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Abstract

Modern railway signalling systems are based on a wireless communication link between train and track-
side entities. Secure communication between these entities is established using cryptographic symmet-
ric keys loaded beforehand. Train and trackside entities across Europe are maintained by different Key
Management Centres (KMC), making the distribution of the symmetric keys challenging. The involved
parties would benefit from using a single European key distribution system. Nevertheless, a recent
study concluded that a centralised approach of such a single system is not feasible.

This work presents, to the best of our knowledge, the first decentralised key management system to
be used by railway KMC across Europe. Existing procedures mandate that key distribution activities
concerning key generation, distribution and deletion must be logged. To meet this requirement, the
proposed decentralised system is based on a private and permissioned blockchain. The network is
maintained by the KMC making use of the system and access to the system is granted by Registration
Centres.

During the design of a single system to replace several one-to-one solutions between KMC, it came into
light that train and/or trackside equipment owners might not accept revealing certain types of rela-
tionships, as these could, for example, reveal commercial strategies. To overcome this, the proposed
decentralised system introduces privacy-preserving and verifiable combinations of train and trackside
entities. The protocol is based around the decisional Diffie—-Hellman assumption witness indistinguish-
able proofs.

The proposed design enables European railway KMC to use a single decentralised and scalable system
to exchange cryptographic material in a secure and privacy-preserving way. Scalability is shown by
building a proof-of-concept based a Byzantine Fault Tolerance consensus protocol. Performance anal-
ysis shows that the proposed system is scalable when a proof of concept is implemented with settings
close to the expected railway landscape in 2030.
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Preface

This master thesis was done in collaboration with Mott MacDonald, an engineering, management and
development consultancy active in 140 countries, including The Netherlands. The Dutch branch is spe-
cialised in sectors ranging from mobility, infrastructure, buildings, to energy and environment.

On the cover

The photo on the cover shows an aerial view of freight train wagons. Freight trains usually cross sev-
eral countries during a mission and therefore benefit from a European interoperable signalling system.
ERTMS Level 3 introduces the concept of moving blocks, which requires the implementation of On-
board Train Integrity (OTI) systems. OTI systems monitor the integrity of a train, just as hash functions
provide data integrity on a blockchain.

On the implementations
The ideas and designs presented in this thesis were implemented as proof of concepts using Javascript
and Rust code. Code is not provided in this work but can be found online at:

https://github.com/davidkester/pride


https://github.com/davidkester/pride
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Introduction

Railway signalling systems are designed to control railway traffic alongside preventing collisions and
unsafe situations. Passenger and freight trains are characterised by having a braking distance in the or-
der of kilometres. Because of this large breaking distance, a train driver cannot solely rely on sight for a
safe mission. The European signalling and speed control system, ERTMS, aims to replace different na-
tional legacy systems to increase the interoperability and capacity of the European rail network. Train
and trackside equipment are assets maintained by different Key Management Center (KMC) across
Europe. It is estimated that there are currently 100 KMC active in Europe. As of 2020, around 3 600
trains have been equipped with ERTMS in Europe and the goal is to have between 27 500 and 38 500
trains fitted with ERTMS by 2030. Approximately 6 120 km of tracks have been fitted with ERTMS,
which accounts to 12% of the 2030 goal [47].

ERTMS is based on a wireless communication link between train and trackside entities known as Radio
Block Centre (RBC) in charge of a geographic area or a specific railway line. A train and an RBC share
a triple-DES key known as KMAC, used for mutual identification, authentication, and session establish-
ment. The RBC provides speed boundaries and additional track information during a session, and the
train sends periodic status updates, such as position. Each train can have 2000 KMAC loaded on board
at most, which translates to 77 million possible train and trackside combinations. For any train and
RBC combination in service, a KMAC needs to be shared beforehand between the respective KMC.

There are currently two procedures for key distribution between ERTMS entities [16, 17]. The first
procedure, an offline method, exchanges KMAC using storage media such as compact discs and flash
drives. The procedure is not scalable and prone to operational mistakes. The second procedure, an
online method, was specified in 2015 to overcome the shortcomings of the offline method. The on-
line method prescribes TLS-PKI for communication between KMC. In practice, the online method is
currently not implemented and the offline implementation differs per KMC as the specifications only
provide guidelines. KMAC’s are hardly refreshed once issued and on top of this, Liveri et al. [11] found
out that around half of ERTMS KMC have not or have partially implemented cybersecurity measures,
ranging from risk assessments and audits to upgrading outdated systems.

A single and scalable key management system would simplify key distribution between domains and
improve cross-border operations. Nevertheless, a recent study from relevant stakeholders brought to
light that a centralised approach is challenging to realise since it is difficult to place the responsibility of
a PKI for the whole European railway area with one organisation [46]. Although previous work exists
addressing ERTMS key management [10, 53], the work is either built around a centralised approach or
aimed to reduce management overhead within KMC domains.



2 1. Introduction

Conversations with KMC administrators pointed out that (freight) railway operators benefit the most
from having as much KMAC as possible loaded into their trains. Each additional KMAC means that it can
potentially serve more clients, possibly creating a competitive advantage over other operators. Without
proper measures, a key management system could expose relationships that, this work assumes, op-
erators might want to keep private, as these could reveal new commercial strategies or other sensitive
information.

1.1. European railway landscape

Infrastructure Managers are in charge of trackside entities and it is common for a country to have
one major Infrastructure Manager, for example, Infrabel in Belgium and ProRail in The Netherlands.
Organisations in charge of trains are known as Railway Undertakings, Railway Operators or simply op-
erators.

A KMC is in charge of the distribution, installation and deletion of cryptographic material from train
or trackside entities owned by an organisation. In general, each organisation sets up its own KMC,
but it can also delegate the task to a third party. A KMC must store keys in a way that they remain
authentic and confidential. A K-KMC key is currently used for authentication and encryption between
KMCs and the specifications do not prescribe how the K-kMC should be distributed besides stating
”... the confidentially of K-KMC shall be guaranteed outside the involved KMCs” [16]. Usually only
Infrastructure Manager KMC issues K-KMC; operators request K-KMC. The core functionalities of a
KMC are summarised as follows:

1. KMC domain definition, i.e., defining which assets are managed by the KMC.
2. KMAC exchange with another KMC in a confidential, integer and authentic way.
3. Update and revocation of existing (already issued) KMAC.

4. Archiving of KMAC’s and associated transaction data, such as a date and time.

1.2. Research objective

Based on interviews with operators, Infrastructure Managers and desk research, it became clear that
ERTMS would benefit from a single, decentralised and scalable key management system on which
KMAC’s can shared in a secure way. This research project attempts to design such a system. The main
research question for this work is formulated as follows:

“How can we design a scalable and decentralised key distribution system for the European railway
signalling system?”

The system needs to facilitate mutual authentication between KMC’s and every action must be recorded

in order to facilitate audits or dispute resolutions. The research question is divided into the following
sub-questions:

(i) How can we address key update and revocation?
(i) How can we provide key auditability and traceability?

(iii) How can we anonymise relationships and transactions between KMC?
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1.3. Our contribution

This work presents, to the best of our knowledge, the first privacy-preserving decentralised key man-
agement system tailored for railway KMCs. The system is built around a permissioned blockchain and
allows KMCs to exchange symmetric keys for entity pairs in a confidential, integer and authentic way
using transactions. A KMC is admitted to the system and afterwards able to exchange KMACs with any
other registered KMC for every possible train and RBC combination using n + 1 private keys, where n is
the number of assets under its domain. Privacy is preserved by assigning each possible train and RBC
pair an identifier tag which does not reveal the entities involved and can only be computed by the asset
owners or managers involved.

Without proper measures, anonymising users in a system opens the door to misbehaving activities such
as denial of services attacks. The mitigate this risk, we enforce the use of authenticated but anonymous
transactions. The tag is embedded in every transaction and each KMC can verify it is from the set of
possible asset combinations using non-interactive proofs of knowledge. The construction allows ac-
tors in a permissioned blockchain to verify the authenticity of each transaction without deducing the
involved KMCs, train, or trackside entities.

Identifying the asset combination in each transaction allows KMCs to trace back the KMAC history of
their assets. The proposal also ensures that each pair can only have one valid KMAC at any point in
time. Blockchain’s append-only nature guarantees that all transaction data is appropriately recorded,
as existing procedures require logging activities concerning key generation, distribution, and revoca-
tion [45]. In case of a node crash or failure, the latest state of any node can be reconstructed from the
blockchain using only the private keys.

Altogether, this has resulted in:

Poster presentation
at the 7th Annual Cyber Security Next Generation Workshop

PRIDE: A Privacy-Preserving Decentralised Key Management System

David Kester, Tianyu Li, Zekeriya Erkin

Under review at the IEEE International Conference on Pervasive Computing and Communications -
Workshops and Events - BRAIN 2022

A symposium was planned together with Mott Macdonald to present the design and ideas shown in this
work to Dutch KMC administrators during the project. Unfortunately, due to the COVID-19 pandemic,
the event has been postponed to March 10th, 2022.

1.4. Thesis outline

The rest of the thesis is structured as follows. Chapter 2 summarises relevant concepts used in this
work and Chapter 3 reviews related work. Chapter 4 presents PRIDE, the proposed decentralised key
management system, analysed and evaluated afterwards in Chapter 5. The paper ends with a discus-
sion, future work and concluding remarks.

A digest of interviews and email conversations between ProRail and NS during this work can be found
in Appendix A. During the project, a field trip took place at an RBC in operation, a brief summary of
the experience is presented in Appendix B. The reader is encouraged to read these appendixes to get a
better felling regarding the scope and possible end users of PRIDE.






Preliminaries

The first two sections introduce elliptic curve-based cryptography, the discrete logarithm, and associ-
ated hard problems. Next, cryptographic secure hash functions are presented, followed by encryption
and authentication schemes. Zero-Knowledge Proofs (ZKP) are touched upon, and it is shown how the
Fiat-Shamir heuristic creates a non-interactive ZKP. Section 2.6 gives an overview of the blockchain
and related concepts such as consensus and anonymity. The last section is dedicated to ERTMS and
ERTMS key management.

Notation The concatenation of strings o and  is denoted by «||3. The expresion = €, X means that
x is chosen randomly from the set X according to the uniform distribution. The notation |-| and [-] is
used for the floor and ceiling function, respectability returning an integer. The set of values produced
by postfix operation mod N where N is a positive integer is

Zy=Z/NZ=1{0,1,..,N —1}

and when N is a prime ¢, then 7, yields a field [,

2.1. Elliptic-curve Cryptography

Cryptosystems based on elliptic curves achieve the same level of security as other types of cryptosystems
using a smaller key size. For example, to achieve 128 bits of security, it is recommended to use 256-bit
keys for elliptic curve-based cryptography and 3072-bit keys for factoring-based key cryptosystems [3].

An elliptic curve E is defined as the set of points (x,y) € F? satisfying Equation 2.1

v¥=a234+ar+b modq (2.1)
such that 4a® + 27b* # 0 mod ¢, where a,b € F, and ¢ a large prime ¢ > 3.

The group of elements generated by a curve F contain a base point or generator element (not necessar-
ily unique) G € E(F,) of prime order n. The values g, a, b, G, n, h, where h is the cofactor of G, are the
domain parameters of an elliptic-curve cryptosystem and are known to all participants. Standard bod-
ies publish domain parameters of elliptic curves for several common field sizes resulting in standard
curves.

Throughout this work, the additive notation is used and, without loss of generality, lower-case is used
for elements in Z and upper-case for elements in E(F,). For a given point P = (z, y), the y coordinate

5



6 2. Preliminaries

can be derived from z as there are two possible y coordinates for any z. To reduce space, a point can
be represented in a compressed form, with = and bit to distinguish between the two y possibilities, i.e.
P =(z,+1).

