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Robust Optimal Control for Demand Side
Management of Multi-Carrier Microgrids

Raffaele Carli , Member, IEEE, Graziana Cavone , Member, IEEE, Tomás Pippia ,

Bart De Schutter , Fellow, IEEE, and Mariagrazia Dotoli , Senior Member, IEEE

Abstract— This paper focuses on the control of microgrids
where both gas and electricity are provided to the final customer,
i.e., multi-carrier microgrids. Hence, these microgrids include
thermal and electrical loads, renewable energy sources, energy
storage systems, heat pumps, and combined heat and power units.
The parameters characterizing the multi-carrier microgrid are
subject to several disturbances, such as fluctuations in the provi-
sion of renewable energy, variability in the electrical and thermal
demand, and uncertainties in the electricity and gas pricing. With
the aim of accounting for the data uncertainties in the microgrid,
we propose a Robust Model Predictive Control (RMPC) approach
whose goal is to minimize the total economical cost, while
satisfying comfort and energy requests of the final users. In the
related literature various RMPC approaches have been proposed,
focusing either on electrical or on thermal microgrids. Only a few
contributions have addressed the robust control of multi-carrier
microgrids. Consequently, we propose an innovative RMPC
algorithm that employs on an uncertainty set-based method and
that can provide better performance compared with deterministic
model predictive controllers applied to multi-carrier microgrids.
With the aim of mitigating the conservativeness of the approach,
we define suitable robustness factors and we investigate the effects
of such factors on the robustness of the solution against variations
of the uncertain parameters. We show the effectiveness of the
proposed RMPC approach by applying it to a realistic residential
multi-carrier microgrid and comparing the obtained results with
the ones of a baseline robust method.

Note to Practitioners—This work is motivated by the emerging
need for effective energy management approaches in multi-
carrier microgrids. The inherent difficulty of scheduling simul-
taneously the operations of various energy infrastructures (e.g.,
electricity, natural gas) is exacerbated by the inevitable presence
of uncertainties that affect the inter-dependent dynamics of
different energy resources and equipment. The proposed robust
MPC-based control strategy allows the energy manager to effec-
tively determine an optimal energy scheduling of multi-faceted
system components, making a tradeoff between performance and
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protection against data uncertainty. The presented strategy is
comprehensive and generic, as it can be applied to different
microgrid frameworks integrating various types of system com-
ponents and sources of uncertainty, while at the same time being
implementable in any energy management system.

Index Terms— Energy and environment-aware automation,
demand side management (DSM), multi-carrier microgrid, set-
based uncertainty, robust optimization, robust model predictive
control.

I. INTRODUCTION

WE ARE currently facing an energy transition worldwide
that has led to several changes in energy networks [1].

Due to technological advancements, governmental policies,
and a larger share of renewables, electrical and thermal energy
grids are changing, facilitating the introduction of new energy
paradigms but at the same time creating many challenges.
One of such paradigms is the introduction of microgrids,
which, albeit an old concept, provide many benefits to the
electrical grids [2]. Microgrids are energy grids of small size,
including local production of energy, consumption, energy
storage systems, a control architecture, and a connection to
the main grid [3], [4]. Some of the benefits of microgrids
are: increased efficiency, because the energy locally produced
is also consumed locally, thus wasting less energy in trans-
portation; higher resiliency, because the failure of a single
microgrid does not compromise the stability of the whole grid;
a modular structure, which allows more flexibility, so that each
microgrid is adapted to the local characteristics of the region
where it is located, e.g., renewable energy production from
the sun or wind, or both. However, the introduction of a larger
share of renewable energy into the grid, together with a higher
amount of energy storage and variable electricity prices, which
typically characterize microgrids, adds a layer of uncertainty
that leaves many open challenges [5], [6].

In fact, in microgrid energy management problems, the main
goal is to minimize an economical objective while providing
good performance for other goals, e.g., minimizing the amount
of energy exchanged with the main grid to avoid penalties
as in [7], or the discomfort of occupants in a building [8].
Among several control algorithms presented in the literature,
Model Predictive Control (MPC) [9], [10] stands out as one
of the most suitable and flexible control approaches for the
problem to face. MPC is a model-based, optimization-based
control approach that allows including several objectives and
constraints in the formulation of the control problem. In the
standard deterministic MPC (Det-MPC) form, the unknown
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disturbances, e.g., electrical loads, renewable generation, are
simply forecast with a point forecasting method. Given that
the actual value of these perturbations can be quite different
from the forecast itself, this can lead to poor performance.

To cope with this issue, two different MPC approaches
have been developed, namely stochastic and robust MPC
(RMPC) [10]. On the one hand, in stochastic MPC, as the
name mentions, the stochastic properties of the disturbances
are exploited and used in such a way that the constraints of
the problem are not satisfied for every possible disturbance
realization but only for a subset of them. Such a strategy
works better when there is a large amount of prior data
available and the stochastic properties of the disturbances
can be assumed to be known. On the other hand, RMPC
generally satisfies the constraints of the problem for every
possible realization of the disturbances. The only information
needed in such a case is the disturbance bounds, which can
be computed or estimated for a large variety of practical
applications. Clearly, the choice of either method depends on
the specific application. Where it is not vital to guarantee
constraint satisfaction at all times, e.g., for building heating
control [8], [11], a stochastic approach results in the best
choice, to avoid a possibly too conservative control action.
Conversely, when a small amount of information is available
on the disturbances, an RMPC approach is the most suitable
choice. This also applies to cases in which it is necessary to
guarantee at all times a maximum amount of power exchanged
with the main grid [12]. In addition, the robust approach has
significantly higher computational performance and the corre-
sponding uncertainty modeling is simpler than the stochastic
approach [13]. For the above reasons, in this paper we focus on
RMPC, and specifically on a robust control approach that can
guarantee an adequate constraint satisfaction while not overly
affecting the optimality of the resulting control strategies.

A. Related Works

In the last years, many works have considered
applications of MPC to microgrids [12], [14]–[27].
These works devote their attention either to multi-carrier
microgrids [12], [16]–[22], to fully thermal microgrids [15],
or to fully electrical microgrids [14], [23]–[27]. The
article [14] presents a modeling framework for electrical
microgrid energy management systems. Similarly, paper [15]
presents a thermal microgrid modeling framework and a
Det-MPC approach, considering district heating, thermal
energy storage, and flexible loads. MPC algorithms for
multi-carrier microgrids have been proposed in [12], [16]–[19],
[22]. The article [16] discusses a stochastic MPC approach
for microgrids that contain both thermal and electrical units.
The control approach uses a two-stage optimization strategy:
in the first stage, a decision on the microgrid operations
is made before the values of the external disturbances are
known; in the second stage, after the values of the random
variables become known, correction actions are taken. The
authors of [17] develop an MPC approach for a multi-carrier
energy management system of a microgrid. Stability of the
controlled system is proven, although the resulting controller

is deterministic and does not take disturbances into account.
Paper [18] considers a demand response framework, also
within the context of Det-MPC. In [19], similarly to [16],
a two-stage MPC controller for mixed-energy microgrids is
presented, where, however, the first stage controller consists
of a stochastic MPC algorithm while the second stage is a
rule-based one. Similarly to [16], a two-stage optimization
procedure is proposed in [22] for multi-carrier microgrids.
In the first stage, a day-ahead scheduling is performed, while in
the second stage corrective actions are taken with a shrinking
receding horizon approach. The resulting MPC controller is
deterministic, as disturbances are simply point-forecasts.

