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A tutorial on the synthesis and validation of a closed-loop wind farm
controller using a steady-state surrogate model

Bart M Doekemeijer†, Paul A Fleming‡ and Jan-Willem van Wingerden†

Abstract— In wind farms, wake interaction leads to losses
in power capture and accelerated structural degradation when
compared to freestanding turbines. One method to reduce
wake losses is by misaligning the rotor with the incoming flow
using its yaw actuator, thereby laterally deflecting the wake
away from downstream turbines. However, this demands an
accurate and computationally tractable model of the wind
farm dynamics. This problem calls for a closed-loop solution.
This tutorial paper fills the scientific gap by demonstrating the
full closed-loop controller synthesis cycle using a steady-state
surrogate model. Furthermore, a novel, computationally
efficient and modular communication interface is presented
that enables researchers to straight-forwardly test their control
algorithms in large-eddy simulations. High-fidelity simulations
of a 9-turbine farm show a power production increase of up
to 11% using the proposed closed-loop controller compared to
traditional, greedy wind farm operation.

I. INTRODUCTION

As wind turbines extract energy from the air stream, a
slower, more turbulent flow trials behind their rotors, called
the “wake”. In wind farms, wake interaction leads to losses
in power capture and accelerated structural degradation when
compared to freestanding turbines (e.g., [1]). For example,
for the Lillgrund offshore wind farm, wake losses have been
estimated at 23% in the literature [2]. The area of wind farm
control aims to minimize these wake losses by intelligently
operating the turbines in the farm. A popular method to re-
duce wake losses in the literature is by misaligning the rotor
planes with the incoming flow using their yaw actuators,
thereby laterally deflecting the wake away from downstream
turbines [3]. This methodology is called “wake redirection
control” or “yaw control”. However, an accurate model of
the wind farm is a prerequisite to accurately determine the
optimal misalignment angles of the turbines [4].1

The concept of wake redirection control has been demon-
strated successfully in a number of situations in the literature.
Among others, [7], [8] demonstrated the concept in high-
fidelity simulation. Furthermore, [9], [10] demonstrated the

†Bart Doekemeijer and Jan-Willem van Wingerden are with the
Delft Center for Systems and Control (DCSC), Faculty of Materi-
als, Mechanical, and Maritime Engineering (3mE), Delft University of
Technology, The Netherlands b.m.doekemeijer@tudelft.nl,
j.w.vanwingerden@tudelft.nl

‡Paul Fleming is with the National Renewable Energy
Laboratory (NREL), Golden, Colorado, United States of America
paul.fleming@nrel.gov

1There is research towards model-free methods for wind farm optimiza-
tion (e.g., [5], [6]), but the time delays involved in wake propagation pose
a real challenge to such methods. This is not further explored here, and the
interested reader is referred to Boersma et al. [4].

concept of wake redirection control in wind tunnel experi-
ments, and [11], [12] even tested the concept situationally in
full-scale field experiments. However, all these experiments
followed an open-loop approach, in which the information
flows as demonstrated in Fig. 1.

However, due to the lack of information and the com-
plicated dynamics at a range of spatial and temporal scales
inside the wind farm, accurate control cannot be achieved
without feedback [4]. More precisely, the surrogate models
used in the framework of Fig. 1 are only accurate in particular
situations, and do not suffice for all the conditions relevant
throughout the annual operation of the wind farm. Hence,
a closed-loop framework is preferred, in which information
flows as demonstrated in Fig. 2. In this closed-loop control
setting, measurements are used in a real-time optimization
framework to determine the next control policy. Here, a
simplified surrogate model of the wind farm is calibrated
in real-time using noisy measurements from wind farm.
These measurements may originate from, e.g., sensors inside
the wind turbine, measurement towers, or lidar systems
[13]. After calibration, the surrogate model should more
accurately capture the current dynamics inside the wind
farm. Then, a model-based optimization algorithm employs
this surrogate model to find the optimal control settings
for each turbine, where optimality is defined according to
the respective control objective. The frequency at which
the closed-loop controller operates depends on the surrogate
model, the frequency at which measurements are available,
the computational hardware, and the algorithms internal to
the wind farm controller (the adaptation and optimization
algorithm, respectively).

To synthesize a closed-loop controller, a number of key
steps are taken, as displayed in Fig. 3. These steps are, in
logical order:

1) Surrogate model selection: the closed-loop framework
of Fig. 2 requires an accurate yet computationally
tractable mathematical model of the dynamics inside
the wind farm that are relevant for control. This can
be either a steady-state model of the wind farm which
predicts the time-averaged effects of a control policy
on the power output of the wind farm (e.g., [7], [10],
[14], [15]), but can also be a dynamic model which
predicts the second-to-second flow and wind turbine
dynamics (e.g., [8], [16]–[19]). The surrogate model
for the closed-loop controller in this work is described
in Section II.
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Fig. 1. The open-loop control framework, in which a pretuned surrogate model is used to determine an optimal control policy, according to the assigned
control objective (e.g., power maximization, power reference signal tracking).
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Fig. 2. The closed-loop control framework, in which measurements are used in real-time to calibrate a surrogate model. This surrogate model is then
used to determine an optimal control policy, according to the assigned control objective (e.g., power maximization, power reference signal tracking).
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Fig. 3. Flowchart for closed-loop controller synthesis