Point addition The addition of two points P = (z,,2;) and Q = (z,,y,) results in R = (z5,ys3)
where 5 and y; are computed using Equation 2.2 and Equation 2.3, respectively.

r3=A —1z, —7, modq (2.2)

Y3 = M@y —23) —y; mod q (2.3)

A is obtained from Equation 2.4.
- (Y2 —y1)/(xzg —21) modq ifP+#Q
A= (2.4)
(322 +a)/(2y,) mod g ifP=qQ '

Key-pair generation Given a generator G and security parameter x, a key generation algorithm
outputs a private key x and public key Y where » € Z, and Y’ = xG. Roughly speaking, the security
parameter tells how many operations a (probabilistic polynomial time) adversary needs to perform in
order to break a system.

2.1.1. Discrete Logarithm

Discrete logarithms are logarithms defined with regard to multiplicative cyclic groups. The discrete
logarithm of an element Y to the base G is a unique integer x € 7, such that Y = zG. The discrete
logarithm z is also referred to as the index of Y with respect to the base G.

Definition 2.1 (Discrete Log Problem (DLP)). Given G and zG, find x.

Definition 2.2 (Computational Diffie-Hellman Problem (DHP)). Given G, G and yG, for some ran-
dom z and y, find C such that C = zyG

Definition 2.3 (Decision Diffie—Hellman problem (DDH)). Given G, zG and yG, for some random x
and y, it is not possible to distinguish xyG from some random value.

There are elliptic curves were solving the discrete logarithm problem is believed to be hard, i.e., there is
no proven algorithm for solving it in a reasonable time. A problem is said to be hard if a polynomial-time
adversary has a negligible advantage in solving the problem.

negligible.

2.2. Hash Functions

Ahash function 7 : {0,1}* — Z, is a function that, on a set of binary bit-strings of arbitrary size {0, 1}*
as input, outputs a fixed-length bit string known as a digest or hash value. A cryptographic secure hash
function meets the following properties [51]:

+ Collision Resistance: it is infeasible to find two different messages that output the same hash
value.

» Preimage Resistant: given a hash value, it is hard to find a message that outputs such hash value.

» Second Preimage Resistant: given a message and corresponding hash value, it is hard to find a
different message producing the same hash value.
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2.3. Encryption Schemes

An encryption algorithm, or cipher, transforms plaintext into ciphertext using a secret key to achieve
confidentiality. The process of converting a ciphertext into plaintext is known as decryption. Both algo-
rithms are public, and the secrecy depends on the secret key. There are two types of encryption schemes:
symmetric and asymmetric cryptosystems; the latter is usually referred to as public-key cryptosystems.

2.3.1. Symmetric setting

Symmetric key cryptography requires that each party have a copy of the same secret key. The same key
is used for encryption and decryption, hence symmetric. Given a set of V parties, N(N — 1)/2 different
symmetric keys are needed to secure communication channels between all possible pairs.

Block ciphers operate on n bits blocks of plaintext, and the resulting ciphertext block is assumed to be
of the same size. The most famous block cipher is the Data Encryption Standard (DES), with a block
length of 64 bits. DES has been phased out, but it is still used as a component in triple DES, which is
deemed secure until 2023. The Advanced Encryption Standard or AES is currently the standard sym-
metric encryption algorithm recommended by the US National Institute of Standards and Technology
(NIST). AES works on 128-bit block sizes with key sizes of 128, 192, or 256 bits.

Block ciphers are used in a mode of operation to encrypt plaintext. These modes of operation divide
the plaintext into a series of blocks of the cipher’s block size and process the data following a defined
procedure. For example, Cipher Block Chaining (CBC) Mode protects against deletion and insertion
attacks.

2.3.2. Public key setting

The use of symmetric keys is replaced in public-key cryptography with a mathematically related public
and private key pair. The public key can be safely published in a directory along with the holder’s
identity. The public key does not reveal anything about the private key. Anyone can encrypt a message
with the public key; however, only the private key holder can decrypt the corresponding ciphertext.

Public key infrastructure A public key infrastructure (PKI) facilitates the authentication and dis-
tribution of public keys. The most commonly employed approach consists of a certificate authority
(CA) that issues digital certificates to verify that a particular public key belongs to a specific entity. The
X.509 standard defines the digital certificate format used by most applications. Before a certificate is
issued, a registration authority (RA) verifies the identity of entities requesting a digital certificate from
the CA. A CA acts as a trusted third-party and is considered a single point of failure in a PKI. There can
be many CAs and certificates can be chained as in Figure 2.1. In this case, clients only need to trust the
Root CA.

2.4. Authentication Schemes

While encryption schemes, as described in Section 2.3, ensure confidentiality, authentication schemes
are used to verify that a message is correct and that an entity is who it claims to be. Message Authen-
tication Codes (MAC) provide authentication in the symmetric setting, and Digital signatures are used
in a public-key environment.

2.4.1. Message Authentication Codes

Parties sharing a secret symmetric key can ensure that data transmitted between them has not been
tampered with using a MAC. A MAC is the result of an algorithm sent alongside the data. Upon receiving
amessage and a MAC, areceiver computes the MAC again using the secret key and checks if the received
MAC matches; in case it matches, it can be sure that the data has not been tampered with and sent from



8 2. Preliminaries

Intermediate Issuing
CA/RA CA/RA
Issuing Issuing Client
CAI/RA CAI/RA Certificates

Client Client
Certificates Certificates

Figure 2.1: A PKI based on CAs where clients authenticate each other only trusting Root CA [46].

someone that also has the secret key. It should be hard for an adversary to forge a valid MAC without
knowing the secret key.

2.4.2. Digital Signature Schemes

A signature algorithm is used to sign a message using a private key. The result can be verified by ev-
erybody using the corresponding public key and no one can realistically recover the private key from
it. Because only the private key owner can create a valid signature, these schemes also provide non-
repudiation: a message issuer providing a signature cannot deny having sent the message. The Digital
Signature Algorithm (DSA) is a digital signature proposed by NIST based on modular exponentiation
and the discrete logarithm problem. The EC variant is known as the Elliptic Curve Digital Signature
Algorithm (ECDSA). A private key y owner generates a signature on message m using Algorithm 2.1.
The signature is verified using algorithm 2.2 and the EC public key Y. The size of the signature is twice
the size of the private key.

Algorithm 2.1 ECDSA Generation

G': Elliptic curve base point
function Generate(m, sk)
kerp?,
(z,y) = kG
r=x mod g
s=kt(m+r-y) mod q
r, S
returnr, s
end function

Ring signatures A ring signature scheme consists of a set of public and private key pairs. A message
m can be signed using one of the private keys and a set of public key and the result is verified using the
public keys. It should be infeasible to tell which private key was used to created the signature. The
construction can be extended to use more than one private key, creating threshold ring signatures.
When a trusted group manager assigns the key pairs to, for example, users, to scheme is referred to as
a group signature scheme [49].
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Algorithm 2.2 ECDSA Verification

G: Elliptic curve base point
function Verify(m, Y, (r, s))
I mod ¢
uy=r-s - mod ¢

(@,9) = u, G+ uY

x=7r mod g

Uy =mMm-Ss -
1

5
returnr =z
end function

2.5. Zero-Knowledge Proofs

Zero Knowledge Proofs (ZKP) are used by a prover to convince a verifier from a witness that he/she
knows information satisfying a given relationship without revealing anything else [21]. A ZKP must
satisfy the following properties:

« Completeness: If an honest prover knows a solution and follows the protocol correctly, it will
always succeed in convincing a verifier.

« Soundness: A cheating prover that does not know a solution will fail with an overwhelming prob-
ability to convince a verifier.

+ Zero-Knowledge: The result of the protocol does not reveal anything about the secret.

Sigma protocols are three-move interaction protocols used to create ZKP. The order of the messages is
crucial for security. Schnorr’s protocol, presented in Protocol 2.1, is an example of a Sigma protocol.
The values T, ¢ and r are called commitment, challenge and response, respectively. The protocol is
used to prove knowledge of w such that Y = wG.

Prover (z, G) Verifier (G)
vERZ,
T =vG
T
N
cErZ,
i
r=v+cw mod g
NN
rG =T +cY

Protocol 2.1. Schnorr’s protocol

Fiat and Shamir proposed a generic transformation to create non-interactive zero-knowledge proof
from sigma protocols which are secure in the random oracle model ‘. In a non-interactive obtained from
the Fiat-Shamir transformation, the challenge is chosen prover using a random oracle. In practice, the
random oracle is replaced by a cryptographic hash function. The strong Fiat-Shamir transformation
is achieved by including generator G and the statement to be proved Y in the hash function [4]. The
non-interactive version of the Schnorr protocol is known as the Schnorr’s signature and is presented in
Protocol 2.2. The scheme is used to prove knowledge of a discrete logarithm w such that Y = wG [6].

Tt is not straightforward to prove the security of hash functions. Cryptographic hash functions are replaced with a utopian
equivalent known as a random oracle to facilitate protocols proofs. There is still a debate regarding the security proofs obtained
using the random oracle model [48].
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By including a message m in the computation of the hash, the protocol can be used as a digital signature
scheme using the discrete logarithm as the private key.

Prover (z, G) Verifier (G)

vERZ,

T =G
c=H(G|Y|T)
r=v—cw mod g

(cr)
—

T =rG+cY
? ’
c=H(G|Y|T)

Protocol 2.2. Non interactive Schnorr’s protocol, known as Schnorr signature

An honest prover will succeed in constructing a valid proof since the following holds:
T =rG+cY =(v—cw)G+cwG=vG=T

Given generators G and H, Protocol 2.3 presents a NIZKP to prove knowledge of w € Z, satisfying
Y = wG and Z = wH. The result is used to prove the equality of discrete logarithms and is known as a
Chaum-Pedersen proof. We refer to (G,Y, H, Z) as a Diffie-Hellman (DH) tuple in case that H = G
forz e 7,

q

Prover (w,G, H) Verifier (G, H)

vERZ,

R =vG
S=vH
c=H(R|S|Y|K)
r=v—cw mod g

(Y,Z,cr)
s

R=rG+cY
S=rG+cH

c=HER|S|Y|K)

Protocol 2.3. A non-interactive proof of knowledge to prove equality of a discrete logarithm.

Cramer et al. [10] presented a technique to combine two or more sigma protocols to create disjoint
statements, allowing a prover to convince a verifier that he/she knows information satisfying ¢ out
of n relationships without revealing which ones. If it infesible to distinguish which of the possible
relationships are being proven, a sigma protocol considered to be witness indistinguishable. Perfect
special honest verifier implies witness-indistinguishability [10]. Protocol 2.4 is an example of a 1 out
of 2 non-interactive witness indistinguishable protocol to prove knowledge of the discrete logarithm w
such that Y = wG or K = wH, assuming that the prover knows w such that Y = wG is true. The result
reveals nothing about which of the two witnesses corresponds to the statement to be proven.
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Prover (w, G, H) Verifier (G, H)

vERZ,
T, =G
T9,Cy ER £,

Ty =ry,G+cV
c=H(GH|T T |V ] K)
¢p =c—cy mod g
ry =v—cw mod q

(e1,e9,m1,72)
T =cU+nrG
T2 == C2K+T2G
c=c¢, +cy, modg
?
c=H(G|H|T | Ty | V] K)

Protocol 2.4. Non-interactive witness indistinguishable protocol

2.6. Blockchain

A blockchain is an append-only tamper-proof ledger that opened the door for the development of de-
centralised applications, such as cryptocurrencies, without needing a centralized authority [37]. Trans-
actions are issued by clients and broadcasted through a peer-to-peer (P2P) network of nodes. New
transactions are bundled together into blocks. The contents of a block are hashed together with the
hash of the latest accepted block, creating a cryptographic chain of blocks: the blockchain.