With respect to RMPC, some applications to microgrids
have been considered [12], [22]–[26]. The authors of [23]
present a min-max RMPC approach for fuel-cell cars inside
a microgrid. Such vehicles can be used as a power generating
unit when they are parked inside the microgrid and not being
used. In [24], an economic RMPC controller is presented.
Constraints related to the operational limits of the components
of the microgrid and on the energy balance are included in
the controller, considering variations of the expected loads
and using a constraint tightening strategy. The constraints on
the states and inputs are tightened and the resulting control
law guarantees convergence to a neighborhood of a robust
optimal trajectory that minimizes the cost function. In [25] an
RMPC method, which has three types of uncertainty scenarios
and uncertainty budgets for islanded microgrids, is presented.
In [27], a hierarchical controller is presented, in which the
lower level comprises a rule-based controller while the upper
level consists of an RMPC controller that considers a robust
optimization over a control policy parameterized by gains
and that is able to compensate uncertainties on predictions
of loads, which are modeled based on fuzzy intervals. The
authors of [26] consider an RMPC approach for islanded
electrical microgrids, where the “degree of uncertainty”
method of [28] is used. Such a method provides a trade-off
between robustness and conservatism of the controller.
In [12], an RMPC approach for multi-carrier microgrids is
considered, with a focus on a demand response program
of the United Kingdom national grid. The goal of such a
program is to add some extra flexibility to the energy grid
and make the supply of energy more secure; the prosumer
that provides flexibility is rewarded economically for the
commitment to supply energy. A nonlinear economical MPC
approach is presented in [22]. The authors focus on the
control of combined-heat-and-power plant that provides
electrical and thermal energy to a district and they assume the
existence of a thermal market. To improve the robustness of
the controller, a simple approach is adopted, in which three
different scenarios are forecast, i.e. expected and upper and
lower extreme scenario. Then, a weighted sum of the cost
function, for the three scenarios, is used as objective.

B. Contributions

It can be noted from the previous literature review that,
among the papers that present an RMPC algorithm, i.e., [12],
[22]–[26], almost all of them actually consider only a fully
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electrical microgrid that does not include any thermal device.
The papers that do consider a multi-carrier microgrid, i.e. [12],
[22], have a limited scope. In fact, [12] focuses on the
short-term operating reserve in the national context of the
United Kingdom, while [22] considers a single device, i.e. a
combined-heat-and-power plant, and it assumes the presence
of a thermal power exchange grid.

Therefore, to the best of the authors’ knowledge, lit-
tle or no attention has been devoted in the literature to
RMPC algorithms for microgrids that consider both elec-
tricity and heating devices. Most of the works focus either
on an RMPC strategy for single-carrier microgrids or on
a multi-carrier microgrid with a Det-MPC algorithm. How-
ever, heating systems are becoming increasingly important,
as more and more devices that couple the heating demand
with the electrical one are installed in buildings, e.g. heat
pumps (HPs), micro combined-heat-and-power plants (μ-
CHPs). Moreover, as mentioned earlier, the large amount
of uncertainties in the microgrid, related to energy demand
and supply, results in the need for adopting an RMPC
strategy.

Therefore, in this work we address the robust energy
management system problem of a multi-carrier microgrid
that includes both electrical and thermal devices. In par-
ticular, on the heating side, we consider HPs, μ-CHPs,
controllable thermal loads (CTLs), non-controllable thermal
loads (NCTLs), thermal energy storage systems (TESSs), and
auxiliary boilers, while on the electrical side we consider
non-controllable electrical loads (NCELs), controllable electri-
cal loads (CELs), electrical energy storage systems (EESSs),
and renewable energy sources (RESs). Moreover, we develop
a novel RMPC algorithm that provides improved performance
with respect to Det-MPC algorithms present in the current
literature. In order to achieve such a result, we adopt the
cardinality-uncertainty-set robust optimization method pro-
posed in [28], in which the so-called budgets of uncertainty are
employed to control the degree of conservatism and robustness
of the solution. We manage to achieve constraint satisfaction
successfully even with large disturbances affecting both the
demand and supply of energy within the electrical and thermal
parts of the microgrid, as shown in the simulation results.
Lastly, while we recently published a conference paper [20]
with preliminary results, the current work significantly extends
and improves the method in several aspects: 1) we extend the
proposed microgrid model in order to integrate also further
important components, e.g. controllable thermal loads; 2) we
consider and model further sources of uncertainty acting in
the microgrid, e.g. electricity and gas pricing; 3) we adopt the
cardinality-set-uncertainty to define the uncertainty space for
the online robust optimization; 4) we thoroughly compare the
results achieved by the novel proposed method with a related
robust approach.

Our contribution is therefore threefold:
• we present a novel mathematical model and a compre-

hensive RMPC methodology to optimally control the
energy exchange of a multi-carrier microgrid equipped
with both thermal and electrical units, namely thermal
loads, electrical loads, renewable energy sources, energy

storage systems, heat pumps, and combined heat and
power units.

• we take into account the data uncertainty associated with
electrical and thermal energy demand, RES generation,
and electricity and natural gas coefficients in the micro-
grid by formulating a computationally tractable robust
counterpart of the online energy scheduling problem
based on an uncertainty set-based method of [28].

• we define several suitable robustness factors to miti-
gate and reduce the conservativeness of the proposed
approach. Moreover, we investigate the effects of such
factors on the robustness of the solution against variations
of the uncertain parameters within the given uncertainty
sets.

C. Outline

The outline of the article remainder is as follows.
In Section II, we discuss the system model. Section III is
focused on the Det-MPC formulation. We present the RMPC
energy scheduling approach in Section IV, highlighting the
difference with respect to the deterministic approach and
the definition of data uncertainty set. Section V is devoted
to numerical experiments, showing the effectiveness of the
proposed robust control scheme and comparing the achieved
results with a related robust approach. Lastly, conclusions and
remarks for future work are presented in Section VI.

II. MODEL OF THE MULTI-CARRIER MICROGRID

The multi-carrier microgrid reported in this section is based
on the model shown in Fig. 1. The main electrical grid can
supply energy to CELs, NCELs, and HP (or to CELs, NCELs,
HP, and EESS), while it can receive energy from RES, EESS,
and CHP (or RES and CHP). Consequently, the system can
both buy and sell energy to the main grid. The electrical
demands can be fulfilled by the main electrical grid, RES,
CHP, and EESS. On the other hand, the gas network can
supply the CHP and the boiler, while it cannot receive gas
from the microgrid. The thermal energy produced by CHP,
boiler, and HP (or by CHP, boiler, HP, and TESS) can be
provided to the NCTL, CTL, and TESS (or to NCTL, CTL).

We remark that the considered microgrid architecture in
Fig. 1 is quite general and represents the majority of practically
employed multi-carrier microgrids. Specifically, the scheme
in Fig. 1 does not represent the actual topology of the gas
and the electrical grid (which incorporates several buses),
but rather it constitutes a high-level conceptual model of the
addressed microgrid, aimed at synthetically showing the main
inflows/outflows of the considered components.

In the sequel we consider a control horizon [k +1, k + H ]
containing H equally spaced time slots and moving ahead at
each current time slot k.

A. Notation

Let N,R,Z+,Rn,Rn×m denote the set of natural numbers,
the set of real numbers, the set of non-negative integers, the set
of column real vectors of length n and the set of n by m real
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Fig. 1. High-level scheme of the multi-carrier microgrid illustrating the
considered components and the corresponding inflows and outflows.

matrices, respectively. The transpose of a matrix A ∈ R
n×m is

denoted by A�, while 1n and 0n denotes a column vector of
n elements all being equal to 1 and 0, respectively. ◦ denotes
the entry-wise product between two equal size vectors. �·�
denotes the ceiling operator: given the real number a, �a� is
the greatest integer lower than or equal to a. For any k1, k2 ∈ N

with k1 ≤ k2, the finite set of integers {k1, . . . , k2} is denoted
by N[k1,k2 ]. For any w1, w2 ∈ Z+ with w1 ≤ w2, [w1, w2]
denotes the closed interval {w ∈ Z+ | w1 ≤ w ≤ w2}. The
vector a(k) = [a(k + 1), . . . , a(k + H )]� represents a column
vector of H values over the time horizon [k+1, k+H ]. Lastly,
col(an)n∈N[1,N ] is equal to (a�

1 , . . . , a�
N )

�.

