DATASETS
To adapt the proposed methodology to other visual datasets
(such as Lyft, A2D2, etc.), the first step is to identify
class imbalances or over-representation in the input data
using class distribution analysis, which involves statistically
evaluating class frequency to ensure fair representation, as
biases might arise due to more frequent appearance of
particular objects in specific environments. The next step
will be to detect these biases using behavioural metrics on

602
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the trained model: sensitivity and selectivity. For example,
in a dataset like CIFAR-10, where all ten classes have equal
representation, the behavioural metrics help to identify poten-
tial biases arising from the class’s local features, texture,
and colour, while in other datasets such as Lyft or A2D2,
the focus will be on the models’ ability to detect different
object sizes and their spatial relationships accurately. The
third step is implementing mitigation strategies, including
resampling techniques, using oversampling to increase the
presence of underrepresented classes and undersampling to
decrease over-representation. While CIFAR-10 may need
simple adjustments due to its uniform image sizes, Lyft
and A2D2 datasets could benefit from more complex data
augmentation using rotation, flipping, and adding image
corruptions to existing samples of CIFAR-10 and using
generative adversarial networks to represent and add complex
scenarios to Lyft and A2D2. The last step in adapting
the methodology is implementing cost-sensitive learning to
modify the training loss functions using weighted calculation
(of class in the dataset) and adding it to the proposed loss
function.

V. CONCLUSION AND FUTURE WORK

This study explored the issue of class imbalance in driving
datasets and its impact on the performance of AI models,
specifically focusing on the under-represented classes in
a dataset, which are also Vulnerable Road Users (VRUs)
in the vehicle ecosystem. Using our detailed methodology,
which includes dataset analysis, model evaluation, and bias
impact assessment, we detect disparities in the represen-
tation and detection of vulnerable road users. Our tests
with popular CNN models and vision transformers have
shown how dataset biases can lead to alternate learning
outcomes, adversely affecting the accuracy and correctness of
perception systems. We have also implemented and evaluated
bias mitigation techniques, which include cost-sensitive
learning and targeted data augmentation. These methods have
shown promising results in improving model performance,
especially in IoU and NDS metrics. Therefore, introducing a
dynamic framework for ongoing bias assessment and model
recalibration is an essential step towards developing more
equitable Al systems in autonomous driving.
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