Transactions In general, a cryptocurrency based on a blockchain consists of transactions transfer-
ring spending control from one entity to another. A transaction holds a certain amount of value in the
respective currency, and a transaction that has not been consumed is known as an Unspent Transac-
tion Output (UTXO). Each UTXO represents a chain of ownership and are used as input to create new
transactions. Once consumed, i.e. used as a input for a new transcription, a former UTXO cannot be
spent again. The sum of values contained in all UTXOs represent the total supply of a cryptocurrency
at a given point in time.

Merkle root The blockchain append-only property implies that a size of the blockchain will only
grow as more transactions are added to it. After a certain time, certain transactions could be removed
to regain storage space. To do this, without breaking the blockchain, Nakamoto proposed to only in-
clude the Merkle root from a Merkle tree obtained from the transaction hashes in each block. Figure 2.2
illustrate a Bitcoin block, containing four transactions: Txo, Tx1, Tx2 and Tx3. After certain condition
is met, one or more transactions can safely be discarded.
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Block
Block Header (Block Hash)

l Prev Hash H Nonce |

Root Hash

Figure 2.2: Example of a Bitcoin block containing four transactions. The block hash is made out of

the hash of the previous block, a nonce used for the consensus algorithm, and a root hash, the result

from the Merkle tree using the four transactions: Txo, Tx1, Tx2 and Tx3. The block hash is included
in the hash of the next block, and removing the transactions will not affect the block hash [37].

Depending and the application and design requirements, a blockchain can be either permissionless or
permissioned:

Permissionless blockchain Bitcoin and Ethereum [56] are examples of permissionless blockchains,
where anyone is allowed to read and write unto the system without a specific identity. These applica-
tions usually involve some type of cryptocurrency and are maintained by economic incentives [2]. A
permissionless blockchain typically makes use of a consensus protocol where a new block is added to
the blockchain by a node selected in proportion to a resource that is expected nobody can monopolise.
In the case of Bitcoin, the protocol is based on computer power and is known as proof of work [39].

Permissioned blockchain When users need to be explicitly admitted to the system, it is consid-
ered a permissioned blockchain. Such a registration process prevents Sybil attacks® and allows the
implementation of finite consensus protocols such as practical Byzantine Fault Tolerance (pBFT). Reg-
istration is generally done by a central authority assigning rights or attributes to users or organisations.
Hyperledger Fabric and R3 Corda are two well-known platforms for the development and deployment
of permissioned blockchains [57].

2.6.1. Consensus

A distributed system consists of a set of nodes spread-out across space improving scalability, resilience
and possibly reduce latency when compared to non-distributed systems. A decentralised system is a
distributed system where governance is spread over multiple entities [50]. A decentralised application
relies on a consensus algorithm to ensure that nodes agree on some value generated by an honest node
[39]. Consensus is, in general, a hard problem since nodes might crash or act maliciously. A consensus
algorithm must guarantee the following two properties:

2An attacker creates a large number of users to obtain a disproportionately large influence on the system.



2.6. Blockchain 13

request Epre-preparei prepare commit reply

Figure 2.3: A 4 node pBFT setup where leader node o proposes a message received from a client C.
Even though node 3 is faulty, the remaining nodes can reach consensus [8].

« Liveness: As long as the number of faulty nodes is below a certain threshold, it is not possible to
indefinitely delay the acceptance of a correct message, in other words, consensus cannot stall.

« Safety: Aslong as the number of faulty nodes is below a certain threshold, a node cannot convince
others to accept an incorrect or invalid message. The algorithm is also robust against network
delays, partitions, and packet loss, duplication, and reordering.

Practical Byzantine Fault Tolerance In the late 90s, Barbara Liskov and Miguel Castro pre-
sented the pBFT algorithm to tolerate Byzantine faults [8], based on the the Byzantine Generals Prob-
lem. It is classical problem where generals, some of them traitors, of the Byzantine army are separated
from each other and need to agree on a plan of action using messengers. Before pBFT, there was no
practical way to solve this problem. An initial use case was a Byzantine-fault-tolerant network file sys-
tem service running under different hardware and software. The number of faulty or malicious nodes
f that a system with NV nodes can withstand is given by Equation 2.5.

=55 (25)

3
The algorithm starts by selecting a leader node, which will propose a message or request on request
from a client. Leader election is done in a round-robin fashion, and a new leader is elected if the current
leader crashes or acts suspiciously. We refer to the event that a new leader is elected as view change.
The remaining N — 1 nodes are referred to as replicas. Consensus is achieved in three phases:

+ Pre-prepare: A node has received the message from the leader, and if valid, it will broadcast a
pre-prepared message.

 Prepare: A node has received at least [(2N — 1)/2] valid pre-prepared messages, including its
own, and broadcasts a prepared message.

« Commit: A node has received at least [(2N — 1)/2] valid prepared messages, including its own,
and accepts the message proposed by the leader.

Consensus is reached when at least [(2NV — 1)/2] nodes have reached the commit phase. Figure 2.3
depicts the interaction between a leader node and three replica nodes, where one of the replicas is faulty.
The drawback of pBFT is the exponential message increase as a function of the number of nodes. The
protocol is considered to scale well up to 200 nodes [25].
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Istanbul BFT Istanbul BFT (IBFT) is a blockchain consensus algorithm based on pBFT used in the
Quorum blockchain. Like pBFT, each IBFT round achieves termination after three phases and has
O(N?) total communication complexity. The message proposed by the leader in IBFT is the proposed
block to be added to the blockchain. If the block is accepted, IBFT requires each node to store at least
[(2N — 1)/2] of the commit messages in the corresponding block. The list of commit messages per
block will most likely differ per node [35].

Raft Raftis a consensus algorithm designed as an alternative to Paxos, also distributed consensus
algorithm. Paxos is considered to have two significant drawbacks: 1) it is difficult to understand, and
2) it does not provide a good foundation for creating practical implementations [42]. Paxos does not
produces inconsistent results but can get stuk under certain rare conditions [39]. Raft is similar to
pBFT, but the difference is that the replicas always trust the leader. While this construction reduces
the communication complexity, it might not be acceptable in cases where nodes do not trust each other.
Raft is known as a Crash Fault Tolerant algorithm.

2.6.2. Privacy and Anonymity

Without proper measures, transactions on a blockchain can leak more information than expected through
side channels, which is especially a problem in cases where anonymity and privacy need to be preserved.
For example, Bitcoin aimed to provide anonymity using pseudonyms, but in practice, information about
the user could be inferred using network-layer deanonymization and graph analysis. These threats are
also common in many other blockchain applications and should be taken into consideration.

Network-layer deanonymization When a client issues a transaction, it is propagated (gossiped)
through the p2p network. Nodes in the (Bitcoin) network are connected via an unencrypted Trans-
mission Control Protocol (TCP) channel and communicate using the Internet Protocol (IP). In certain
situations, this construction makes it possible to match different accounts or transactions to one IP ad-
dress. The use of a Virtual Private Network (VPN) or a Tor browser can reduce the risk of network-layer
deanonymization.

Graph analysis and clustering In many blockchain implementations, a transaction is equal to
receiving or transferring ownership from one entity to another. Therefore, a transaction is a chained
series of transactions. All this information is available on the blockchain and can be used to deduce
certain relationships or patters.

2.7. ERTMS

ERTMS is the standard for railway signalling systems set by the European Union. It aims to replace all
different national systems by a single large interoperable European system. ERTMS has different levels
of implementations: level 1, 2 and 3. Starting from level 2, trackside signals are no longer required,
communication between train and trackside equipment is wireless and cryptographic primitives are
introduced. ERTMS contains the Euroradio protocol, GSM-R and an application layer.

GSM-R Wireless communication between OBU and RBC takes place using a dedicated spectrum
band through Global System for Mobile Communications — Railway (GSM-R), on which ERTMS relies
for data encryption. GSM-R is built on top of standard GSM and is considered to be outdated, and
obsolete [52]. The expectation is that GSM-R will remain in service until 2030 and be replaced by
Future Railway Mobile Communication System (FRMCS)
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Figure 2.4: KMAC exchange between two KMC domains: 1) An operator requests a KMAC for a
specific On Board Unit (OBU)-Radio Block Center (RBC) pair. 2) The Infrastructure Manager (IM)
acknowledges the request and generates a unique KMAC. 3) The KMAC is securely shared with the
operator 4) Both KMC load the KMAC into their respective assets, i.e., KMAC entities. 5) The OBU
performs an operation check with the RBC via GSM-R.

Table 2.1: Interactions between ERTMS entities

Interactions Description

Between KMCs KMAC exchange, update or revocation of KMAC be-
tween KMC domains

Between KMC and train or RBC | KMAC installation or deletion in an RBC or train by
the home KMC.

Between train and RBC Secure communication during a mission. A session
is established using the KMAC for the corresponding
combination.

Euroradio The Euroradio protocol sits in between the communication layer GSM-R and the appli-
cation layer protocol. The protocol authenticates messages between a train and an RBC using a session
key KSMAC derived from KMAC and nonces® exchanged between the parties [15]. Each message is au-
thenticated using CBC-MAC and DES with an additional triple-DES round at the end. An attack against
this protocol is presented in [9]

2.7.1. Key Management

The generalized key distribution procedure between two KMC has summarized in Figure 2.4. A train
and an RBC combination is created when a Railway Operator KMC requests a KMAC for a respective
pair for the first time. The request is made to an Infrastructure Manager KMC in charge of a track-
side entity, which upon acceptance following internal procedures, generates a KMAC for the requested
combination. The key is subsequently shared with the Railway Operator KMC. Both KMC will load
the KMAC into their respective entities, followed by an operation test, where the train establishes a
session with the trackside entity using the corresponding KMAC for the first time [16]. Three types of
interactions can be distinguished between ERTMS entities; these are described in Table 2.1. The first
and third step in the key management procedure correspond to a KMC - KMC interaction. The ERTMS
specifications prescribes two methods of interaction: offline and online.
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Offline KM Secure KMAC exchange is achieved by exchanging beforehand a long-term symmetric key
K-KMC between two KMC. The K-KMC is used to mutually authenticate both parties and to encrypt
the shared KMAC when a request is approved. The encrypted KMAC is shared using offline storage
devices such as optical compact discs or USB flash drives.

Online KM Specified in 2015 to circumvent the shortcomings of the offline method. The Transport
Layer Security (TLS) protocol using a PKI is prescribed to provide confidentiality, authenticity
and integrity of the distributed KMAC between KMC’s. A TLS-Public Key Infrastructure (PKI)
structure relies on digital certificates managed and distributed by a Certificate Authority (CA).
Each KMC is responsible for setting up its own PKI and establish how other KMC’s must interact
with it [46]. No KMC supports online key management to date.

NIST will deprecate the triple-DES algorithm from 2023 onwards. It is expected that the Euroradio
protocol will still use triple-DES keys after 2023, as the cost of replacing equipment plays a major role
when deciding to migrate to newer technology. Updating the KMAC more regularly will likely become
more critical to compensate for the security vulnerability. This update interval is still a subject of debate.
NIST recommends not processing more than 22° 64 bits of data using a single triple-DES key; therefore,
a KMAC should be replaced before 349 523 sessions.



Previous work

This chapter reviews previous work and concepts related to key management. Section 3.1 summarises
specific work addressing ERTMS key management and discusses their shortcomings. Section 3.2 gives
an outline of authentication methods used nowadays, a crucial requirement for ERTMS, with a focus
on decentralised approaches. Section 3.3 presents techniques used in Blockchain based applications to
achieve anonymity.