B. Electrical Loads

The microgrid includes some NCELs for which the electri-
cal demand cannot be shifted in time and regulated. At each
time step k ∈ Z+ let b(k) be a column vector of input
parameters representing the energy consumption profile of the
NCELs over the time horizon [k+1, k+H ]. Moreover, the grid
comprises Ncel CELs that allow for operations’ regulation and
programming. The decision variables representing the energy
consumption of each CEL over the time horizon [k +1, k + H ]
is represented by the column vector xel

n (k) with n ∈ N[1,N cel ].
We collect the profiles of all CELs in the column vector
xel(k) := col(xel

n (k))n∈N[1,Ncel] .
Differently from NCELs, CELs are required to work in

bounded operating intervals limited by minimum and maxi-
mum operating levels. The maximum and the minimum energy
levels for each CEL are respectively represented by the input
parameters vectors ln(k) and l n(k). Moreover, each n CEL
must consume a well-defined quantity of energy Ln(k) over
the considered time horizon. The defined requirements can be
summarized by the following constraints:

l n(k) ≤ xel
n (k) ≤ ln(k), n ∈ N[1,N cel ] (1)

1H
�xel

n (k) = Ln(k), n ∈ N[1,N cel ]. (2)

C. Thermal Loads

Similarly to electrical loads, thermal loads are distinguished
into NCTLs and CTLs, and take into account the thermal
demand, e.g., for heating space and water. As regards NCTLs,
e.g., the thermal demand for heating water, the consumption

profile over the time horizon [k + 1, k + H ] is represented
by a vector of input parameters q(k). Differently, the Mctl

CTLs consumption profiles, which can be programmed and
shifted over time, e.g., the space heating/cooling, is defined as
a column vector of decision variables yctl

m (k) with m ∈ N[1,Mctl].
CTLs are requested to work fulfilling comfort requirements in
a bounded interval limited by minimum and maximum thermal
levels. In particular, the maximum and minimum temperature
profiles for each CTL are respectively represented as Tm(k)
and T m(k). A CTL is formalized as first order dynamic system
function of the temperature of the environment and of the
related decision variables. The defined assumptions can be
formulated as follows:

T m(k) ≤ Tm(k) ≤ Tm(k),m ∈ N[1,Mctl]
Tm(k) = e−�h

τ Tm(k − 1)+ (3)

+ (1 − e−�h
τ )(Te(k − 1)+ α yctl

m (k)) (4)

where �h is the sampling time of the time horizon
[k + 1, k + H ], τ is the constant time of the first-order dynam-
ics of the environment temperature, α is the temperature gain
of the heat exchanger, Te(k − 1) is the external temperature
profile, and yctl

m (k) is the decision variables vector related to
the m-th CTL. We collect the profiles of all CTELs in the
column vector yctl(k) := col(yctl

m (k))m∈N[1,Mctl] .

D. Renewable Energy Source

The microgrid under analysis includes a RES, which can
be for instance a wind turbine for residential use and/or
a photovoltaic panel. The corresponding energy generation
profile over the horizon [k + 1, k + H ] is represented by the
column vector r(k).

E. Heat Pump

Various HPs can be used to accommodate the space heating
and hot water demand. However, in this work we refer to
air-to-water source HPs in heating mode only. In fact, such
systems can be easily installed as a convenient retrofit solution
in existing facilities, thus providing thermal energy for both
space heating and hot water services [29]. The efficiency of
the heat pump is measured by the so-called Coefficient of
Performance (COP) that depends on the internal tempera-
ture of the residential unit and on the thermal gap between
the internal and external temperature of the residential unit.
The COP is here considered to assume a constant value over
the horizon [30], [31]. The COP – denoted as ηhp – relates the
input electrical energy vector xhp(k) and the output thermal
energy vector yhp(k) as follows:

yhp(k) = ηhp xhp(k). (5)

Operational requirements impose to limit the thermal energy
between minimum and maximum values p hp and p hp as
follows:

php1H ≤ yhp(k) ≤ p hp1H . (6)
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In addition, further constraints are imposed to limit the ramp
up and ramp down of the HP generation in accordance with
the upward and downward ramp rates ρhp and ρ hp:

ρhp ≤ yhp(h)−yhp(h−1)≤ρ hp, ∀h ∈[k+1, k+H ]. (7)

F. Gas Boiler

Auxiliary boilers are usually used in microgrids in order to
meet thermal demand peaks that cannot be satisfied by the
CHP, HP, or TESS. In particular, gas-fired boilers are widely
installed in facilities connected to the gas main grid and they
are used to satisfy the heating demand when no decentralized
power generation is available. The microgrid under analysis
comprises a gas-fired boiler, which presents an efficiency ratio
ηboi around 100% during the burning process and can rapidly
satisfy changes in the hot water demand thanks to its fast
dynamics. The efficiency ratio ηboi relates the input gas amount
vector zboi(k) and the output thermal energy vector yboi(k) as
follows:

yboi(k) = ηboizboi(k). (8)

Operational requirements impose to limit the thermal energy
generated by the gas boiler between minimum and maximum
values pboi and p boi as follows:

pboi1H ≤ yboi(k) ≤ p boi1H . (9)

G. Combined Heat and Power Unit

The microgrid comprises also a CHP unit that can generate
both thermal and electrical energy using a single source of fuel.
Complete CHP systems are usually deployed as a combination
of a prime mover CHP technology, a TESS, and an auxiliary
boiler. The profitability of CHPs system depends on the choice
of the prime mover technology and size, and on the design
of the combined TESS [32]. The high interdependence of
the electrical and thermal energy generated by CHP can be
modeled as reported below:

xchp(k) = ηchp
e zchp(k) (10)

ychp(k) = η
chp
t zchp(k). (11)

The gas consumed by the CHP is represented by the input
column vector zchp(k), while the generated electrical and
thermal energy are the output column vectors xchp(k) and
ychp(k). Consequently the CHP presents both an electrical and
a thermal efficiency respectively represented by ηchp

e and ηchp
t ,

which are here assumed to be constant over the horizon [33],
[34]. Operational requirements on the CHP unit impose to
limit the generated electrical and thermal energy between
minimum and maximum values lchp, l

chp
, pchp, and p chp:

lchp1H ≤ xchp(k) ≤ l
chp

1H (12)

pchp1H ≤ ychp(k) ≤ p chp1H . (13)

In addition, further constraints are imposed to limit the ramp
up and ramp down for both the thermal and electrical gen-
eration of the CHP unit in accordance with the upward and

downward ramp electrical rates r chp and r chp and thermal rates
ρchp and ρ chp:

−r chp≤ x chp(h)−x chp(h−1)≤r chp, ∀h ∈[k+1,k+H ] (14)

−ρchp≤ ychp(h)−ychp(h−1)≤ρ chp, ∀h ∈[k+1,k+H ]. (15)

H. Electrical Energy Storage System

The EESS can both provide and absorb electrical energy
to and from the microgrid. Consequently, we consider two
different vectors xes−(k) and xes+(k) to represent the discharging
and charging activities of the EESS over the time horizon.
The EESS is here represented as a first-order dynamic sys-
tem whose charge level, given the charging and discharging
efficiencies ηes+ and ηes− , can be modeled as follows:
ses(h) = ses(h − 1)+ ηes

+ x es
+(h)− 1

ηes−
x es

−(h),

∀h ∈[k+1, k+H ]. (16)

The charge level is limited by the minimum and maximum
EESS capacity Ses and S

es
:

Ses − ses(h − 1) ≤ ηes
+ x es

+(h)− 1

ηes−
x es

−(h)

≤ S
es − ses(h − 1), ∀h ∈[k+1, k+H ].