2) Surrogate model calibration through high-fidelity
simulation: typically, surrogate wind farm models
contain a number of tuning parameters which are
dependent on the wind turbines and wind farm
topology modeled. To push the accuracy of the
surrogate model, the tuning parameters are optimized
through high-fidelity simulation prior to controller
algorithm design. Typically, quantities of interest to
fit the surrogate model for are the turbine power
capture, as this often has an important role in the
optimization objective of the wind farm controller,
and possibly flow dynamics at particular locations,
as these may have an important contribution for
the real-time calibration algorithm in the closed-
loop controller (e.g., as in [20]). A priori (offline)

calibration with high-fidelity data is advantageous
compared to calibration with experimental data, in
the sense that measurement errors are not an issue.
Furthermore, the full three-dimensional flow field
is available at any point in time. In this work, the
high-fidelity simulation model will be described in
Section III, after which offline model calibration will
be discussed in Section IV.

3) Surrogate model validation through high-fidelity
simulation: Once the model has been calibrated, it’s
accuracy should be validated to ensure the model
parameters have not been over-fit for the calibration
dataset. If successful, the next step is model validation
with experimental data. Model validation through
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simulation will be the topic of Section IV.

4) Surrogate model (calibration and) validation with
experimental data: after offline model calibration, the
surrogate model should be validated, ideally with
field data of the wind farm for which the closed-loop
controller is synthesized. For example, Schreiber
and Bottasso [21] and Annoni et al. [22] have
demonstrated this validation procedure for simplified
steady-state surrogate models. This step is considered
to be out of the scope of this paper for the presented
case study.

5) Online estimation & optimization algorithm design:
Once the surrogate model is validated, the controller is
to be synthesized. As shown in Fig. 2, the closed-loop
controller consists of two components: an estimation
algorithm which adapts the surrogate model to the
current conditions inside the farm in real time, and
an optimization algorithm that determines the optimal
control policy of the wind turbines for the conditions
at hand.
Literature on online estimation for wind farm surro-
gate models is scarce. Fortunately, additional sensing
equipment in the wind farm such as lidar systems
are becoming increasingly popular in the literature
(e.g., [13], [23]). This additional information may be
used on the turbine level for load reduction, but can
additionally be used on the wind farm level for real-
time surrogate model calibration. However, currently,
the step of estimation has conveniently been ignored in
most of the literature on wind farm control (e.g., [8],
[24], [25]), yielding an open-loop control solution. In
some cases, a simplified state estimation algorithm has
been applied for dynamic surrogate models, such as a
linear Kalman filter (e.g., [17], [26]). More recently,
there have been positive developments in the field of
real-time model adaptation, using more sophisticated
estimation algorithms that attempt to balance accuracy
with computational efficiency (e.g., [27], [28]).
In terms of optimization, for steady-state surrogate
models, a gradient-based or nonlinear optimization
algorithm is typically employed to determine the op-
timal steady-state control settings for the wind farm
(e.g., [7], [29], [30]). For dynamic surrogate models,
typically predictive control methods are followed to
yield an optimal control policy, which typically is a
time-varying solution (e.g., [24], [31], [32]).
Model-based estimation and optimization will be the
topic of Section V.

6) Controller verification through high-fidelity simulation:
before deploying the controller in the field, it should
be tested in high-fidelity simulation to ensure
robustness and to provide an insight of the potential
gains. Another important factor to investigate is the
change in loads on the turbine structure due to the

new control policy. In simulation, identical inflows
can be simulated, allowing one-to-one comparisons
of the controller with the baseline situation. While
many controllers in the literature have been tested in
simulation, they were typically assessed in idealistic
conditions, using simplified models [4]. There are only
a handful of closed-loop control algorithms that were
tested in a high-fidelity wind farm simulation (e.g.,
[8], [33]–[35]). An important contribution of this work
is the facilitation of a communication infrastructure
that enables researchers to test their control algorithms
more easily in a high-fidelity environment. Controller
verification through simulation is the topic of
Section VI.

7) Controller validation through field experiments:
finally, the wind farm controller should be deployed
in the field. The literature on this topic has been very
limited (e.g., [11], [12]). Generally, it may be difficult
to reliably measure the gains of the closed-loop
control algorithm compared to greedy control, as
the ambient conditions vary continuously. Due to
measurement uncertainty, the need for additional
sensors and processing equipment, and the changing
atmospheric conditions, controller validation through
field experiments is significantly more complicated
than in simulation, yet very necessary. Controller
validation through field experiments is out of the
scope of this work.

Even though the flowchart is drawn linearly in Fig. 3,
one has to note that it is often necessary to go through
multiple iterations of simulation, algorithm development,
and experimental validation, before satisfactory wind farm
control performance has been realized.