3.1. Existing ERTMS key management proposals

An universal key management scheme for ERTMS is proposed by Thomas et al. [53] under the name
TRAKS (Train and RBC Authenticated Key Scheme). TRAKS introduces a key generation algorithm
and a new layer between the Infrastructure Manager KMC and the RBCs, see Figure 3.1. The new layer,
NID_C, represents a specific region or line and is assigned a number of RBCs to it. A secret is generated
for each NID_C by the Infrastructure Manager, which is used to generate a key loaded into each RBC
under the corresponding NIC_C. A KMAC for an RBC and train pair is derived from the RBC key together
with the train identifier. The KMAC is loaded into the train using the standard offline or online methods.
When a train requests a session with a corresponding RBC, the RBC is able to derive the KMAC loaded
into the train at runtime using the train identifier and its RBC secret. A Railway Operator does not gain
a operational benefit from implementing TRAKS, as the advantage is mainly found on the RBC.

National KMC (KMC-GB) Foreign KMC (KMC-FR)

Foreign KMC (KMC-DE)

Figure 3.1: TRAKS introduces a layer NIC_C between the (National) Infrastructure Manager KMC
and the RBC [53]

Franekova et al. [19] published in 2015 an online key management system based on asymmetric cryp-
tography specifically for ERTMS. The work does not provide clear details about the actual implemen-
tation and seem to imply a centralised approach.

17
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3.2. Decentralised Authentication Techniques

A core requirement of a key management system is to provide authentication. Authentication refers
to providing assurance of an entity’s identity and verifying that data has not been modified [3]. De-
centralised approaches are reviewed and discussed for the design of a single ERTMS key distribution
and management system, as centralised methods are not feasible within the European Union [46].
Three decentralised authentication frameworks stand out: Log-based PKI’s, the Web of Trust (WoT)
and blockchain-based approaches.

A popular and common authentication technique consists of a PKI using a certificate authority (CA).
Users trust* one or more (root) certificates, and identities are bound to a public key using X.509 cer-
tificates that can be traced back to a CA. These CAs are considered to be a single point of failure. An
additional drawback of traditional CA is the lack of transparency, as it is not possible to tell which enti-
ties have obtained a certificate from a given CA. This problem became evident when certificates were is-
sued on behalf of a compromised Dutch CA DigiNotar in 2011. Log-based PKI aims to create public logs
to monitor CA activities overcome the vulnerabilities and limitations of the traditional PKI. However,
these log-based proposals have not gained widespread adoption as they still have certain shortcomings
during the deployment process [33] and are vulnerable to split-world attacks. A split world attack con-
sists of presenting a different view of the correct logs to a user [29]. Google’s Certificate Transparency
is an example of a Log-based PKI [58].

The Web of Trust has proven to be a clever decentralised solution to the authentication problem but
has some awkward drawbacks [20, 58]. For example, a new entity can only join the network after being
invited by another entity already on the system, creating a high entry barrier.

The tamper-proof property of a blockchain has made it an appealing foundation for various use cases,
such as notarisation, accounting and auditing. Several authentications have also been proposed us-
ing a blockchain as a basis. For example, CertLedger is a blockchain-based authentication system that
prevents split-world attacks and ensures transparency [29]. Authentication systems compatible with
traditional X.509 certificates and relying on a blockchain are proposed in [55] and [58]. Hammi et
al. [24] present a blockchain-based PKI architecture using bloom filters. These works address the au-
thentication problem in a decentralised and transparent way but do not provide any additional key
management functionalities.

Hyperledger Indy provides a distributed-ledger-based foundation to facilitate Self-Sovereign Identities
(SSI) in combination with a blockchain. SSI is a proposal to allow users to manage their identities and
how they disclose personal information to others. A User or identity holder can request certain cre-
dentials from an organisation (Issuer), which can be used with other credentials to verify itself to other
organisations (Verifier) as needed. This User, Issuer, and Verifier combination is known as the trust
triangle [44]. SSI’s main advantage is to allow a user to have several different types of identities and/or
credentials and to choose exactly which information to disclose to whom.

Blockchain popularity gave rise to the development of platforms to create and deploy industry-grade
blockchain-based applications and services. Corda from R3 [5] and Hyperledger Fabric from the Linux
Foundation [2] are two well-known open-source platforms. The platforms often use the term dis-
tributed ledger to refer to a blockchain. Both platforms allow the execution of arbitrary and pro-
grammable logic embedded in transactions, known as smart contracts. Being a platform, Corda nor
Fabric provide any plug-and-play decentralised key management system fulfilling Section 1.1 require-
ments.

4For example, a list of trusted root certificates used by Apple devices can be found here: https://support.apple.com/
en-bh/HT212140
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Figure 3.2: A decentralised secure vehicular communications key distribution system based on
blockchain. A secure vehicular communications system consists of vehicles that communicate with
Road Side Units (RSU). RSU’s belong to a security domain. Key distribution procedures are triggered
when there is a vehicle handover between RSU’s. Special handover procedures take place when the
handover takes place between RSU’s from different security domains 3.2.

A secure vehicular communications system that resembles the ERTMS architecture is presented in [43].
This system consists of vehicles, just like trains, that communicate with Road-Side infrastructure Units
(RSU) build along the road. As set of RSU belong to the domain of a Security Manager (SM). When a
vehicle transitions from one security domain to another other, a key exchange procedure with several
handshakes takes place involving a central authority. To make the key exchange procedure from the
above structure more efficient, [30] proposes a blockchain system (SM Network) to replace the key
management tasks of the central authority, see 3.2 for a graphical representation. A Central Manager
is appointed for registration tasks. The design make use of proof-of-work as consensus mechanism
and activities between the security managers are explicitly stored on the blockchain. The results using
the blockchain approach showed that the handover procedure is more efficient under certain circum-
stances, i.e., take less time.

Decentralised key management systems have been proposed for different Internet-of-Things (IoT) ap-
plications [23, 38]. Uses cases for these systems approximate the ERTMS structure, but do not explicitly
hide relationships between actors.

3.3. Blockchain Anonymisation Techniques

This section reviews state of the art anonymisation techniques used in blockchain applications where
privacyis required. For some techniques, the protocol is explicitly presented to illustrate the interaction
between the involved entities.

Private channels To exchange sensitive and private information between a group, Hyperledger
Fabric offers private channels. A private channel is, in essence, a separate blockchain only available
to specific members, completely separated from other blockchains (or channels). From the railway
perspective, this would mean setting up a private channel for each KMC pair, i.e., a group of two. Pri-
vate channels are meant for larger groups, and from Fabric’s documentation, each separate channel
introduces administrative overhead. Fabric also offers private data collections where a hash of the pri-
vate data is distributed across all peers on the blockchain as evidence of the transaction and is used for
validation and audit purposes. The actual confidential data is only shared with authorised organisa-
tions but before setting up so-called anchor peers. The drawback of these two concepts in Fabric is that
the actual data is only stored in the authorised peers, eliminating redundancy in case of node failure or
crash. Corda does not offer standalone privacy features and a choice needs to be made between privacy



20 3. Previous work

and security [26, 34].

Coin mixers and tumblers The relationship between the issuer and the receiver of a transaction
can be hidden by first sending the transaction to a third party known as a mixer or tumbler. The mixer
will subsequently send the amount to the receiver in exchange for a fee. The mixer is aware of the
relationship, and the users have to trust the mixer will not expose them. As more transactions are sent
through the mixer, the less likely a relationship can be deduced. It is common in cryptocurrencies with
construction to only allow transactions with fixed-value denominations. Cryptocurrency Dash relies on
a set of mixers to achieve anonymity, where every node on the Dash blockchain can become a mixer after
having stored a certain amount of value. These special nodes are called master nodes [12]. The idea is
that a set of master nodes reduces centralisation; however, the number of master nodes in practice is
much smaller than the coin users.

Blind signatures The Okamoto-Schnorr’s blind signature is a modified version of Schnorr’s sig-
nature scheme proposed by Okamoto et al. [41]. The scheme provides a signature from an authority
for a message requested by a certain user, blinding the user from the other users. The scheme can be
used in blockchain applications to hide the identity of the transaction issuers. In the case of a private
blockchain, the blinding process can be performed by the same authority in charge of the enrolment
process, such as in the electronic voting system presented in [27]. The drawback is the centralisation
introduced by the authority. The scheme where Bob obtains a signature Bob for a message m from
an Authority is summarised in Protocol 3.1, where the Authority has a private key s and correspond-
ing public key Y = sG. The resulting signature for message m is (p, ¢) and can be verified by other
users computing o’ = pG + €Y and checking if ¢ = 7 (m/||a’) holds. An honest prover will succeed in
constructing a valid proof since to following holds:

o' =pG+eY =(r—B)G+eY =(v—es— )G+ €Y
=vG —esG — BG + €Y
=A—-0G+ (e—e)Y
=A—BG+dY

Authority (Y, s) Bob (V)

vE€p mod g

A=vG

A

2
(8,9) € mod ¢
a=A—pBG+6Y

e =H(m|la)

e=¢— 0 mod g

il

r=v+es mod ¢
N

p=r—[ mod q

Protocol 3.1. Okamoto-Schnorr Blind Signature
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Hierarchical Deterministic (HD) address A private key & is extended using another random
number ¢ known as chain code [1]. From this extended private key, multiple child public/private key
pairs can be generated that are not linkable to each other using Equation 3.1, where k;, is the ith private
child key and kG parent public key. Multiple grandchild keys can be generated from each child key,
again not linkable to each other. A child key cannot be used to derive the parent private/public key,
hence hierarchical. This process can be repeated almost indefinitely, creating a tree structure. This
allows users to use a different public/private key for each transaction. A disadvantage is that a user
needs a secure channel to share the key with each sender.

ki =k+ H(c| kG| i) (3.1)

Linkable ring signatures A linkable spontaneously anonymous group (LSAG) signature scheme
achieves anonymity, linkability, and spontaneity [32]. Spontaneity refers to the absence of a group se-
cret, group manager or group secret sharing setup, and the linkability property exposes two or more
signatures made using the same private key. The RingCT protocol, used by cryptocurrency Monero to
achieve anonymous transactions, is based on the variant of LSAG. RingCT uses a mixin® count to hide
the actual input being spent in a transaction. An empirical study concluded that 63% of Monero trans-
actions with a mixin count of one or more could be traced back to the issuer [36]. The issue is primarily
due to inputs used that were generated before the RingCT protocol became effective; transactions using
the RingCT protocol are considered untraceable. Currently, Monero enforces a minimum mixin count
of 4.

Stealth address Stealth addresses are used to anonymise both transaction issuer and receiver [54].
Given a generator G and public keys A and B, an issuer computes R = rG and P = K (rA)G + B where
r €p Z,. The tuple (R, P) is embedded in the transaction and the receiver, who knows the private view
key a and private spend key b such that A = aG and B = bG, checks for every incoming transaction if
P = K (aR)G + B holds. If true, the transaction is destinated to him/her and only he/she can compute
the corresponding one-time private key x = # (aR) + b. These scheme achieves untraceability, i.e., for
each incoming transaction, all possible senders are equiprobable; and provides unlinkability, making
impossible to prove for any two outgoing transactions they were sent to the same person. Protocol 3.2
illustrates a procedure where Alice constructs a stealth address with Bob’s public spend and view key.
Bob check the result and can be certain that he is the receiver. Bob is not able to deduce from the result
alone that Alice generated the transaction.