(17)

To represent the mutual exclusion of the charging/discharging
events, i.e., the electrical energy can flow from the microgrid
to the EESS and vice versa but not simultaneously, the model
includes the following constraints:

0H ≤ xes
+(k) ≤ δes

+(k)s
es (18)

0H ≤ xes
−(k) ≤ δes

−(k)s
es (19)

δes
+(k) ∈ {0, 1}H , δes

−(k) ∈ {0, 1}H (20)

δes
+(k)+ δes

−(k) ≤ 1H (21)

where s es and ses are the maximum charging and discharging
rates, while δes

+(k) and δes
−(k) are two supporting vectors over

the time horizon [k+1, k+H ].
We highlight that δes+(h) = 1 or δes+(h) = 0 if the EESS is

charged or is not charged at time step h, respectively; similarly,
it holds δes−(h) = 1 or δes−(h) = 0 if the EESS is discharged or
is not discharged at time step h, respectively.

I. Thermal Energy Storage System

The TESS is modeled similarly to the EESS, thus we
consider vectors yts+(k) and yts−(k) respectively representing the
decision variables related to the energy storage end provision.
The charge level at time step k is represented as sts(k) and the
constraints below are imposed:

sts(h)= sts(h− 1)+ ηts
+y ts

+(h)−
1

ηts−
y ts
−(h),

∀h ∈[k+1, k+H ] (22)

Sts − sts(h − 1) ≤ ηts
+y ts

+(h)− 1

ηts−
y ts
−(h)

≤ S
ts − sts(h − 1), ∀h ∈[k+1, k+H ]

(23)
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0H ≤ yts
+(k) ≤ δts

+(k)s
ts (24)

0H ≤ yts
−(k) ≤ δts

−(k)s
ts (25)

δts
+(k)∈{0, 1}H , δts

−(k)∈{0, 1}H (26)

δts
+(k)+ δts

−(k) ≤ 1H (27)

where ηts+ and ηts− are the charging and discharging efficiencies,
Sts and S

ts
are the minimum and maximum capacities, s ts

and sts are the maximum charging and discharging rates, and
δts

+(k) and δts
−(k) are two vectors of supporting variables with

an analogous meaning as in the EESS case.

J. Electrical and Thermal Demand-Supply Balance

In presence of CHP units, microgrids deal also with the
exchanged thermal energy flows. Hence, for the sake of
satisfying the energy balance in the multi-carrier scenario,
a demand-supply balance constraint must be imposed at any
time slot for both the electrical and thermal energy flows.

Specifically, the local balance of the electrical energy flow
over the time horizon is expressed through the following
equation:
xgr(k)+xchp(k)+xes

−(k)+r(k)

=
N el∑

n=1

xel
n (k)+xhp(k)+xes

+(k)+b(k) (28)

where xgr(k) is a column vector denoting the profile of the
electricity exchanged between the main grid and the microgrid
and sold over the time horizon: for each at time step we have
that h ∈ [k+1, k+H ] xgr(h) ≥ 0 if the microgrid buys energy
from the grid, whilst xgr(k) < 0 if the microgrid sells energy
to the grid.

The balance equation (28) can be rewritten more compactly
as follows:

xgr(k) = xa(k)+d(k) (29)

where we denote the net electrical demand as d(k) := b(k)−
r(k) and we introduce the supporting variables vector xa(k)
defined as:

xa(k)=
N el∑

n=1

xel
n (k)+xhp(k)+xes

+(k)−xchp(k)−xes
−(k). (30)

Similarly, for the local balance of the thermal energy flow
over the time horizon we have:

yboi(k)+ychp(k)+yhp(k)+yts
−(k) =

Mctl∑
m=1

yctl
m (k)+yts

+(k)+q(k).

(31)

The balance equation (31) can be rewritten more compactly
as follows:

yboi(k) = ya(k)+q(k) (32)

where we introduce the supporting variables vector ya(k)
defined as:

ya(k)=
Mctl∑
m=1

yctl
m(k)+yts

+(k)−ychp(k)−yhp(k)−yts
−(k). (33)

K. Electricity and Gas Pricing and Contractual Constraints

A contractual obligation restricts the energy that the micro-
grid can buy from and sell to the electricity provider at each
time slot. Denoting the maximum purchasable and salable
energy profile imposed by the power grid over the time horizon
respectively as column vectors e(k) and e(k), the following
constraints must be satified:

e(k) ≤ xgr(k) ≤ e(k). (34)

The pricing function for the electricity exchanged with the
power grid is assumed to be linear [21], [34] but different
unit prices are considered. In particular, the buying and selling
pricing coefficients over the time horizon are collected into two
different vectors denotes as κ+(k) and κ−(k), respectively. The
electricity cost incurred by the microgrid at time slot h is thus
defined as:{
κ+(h)�xgr(h), if xgr(h) ≥ 0

κ−(h)�xgr(h), if xgr(h) < 0,
∀h ∈[k+1, k+H ]. (35)

Equation (35) can be transformed in a linear form using
logic constraints as indicated in [35]. To this aim, denoting the
vector collecting the logical variables over the time horizon as
δg(k), we introduce the following logical constraints:

xgr(k) ≥ 0H ⇐⇒ δg(k) = 0H (36)

and the following supporting variables:
xgδ(k) = δg(k) ◦ xgr(k). (37)

Using the above defined supporting variables, (35) can be
straightforwardly rewritten as follows:
cgr

(
xgr(k), xgδ(k)

)
= κ+(k)�xgr(k)− κ+(k)�xgδ(k)+ κ−(k)�xgδ(k). (38)

Replacing (30) in (38) we get:
cgr

(
xa(k), xgδ(k)

)
= κ+(k)�(xa(k)+d(k))−κ+(k)�xgδ(k)+κ−(k)�xgδ(k). (39)

Following [35], (36) and (37) can be replaced with:
xgr(k) ≤ e(k) ◦ (

1H − δg(k)
)

(40)

xgr(k) ≥ e(k) ◦ δg(k) (41)

xgδ(k) ≤ xgr(k)− e(k) ◦ (
1H − δg(k)

)
(42)

xgδ(k) ≥ xgr(k)− e(k) ◦ (
1H − δg(k)

)
(43)

xgδ(k) ≤ e(k) ◦ δg(k) (44)

xgδ(k) ≥ e(k) ◦ δg(k). (45)

Finally, the pricing function for the natural gas bought from
the main grid is assumed to be linear [21], [34]. Denoting the
vector of gas pricing coefficients over the time horizon as ν(k),
the cumulative gas cost incurred by the microgrid is thus:

cgas
(
zboi(k), zchp(k)

) = ν(k)�
(
zboi(k)+ zchp(k)

)
. (46)

A contractual obligation imposed by the gas provider
restricts the quantity of natural gas that could be bought by the
microgrid. Specifically, denoting the maximum purchasable
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gas amount over the time horizon as column vector d(k), the
following constraints must hold:

0H ≤ zboi(k)+ zchp(k) ≤ g(k). (47)

III. DETERMINISTIC FORMULATION OF THE ENERGY

SCHEDULING PROBLEM

In the deterministic approach, all the parameters are
assumed unaffected by uncertainty. Specifically, the energy
scheduling problem is formulated using the nominal forecasted
values of electrical and thermal energy demand, RES genera-
tion, and electricity and natural gas coefficients.

The objective function aims at minimizing both the elec-
tricity and the gas cost defined in (39) and (46), respectively.
Specifically, ignoring the constants, the sum of the terms in
(39) and (46) can be compactly written as follows:
κ+(k)�xa(k)+(κ−(k)− κ+(k))�xgδ(k)

+ν(k)�zboi(k)+ ν(k)�zchp(k)=π(k)�ξ(k) (48)

where we introduce the linear coefficients vector π(k) :=(
κ+(k)�, (κ−(k)−κ+(k))�, ν(k)�, ν(k)�

)�
and the variables

vector ξ (k) := (
xa(k)�, xgδ(k), zboi(k)�, zchp(k)�

)�
.