Most of the literature on wind farm control has focused
on only one component of the closed-loop controller synt-
hesis for wind farms. Typically, this is either the surrogate
model or the optimization algorithm. Furthermore, these
solutions are typically only tested in a simplified simulation
environment, and therefore the usefulness of these control
solutions remains uncertain. To address this scientific gap in
the literature, the main contributions of this paper are:

• the explanation and demonstration of the full closed-
loop controller synthesis cycle for wind farms using a
steady-state surrogate model of the dominant wind farm
dynamics,

• the development of an open-source, open-access com-
munication interface that enables researchers to straight-
forwardly test their control algorithms (developed in
Python, MATLAB, or a similar language) with the high-
fidelity large-eddy simulator SOWFA [36],

• providing a benchmark/example simulation case in
which a closed-loop wind farm control algorithm relying
on a simplified surrogate model is tested in high-fidelity
simulation [37].
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The structure of the paper is as follows. First, a steady-
state surrogate model of the wind farm is outlined in
Section II. A high-fidelity simulation model used for
model calibration, validation, and controller verification
is discussed in Section III. Then, the surrogate model is
calibrated and validated through high-fidelity simulation in
Section IV. Further, a closed-loop controller is synthesized
using this surrogate model in Section V. Finally, controller
verification through high-fidelity simulation is the topic of
Section VI. The paper is concluded in Section VII.

II. SURROGATE MODEL

The surrogate model used in this work combines a single
wake model for wake redirection and turbine derating based
on [10] with a wake deficit summation model [38], a turbine-
induced turbulence model [39], and a turbulence summation
model [40] from the literature. The focus in this section is
on the single wake model, as it is the most insightful for the
remainder of this paper. This surrogate model is selected for
its strong theoretical origin, its performance when compared
to experimental data from wind tunnel testing [10] and
experimental data from the field [22], and for the fact that it
has fewer tuning parameters than some comparable models
(e.g., [7]). Note that this surrogate model is interchangeably
called the “FLO Redirection and Induction in Steady-state”
(FLORIS) model in this paper, and has also been published
in the public domain under the same name [22], [41].

In short, the near-wake zone is modeled as a linearly
converging cone with its base at the turbine rotor, and its
tip located at distance x0 downstream. Here, x0 is calculated
by

x0

D
=

cos(γ) ·
[
1+
√

1−CT
]

√
2 ·
(
α · Irotor +β ·

[
1−
√

1−CT
]) , (1)

with D the rotor diameter, γ the yaw misalignment angle of
the rotor with the incoming flow, CT the non-dimensional
thrust coefficient, Irotor the turbulence intensity at the rotor
of the turbine, and α and β tuning parameters. A schematic
overview of the wake model is given in Fig. 4.

Potential core

x

y

U

U(x,y,z) = U U(x,y,z) = U U(x,y,z) 
U(x,y,z) 

δ  (x)f

a  ·Ddδ  (0)=f

Fig. 4. A schematic drawing of the single wake model, taken and modified
from [10].

At the onset of the near wake and in the far wake region,
the wake deficit follows the shape of a two-dimensional

Gaussian distribution, according to

U(x,y,z)
U∞

= 1−
(

1−
√

1−
σy0σz0

σyσz
CT

)
×

exp

(
(y−δ f )

2

2σ2
y

+
z2

2σ2
z

)
,

(2)

where U∞ is the wind speed far upstream of the turbine,
σ is the standard deviation in the specified direction, and
(x,y,z) is the Eucledian space with its origin at the turbine
hub, x aligned with the wind direction and z being positive
upwards. The Gaussian-shaped wake is centralized around
the centerline. The centerline is displaced in y-direction from
the x-axis by distance δ f due to a yaw misalignment and the
rotor rotation, calculated as

δ f =δr(x)+ tan(θ)x0 +
θ

5.2
·
(

C2
0 −3e1/12C0 +3e1/3

)
×√

σy0σz0

ky · kz ·CT
· ln

[(
1.6+

√
CT
)(

1.6Sσ −
√

CT
)(

1.6−
√

CT
)(

1.6Sσ +
√

CT
)] .

(3)

Here, θ is the initial deflection angle, calculated as

θ ≈ 0.3γ

cosγ

(
1−
√

1−CT cosγ

)
. (4)

Furthermore, C0 = 1−
√

1−CT , ky and kz are linear wake
expansion coefficients similar to that in Jensen [14], and Sσ

is defined as Sσ =
√
(σyσz)/(σy0σz0), with σy and σz the

standard deviations of the Gaussian in the y- and z-direction,
respectively. These are calculated as

σy = σy0 +(x− x0)ky, with σy0 =
D

2
√

2
cosγ, (5)

σz = σz0 +(x− x0)kz, with σz0 =
D

2
√

2
. (6)

The wake expansion coefficients are a function of Irotor, as

ky = kz = ka · Irotor + kb, (7)

with ka and kb tuning parameters. Further, δr is the wake de-
flection induced by the rotation of the blades, approximated
using a linear function following the idea of Gebraad et al.
[7], by δr = ad ·D+bd ·x, with ad and bd tuning parameters.

Finally, the time-averaged power capture of a turbine is
calculated by combining the effects of all wakes impinging
this turbine’s rotor following Katic [38] and actuator disk
theory. The interested reader is referred to related literature
[10], [22] for more information.