Alice (4, B,G) Bob (a,b, A, B,G)

r€p mod ¢
R=rG
P=%(rA) + B
(R,P)
e
P < H(aR)G + B
xr=%H(aR)+b

Protocol 3.2.Stealth address system

5Not to be confused with a mixer or tumblers. There are discussions in the Monero community about using another term for this
parameter.
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Set Membership Different types of uses cases requiring anonymity, ranging from cryptocurren-
cies to credential systems, can be described using the same generic statement: given a set ¥, prove
that a certain element belongs to the set without revealing the actual element, i.e., a proof of mem-
bership. Commitment schemes based on ZKP are used to solve these kinds of problems. The size of
these schemes usually increases linearly as a function of the set size ¥, which can become a problem in
certain use cases. Camenisch, Chaabouni and Shela [7] have proposed an efficient protocol to prove set
membership resulting in a constant size proof regardless of the set size. The protocol assumes that the
set ¥ is known to all participants. The scheme does not take linkability into account.

3.4. Discussion

Previous work addressing ERTMS key management either proposed a centralised solution, or focused
on improving key distribution at the Infrastructure Manager side [19, 53]. These works do not propose
a single nor decentralised system. A review of existing decentralised systems from similar fields, such
as vehicular communication systems and IoT, concluded that there is no single decentralised system
addressing the structure needed by ERTMS.

Platforms on which industry-grade decentralised applications are build on, such as Corda and Fabric,
do not provide a key management system directly fulfilling the requirements summarised in Section
1.1 and are not suitable for private relationships between several small groups of participants. These
platforms do provide a solid foundation on which a decentralised system can be implemented once de-
signed.

The study of existing key management and authentication systems showed that blockchain technology
is a suitable solution for building a single and decentralised system. Moreover, the append-only prop-
erty allows the system to comply with the requirement of archiving KMAC’s and associated transaction
data. Techniques to achieve anonymity in blockchain applications have been reviewed and summa-
rized in Table ?? using three criteria: anonymity, authority, traceability. Partial anonymity means that
anonymity is achieved from a subset, authority indicates the need of a trusted third party and linkability
indicates if two or more transactions can be traced back to the same entity (not necessarily revealing
the identity of the entity).

The study of anonymity techniques raised awareness that achieving privacy and security at the same
time is not trivial. Systems that address privacy and security simultaneously usually achieved this at
the cost of, for example, computational or storage complexity. Security, loosely speaking, aims to pre-
vent system misuse or make it inaccessible from attacks such as Denial of Service [28]. The definition
of anonymity and privacy is not so straightforward. Krishnamurthy [28], state that privacy is about
keeping certain information from leaving a system inadvertently while anonymity is about performing
some action without revealing some identity. Without loss of generality, this work will use both terms
interchangeable to address both requirements.

The ownership and registration of assets, i.e. trains and RBCs, is generally public information. The
purchase or lease of these objects often goes through open and public tenders. Moreover, upon in-
quiring a railway operator, it might be desirable to have a single asset directory where assets are listed
together with their home KMC. Currently, it is sometimes a bit of a puzzle to figure out under which
KMC domain an asset belongs. Therefore, asset ownership is not considered not private information,
but the relationships between these entities will be considered private information during the design
of a single decentralised system.



PRIDE: Privacy-Preserving
Decentralised Key Management System

This section introduces PRIDE, our privacy-preserving key management system for the European sig-
nalling and speed control system based on a permissioned blockchain. The system addresses the dis-
tribution of KMAC between KMC (see Figure 2.4). We assume that Registration Centers (RC) are es-
tablished beforehand with the sole role of granting KMC access to the system. Registered KMC create
a peer-to-peer network and register a set of assets. An asset, either a train or an RBC, can only belong
to the domain of one KMC, its home KMC. KMC use transactions to distribute KMACs for a particular
train and RBC combination.

The design of PRIDE is presented in six parts: 1) Initialisation. 2) Hiding confidential information
using AES. 3) Anonymous relationships using tags which at the same time authenticates a KMC. 4)
Traceable relationships from the tag that ensures a tag can only have one valid KMAC at any time. 5)
Transaction creation and verification. 6) Block and blockchain creation and verification. The relevant
notation set for this work is summarised in Table 5.1.

Only registered actors are able to issue valid transactions and all system actors verify its authenticity
without deducing any underlying relationships. Note that the tag allows all system actors to link trans-
actions for a given combination but not all actors are not able to deduce the train or RBC that the tag
identifies.

4.1. Initialisation

RC are established beforehand and grant KMC (administrators) access to the system. More than one
RC can be appointed to avoid centralisation; for example, each Member State could designate a na-
tional RC. The reasoning behind this is based on the current specifications, which dictate that Member
States are responsible for assigning unique KMC identifiers [14]. Each KMC has a unique identifier and
generates a private and public key pair. The RC signs the public key creating a certificate as proof of
admittance.

23
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Table 4.1: Notation

Symbol | Description
FH(-) Secure hash function
q A prime number
G Elliptic curve base point, G € E(F,)
Y Set of train and RBC public keys
u Set of train public keys, 2/ C ¥
14 Set of RBC public keys, ¥V C Y
T, Private key for entity a, z, € Z,
Y, Public key for entity a, Y, = 2,G,Y, € Y
K. Tag for combination a and b
v Index for combination ¢ and b
k Mixin count
U Transaction one-time private key
sk | Private key of a KMC, sk € Z,,
Pk e | Publickey of a KMC, pkype = skxye - G

KMC Domain Once registered, a KMC creates a domain by registering assets into the system. A
KMC generates a private and public key for each asset in its domain. Similar to the previous process,
the public key and asset identifier are signed by the KMC, creating a certificate. All registered KMC
establish a peer-to-peer network of nodes, and each node has a list of registered KMC and assets with
their corresponding identifier, public key, and certificate. ¥ denotes the set of public keys of all regis-
tered asset available to all KMCs. Each KMC has one KMC private key and a set of asset private keys,
one private key for each asset in its domain. All private keys must be backed up and kept safe.

The registration of trains and RBCs into the system will create an European ERTMS entity directory
available to all registered KMC.

4.2. Hiding Confidential Information

Symmetric encryption allows both KMC to retrieve the KMAC from the same transaction. KMACs are
encrypted using AES-GCM, and the resulting ciphertext, MAC and IV are included in the transaction
payload. The ciphertext ensures confidentiality, whereas the MAC is used to check message integrity.
The secret key used for encryption and decryption is obtained from an authenticated Diffie-Hellman
key exchange using the KMC public and private keys. AES-GCM requires an Initialisation vector (IV)
as an input, which must not be reused [13] as the ciphertexts of two different messages obtained from
the same secret key and IV would reveal the secret key.

4.3. Anonymous Relationships

Let the set of trains ¢/ C ¥ and the set of trackside entities V C ¥, suchthat/N?Y = and LUV = Y. The
number of possible combinations {(Y;,Y;) | Y; € U AY; € V'}is |V x U|. Each combination is uniquely
mapped to a tag K using a one way function, f : (Y;,Y;) — K. The tag results from a Diffie-Hellman
key exchange using Equation 4.1. The result, used as an identifier rather than a secret, is included in
each transaction and has two important properties: 1) the tag can only be computed by the private key

owners, and 2) the tag does not reveal the involved public and private keys.
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K, =xY,=zY, =K, (4.1)

Apart from being an identifier, the tag is used to authenticate a transaction. A transaction is considered
authentic if it can be proved to be issued by a registered KMC and for a combination of registered
assets. The tag forms a DH tuple (G, Y;,Y}, K) for which a NIZKP proof as presented in Protocol 2.1
can be created. The result would convince all system actors that the tag is computed by a registered
KMC using f but reveals the public keys involved, instantly revealing the relationship between the
two KMC. To prove authenticity while remaining anonymous, Protocol 2.1 is extended to prove a tag
is related to one out of all |V x U| possible tags, in other words, one of the DH tuples from the set
{(G,Y,,Y};,K) | Y; € U NY; € V} satisfy Equation 4.1. The tag and proof generation for trackside entity
a and train b is created using Algorithm 4.1. Any system actor can verify the authenticity of the tag by
running Algorithm 4.2. When including a message m in the hash function, Algorithm 4.1 and 4.2 can be
considered to be the generation and verification algorithms of a digital signature scheme for message
m using one of the assets private keys. In fact, it can be argued that the result is already a signature for

the tag.

Algorithm 4.1 Generation

G: Elliptic curve base point
function generateTag(a, b, U, V)
K=z,Y, > Tag computation
vERZ,
R,S,c,r={}
n=20
T=0
foreachi:Y, € U/ do
foreachj:Y; € Vdo

n=n+1

ifi=aAj=0then > Same as Protocol 2.3
T=n > Combination index
R =G
S, =Y,

else > skipped if K =0

CpsTy Er L,
R, =r,G+cY;
S, =r,Y;+ ¢, K
end if
end for
end for
s=H(GI RS, || R, 1S, | K)
¢, =s—>y.c mod q
Tp=0—2,C,
returnc,r,U,V, K
end function
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Algorithm 4.2 Verification

G: Elliptic curve base point
function verifyTag(c,r, U, 7V, K)
R, S = {}
n=20
foreachi:Y, € U do
foreachj:Y; €V do
n=n+1
R, =r,G+cY;
Sy, =1, Y;+ ¢, K
end for
end for
s=H(G|Ry | S, | | Ry 1S, | K)
return s — > ¢ mod ¢
end function

Mixin Count The length of the proof is proportional to |2/ x V|, which could become a problem for a
large set of assets. A smaller result is obtained by introducing a mixin count k& < |I/ x V| and selecting &
combinations from {(Y;,Y;) | Y; € U AY; € V}\(Y,,Y,). Let § be the set of k elements from a uniform
random sample without replacement from {1, ..., |&/ x V|}\{r}, where = is the index of combination
(Y,,Y;). The resulting ordered multi sets fed into Algorithm 4.1 and 4.2 are

U ={U iz | Uiy €U Ni € SPULY,}

and
V= {Vz mod |V| |V mod |V| EV/\iE‘S}U{Yb}'

7

The mixin count can be seen as a measure of ambiguity: a small value results in a smaller proof but
increases the chance of guessing the underlying relationship from a single transaction. £ = 0 results in
Protocol 2.3, instantly exposing the relationships.

4.4. Traceable Relationships

A train and RBC combination can only have one valid KMAC at any point in time. A modified stealth
address scheme is used to achieve this while keeping the issuer KMC and receiver KMC of a KMAC
transaction anonymous. For every transaction, an issuer looks up the public key pk ;. of the receiver,
generates r, s €x Z, and computes u = J{(r - pky o) + 5, see Algorithm 4.3. The resulting stealth
address in the transaction is the tuple (R, P = uG, S = sG). The receiver checks for every incoming
transaction if P = H (sky o - R)G + S using Algorithm 4.4, where sk, is his/her private key. If
it holds, then he/she knows that the transaction is meant to him/her. The transaction private key u is
only known to the issuer, which is used to update the KMAC from the corresponding transaction.

To update or renew a KMAC, a new KMAC transaction is issued disclosing the private key « of the
KMAC to be replaced. KMACs from transactions with disclosed private key are considered to be re-
voked, ensuring that every asset combination has only one valid KMAC at any time. Transactions with
undisclosed private keys are known as unspent transactions and the number of valid KMACs, valid tags
and unspent transactions in the system is equal at any point in time. All peers in the network maintain
a list of unspent transactions with the associated tag.
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Algorithm 4.3 Stealth address generation

G: Elliptic curve base point
function generateStealth(pk ;)

r,s€ER L,
R=rG
S =sG
u=H(r pkgpyc) +s
P =uG
return (R, P, S)
end function

Algorithm 4.4 Stealth address check

G: Elliptic curve base point

sk o Private key

function checkStealth(R, P, S)
return P = H(skgrye- R)IG+ S

end function

4.5. Transaction Creation & Validation

A transaction is a tuple containing the elements of Table 4.2. Date and time are included to check fresh-
ness and for bookkeeping. The hash of the transaction uniquely identifies a transaction in the system
and ensures that the contents have not been altered. There are two types of transactions, original and
update transactions:

Original Transaction The result from Algorithm 4.1 is attached once in a transaction presenting
a new tag: the original transaction for an asset combination. Such a situation accounts, for example,
for a new asset in operation, reassignment, or relocation. The transaction is validated using Algorithm
4.2. Even though two KMC can compute a tag for the same combination and create a valid proof, it is
assumes that only the Infrastructure Manager KMC will issue transactions (see Figure 2.4).