The deterministic or nominal energy scheduling problem
consists in determining the cost-optimal operation of the
microgrid components over the time horizon [k + 1, k + H ]
such as the electricity consumption profile of CELs and HP,
the amount of electricity to be bought from and sold to the
power grid, the thermal energy consumption profile of TELs,
the amount of natural gas to be bought for the CHP unit
and the boiler, and the EESS and TESS charging/discharging
strategy:

min
xgr(k), xgδ(k), xa(k), xel(k), xhp(k), xchp(k),
xes+(k), xes−(k), yctl(k), T(k), ychp(k), yboi(k),

ya(k), yts+(k), yts−(k), zboi(k), zchp(k),
δes

+(k), δ
es
−(k), δ

ts
+(k), δ

ts
−(k), δ

g(k)

(
π(k)�ξ(k)

)

s.t. (1) − (27), (29) − (30), (32) − (34), (40) − (45), (47). (49)

For the sake of simplifying (49) and omitting superfluous
terms, we transform (49) as follows:

min
xgδ(k), xa(k), xel(k), xhp(k), xchp(k),

xes+(k), xes−(k), yctl(k), T(k), ychp(k), yboi(k),
ya(k), yts+(k), yts−(k), zboi(k), zchp(k),
δes

+(k), δ
es
−(k), δ

ts
+(k), δ

ts
−(k), δ

g(k)

(
π(k)�ξ (k)

)

s.t. (1) − (27), (30), (32) − (33), and (50)

xa(k)+d(k) ≤ e(k) ◦ (
1H − δg(k)

)
(51)

xa(k)+d(k) ≥ e(k) ◦ δg(k) (52)

xgδ(k) ≤ xa(k)+d(k)− e(k) ◦ (
1H − δg(k)

)
(53)

xgδ(k) ≥ xa(k)+d(k)− e(k) ◦ (
1H − δg(k)

)
(54)

e(k) ≤ xa(k)+d(k) (55)

xa(k)+d(k) ≤ e(k) (56)

ya(k)+ ηboizchp(k)+ q(k) ≤ ηboig(k) (57)

ya(k)+ ηboizchp(k)+ q(k) ≥ 0H . (58)

Note that equations (51)-(54) and (55)-(56) are obtained
by replacing (29) in (40)-(43) and (34), respectively. Simi-
larly, equations (57)-(58) are obtained replacing (32) and (11)
in (47).

In particular, (50)–(58) is a mixed integer linear program-
ming (MILP) problem that consists in determining H (N+M+
14) real and 5H binary decision variables, which minimize the
objective function in (50), and meet 2H (N + M + 14) bound-
ing constraints, (H M + N + 8H ) equality constraints, 24H
inequality constraints, and H (N + 2) integrality constraints.

The optimization problem (50)–(58) is iteratively solved
at each time slot k based on the most recent input data in
accordance with the rolling horizon concept, thus defining the
deterministic MPC approach. The results related to the first
time slot are implemented in the microgrid as the optimal
control signals. Subsequently, the horizon is shifted ahead at
the next time slot: a new optimization problem is solved using
the updated input data.

IV. ROBUST FORMULATION OF THE ENERGY SCHEDULING

PROBLEM

The variation in the forecast of thermal energy demand,
electrical demand, RES generation, and electricity and gas
pricing coefficients (i.e., of vectors q, b, b, κ+, κ−, and ν)
may lead the deterministic scheduling to ineffective results,
i.e., microgrid strategies that are suboptimal and even unfea-
sible. Differently from the previous deterministic scheduling
approach, where unrealistically no perturbation is assumed
to influence the nominal values, in this section we tackle
uncertainty in the energy scheduling by defining a compu-
tationally tractable method able to determine robust solutions.
In the first stage of the proposed method, a data set is
selected within the uncertainty space, defining the so-called
uncertainty set. In the second stage, the optimal solution that
is feasible for any realization of uncertain parameters within
the defined uncertainty set is computed. The optimization
problem in the second stage is referred as robust counterpart
optimization problem, whose complexity closely depends on
the geometrical definition of the uncertainty set.

A. Data Uncertainty Set

We assume that the uncertain vectors of thermal energy
demand, electrical demand, RES generation, and electricity
and gas pricing coefficients – denoted as q̃(k), b̃(k), r̃(k),
κ̃+(k), κ̃−(k), and ν̃(k), respectively – are modeled as follows:

q(k)− q̂(k) ≤ q̃(k) ≤ q(k)+ q̂(k) (59)

b(k)−b̂(k) ≤ b̃(k) ≤ b(k)+b̂(k) (60)

r(k)−r̂(k) ≤ r̃(k) ≤ r(k)+r̂(k) (61)

κ+(k)− κ̂+(k) ≤ κ̃+(k) ≤ κ+(k)+ κ̂+(k) (62)

κ−(k)− κ̂−(k) ≤ κ̃−(k) ≤ κ−(k)+ κ̂−(k) (63)

ν(k)− ν̂(k) ≤ ν̃(k) ≤ ν(k)+ ν̂(k) (64)

where q̂(k), b̂(k), r̂(k), κ̂+(k), κ̂−(k), ν̂(k) are the vec-
tors collecting the semi-amplitude of maximum variations of
thermal energy demand, net electrical demand, and pricing
coefficients, respectively. Note that both the nominal and
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semi-amplitude values (i.e., vectors marked with tilde ∼ and
hat ∧, respectively) are computed by forecast algorithms that
are assumed available as well as historical data. Consequently,
the uncertainty model (59)-(64) is defined using a variation
interval centered on the nominal profile rather than identifying
the probability distribution of the uncertain parameters.

The above described sources of uncertainty affect the linear
coefficients π of the objective function (48), the linear coef-
ficients d of constraints (51)–(56), and the linear coefficients
of constraints (57)-(58). Note that the distribution of value for
parameters vectors d̃(k) and π̃(k) is derived from the uncer-
tainty space defined by (60)-(61) and (62)-(64), respectively:

d(k)− d̂(k) ≤ d̃(k) ≤ d(k)+ d̂(k) (65)

π(k)− π̂(k) ≤ π̃(k) ≤ π(k)+ π̂(k) (66)

where d̂(k) := b̂(k) + r̂(k) and π̂(k) :=(
κ̂+(k)�, (κ̂−(k)+κ̂+(k))�, ν̂(k)�, ν̂(k)�

)�
.

Rather than adopting the worst case protection against
the maximum deviation of uncertainty parameters (i.e., q̃(k),
d̃(k), and π̃(k)) [36], several approaches have been proposed
in the literature to deal with uncertainty minimizing the
impact on objective function and constraints [37]. Differently
from [20], where an adjustable box-uncertainty set method
is considered, we follow the cardinality-constrained approach
proposed in [28]. To this aim, we introduce the robustness
factors (also known as budgets of uncertainty) γq , γd , and
γπ related respectively to the thermal energy demand, the
net electrical demand, and pricing coefficients, to control the
degree of conservatism of the solution.

As for γq , this robustness factor takes values in [0, H ]
indicating the number of parameters (i.e., q(h), h ∈ [k +1, k +
H ]) protected against disturbances. The energy scheduling
solution is ensured to be feasible if no more than

⌊
γq

⌋
of

the elements in q̃(k) are subject to uncertainty, and one of
them q̃(h) changes no more than (γq −⌊

γq
⌋
)q̂(h). Analogous

meaning holds for γd , taking values in [0, H ] as well; finally,
for γπ the meaning is similar except for the range that takes
value in [0, 4H ].