III. HIGH-FIDELITY MODEL

In this work, the Simulator fOr Wind Farm Applications
(SOWFA), a high-fidelity simulation model from the U.S.
National Renewable Energy Laboratory (NREL), is used
for model calibration, model validation and controller
verification [36], [42].
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A. SOWFA

SOWFA is a large-eddy simulation model that incorporates
a rotating actuator disk implementation of wind turbines,
and solves the three-dimensional, filtered, unsteady Navier-
Stokes equations over a finite temporal and spatial mesh,
accounting for Coriolis and geostrophic forcing terms.
Large-eddy simulation models such as SOWFA resolve
larger scale flow dynamics directly, and employ a subgrid-
scale model for smaller eddy dynamics. SOWFA has been
used on multiple occasions for surrogate model calibration
(e.g., [7], [19], [43]), model validation, and wind farm
controller verification (e.g., [28], [33], [34], [43]).

B. Wind farm controller interface

In order to test controllers in a closed-loop setting, measu-
rement data and control settings need to be passed between
SOWFA and an external wind farm controller periodically
throughout the simulation. As most wind farm control al-
gorithms from the literature are implemented in Python
or MATLAB, and SOWFA operates in C, coupling these
pieces of software is not straight-forward. For this reason,
an important contribution of this work is the development
of an interface that allows researchers to test their control
algorithms with SOWFA without making significant modifi-
cations to their code.

The open-source software zeroMQ [44] was implemented
in SOWFA as a message passing interface to an external
wind farm controller and published in the public domain
[42]. Using this interface, one can straight-forwardly expand
their wind farm controller implemented in a programming
language of choice (supporting zeroMQ) to receive mea-
surement data from SOWFA, and return control settings.
Note that SOWFA and the wind farm controller are run
in parallel, and can even operate on different computers,
platforms, and networks – as long as a (network-based)
connection can be made. Currently, the TCP protocol is used
for communication.

The order of operations in a typical wind farm simulation
using the ZeroMQ interface is shown in Fig. 5. In this
case, MATLAB is used as an example in which the wind
farm control algorithm is implemented. Note that SOWFA
and MATLAB are run in parallel, rather than in serial.
After initialization, each waits for the other to perform
its computations, and thus only one of the two is really
performing computations at any point in time. Hence, the
idea is to have SOWFA and MATLAB share the same
computational cores to minimize the time that cores spend
idling. Communication through ZeroMQ happens twice
each discrete timestep of the simulation – once to transmit
measurements to MATLAB, and once to receive control
settings from MATLAB.

MATLAB:
Receive 

measurements

SOWFA:
Send turbine 

measurements

MATLAB:
Determine control 

settings

SOWFA:
Idle...

SOWFA:
Receive control 

setpoints

MATLAB:
Send control 

setpoints

SOWFA:
Time propagation of 

flow solver

MATLAB:
Idle...

End of 
simulation?

No

Yes

End

End of 
simulation?

No

Yes

End

SOWFA:
Initialize the flow 

solver

MATLAB:
Initialize wind farm 

controller

Fig. 5. This figure shows a flowchart of the order of operations in a
SOWFA simulation which is coupled to a closed-loop wind farm controller
(in this case: implemented in MATLAB).

IV. MODEL CALIBRATION & VALIDATION
THROUGH HIGH-FIDELITY SIMULATION

The model presented in Section II has a number of tuning
parameters that may vary with, e.g., the wind farm topology
and wind turbine types. Specifically, some of the literature of
Section II is based on wind tunnel experiments, in which flow
behavior is known to deviate from the actual large-scale wind
farms. For this reason, the parameters α , β , ka, kb, ab and
bd are tuned to high-fidelity, true-scale wind farm simulation
data in this section, prior to control algorithm design.

We perform a set of single-turbine simulations in SOWFA
to calibrate the surrogate model with. This set contains:
• Two types of inflow: one set with uniform inflow and

one set with turbulent inflow,
– each consisting of a set of simulations with yaw

angles ranging from −30◦ to 30◦ with a collective
blade pitch angle of 0◦,

2829



– and another set of simulations with a turbine yaw
angle of 0◦ and the collective blade pitch angle
varying from 1◦ to 4◦.

This covers both wake deflection and turbine derating for
typical turbine operation. The NREL 5MW turbine is used
[45]. Using this data, the model is now calibrated offline as
follows.

A. Calibration methodology

1) A spatially and temporally averaged vertical inflow
profile is extracted from the high-fidelity dataset. The
same inflow profile is used in the surrogate model
through a linear spline interpolation. An example is
given in Fig. 6.
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H
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ig
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)
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Fitted profile

Fig. 6. Inflow comparison. In gray are all vertical profiles along the spatial
domain, upon which a single mean profile is fit using spline interpolation.

2) The flow field from the high-fidelity simulation is time-
averaged over a 10-minute window to average local
fluctuations. This fits the scope of what the surrogate
model intends to reproduce.

3) This time-averaged flow field is sliced at 3D, 5D, 7D
and 10D downstream, and measurements are sampled
over a rectangular grid at each downstream location.
An example is shown in Fig. 7 for one of the simula-
tions with uniform inflow.