Update Transaction KMAC transactions corresponding to known tags in the system are referred
to as update transactions. An update transaction for a tag is considered authentic if it discloses the
private key of the current unspent transaction for the corresponding tag. All update transactions can
be traced back to an original transaction. After a transaction is created, it is broadcasted to the peer-to-
peer network. Every node verifies its correctness and validity before adding it to its pool of unconfirmed
transactions.

Table 4.2: Transaction structure

Item Description
timestamp | Date and time of transaction creation
destination | Stealth address (see Section 4.4)

tag Train and trackside combination identifier (see Section 4.3)
payload Encrypted KMAC, MAC and IV (see Section 4.2)
proof Result from tag Algorithm 4.1 or transaction private key u

hash The digest of the transaction from a hash function
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4.6. Blocks

Unconfirmed transactions are grouped together in a block by a leader node and proposed for acceptance
by broadcasting it to the network. Besides a list of transactions, the block contains a block number, the
hash of the latest accepted block, Merkle root from the transactions, issuer identifier and signature
over the block’s digest. Each node will verify the correctness and validity of the block and the included
transactions. The issuer’s signature is verified using the issuer’s public key and certificate. If a majority
of nodes accept the block, it will be added to the blockchain and the process can start again.

Blockchain The first block is known as the genesis block, and it is agreed upon during the Initialisa-
tion phase. Leader election and block acceptance depend on the consensus protocol (see Section 2.6.1).
PRIDE assumes that actors in the system may act maliciously, therefore IBPF as consensus algorithm,
which is byzantine fault tolerant.

4.7. Discussion

Once PRIDE is setup, KMC are registered on it and have up their domains, KMAC exchange can take
place. Figure 4.1 provides a sequence diagram involving two actors, Infrastructure Manager (IM KMC)
and a Railway Operator (RO KMC); and the peer-to-peer network (P2P). The sequence illustrates the
procedure for a KMAC of a new asset combination, where RO KMC requests a KMAC for the first time for
train b under its domain and RBC ¢ under the domain of IM KMC, whose identities are found on the
asset directory.

RO KM computes the tag K, using Algorithm 4.1 (or just Equation 4.1) and sends this securely off-
chain to the IM KMC. Upon receiving the request, verifying that the tag is correct and accepting the
request following internal procedures, IM KMC creates the proof using Algorithm 4.1 followed by a
stealth address using Algorithm 4.3 and RO KMC public key pkp,. Both results are put together in a
transaction with the additional items presented in Table 4.2. The KMAC in the transaction is encrypted
using AES and the key resulting from a Diffie-Hellman key exchange between the actors using RO KMC
public key pky, and IM KMC private key sk;,,. The unconfirmed transaction is send to the P2P net-
work by IM KMC.

During the consensus protocol, all nodes in the P2P network execute Algorithm 4.2 to verify the transac-
tion authenticity. If valid, the transactions, together with other transactions, are added to the blockchain
in a new block. RO KMC (just as all other KMC) will scan all the transactions in the just accepted block
using Algorithm 4.4 and its secret key sk, to check if one or more transactions belong to it. Algorithm
4.4 will result in true for a transaction with tag K ;. RO KMC can decrypt the KMAC in the transaction
using the resulting key from a Diffie-Hellman key exchange using its private key sk, and IM KMC
public key pk;,,.

Both KMC subsequently load the KMAC into their assets using internal procedures followed by a an
operation test, where the train establishes a session with the trackside entity using the corresponding
KMAC for the first time.
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Figure 4.1: Sequence illustrating the procedure for a KMAC of a new asset combination,







Evaluation

This chapter evaluates PRIDE. Section 5.1 shows how PRIDE is analysed against the semi honest ad-
versary model. Section ?? analyses the complexity of PRIDE from a computational, communication
and space point of view. A proof of concept is built using Rust and Javascript to evaluate PRIDE’s per-
formance using settings close to the expected railway landscape in 2030. The results are presented in
Section 5.3 and are used to discuss scalability.

5.1. Security

PRIDE is believed to be secure under the semi honest adversary model where an adversary controls one
of the parties and follows the protocol precisely as specified. In the semi-honest model, an adversary
tries to learn more information than it should form the system. A protocol secure under the presence
of semi-honest adversaries is guaranteed not to leak inadvertent information [31], such as private keys.
PRIDE relies on three protocols for authentication: 1) Anonymous relationships 2) Stealth addresses
3) ECDSA. The first two are on transactions, and the third one blocks.

5.1.1. Anonymous relationships

The tag that uniquely identifies a train and RBC combination is the result of a Diffie-Hellman key ex-
change. From Definition 2.3, given the public keys associated with the combination, the result is indis-
tinguishable from a random value. Therefore, the tag alone does not revealing the entities involved nor
their private keys.

The tag is verified by presenting the result of a witness indistinguishable protocol, generated by Algo-
rithm 4.1 and verified using Algorithm 4.2. An honest prover using Algorithm 4.1 will always succeed
in constructing a valid proof satisfying Algorithm 4.2, since correctness is trivial for R, and S, fori # =

R.=r.G+cY,
=(Ww—2x,0,)G+c,Y,
=vG —cz,G+c,Y,
=vG —c. Y, +c.Y, =vG,

and
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S,=rY,+c. K
=Ww—xa,c,)Y, +c. K
=Y, —c,x, Y, +c K
=Y, —c, K +c, K =Y,

Without knowing the private key, a cheating prover will fail to convince the verifier. This can be proven
by contradiction.

Lemma 1. A probabilistic polynomial-time adversary cannot compute a valid proof accepted by
Algorithm 4.2 without knowing one of the two asset’s private key .

Proof. Assume that a cheating prover does not know one of the private keys x« was able to compute a
proof accepted by Algorithm 4.2. Because of the second pre-image resistance property of secure hash
functions, we can assume that R and S, were fixed before s was computed. Then, forc, =s—>"., ¢

igmw 12
r,. is chosen such that » G = R, — ¢,Y,, which would be essentially solving the discrete logarithm
problem. O

A verifier cannot infer which index corresponds to r; therefore, our protocol is witness indistinguish-
able and no adversary can distinguish the asset combination involved with non-negligible better than
1/(k + 1) probability.

5.1.2. Stealth address

A stealth address creates anonymous and unlinkable transactions. A receiver of a stealth address can
give view control to another party without giving spend control. Our modified stealth address is no
different than the original proposal in the sense that an issuer sends a transaction to herself and gives
the actual receiver only view control. We refer the reader to [40, 54] for the formal proofs regarding
anonymity and unlinkability. The security of the protocol relies on the transaction private key u.

Lemma 2. A probabilistic polynomial-time adversary cannot derive the transaction private key .

Proof. Assume that an adversary obtains a stealth address (R, P, .S) and the receiver’s corresponding
private key b. The adversary needs to find s such that sG = P — H (bR)G = S, by doing so, it solves the
discrete logarithm problem. O

5.1.3. ECDSA

ECDSA is used to authenticate a KMC proposing and accepting blocks. The hash of a block is signed
using Algorithm 2.1. The result is verified using Algorithm 2.2 and ensures that only a registered KMC
proposes a block. There is no formal security proof for DSA, and its elliptic curve variant [18], but
it has proven to be secure empirically in applications such as Bitcoin. However, it is crucial to use a
cryptographically secure pseudorandom number generator and properly implement the algorithm.

5.2. Complexity Analysis

The complexity analysis is based on 256-bit EC cryptography which provides x = 128 bits of security.
A security strength of 128 bits is believed to provide acceptable security for protection and processing
information until 2030 and beyond [3]. Furthermore, Koblitz curve secp256ki is used together with
hash function SHA-256 and cipher block AES-256 using a 96-bit IV.
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Table 5.1: Notation used in Evaluation chapter

Symbol | Description

security parameter in bits

EC private key size in bits, 2«

Compressed EC point size in bits, n + 1

Secure hash function

Elliptic curve base point

Initialisation vector

MAC | Message authentication code
N Number of nodes

Acceptable faulty nodes

Mixin count

Transactions per block

Tadvsa

™

o~

5.2.1. Computational Complexity

The operations involved in transaction creation and verification are summarized in Table 5.2. The
generation and verification time is linearly bounded by the mixin count k. Each % introduces 4 EC
point multiplications and 2 EC point additions. The verification protocol has two additional EC point
multiplications and two additional EC point additions, regardless of k.

Table 5.2: Number of operations of Algorithms

Operation | Algorithm 4.1 | Algorithm 4.2 | Algorithm 4.3 | Algorithm 4.4
EC point multiplication 244k 444k 4 2
EC point addition 2k 242k 0 1
Modular addition E+1 k 0 0
Modular multiplication k 0 1 0

5.2.2. Communication Complexity

The communication between the nodes depends on the consensus protocol. IBFT is used in PRIDE,
introducing a communication complexity of @(N?). With 100 nodes, the system can withstand f = 33
faulty nodes (see Equation 2.5). During each round, the total maximum and the minimum number of
messages per phase are shown in Table 5.3.

Table 5.3: Number of messages during a consensus round

Phase | Maximum | Minimum
Pre-prepare 3f 3f

Prepare (3f)? (3H)(3f — )
Commit 3fBf—=1) | Bf=f+1)(3Bf+1)

5.2.3. Space Complexity
A transaction consists of the items presented in Table 4.2 and the corresponding size in bits is shown
in 5.4. We assume that identities are stored in 32-bit variables.
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Table 5.4: Transaction size per item

Item size (bits)
timestamp 32
destination 3-P=3-(n+1)
tag P=n+1
payload n+IV+ MAC =n+ 96+ 128
proof 2-k-(n+32)Vn
hash n

Table 5.5: Block size per item

Item size (bits)
timestamp 32
issuer 32
signature 2n
hash n
Merkle root n
Transaction list 1- (17654 k- 576)
Commit list [(2N —1)/2] - (2n + 32)

With n = 256 and summing the elements together results in original transaction size of 1796 + k - 578
bits, where the mixin count linearly bounds the transaction size. For an update transaction, the tag
signature is replaced by a n-bit private key u, resulting in constant transaction size of 2052-bit.

A block consists of the items presented in Table 5.5 with corresponding sizes in bits. The identity of
the issuer always accompanies each signature. Additionally, IBFT requires that each block has a fixed
number of [(2N — 1)/2] commit signatures, where N is the number of nodes. A block with no trans-
actions nor commitments results in 1376 bits. 77 commitments is about 4.5 kilobytes®. In practice, we
expect trains to have 200 KMAC loaded on-board on average. Figure 5.1 depicts the blockchain size in
gigabytes” maintained by N = 100 nodes after 7.7 million original transactions for different numbers
of transactions per block / and transaction size k.

61 kilobyte = 1000 bytes, 1 byte = 8 bits
71 gigabyte = 1000 bytes

Blockchain size after 7.7 million transactions (gigabyte)

fg 10241 2 8 13 19 24 30 36 41 47 52 58 63 69
E 5121 2 8 13 19 25 30 36 41 47 52 58 63 69
2 128 3 8 14 19 25 30 36 41 47 52 58 64 69
'% 16} 5 10 16 21 27 32 38 43 49 54 60 66 71
B 8| 7 12 18 23 29 35 40 46 51 57 62 68 73
§ 0 10 20 30 40 50 60 70 80 9 100 110 120

Transaction size (k)

Figure 5.1: Blockchain size in gigabytes after 7.7 million original transactions as a function of
transactions per block and mixin count.
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Figure 5.2: Sequential and parallel execution times for Algorithm 4.1. The execution time increases
linearly as a function of the mixin count, as expected.