B. Robust MPC Approach

Substituting vectors of nominal profiles q(k), d(k), π(k)
with vectors affected by uncertainty q̃(k), d̃(k), and π̃(k) –
which take values in the uncertainty space defined by (59),
(65), and (66)– the energy scheduling problem (50)–(58)
is transformed into a robust optimization problem. Follow-
ing [28], having defined the robustness factors γq , γd , and γπ ,
we now formulate the robust counterpart optimization model
as follows:

min
xgδ(k), xa(k), xel(k), xhp(k),

xchp(k), xes+(k), xes−(k), yctl(k),
T(k), ychp(k), yboi(k), ya(k),
yts+(k), yts−(k), zboi(k), zchp(k),

δes
+(k), δ

es
−(k), δ

ts
+(k), δ

ts
−(k), δ

g(k)

(
π(k)�ξ(k)+ β(ξ(k), γπ )

)
(67)

s.t. (1) − (27), (30), (32) − (33), and

xa(k)+e(k) ◦ δg(k)+d(k)+ψ(γd)≤e(k) (68)

xa(k)− e(k) ◦ δg(k)+d(k)−ψ(γd)≥0H (69)

xa(k)−xgδ(k)+e(k) ◦ δg(k)+d(k)−ψ(γd) ≥ e(k) (70)

xa(k)−xgδ(k)+e(k) ◦ δg(k)+d(k)+ψ(γd) ≤ e(k) (71)

xa(k)+d(k)−ψ(γd) ≥ e(k) (72)

xa(k)+d(k)+ψ(γd) ≤ e(k) (73)

ya(k)+ ηboizchp(k)+ q(k)+ ϕ(γq) ≤ ηboig(k) (74)

ya(k)+ ηboizchp(k)+ q(k)− ϕ(γq) ≥ 0H (75)

where:
β(ξ (k), γπ) =

max
{V∪{v} |V⊆N[0,4H ],

|V |=�γπ �,v∈N[0,4H ]\V}

( ∑
h∈N[0,4H ]

π̂(h)|ξ(h)|

+ (γπ − �γπ�)π̂(v)|ξ(v)|
)

(76)

ψ(γd)=
⎡⎢⎣ψ1(γd)

...
ψH (γd)

⎤⎥⎦= max
u(1),...,u(H )

⎡⎢⎣ u(1)d̂(1)
...

u(H )d̂(H )

⎤⎥⎦
(77)

s.t. 0 ≤ u(h) ≤ 1, h ∈ [k+1, k+H ] (78)∑
h=∈[k+1,k+H ]

u(h) ≤ γd (79)

ϕ(γq)=
⎡⎢⎣ϕ1(γq)

...
ϕH (γq)

⎤⎥⎦= max
u(1),...,u(H )

⎡⎢⎣ u(1)q̂(1)
...

u(H )q̂(H )

⎤⎥⎦ (80)

s.t. 0 ≤ u(h) ≤ 1, h ∈ [k+1, k+H ] (81)∑
h∈[k+1,k+H ]

u(h) ≤ γq . (82)

We preliminarily note that (67)-(75) is a nonlinear opti-
mization problem due to the nonlinearities introduced by
the function β(ξ (k), γπ) (denoted as the protection function
for the objective) and the functions ψ(γq) and ϕ(γq) (each
denoted as the protection function for the inequality con-
straints). As for the protection function β(ξ(k), γπ ), in (76)
we introduce the subset V and the index v to deal with the
cardinality-constrained uncertainty. In particular, V is the sub-
set of time slot indices whose corresponding cost coefficients
get the maximum deviation from the nominal values. At most
�γπ� indices are assumed to belong to this subset. Further,
in case γπ is not integer, we select a time slot index v,
whose corresponding cost coefficient is affected by a variation
lower than the maximum deviation (i.e., the value is between
π(v) and π(v)+ π̂(v)). All the remaining cost coefficient get
the nominal values (i.e., π(h) for h not belonging to V and
different from v). Similarly, both in (77)-(79) and (77)-(79),
we introduce the H decision variables u(1), . . . , u(H ) to
quantify the portions (not necessarily integer) of the total
uncertainty budgets γd and γq allocated over all the time slots.

Moreover, we remark that tuning the values of γq , γd , and γπ
different robustness levels can be allocated to the achievable
energy scheduling strategies. On the one hand, for γb = γq =
γr = 0 no robustness is required to the problem resolution:
this corresponds to disregard the forecast uncertainty and
refer to the deterministic scheduling, thus addressing the most
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optimistic case. On the other hand, for γq = γq = H and
γπ = 4H the highest robustness is required to the problem
resolution: this means that the largest variation of parameters
is considered, thus addressing the most conservative case.
For the sake of achieving a trade-off between the level of
conservativeness and the cost of the solution, the budgets of
uncertainty γq , γd , and γπ can be tuned between intermediate
value in the range [0, H ] and [0, 4H ], respectively [38].

We finally note that, likewise to the deterministic approach
in (49), the robust problem (67)-(75) is solved iteratively
at each time slot k following the rolling horizon principle:
the corresponding closed-loop control algorithm is denoted as
robust MPC (RMPC).

C. Reformulation of the Robust MPC Approach

The robust counterpart of the energy scheduling problem
in its min-max formulation (67)-(75) is hard to solve due
to the presence of the inner maximization problems and the
cardinality constraints included in the protection functions.
Hence, we now present the derivation procedure of a tractable
equivalent robust counterpart optimization model.

We preliminarily introduce the supporting time-varying vari-
ables μ(k) ∈ R, θ(k) ∈ R

4H , ζ (k) ∈ R
H , and υ(k) ∈ R

H .
Getting inspiration from [28] and using the duality theory,
it can be demonstrated that the robust counterpart (67)-(75) is
equivalent to the following MILP formulation:

min
xgδ(k), xa(k), xel(k), xhp(k),

xchp(k), xes+(k), xes−(k), yctl(k),
T(k), ychp(k), yboi(k), ya(k),
yts+(k), yts−(k), zboi(k), zchp(k),

δes
+(k), δ

es
−(k), δ

ts
+(k), δ

ts
−(k), δ

g(k)
μ(k),θ(k),ζ (k),υ(k)

(
π(k)�ξ (k)+γπμ(k)+1�

4Hθ(k)
)

s.t. (1) − (27), (30), (32) − (33), and (83)

π̂(k) ◦ ξ (k)− μ(k)14H − θ(k) ≤ 04H (84)

xa(k)+e(k) ◦ δg(k)+ d̂◦ζ (k) ≤ e(k)− d(k) (85)

xa(k)− e(k) ◦ δg(k)− d̂ ◦ ζ (k) ≥ −d(k) (86)

xa(k)−xgδ(k)+e(k) ◦ δg(k)− d̂◦ζ (k) ≥ e(k)−d(k) (87)

xa(k)−xgδ(k)+e(k) ◦ δg(k)+ d̂◦ζ (k) ≤ e(k)−d(k) (88)

xa(k)+d(k)−d̂◦ζ (k) ≥ e(k) (89)

xa(k)+d(k)+d̂◦ζ (k) ≤ e(k) (90)

ya(k)+ ηboizchp(k)+ q̂◦υ(k) ≤ ηboig(k)−q(k) (91)

ya(k)+ ηboizchp(k)− q̂◦υ(k) ≥ −q(k) (92)

μ(k) ≥ 0 (93)

θ(k) ≥ 04H (94)

0H ≤ ζ (k) ≤ 1H (95)

1�
Hζ (k) ≥ γd (96)

0H ≤ υ(k) ≤ 1H (97)

1�
Hυ(k) ≥ γq . (98)

Finally, we remark that (83)-(98) is an MILP optimization
problem that consists in determining H (N + M + 20)+ 1 real
and 5H binary decision variables, which minimize the objec-
tive function in (83), and meet 2(H (N + M +20)+1) bound-
ing constraints, (H M + N + 8H ) equality constraints, 30H
inequality constraints, and H (N + 2) integrality constraints.

As a final remark, we note that the proposed RMPC
approach based on (83)-(98) shows several advantages with
respect to other related methods. First, the approach relies
on the uncertainty data model (59)-(64), which makes use
only of the nominal and the variation profiles related
to the uncertain parameters. Hence, differently from sto-
chastic approaches which typically consider random vari-
ables and requires detailed statistical information on such
variables, here uncertainty modeling is based on a small
amount of information on the disturbances. Second, the
reformulated optimization problem (83)-(98) is a computa-
tionally tractable program, which is not the typical case
for other robust approach such as the stochastic [13] or
the multi-stage robust optimization approach [39]. Lastly,
by suitably setting the values of the budgets of uncertainty,
the conservativeness of the RMPC solution can be directly
controlled.