4) A cost function is set-up, where the root-mean-squared
error between the flow measurements from SOWFA
and that predicted by the surrogate model is minimized
for arguments Ψ =

[
α β ka kb ad bd

]
, as:

Ψopt = argmin
Ψ

∑
i

(
U i

SOWFA−UFLORIS(Ψ)
)
, (8)

where i covers the full set of single-turbine simulations.
The control settings and ambient conditions varying
with i are neglected in notation here.

An important remark is that, in a more elaborate study,
one would have to include the combined effect of turbine
derating and wake redirection. Furthermore, a wider range
of turbulent inflows should be considered, at various
turbulence intensities and various mean wind speeds. Also,
it is important to consider the interaction for multiple
turbine wakes. However, this is outside of the scope of this
work.

(ms  )-1

(ms  )-1

(ms  )-1

Fig. 7. Wake comparison at 5D downstream. The black dots in the top
subplot show the locations of the measurements that will be used to calibrate
the surrogate model with SOWFA.

B. Calibration results

The model described in Section II has been implemented
in MATLAB, and made available to the public [41]. A
constrained genetic algorithm optimization approach is used
to solve the problem of Eq. 8 in an efficient, parallelized
manner, taking approximately 20 CPU-hours. The optimized
parameters Ψopt are displayed in Table I. The lower and
upper bounds on the parameter optimization space are chosen
as to stay within the same order of magnitude as the nominal
values presented in the literature [10], in order to limit
overfitting and parameter divergence.

TABLE I
OPTIMAL PARAMETERS ΨOPT FOR THE SURROGATE MODEL AFTER

CALIBRATION USING HIGH-FIDELITY SIMULATION DATA

Variable Lower bound Upper bound Optimal value
α 5.80 ·10−1 9.28 3.16
β 3.85 ·10−2 6.16 ·10−1 3.28 ·10−1

ka 9.59 ·10−2 1.53 ·100 1.74 ·10−1

kb 9.25 ·10−4 1.48 ·10−2 9.69 ·10−4

ad −1.00 1.00 −1.34 ·10−3

bd −4.00 ·10−2 −2.50 ·10−3 −2.68 ·10−3

Inspecting Table I, it is seen that most of the optimized
values lay between their lower and upper bound. This is a
good sign, as the opposite situation may indicate overfitting
and parameter divergence.

C. Validation results

To ensure that the model calibration procedure was
successful, the calibrated model is compared with a high-
fidelity simulation dataset of a 9-turbine wind farm in which
arbitrary yaw angles are applied to the turbines. The model
has not been fit for wake interaction, and hence this is an
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interesting case to inspect. The yaw angles are derived from
a Gaussian distribution, yielding

~γ = [2.9◦, 32.1◦, 12.6◦, −20.3◦, 16.1◦,
−14.4◦, −1.9◦, −21.6◦, 29.4◦].

Note that the pitch angles are kept constant at 0◦ in this
validation case, since it is in unlikely that they will be ex-
ploited for wind-farm-wide power maximization in the to-be-
synthesized optimization algorithm [43]. The time-averaged
horizontal plane is shown in Fig. 8. Furthermore, the time-
averaged wake deficits at different distances downstream are
displayed in Fig. 9. From these figures, a good fit can be seen

Fig. 8. Validation of the surrogate model with SOWFA: time-averaged
flow field at turbine hub height. Units are ms−1.

in the far-wake regions and in the single-turbine wakes. As
more wakes interact, the fit gets worse, as the model has not
been calibrated for this situation. Furthermore, the calibrated
model parameters Ψopt have improved the model compared
to the nominal model parameters from the literature Ψ0,
especially for the near-wake and far-downstream region.

The power predicted from the surrogate model is compa-
red to the power from SOWFA in Fig. 10. One can see that
the trends are adequately captured in the surrogate model.
Though, it slightly underestimates the power capture in most
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Fig. 9. Validation of the surrogate model with SOWFA: wind speed at hub
height at different distances downstream
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Fig. 10. Validation of the surrogate model with SOWFA: time-averaged
power capture per turbine

situations. Furthermore, the calibrated parameters Ψopt show
improved performance compared to Ψ0.

In conclusion, the surrogate model can accurately capture
the wake and power of this 9-turbine wind farm. However,
it is still to be seen whether the surrogate model can capture
more difficult situations such as deep-wake effects and
partial overlap situations such as described in [46]. This
should be addressed in future work.

V. CLOSED-LOOP CONTROLLER SYNTHESIS

The turbine control settings inside the wind farm are
optimized using the surrogate model from Section II
in a closed-loop setting. The model was calibrated on
10-minute average data in Section IV. In the proposed
closed-loop controller, the control settings of the turbines
are optimized every 10 minutes. The controller consists
of two components: an estimator and an optimizer, each
described next.
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A. Estimation

In this work, online estimation is limited to the ambient
conditions: the freestream wind direction, turbulence inten-
sity and mean wind speed. A single-shot estimation of all
three ambient parameters using only turbine power measu-
rements would most likely result in parameter divergence
and overfitting. For example, in a two-turbine case, one can
almost always bring the cost function to zero by choosing a
certain (wrong) wind direction and wind speed.