5.3. Performance Analysis

Performance is measured by implementing PRIDE as a proof of concept. The results are presented in
the section.

5.3.1. Transactions

The complexity of creating and verifying a transaction is dominated by Algorithm 4.1 and 4.2. These
two algorithms were implemented in the Rust programming language. The results for the generation
algorithm with & ranging from 3 to 300, averaged over 100 iterations and obtained using an Apple Mac
mini (M1, 2020), are plotted in Figure 5.2. Both protocols are suited to be executed in parallel. Using
the same machine, the execution time improved a factor of 4.2; results are shown in orange in the same
figure. As expected, the execution time increased linearly a function of the mixin count. The average
generation time for a tag signature with £ = 120 resulted in 4674, seconds.

5.3.2. Blockchain

The whole design of PRIDE was implemented in Node.js, simulating up to 100 fully connected nodes
spread over five different machines geographically separated over three Dutch cities: Delft, Rotterdam,
and Gouda. Each machine is assigned a Fully Qualified Domain Name (FQDN); see Table 5.6. One RC
was established by generating a private key and root certificate under the name RC NI Root CA
using OpenSSL and installed in each machine. Certificates are generated for each FQDN simulating
the registration process. The nodes communicate using WebSockets over TLS, ensuring confidential
data transfer between nodes. Each node is identified by a number i € 1, ..., N and listens to TCP port
8000 + 1.

Table 5.6: Proof-of-concept network setup

P FQDN Location CPU Operating system
86.93.162.125 gd.wlkn.nl Gouda Intel Core i5-4570 | Ubuntu 20.04.3 LTS
178.84.070.143 | rtd.wlkn.nl Rotterdam Intel Core i5-4570 | Ubuntu 20.04.3 LTS
136.144.208.161 | dt.wlkn.nl Delft Intel Xeon® Debian 10
178.84.70.143 ut.wlkn.nl Rotterdam Intel Core i5-4570 | Ubuntu 20.04.3 LTS
178.84.70.143 rtd.wlkn.nl Rotterdam Apple M1 macOS 11.6

8BladeVPS PureSSD X4 from TransIP
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Average IBFT phase time per node as a function of nodes
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Figure 5.3: Average pre-prepare, prepare and commit time as a function nodes N. The solid line is
the result of a quadratic regression.

The proof-of-concept is aimed to measure throughout as a function of communication overhead. Leader
election and view change are not considered in the implementation. For each measurement, a fixed
leader generates 120 transactions per block and proposes 20 blocks. The number of nodes was in-
creased from 5, in steps of 5, until 100 nodes. Because the number of available processing units was
smaller than the simulated nodes, the processing time for Algorithm 4.1 and 4.2 were simulated to
avoid biased results from CPU time sharing. Using a timer and the results from Part 5.3.1, a time-out of
5ms per transaction was programmed simulating the generation and verification of transactions with
k = 120.

Each replica node starts measuring time as soon as it receives a pre-prepared message; that is, time
measurements are relative to each node. The results are presented in Figure 5.3. The pre-prepare
phase showed a constant pre-prepare time of 120 - 5ms ~ 600ms as a function of the number of nodes,
as expected. Both prepared and commit time showed an exponential increase as a function of nodes,
as expected from the number of messages exchanged from Table 5.3. With 100 nodes, on average after
20 blocks with each containing 120 transactions, all replica nodes reached the prepared phase after
1,3 seconds and the commmited phase after 1,6 seconds. The distribution of the prepared and commit
time of the replicas averaged over 20 blocks is presented in Figure C.1 and Figure C.2, respectively.

The time between the leader node starts the execution and all nodes are committed is presented in
Figure 5.4. The time includes transaction generation, and waiting for all nodes to commit. The result
as function of nodes does not show a nice quadratic behaviour as the replicas. This could be attributed
to network delays, but this needs further investigation. Overall, the maximum time is 8 seconds, which
equal to 15 transactions per second. Note that time was measured until the last node committed. In
practice, it suffices to wait for N — f to start a new round.
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Figure 5.4: Average leader round time as a function of nodes N

5.3.3. Scalability analysis

PRIDE running on a P2P network of one hundred nodes achieves a throughput of at least 15 transac-
tions per second using a mixin count of 120. From each original transaction, the chance of correctly
guessing the involved train and RBC is roughly 0.8%. The throughput presents a significant improve-
ment over the current off-line method, where the exchange of a KMAC can takes days, or even weeks.
The storage need for all 7.7 million KMAC original transactions is about 70 gigabytes. The price for
professional Solid State Drives is around 1 Euro per gigabyte at the moment of writing; storage should
therefore not be a, considering that update transactions take significantly less space, and at some point
in time, transactions can be discarded. The KMAC update interval is still a subject of debate.

From the result presented in Figure 5.3, it is interesting to see that, from starting from 40 nodes, the
prepare and commit phase times start to dominate the consensus time. Therefore, it makes sense to
bundle as many transactions as possible into one block, reducing the size of the blockchain due to the
additional information each block contains. A larger block size equals a smaller blockchain but comes
at the price of a longer average confirmation time. Specifying a maximum block time puts abound the
maximum confirmation time. The pre-prepare phase time can be reduced by using a more powerful
computer and with more processing logic units, as Algorithm 4.1 and 4.2 are suited to be executed in
parallel.






Discussion and Future Work

The European railway signalling system consists of a wireless communication channel between a train
and an RBC. A session between the two of these entities is established using a pre-installed symmetric
key KMAC, unique per combination and used for mutual authentication. The train provides periodic
location reports during a session, and the RBC provides Movement Authorities. Trains and RBC are
generally under the responsibility of different KMCs, creating a KMAC distribution problem between
them. There is currently no single system to be used by all KMC, and studies have concluded that a cen-
tralised approach is not feasible since it is difficult to place the responsibility for such a single system
with one organisation [46]. This thesis reviews previous work addressing the ERTMS key distribution
problem and the current key distribution and management approaches used in similar fields such as
automotive and IoT applications. This showed that, to the best of our knowledge, there is no single
system that can be directly adopted by all ERTMS KMC for key distribution and management. More-
over, most work either makes use of central entity or makes a trade-off between security and anonymity.

During the design of a single system aimed to be used by all KMC, privacy turned out to be an underex-
posed aspect. At the moment, the existing implementations and procedure are generally only between
two KMC; therefore, privacy has not been an issue. Railway operators, especially freight operators,
benefit the most from having as much KMAC as possible loaded into their trains and every additional
KMAC installed in their assets can be translated to a potential competitive advantage over other opera-
tors. State-of-the-art anonymity techniques in blockchain applications have been studied.

The main research question on which this work is based is as follows:

“How can we design a scalable and decentralised key distribution system for the European railway
signalling system?”

This chapter discusses how PRIDE achieves the research goal, examines its limitations, and presents
how these can be addressed in future work.

6.1. Discussion

This work presents PRIDE, a decentralised key management system for railway KMCs. The system is
built around a permissioned blockchain and allows KMCs to exchange KMAC for entity pairs in a con-
fidential, integer, and authentic way using transactions. Besides a registration centre, no other third
parties are involved and KMC can spontaneously establish a relationship. KMCs maintain a p2p net-
work of nodes on which the blockchain is hosted and are jointly responsible for the system. The ad-
vantages of a decentralised system become more noticeable as more entities start making of the system.
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The design has been analysed from a security and performance point of view. The security of PRIDE
relies on the assumption that solving the discrete logarithm problem is hard as long as the private keys
are not compromised. Our security analysis shows that PRIDE is secure on the semi-honest model.
The performance analysis presented in Section 5.2 show that the generation and verification of orig-
inal transactions have linear communication complexity as a function of the mixin count. PRIDE is
practical and scalable at the same time, which is proved from results obtained from a proof of concept
simulating up to one hundred KMCs achieving a throughput of at least 15 transactions per second.

Key update and revocation To address KMAC update and revocation, PRIDE uses the unspent
transaction output paradigm found in cryptocurrencies. For every train and RBC pair, there can only
be one valid KMAC at any point in time. A KMAC is updated or revoked when a new transaction is issued
revealing the private key of the previous KMAC, creating a chain of KMAC transactions for a given pair
where only the newest transaction is considered to contain a valid KMAC. This construction is built
upon stealth addresses that ensure a transaction does not disclose issuer and receiver to the system.
This answers the first research sub-question how can we address key update and revocation?

Auditability All transaction data is recorded on the blockchain, and each transaction corresponding
to an asset combination includes a tag linking all transactions that have been issued for the combination.
Even a bit flip anywhere on the blockchain will be noticeable, ensuring that a transaction cannot be
changed or deleted once published on the blockchain. Together with the digital signatures, the append-
only property and the tags, make PRIDE an excellent tool for audits and dispute resolutions. Using
Protocol 2.3, a KMC can prove ownership of a specific tag without revealing any other relationship to
an auditor. This answers the second research sub-question how can we provide key auditability and
traceability?

Anonymity The stealth address approach used to link transactions does not reveal the sender and
the receiver. The tag in each transaction identifying a train and RBC pair does not disclose the entities
involved under the decisional Diffie-Hellman assumption. Nevertheless, the stealth address and tag
alone do not ensure that transactions are issued by a valid KMC nor provide any security against, for
example, denial-of-service attacks. A signature scheme is built to prove the tag’s validity to address
this issue. The home KMC assigns each asset a private and public key pair, and the tag results from
a Diffie-Hellam key exchange. Based on a witness indistinguishable proof, it can be shown that the
tag is the result from 1-out-of-% train and RBC combinations, without revealing the actual combina-
tion. The proof result is attached on the first transactions for a given train and RBC combination. The
space and computational complexity of the proof increase linearly with k, creating a trade-off between
anonymity and performance. This approach does not provide perfect anonymity. The scheme does
not give exculpability; that is, as other KMC disclose their private keys, it is possible to determine the
entities involved by means of elimination. This addresses the third research sub-question how can we
anonymise relationships and transactions between KMC?

Side-channel attacks It is important to note that anonymity can be compromised even if the pro-
tocols are followed correctly as designed. For example, Infrastructure Managers updating KMAC at
peculiar times or using obvious refresh intervals could reveal the identify of certain organization. Spec-
ifying an equal update interval and KMAC lifespans would reduce this risk. Also, the same mixin count
used to achieve anonymity can backfire it, as using a disproportionately large value compared to other
transactions can give away the entities involved, as addressed by Méser et al. [36] in their empirical
study of Monero transactions. This flaw is can be addressed by enforcing the same mixin count for all
transactions.
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6.2. Future Work

Asset ownership The current design of PRIDE assumes that KMC will honestly register RBCs and
trains. PRIDE can be extended to support ERTMS equipment vendors to account for this and prevent
misuse. Vendors, such as Siemens, Alstom, and CAF, would register assets and transfer ownership
to KMC using transactions recorded on the PRIDE blockchain. Transferring ownership is also desir-
able if an asset is sold or leased; in this case, an asset will be assigned a new private and public key.
The addition of ownership transfer would turn PRIDE into a full-fledged ERTMS registry involving all
stakeholders.

Non repudiation PRIDE assigns each train and RBC pair a unique identifier that can only be com-
puted by their respective home KMC and assumes that only Infrastructure Managers issue transactions.
However, the current construction allows both KMC to issue an original transaction for the same pair
without revealing which of the two KMC issued the transaction, lacking non-repudiation between KMC.
This might be a problem during a dispute resolution as both KMC could deny having issued a specific
transaction. Attaching a signature obtained from a ring signature scheme using the public keys of all
registered Infrastructure Managers would ensure that only Infrastructure Managers issue transactions
without telling which one.