V. NUMERICAL EXPERIMENTS

In this section we apply the proposed robust control scheme
to the online scheduling of a realistic residential multi-carrier
microgrid. Considering that the system grid operators gen-
erally impose by contract to plan one day in advance the
nominal value of energy exchange between the microgrid
and the main grid and that the load and the renewable
generation patterns are cyclic with a 24 hours time period
(see, e.g., [14], [40], [41]), the prediction horizon is set to one
day, whilst the sampling time is set to 1 hour (i.e., H = 24,
�h = 1hour). The effectiveness of the proposed method
is tested over a simulation horizon [1, T ] of one year (i.e.,
T = 8760) using the following four microgrid performance
indices:

• the overall energy cost (EC) – taking into account both
the gas and electricity costs incurred by the microgrid,
it is calculated as the sum of cgr and cgas over the yearly
time horizon, as:
EC =

T∑
k=1

(
κ+(k)x

gr
+ (k)−κ−(k)x

gr
− (k)+ν(k)(zboi(k)+zchp(k))

)
. (99)

• the self-supply (SS) – taking values in the interval
[0,1], it is calculated as the difference between 1 and
the ratio between the energy sold to the grid and
the energy generated in the microgrid by the RES
and CHP:

SS = 1 −
∑T

k=1 xgr
− (k)∑T

k=1 r(k)+ x chp(k)
. (100)

• the fuel energy saving ratio (FESR) – taking values in the
interval [0,1], it is calculated as the difference between
1 and the ratio between the thermal energy produced by
CHP and boiler and the thermal demand:

FESR = 1 −
∑T

k=1 xboi(k)+ x chp(k)∑T
k=1 q(k)+∑Mctl

m=1 yctl
m (k)

. (101)

• the energy independence (EI) – taking values in the
interval [0,1], it is calculated as the difference between
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1 and the ratio between the energy bought from the grid
and the energy consumed by CELs, NCELs, and HP:

EI=1−
∑T

k=1 xgr
+ (k)∑T

k=1xhp(k)+∑N el

n=1 x el
n(k)+b(k)

. (102)

In addition, for the sake of evaluating the robustness of
the achieved strategies, the following two well-known robust
optimization indices are employed:

• the price of robustness (PoR) – It is defined as the
percentage of relative difference between the energy costs
obtained by a robust solution and a nominal one.

• the constraint violation rate (CVR) – It is computed as the
percentage of times a given solution does not satisfy the
constraints affected by uncertainty over a given number
of realizations of the uncertain parameters (e.g., through
the runs of a Monte Carlo (MC) simulation).

Note that the PoR measures the optimality deviation of the
robust solution with respect to the nominal one, whilst the
CVR measures the robustness of the robust solution with
respect to the worst case.

A. System Parameters and Settings

The considered multi-carrier microgrid system is installed in
a residential district in the Netherlands, where N =10 house-
holds equipped with electrical and thermal loads (NCELs,
CELs, NCTLs, and CTLs) share photovoltaic (PV) panels,
a HP, a CHP unit, an EESS, and a TESS, as specified in
Section II and depicted in Fig. 1.

As for the electrical and thermal demand, the corresponding
profiles are excerpted from the aggregated Dutch national
consumption curves [42] for year 2018. In particular, for
each household an amount of 3.5 MWh and 14.0 MWh is
considered on average as the yearly demand of electricity and
thermal energy, respectively.

The total household electricity consumption is divided
between NCELs (2 MWh) and CELs (1.5 MWh). Denoting
the hourly residential electrical demand profile in [42] as
B(k) [kWh] and the hourly average residential electrical
consumption over one year as Del

Y [kWh], the hourly profile
b(k) [kWh] of the NCELs is thus determined as follows:

b(k) = N
B(k)∑T
i=1 B(i)

Del
Y , k ∈[1, T ].

The corresponding semi-amplitude of maximum variations
(i.e., b̂(k)) of the electrical energy demand is determined as
15% of the nominal value b(k) for each time slot.

In addition to the NCELs, the microgrids comprehends
Ncel = 10 CELs that are characterized by the following para-
meters whose values are reported in Table I: the cumulative
daily energy consumption Lel

1 , . . . , Lel
10; the lower and upper

bounds for the hourly consumption profiles lel
1 , . . . , l

el
10 and

l
el
1 , . . . , l

el
10.

Similarly to the electrical demand, the total household
electricity consumption is divided between NCTLs (4 MWh)
and CTLs (10 MWh). Denoting the hourly residential thermal
demand profile in [42] as Q(k) [kWh] and the hourly average
residential electrical consumption over one year as Dtl

Y [kWh],

TABLE I

TECHNICAL PARAMETERS OF THE MICROGRID COMPONENTS

the hourly profile q(k) [kWh] of the NCTLs is thus determined
as follows:

q(k) = N
Q(k)∑T
i=1 Q(i)

Dtl
Y, k ∈[1, T ].

The corresponding semi-amplitude of maximum variations
(i.e., q̂(k)) of the thermal energy demand is determined as
15% of the nominal value q(k) for each time slot.

In addition to the NCTLs, the microgrids comprehends
Mctl = 10 CTLs that are characterized by the following
parameters: the settling time of the indoor environment (τ )
is set to 1.5 h; the occupants impose the thermal comfort
in the range [19 − 22] ◦C from 17pm to 8am. The external
temperature is based on hourly averaged measurements [42].

As for the energy generation, we consider the following
types of technologies in the microgrid: PV panel, HP, CHP
unit, and auxiliary boiler. All the technical parameters (such as
operational boundaries, efficiency, etc.) that characterize these
components are reported in Table I in terms of values and
units. In particular, the PV panel has 30 kWp capacity, whilst
the production curve is based on the 2018 Dutch solar power
time series [43].

Furthermore, we assume that the microgrid is equipped
with storage technologies. Specifically, the EESS and TESS
are represented by a lithium-ion battery and a water storage
system for water and space heating, respectively. All the
technical storage parameters (such as efficiency, capacity etc.)
are reported in Table I in terms of values and units.

Finally, the prices of the energy and natural gas are set
considering the average price in the Netherlands. The price
of electricity is based on the spot price on the Nord Pool
electricity market [44]. The buying price (i.e., κ+(k)) is
determined adding to the Nord Pool spot price fees (equal
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to 0.03 e/kWh), while selling price (i.e., κ−(k)) is the spot
price. As for the energy exchange of the microgrid with the
distribution grid, we set a maximum hourly buying energy
quantity e(t)=16 kWh and a maximum hourly selling energy
quantity e(t) = 8 kWh. Conversely, the natural gas price is
considered constant and equals ν(k) = 0.08 e/kWh [45],
while the maximum hourly buying gas quantity is set to
g(t)=40 m3.

Finally, similarly to the electrical and thermal energy
demand, the corresponding semi-amplitude of maximum vari-
ations of the electricity and gas pricing (i.e., κ̂+(k), κ̂−(k),
and ν̂(k)) is determined as 15% of the nominal values (κ+(k),
κ−(k), and ν(k)) for each time slot.

The proposed robust control scheme is implemented in
MATLAB R2020a on a desktop PC (i7-7500U core 2.70 GHz
processor and 16 GB RAM memory) equipped with the Gurobi
optimizer [46]. In the considered setting the MILP problem
(83)-(98) is characterized by 961 real and 120 binary decision
variables, 1922 bounding constraints, 442 equality constraints,
720 inequality constraints, and 288 integrality constraints.