To avoid overfitting, firstly the wind direction is assumed
to be estimated for each turbine individually following the
approach of [47]. Secondly, the wind speed and turbulence
intensity are collectively estimated on a farm-wide level by
minimizing a weighted root-mean-squared error of the me-
asured and predicted turbine power signals of each turbine,
putting a higher weight on the upstream turbines, as

Ξopt = argmin
Ξ

Nt

∑
i

wi
(
Pi

SOWFA−Pi
FLORIS(Ξ)

)
. (9)

Here, Nt indicates the number of turbines, wi is a weighing
term, and Ξ = [I∞,U∞] is to be estimated.

B. Optimization

The wind direction is known to have a significant impact
on the optimal yaw angles inside the wind farm [30]. The
approach used to estimate the wind direction was derived
from [47]. In the corresponding paper, a standard deviation
in wind direction estimation of 6◦ was given for U∞ = 8 m/s.
Hence, a robust optimization approach is followed. In this
case, we use the approach from Rott et al. [30], in which
the yaw angles are optimized for a probability distribution of
wind directions, rather than one deterministic wind direction.
The optimization is formulated as follows,

~γopt = argmax
~γ

∫
π

−π

ρ(φ)
Nt

∑
i

Pi
FLORIS(γi), (10)

with ~γ =
[
γ1 γ2 · · · γNt

]
, Nt the number of turbines, and

ρ a probability distribution of variable φ , the wind direction.
Basically, the yaw angles are now optimal if they provide
consistent performance for a range of wind directions in
proximity of the mean wind direction. For a solution to
exist within a reasonable computational time, the probability
distribution is discretized at 5 points, as demonstrated in
Fig. 11. Thus, for one function evaluation, the surrogate

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

Fig. 11. Robust optimization

model is simulated five times, each with a different wind
direction. In the example case of Fig. 11, this would be
φ = −0.21 rad, φ = −0.10 rad, φ = 0 rad, φ = 0.10 rad,
and φ = 0.21 rad. The resulting farm-wide power capture
for each of these five simulations are summed, weighted
according to their respective probability. The objective is
to maximize this weighted sum. Note that in terms of
measurement uncertainty, the standard deviation of ρ goes
down with the square root of the number of individual
sensors. In this case, the number of individual sensors is
equal to Nt , as each turbine is assumed to provide a unique
measurement of (what is assumed to be) the same quantity.

VI. SIMULATION RESULTS

The 9-turbine wind farm from Fig. 8 is used to test the
closed-loop controller described in Section V. The turbines
are initialized at a greedy control setting, where γi = 0◦ ∀ i.
Then every 600 s, the controller determines the optimal yaw
angles, constrained with −25◦ ≤ γi ≤ 25◦ ∀ i to threshold
the increase in structural loads due to a yaw misalignment.2

A. Open-loop controller

In the first case, an open-loop (OL) controller is synthesi-
zed where a single set of time-invariant ambient conditions
Ξ is assumed. Specifically, Ξ contains the freestream wind
direction φ , the turbulence intensity I∞ and the mean ambient
wind speed U∞, respectively. The true ambient conditions
are Ξtrue =

[
0.0◦ 6.0% 8.0 ms−1

]
. In the open-loop case,

we simulate the situation of a model mismatch by assuming
Ξ=

[
10.0◦ 1.0% 6.5 ms−1

]
. Additionally, in the OL con-

troller, the probability distribution ρ in Eq. 10 is assumed to
have a zero standard deviation. The optimal control settings
for the OL controller are displayed in Table II.

TABLE II
OPTIMAL CONTROL POLICY USING OPEN-LOOP CONTROL

Time [s] ~γopt,1:2[◦] ~γopt,3[◦] ~γopt,4[◦] ~γopt,5:6[◦] ~γopt,7:9[◦]
0 0.0 0.0 0.0 0.0 0.0
600 −9.6 −10.9 −12.0 −11.0 0.0
1200 −9.6 −10.9 −12.0 −11.0 0.0
1800 −9.6 −10.9 −12.0 −11.0 0.0

As this is a steady-state, open-loop controller, the optimal
yaw angles are time-invariant throughout the simulation.

B. Closed-loop controller

In the second case, two closed-loop (CL) controllers are
synthesized, in which the past 300 s of measurements are
time-averaged and used to estimate the ambient conditions Ξ.
The weights wi in Eq. 9 are set to be 3 for upstream turbines
w1,2,3 = 3, the weights are w4,5,6 = 2 for the first row of
downstream turbines, and w7,8,9 = 1 for the most downstream
turbines. Basically, it is assumed that the confidence is

2Note that pitch angles were also optimized by the controller, but were
found to be zero in all cases.
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highest with the unwaked turbines, and the model fit is
progressively worse with more wake interactions.