Private key loss or corruption PRIDE relies heavily on the assumption that private keys are ade-
quately backed up and kept safe. Infrastructure Managers are required to maintain a list of private keys
of all unspent transactions, which in case of loss or corruption would inhibit KMAC update or revocation.
To mitigate the risk, a hierarchical deterministic key approach can be implemented where nonces are
derived from a master private key rather than randomly. In case of a crash or system failure, a KMC
can derive the transaction private key from the master key. The inherent drawback is that loss or cor-
ruption of the master key has far more implications than loss or corruption of a single regular private
key. A second issue is that the same KMC private key is used with every other KMC when deriving
the encryption key from the Diffie-Hellman key exchange (see Section 4.2). The resulting key is used
to encrypt and decrypt KMAC. In case that a KMC private key is compromised, all KMAC related to the
KMC will also be compromised. PRIDE does not provide forward secrecy, but in order to reduce the
consequence of a compromised KMC private key, each train and RBC can be assigned a second private
and public key pair. One pair is used for the computation of the tag, and a second one to derive the
encryption key from the Diffie-Hellman key exchange. In this case, a compromised key will only affect
a single train and RBC pair.

Anonymity More advanced cryptographic techniques can be used to proof a 1-out-of-many state-
ment yielding logarithmic complexity without the necessity of a mixin count [22].

6.3. Migration strategy

ERTMS specifies an offline and online method for key management methods and requires all ERTMS
entities to support both methods. The online method is preferred over the offline method. The latter is
intended to be used as a fallback system; however, the distribution of KMAC between KMCs is still done
using the offline method. KMC are still working on the actual design and implementation of the online
method, as the specifications do not prescribe exactly how the interaction between KMC should take
place except prescribing TLS-PKI. PRIDE is not an alternative to the online method but rather a solu-
tion that fits the online method with the advantage that KMC will only need to support and maintain
a single system. The blockchain nodes simulated in the proof-of-concept used X.509 certificates for
authentication and TLS 1.3 for confidential communication, meeting the TLS-PKI requirement. The
offline method can still be used as a fallback method if PRIDE becomes unavailable. However, as KMC
join and maintain the system and due to the decentralised nature of PRIDE, such an event is highly un-
likely. Even if there are not enough nodes available for consensus, KMC can still query the blockchain
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from the active nodes.

According to the online method, loading of KMAC into a train or RBC (step 4 of Figure 2.4), can also be
done using TLS-PKI. Future work might include studying the possibility that trains and RBC directly
query PRIDE for the latest KMAC, allowing train and RBC to be synchronised as soon as a KMAC is issued
and accepted on the blockchain.

6.4. Conclusion

We have presented PRIDE, a decentralised key distribution and management system aimed at railway
KMCs across Europe. PRIDE hides relationships between KMC by assigning each train and RBC com-
bination an identifier meaningful only to their respective KMC, but verifiable by all KMC using witness
indistinguishable proofs. By introducing a mixin count, it is possible to weigh anonymity against per-
formance. A blockchain maintained by KMC spread geographically across Europe creates a redundant
system eliminating single points of failure. In case of node crash or failure, any KMC can reconstruct
its latest state from the blockchain using only its private keys. Also, with a blockchain as the system’s
backbone, all transaction data is appropriately recorded as required by exiting procedures. The security
analysis shows that the design is secure against semi-honest participants. Experimental results showed
that PRIDE is a feasible key management and distribution system that fits the European Union’s rail-
way vision for 2030.



ERTMS Key Management Centres

During the course of this project, conversations and email exchange took place with relevant stakehold-
ers of the ERTMS programme in The Netherlands. The most important findings are summarised in this
appendix and should give the reader a general idea and feeling about the past, present and future of
ERTMS in The Netherlands.

A.1. Infrastructure Manager KMC

Based on conversations and mail exchange with Jaco Schoonen, Asset Management — ERTMS Cen-
trale Systemen at ProRail.

ProRail is the designated Infrastructure Manager in The Netherlands and started the development of
its KMC around 2007. The KMC was established during the construction of the Betuweroute en the
Schiphol-Antwerp high-speed railway (HSL), both fitted with ERTMS Level 2. The implementation,
based on the offline method, consisted of a laptop and a set of procedures [45], both still in operation
today, no conceptual changes have been made so far. Database backups are made after each session
and stored in compact discs, which can be used in restore the system in case of laptop failure. Pro-
Rail generates and manages the cryptographic keys using KM4E, a special tool developed by the Swiss
Federal Railways (SBB). The tool has a check for weak triple-DES keys, but the manual does not reveal
anything about the key derivation function. According to SUBSET-038, the technical implementations
for key generation performed by the KMC do not need harmonisation.

Generated KMACs are mostly destined to new trains or requests for new trajectories for existing trains,
as KMACs are hardly ever refreshed. The majority of the requests are made for freight trains. Freight
trains are usually owned by lease companies, which benefit from having their equipment loaded with
as many valid KMAC as possible to be deployed on different countries and track lines.

Even though refreshing cryptographic keying material is a standard safety procedure, the current pro-
cedures discourage this practice. For a rolling stock owner, refreshing a KMAC from an operation point
of view can cost up to EUR 1000,- per key. On the other side, it is not feasible for ProRail to periodically
refresh the keys due to the manual and operational hassle involved with it and therefore issues keys with
along lifespan. Because of the current implementation, Infrastructure Managers and operators are not
interested in periodically refreshing the cryptographic material and there is no defined refresh inter-
val. In Germany triple-DES keys are required by the Federal Office for Information Security (BSI) to
be refreshed at least every 5 years.
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ProRail is currently working on the development of a new KMC that will support Online Key Man-
agement. The development is done together with NS and other operators. The PKI design or choice
needed for Online Key Management is not part of the interoperability specification, but it is relevant.
A KMC will have to be flexible in order to deal with possible different choices from other KMC’s. There
is an idea to develop and offer a Key Management platform to operators, requiring the development
and maintenance of only one system. An operator will have the choice to set up a traditional KMC or
to purchase a KMC domain as a service from ProRail. Nothing will change in terms of responsibilities,
and operators will be responsible for having the right keys loaded in their equipment. ProRail expects
to release a tender for its new KMC in the spring of 2022.
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A.2. Railway Operator KMC

Based on conversations and mail exchange with Marijn Verheul, Rolling Stock Software Desk at NS.

The Nederlandse Spoorwegen (NS) is the largest railway operator in The Netherlands. Until December
2020, NS had their key management outsourced to a third party. Starting of January 2021, NS moved
away from that construction and started to manage their own KMC. During the transition, it appeared
that agreements made with this third party and other stakeholders were not formally established, and
operational administration was not properly organised nor recorded. For example, communication be-
tween other KMC’s was done using personal email addresses instead of using a dedicated KMC mailbox.
Also, it came to light that different types of agreements were made between different KMC.

NS manages a fleet with different train series. The ERTMS fleet of NS consists of TRAXX locomotives,
the Eurostar, the SNG, and the ICNG series. For each of these series, there are different key man-
agement procedures and ProRail and NS have agreed to use a different K-KMC for each train series.
According to the specifications, only one K-KMC should be used between KMCs. InfraBel, the Belgium
Infrastructure Manager, does follow the specifications and only share one K-KMC creating an awkward
situation between the neighbouring countries. ERTMS equipment manufacturers are also known to
not strictly follow the specification as some suppliers come up with proprietary solutions to load KMACs
into the trains. For example, the KTRANS specified for verification and integrity during KMAC transport
is not used for on the SNG and ICNG series. This practice is allowed under certain circumstance, but
shows that there is a lot of variation for the same procedure.

The specifications offer plenty of room for own interpretation, which could be one of the reasons or-
ganisations come up with different solutions for the same problems. The specification documents are
technically in order, but a lot is being overlooked from the operational point of view. Some items are
discussed in more detail than others. For example, in Subset 038, it is stated that each KMC shall be
able to manage three types of users: an administrator, an operator, and a maintainer. But the roles
or differences between the roles are not further explained. Some argue that the lack of specification
allows KMC to set up their implementation optimally for their specific situation.

Offline Key Management is done using basic and outdated software, see Figure A.1. However, the main
security threat in the process is considered to be related to human procedures. KMAC are loaded using
USB flash drives and computers, which can easily become compromised when left unattended at the
workshops. Online Key management aims to solve this issue but the specifications still mandate the
use of the GSM-R network to load KMAC into trains. Because of this, NS is worried that it will not be
possible to load or refresh cryptographic material at a busy train yard due to the limited capacity and
bandwidth of GSM-R. For this reason, NS has stalled the adoption of Online Key Management to is still
fully committed to implement it because the offline method is simply not scalable for a large fleet. NS
and Prorail are working together in a project to arrive at an online key management solution. At the mo-
ment, new trains are currently being delivered that do not support Online Key Management. Once the
online method becomes available, trains will have be to modified to support online key management.

On Board Information Services (OBIS) OBIS is an Information Technology (IT) platform in-
troduced by NS in 2010. At the beginning, the main goal was to provide passengers Internet connection
through Wifi and to present real-time travel information on displays. But quickly a lot of development
was put into it, becoming a mature platform where many (internal) applications and services come
together. Currently, OBIS makes Operational Technology (OT) systems information available to IT
systems, but not the other way around. Work is being done in order to make this a two-way path, facili-
tating software updates and possibly even cryptographic key management within the NS KMC domain.
OBIS relies on a PKI deployed by NS.
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Figure A.1: Software developed by an ERTMS equipment vendor to prepare a KMAC for
transportation. Loading the KMAC into the KMAC entity is done using similar software. The software
does not work on newer operating systems such as Windows 10 (Between the time the interview took
place and the publication of this work, the supplier updated the software, and it is now supported on

Windows 10).



Radio Block Centre

The Dutch part of the Schiphol-Antwerp high-speed railway (HSL-Zuid) is fitted with ERTMS Level 2
and consists of two RBCs: one for the North part, and one for the South part. The division occurs at
Rotterdam Centraal station, where the trains need to switch to the legacy Dutch signalling system. The
HSL-Zuid is used by passenger and maintenance trains, the list of which is presented in B.1 with corre-
sponding NID ENGINE.A NID ENGINE is a unique number assigned by the European Union Agency
for Railways to each On Board Unit (OBU) inside a train. The OBU establishes a session on behalf of
the train with the RBC using a KMAC. A train has usually two OBUs, one at the front and one at the back.

The RBCs on the the HSL-Zuid are maintained by Infraspeed Maintenance BV, which has a contract
with the State of The Netherlands and needs to guarantee, at least, a 99% availability of the HSL-Zuid.
During this project, a visit was done at the Infraspeed monitoring centre. Figure B.1 gives a general
impression of the control room.

Figure B.1: Impression of Infraspeed control room where all systems are actively being monitored.
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Table B.1: Train series making use of the HSL-Zuid with NID ENGINE range.

Series | NID_ENGINE
Windhoff | 6118-6119
Eurostar | 12900-12999
Thalys 2154500-2154699
E186 18601-18645, 111-125, 300-340, 142, 144, 148, 149, 195-199

The RBC corresponding to the South part of the HSL-Zuid is shown in Figure B.2. An RBC has three
processing units performing the same computations independently from each other. A result is ac-

cepted if all three outputs are the same. A closer look at Figure B.2 show three secure digital (SD) cards
where the KMACs are stored. 152 different OBUs

Figure B.2: One of the two RBCs maintained by Infraspeed. An RBC has three processing units
performing the same computations independently from each other.
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