B. Results Analysis and Discussion

As a first outcome, the proposed control algorithm is tested
on three scenarios that allow to assess the performance of the
whole microgrid, and the impact of the budgets of uncertainty
on the conservativeness and optimality of the achieved results.
The scenarios are defined as follows:

• Case 1 – the deterministic MPC, corresponding to
zero-valued budgets of uncertainty (i.e., γq = γd = γπ =
0). The nominal values are assigned to the uncertain para-
meters; hence, the protection functions for the objective
function and constraints are removed (i.e., β(ξ (k), γπ) =
0 and ψ(γq) = ϕ(γq) = 0H,1).

• Case 2 – the most conservative case, corresponding to
the maximum budgets of uncertainty (i.e., γq = γd = H
and γπ = 4H ). The worst-case realization of uncertain
parameters is considered; hence, functions β(ξ (k), γπ),
ψ(γq), and ϕ(γq) provide the full protection against data
uncertainty.

• Case 3 – the RMPC based on the cardinality uncertainty
set, corresponding to a potential choice for the budgets
of uncertainty γq = γ ∗

q , γd = γ ∗
d , and γπ = γ ∗

π with
γ ∗

q , γ
∗
d ∈ (0, H ) and γ ∗

π ∈ (0, 4H ), which make the
robustness of the solution not significantly changing for
γq ≥ γ ∗

q , γd ≥ γ ∗
d , and γπ ≥ γ ∗

π . These values are
determined through a sensitivity analyses over different
robustness factors (we set γ ∗

q = 13, γ ∗
d = 13, and

γ ∗
π = 20).

The values of the microgrid performance indices obtained
over the whole 2018 under the above defined three scenarios
are reported in Table II. As expected, the solution of Case 1
leads to the minimum EC and the best performance for SS,
FESR, and EI, even though this corresponds to the most
optimistic situation where no effect of uncertainty is addressed.
As a consequence, in real conditions, any forecast variation in
the nominal profiles of the thermal energy demand, electrical
demand, RES generation, and electricity and gas pricing
coefficients may produce a significant increase in the achieved

TABLE II

VALUES OF PERFORMANCE INDICES FOR DIFFERENT
ROBUSTNESS FACTORS

value of the objective function (i.e., the EC). Moreover, the
electricity and gas network constraints are not always satisfied
– as shown by the CVR equal to 35.7% – due to the absence
of mitigation of the data uncertainty.

Conversely, the solution of Case 2 ensures full protection
against uncertainty. As expected, on the one hand, this implies
that constraints are never violated (CVR = 0); on the other
hand, this leads to the highest PoR (equal to 14.9%) since the
corresponding highest level of conservativeness is achieved at
the expense of maximum distancing from optimality.

Finally, in Case 3 a tradeoff solution is obtained. From the
optimality perspective, a slight decrease in the EC as well
as in SS, FESR, and EI is apparent; not surprisingly, the
PoR (equal to 8.9%) is quite lower than the Case 2. At the
same time, the solution of Case 3 is quite protected against
uncertainty, implying a CVR equal to 9.9%. This confirms the
effectiveness of the RMPC algorithm to determine a practical
compromise between the microgrid performance specified by
the optimization objective (e.g., the EC) and the protection
against the constraint violation.

Furthermore, the last row of Table II reports the average
runtime in the three cases: the computational time over all the
simulations is around two minutes.

As a second outcome, we present a sensitivity analysis of
the 10000 runs MC simulation results with respect to different
budgets of uncertainty γq = γd ∈ [0, H ] and γπ ∈ [0, 4H ] in
terms of average PoR and CVR, all reported in Fig. 2. As can
be observed from the results, both the PoR and CVR present
a non-linear trend. On the one hand, for any fixed value of
γπ , as the value of γq = γd increases, the PoR monotonically
gets worse, whilst the CVR monotonically gets better. On the
other hand, for a fixed high value of γq = γd , both the PoR
and CVR are quite constant with respect to changes in γπ ;
conversely, for a fixed low value of γq = γd , the variations
of the PoR and CVR have a convex and concave profile
presenting a local maximum and minimum, respectively.
In addition, the PoR and the CVR present a mutually dual
behavior, confirming that they are two competing indices: the
PoR is lower where the CVR is higher, and vice versa. This
result confirms the effectiveness of our approach, enabling the
chance of a good trade-off between the total energy payment
and the level of conservativeness by changing the value of
the budget of uncertainty.

C. Comparison With a Baseline Robust Method

With the aim of evaluating and better highlighting the
advantages of our approach with respect to the related litera-
ture, we provide a comparison between the results obtained
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Fig. 2. Sensitivity analysis of the average PoR (a) and CVR (b) with respect
to different budgets of uncertainty.

by the proposed technique and those achieved by a base-
line method, namely the robust approach based on the box-
uncertainty-set. Such a method relies on the assumption that
uncertain parameters take values from their own different
ranges independently, as indicated in [36], [47].

Specifically, we report the findings of a sensitivity analysis
based on the MC simulation, where the microgrid perfor-
mance indices and level of conservativeness of the energy
scheduling strategies is determined for both the proposed
(i.e., RMPC based on cardinality-uncertainty-set) and the
baseline method (i.e., RMPC based on box-uncertainty-set)
for different budgets of uncertainty. In Fig. 3 we show the
results of the comparison analysis in terms of PoR and CVR.
It is apparent that, event though the CVR of the proposed
RMPC is higher than the box-uncertainty-set method for small
budgets of uncertainty, the proposed RMPC always offers a
less conservative solution. In fact, as shown in Fig. 3.a, the
PoR of the proposed RMPC exhibits lower values than the
box-uncertainty-set method. In addition, from medium to large
budgets of uncertainty, the CVR of the proposed RMPC is
comparable to the box-uncertainty-set method (Fig. 3.b).

These results corroborate the effectiveness of the RMPC
based on cardinality-uncertainty-set: a good compromise
between the total energy cost and the level of conservativeness
can be effectively achieved by the microgrid manager by
suitably tuning the value of the budget of uncertainty.

Fig. 3. PoR (a) and CVR (b) with respect to different budgets of uncertainty
for the RMPC based on cardinality- and box-uncertainty-set.

VI. CONCLUSION AND FUTURE WORK

This research work proposes a novel robust model pre-
dictive control algorithm for microgrids that comprise non-
controllable and controllable thermal and electrical loads, i.e.,
multi-carrier microgrids. The aim of this work is to take
advantage of the robust MPC approach in the context of multi-
carrier microgrids, where contributions are still particularly
limited. The objective of the proposed control strategy is to
minimize the overall economical cost and the energy flow
from the main grid, while ensuring thermal comfort. Moreover,
thanks to the robustness of the method, uncertainty in the
system model can be addressed, such as disturbances on loads,
on renewable energy production, and on electrical and thermal
need. The effectiveness of the proposed method is proved by
simulations results obtained for a Dutch residential building
and based on real data. The tests show a substantial decrease
in the electric and thermal balance breach when compared to
the outcomes of the deterministic MPC.

Finally, several remarks are in order. From the control
perspective, the proposed approach relies on a centralized con-
trol architecture, that generally could suffer from scalability
issues. Hence, future development will focus on extending the
proposed algorithm to a decentralized and distributed setting
and investigating the corresponding performance in large scale
scenarios. As for the system modeling, one may observe that
results and implications are derived relying on some assump-
tions such as the price inelasticity. Actually, this limitation
is only apparent, since the proposed model can be easily
generalized to more complex cases by incorporating different
types of objective functions and constraints. An interesting
development of our research will be devoted to integrating
nonlinear stepwise function to better model the price of both
electricity and gas. Moreover, we will consider expanding our
current model with start-up and shut-down cost and timing
constraints related to thermal and electrical generation. Future
researches will also consider further types of uncertainty that
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could impact decision parameters and regard the outflow
of the thermal energy from the microgrid to the district
in exchange for economical compensation. Finally, from the
methodological point of view, since the proposed approach
concerns an online multistage decision problem, it would
be interesting to implement a multistage robust optimization
method and comparing the resulting performance both in terms
of optimality and of computational tractability.
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