The two closed-loop controllers differ in their optimization
approach. The standard deviation of ρ in Eq. 10 is assumed
to be 0◦ for the deterministic CL controller, and 6√

9
= 2◦ for

the robust CL controller, as there are nine turbines providing
a unique measurement of (what is assumed to be) the same
quantity. The resulting control policy for the robust CL
controller is shown in Table III.

TABLE III
OPTIMAL CONTROL POLICY USING CLOSED-LOOP CONTROL AND A

ROBUST OPTIMIZATION METHODOLOGY

Time [s] Ξopt [◦, %, ms−1] ~γopt,1:3[◦] ~γopt,4:6[◦] ~γopt,7:9[◦]
0 N/A 0.0 0.0 0.0
600

[
2.3 6.0 8.16

]
−24.4 −23.3 0.0

1200
[
−3.7 7.6 8.15

]
19.6 18.3 0.0

1800
[

1.1 6.9 8.15
]

24.5 18.7 0.0

The optimal yaw angles provided by the robust CL
controller vary with time, due to the changing atmospheric
conditions Ξ. Note that there is some switching behavior
at t = 1200 s in the optimal yaw angles due to the change
in sign of the estimated wind direction. While the robust
optimization approach should account for this [30], it is
expected that the standard deviation for ρ in the optimization
was too low. This should be investigated in future work. The
time-averaged flow field in SOWFA under the closed-loop
control policy for t = 900 s to t = 1200 s is shown in Fig. 12.

Fig. 12. Time-averaged wind speed in ms−1 at the horizontal flow slice
at z = 90 m (hub-height) for t = 900 to t = 1200 s.

C. Comparison

The performance of the open-loop and closed-loop con-
trollers is shown in Table IV. In this table, ~γ det.

opt, CL and ~γ rob.
opt, CL

are the sets of optimal yaw angles obtained in closed-loop by
optimizing with a standard deviation for the ambient wind
direction ρ in Eq. 10 of 0◦ and 2◦, respectively. One can see
that both the OL and the CL controllers improve the farm-
wide power capture compared to a greedy control approach.
However, the CL controllers consistently outperform the OL
controller, with a situational wind-farm-wide power increase
of approximately 3% for the OL controller compared to
greedy wind farm operation, and between 7% and 11% for

TABLE IV
COMPARISON OF GREEDY CASE, OPEN-LOOP CONTROLLER CASE, AND

THE CLOSED-LOOP CONTROLLERS CASES

Time window γ =~γgreedy γ =~γ det.
opt, OL γ =~γ det.

opt, CL γ =~γ rob.
opt, CL

0-600 s 10.71 MW 10.71 MW 10.71 MW 10.71 MW
600-900 s 9.78 MW 9.71 MW 9.29 MW 9.40 MW
900-1200 s 9.49 MW 9.80 MW 10.44 MW 10.49 MW
1200-1500 s 9.54 MW 9.78 MW 10.50 MW 10.45 MW
1500-1800 s 9.64 MW 9.92 MW 10.32 MW 10.34 MW
0-2000 s 10.07 MW 10.21 MW 10.40 MW 10.45 MW

the CL controllers. This is due to the fact that the surrogate
model more accurately captures the current conditions inside
the farm for the CL controllers. The only loss compared to
greedy control is for t = 600−900 s, in which the effect of
yawing the upstream turbines has not yet resulted in a weaker
wake on the downstream rotors. Furthermore, the robust
optimization approach leads to slightly better performance
when compared to an approach in which the wind direction
is assumed to be deterministic.

The loss in power capture at t = 600−900 s can be more
explained using Fig. 13. In this figure, the power signals
are time-averaged with a moving average filter (non-causal
low-pass filter) with a time window of 50 s for both past
and future data, to provide more insight. As turbines 1
and 4 are purposely misaligned with the incoming flow at
600 s, they see a loss in power capture shortly after 600 s.
While this generates weaker wakes behind turbines 1 and
4, it takes some time for these weaker wakes to propagate
to turbines 4 and 7 downstream. Once that happens, a
significant gain can be seen (especially for turbine 7, around
800 s). Furthermore, a similar effect can be seen at 1200 s,
since wind turbines 1 and 4 are now yawed towards the
opposite direction. This leads to a temporary increase in
power capture, as the turbines pass γ = 0◦, but eventually
also to a decrease due to the stronger wakes generated
downstream. After the flow settles, there is again a constant
gain in overall power capture compared to the greedy
control case.

D. Discussion

While the closed-loop controllers presented in this
section yield a significant increase in wind-farm-wide power
production compared to traditional, greedy operation, an
important remark should be made. Namely, the controllers
have been simulated under idealistic ambient conditions.
While the large-eddy SOWFA simulation is of significantly
higher fidelity than the surrogate model, the inflow in
SOWFA still only has one mean wind direction, wind
speed, and turbulence intensity. As the control settings are
optimized at a frequency of every 10 minutes, this may or
may not be fast enough in a more realistic setting where
ambient conditions slowly vary with time. The actuation
frequency necessary for wind farm control remains an
open question in the research [4]. Because of this, the
fidelity necessary for surrogate models also remains an open
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Fig. 13. Timeseries of the power capture and turbine yaw angles for the
robust closed-loop wind farm simulation. The first and third subplot show
moving averages of the turbine resp. wind farm power capture, averaged by
a time window of 50 s in both the past and future data. The yaw angles
are updated according to the controller at a rate of 600 s, starting from the
traditional greedy control strategy at 0 s.

question, and a wide range of steady-state and dynamical
models is investigated in the literature. The study of
SCADA data, experimental testing and high-fidelity, large-
eddy simulations coupled with mesoscale models should
further provide guidance in answering these questions. This
is out of the scope of this work.

E. Wind farm controller interface

An important contribution of this work is the open-
source communication interface developed for the
verification of wind farm control algorithms in a high-
fidelity environment. For the simulations presented in this
section, the computational time required by the ZeroMQ
communication was found to be on the order of 1 ·10−3 s for
sending a single message (set of measurements or control
settings) in either direction. This is negligible compared to
the computational cost of SOWFA, which is in the order of
101 s per timestep for this parallelized 80-core case.

VII. CONCLUSIONS

This paper demonstrated the synthesis cycle of a closed-
loop wind farm controller using a steady-state surrogate
model. The surrogate model was first calibrated and
validated using high-fidelity simulations, after which the
controller was tested in a high-fidelity 9-turbine wind
farm simulation. To facilitate the testing of wind farm
controllers written in MATLAB or Python in a high-fidelity
environment, a communication interface was developed for
the high-fidelity simulator SOWFA. SOWFA simulations
with closed-loop wind farm control showed an increase in
wind farm power capture of 7% to 11% through yaw control.
Furthermore, the proposed communication architecture has
a negligible computational cost. While positive results
were shown in the simulations presented in this work, the
ambient conditions vary slowly in real wind farms. In theory,
this closed-loop framework should be able to deal with
such changes. This should be explored further in future work.
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SOFTWARE AVAILABILITY

All software presented in this work is open-source. The
high-fidelity simulation software SOWFA is developed
by NREL [42]. This software repository also includes
the communication interface that exchanges information
through ZeroMQ. The surrogate model presented in this
work is actively being developed by the Delft University of
Technology [41]. The community-driven ZeroMQ library
is also available in the public domain [44]. The wind
farm controller relying on the surrogate model, exchanging
information through the ZeroMQ interface with SOWFA,
has also been made available [37] as an example and a
benchmark case.

REFERENCES

[1] S. Kanev, F. Savenije, and W. Engels, “Active wake
control: An approach to optimize the lifetime ope-
ration of wind farms,” Wind Energy, vol. 21, no. 7,
pp. 488–501,

[2] R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S.
Hansen, J. G. Schepers, K. Rados, W. Schlez, A. Neu-
bert, L. E. Jensen, and S. Neckelmann, “Quantifying
the impact of wind turbine wakes on power output
at offshore wind farms,” Journal of Atmospheric and
Oceanic Technology, vol. 27, no. 8, pp. 1302–1317,
2010.

2834



[3] P. A. Fleming, P. M. O. Gebraad, S. Lee, J. W.
van Wingerden, K. Johnson, M. Churchfield, J. Mi-
chalakes, P. Spalart, and P. Moriarty, “Simulation
comparison of wake mitigation control strategies for
a two-turbine case,” Wind Energy, vol. 18, no. 12,
pp. 2135–2143, 2015.

[4] S. Boersma, B. M. Doekemeijer, P. M. O. Gebraad,
P. A. Fleming, J. Annoni, A. K. Scholbrock, J. A.
Frederik, and J. W. van Wingerden, “A tutorial on
control-oriented modeling and control of wind farms,”
American Control Conference (ACC), pp. 1–18, 2017.

[5] J. R. Marden, S. D. Ruben, and L. Y. Pao, “A model-
free approach to wind farm control using game theo-
retic methods,” IEEE Transactions on Control Systems
Technology, 2013.

[6] M. A. Rotea, “Dynamic programming framework for
wind power maximization,” IFAC Proceedings Volu-
mes, vol. 47, no. 3, pp. 3639 –3644, 2014, 19th IFAC
World Congress.

[7] P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Winger-
den, P. A. Fleming, S. D. Ruben, J. R. Marden, and
L. Y. Pao, “Wind plant power optimization through
yaw control using a parametric model for wake effects
- a cfd simulation study,” Wind Energy, vol. 19, no. 1,
pp. 95–114, 2016.

[8] W. Munters and J. Meyers, “An optimal control frame-
work for dynamic induction control of wind farms and
their interaction with the atmospheric boundary layer,”
Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering
Sciences, vol. 375, no. 2091, 2017.

[9] F. Campagnolo, V. Petrovi, C. L. Bottasso, and A.
Croce, “Wind tunnel testing of wake control strate-
gies,” Proceedings of the American Control Confe-
rence (ACC), pp. 513–518, 2016.

[10] M. Bastankhah and F. Porté-Agel, “Experimental and
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[47] M. Bertelè, C. L. Bottasso, S. Cacciola, F. Daher Ade-
gas, and S. Delport, “Wind inflow observation from
load harmonics,” Wind Energy Science, vol. 2, no. 2,
pp. 615–640, 2017.

2836


