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Abstract. Data analysis methodologies are crucial to learn insights from data and to create more trust in the assumptions 
used for energy performance assessment. Indeed, continuous performance monitoring should become a more diffuse 
practice in order to improve our design and operation strategies for the future. This is an essential step to reduce 
incrementally the gap between simulated and measured performance. In fact, assumptions in simulation represent a 
significant source of uncertainty when estimating the energy performance of buildings. This uncertainty affects decision-
making processes in multiple ways, from design of new and refurbished buildings to policy making. The research presented 
aims to highlight potential links between experimental approaches for test-facilities and methods and tools used for 
continuous performance monitoring, at the state of the art. In particular, we start by exploring the relation between in-situ 
measurement of thermal transmittance (U) and regression-based monitoring approaches, such as co-heating test and energy 
signature, for heat load coefficient (HLC) and solar aperture (gA) estimation. After that, we highlight some recent 
developments in simplified dynamic energy modelling using lumped parameter models. In particular, we want to underline 
the scalability of these techniques, considering relevant issues in current integrated engineer design perspective. These 
issues include, among others, the necessity of limiting the number of a sensors to be installed in buildings, the possibility 
of employing both experimental and real operation data (and compare them with design data as well) and, finally, the 
possibility to automate performance monitoring at multiple scales, from single components, to individual buildings, to 
building stock and cities. 

Keywords: building performance monitoring; in situ measurements; co-heating test; energy signature; regression models; 
time series models. 

INTRODUCTION 

Simple and robust data analysis methodologies are crucial to learn insights from measured data and to reduce the 
performance gap in building stock [1], considering also the relevant impact of human behaviour [2]. In general the 
assumptions in building performance simulation are characterized by a significant level of uncertainty [3]. This 
uncertainty affects estimates of energy performance of buildings and, consequently, decision making processes in 
multiple ways, from design of new and refurbished buildings [4] to energy planning and policy making. The effect of 
uncertainty is huge on sizing of building technologies and technical systems [5], as well as on indoor environmental 
quality assessment [6] (and critical in cases where long-term preservation of appropriate internal microclimate 
conditions is essential [7], considering also acoustic performance [8] as well as other properties of building). 

The possibility of linking transparently design phase performance estimates and measured data in operation is a 
major challenge today [9], requiring a careful consideration of the methods and tools available at the state of the art, 
essentially to avoid duplication of efforts and redundancy. The gap between simulated and measured conditions can 
be huge as acknowledged by numerous studies [1]. The control of building performance needs to be oriented towards 
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continuous monitoring across its life span, requiring models and experiments to check the status of different 
technologies, from construction technologies up to technical systems, including performance indicators for heating 
systems [10], electricity and interaction with the grid [11] and primary energy consumption [12]. In order to verify 
the robustness of solutions in terms of performance, an increasing research effort has been devoted to the simulation 
of more realistic operating conditions already in design phase [9], using parametric and/or probabilistic approaches. 
In any case, continuous performance monitoring should become a more diffuse practice in order to improve our design 
and operation strategies for the future [13] and to handle the energy transition in existing buildings [14]. 

The research presented aims to highlight potential links between experimental approaches for test-facilities and 
methods and tools used for continuous performance monitoring, at the state of the art. Further extensions are also 
possible with advanced computing tools, dealing with simulation of interacting systems [15]. Data analysis techniques 
can offer deeper insights of building performance and their effects on occupants but they have to be simple, robust 
and scalable, so that they can be easily incorporated in innovative technologies such as BEMS, which are necessary 
to defined optimal operational strategies of heat pumps [16] or more complex hybrid systems [5], managing the 
integration of renewable energy in terms of direct use [17] or when interacting with storages [18], to reduce the cost 
of energy [19]. In all these cases, the ability to define robust performance estimates is crucial. While black-box 
approaches are possible [20], we consider more appropriate the choice of grey-box, i.e. physical-statistical, 
approaches, to learn useful insights from data and to link with current state of the art approach for component scale 
[3] and building scale analysis [21]. 

METHODOLOGY 

Many sophisticated simulators are available today for building performance modelling. However, a gap between 
simulated and measured performance is generally observed [1], due to the relevant uncertainties of the assumptions 
introduced in building performance assessment. In order to become aware of the potential variability of building 
performance outcomes, it is necessary to introduce parametric or probabilistic simulation approaches. Physical-
statistical lumped parameter models can help reducing computational time in simulation (forward modelling) and 
enable also inverse parameter estimation (inverse modelling) [22]. In the recently introduced ISO 52016-1 standard 
[23] (which supersedes the consolidated ISO 13790 [24]) a lumped modelling approach for walls is proposed, with a 
classification based on walls’ stratigraphy. This approach is part of the strategy of ISO 52000 framework [25] that 
retains and updates other standards, for example ISO 13789 [26] for building fabric performance, ISO 6946 [27] for 
construction component stationary thermal performance, and ISO 13786 [28] for dynamic construction components 
thermal performance. The approach proposed at the normative level for building performance simulation (ISO 52016-
1) is substantially similar, in principles, to research focused on lumped parameter modelling using resistance-
capacitance (RC) analogy [29] and analytical calculations [30, 31]. The conversion of RC models in state-space form 
and then in time series models is described in detail in recent literature [32, 33]. More in general, the use of reduced 
order models for building performance simulation is an active research field at present, with multiple possible 
applications [34]. In this sense, the substantial compatibility among the formulations proposed in recent technical 
standards (for building performance simulation) and the more generally applicable formulations that can be found in 
literature is opening new perspectives for the future research in the area. 

Moving from dynamic simulation models to models aimed at identifying stationary properties, we consider 
particularly interesting the relation between ISO 9869 [35] method for in-situ measurement of thermal transmittance 
(U), as well as its extensions [36], and regression-based monitoring approaches, such as co-heating test [37] and energy 
signature [38, 39], for heat load coefficient (HLC) and solar aperture (gA) estimation [40, 41]. All these approaches 
are already consolidated at the state of the art but further efforts are necessary for their seamless integration, in 
particular with respect to the comparability of measurements with design phase simulations and the robustness of the 
quantities identified (estimates of physical parameters) by means of regression on operation phase data. 

The importance of creating standardized procedures for large scale statistical analysis of building data has been 
stressed, for example, by institutions such as NIST (National Institute of Standards and Technology) in the US [42]. 
In fact, in the next few years, the possibility of collecting and processing data at large scale will be crucial for informing 
future policies for built environment [43]. 
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OVERVIEW OF TRENDS AND PROSPECTS FOR ENERGY PERFORMANCE 
MONITORING IN BUILDINGS 

Start from the considerations reported in the previous Section we report an overview of approaches for energy 
performance monitoring and modelling in buildings, basically following a bottom-up logic, from individual 
construction components (U value), to building fabric assembly (HLC), up to the meter level (energy signature). In 
the following subsections we will describe first the analogies among methods from U value estimation and co-heating 
tests, up to energy signature. After that, we will present some recent advances in simplified dynamic modelling of 
building components and thermal zones (aggregate behavior of building fabric). The general goal of this overview on 
modelling research developments is highlighting the simplicity and scalability of techniques and the need for 
harmonization of experimental procedures to increase robustness of estimates (which dependents critically on the 
amount and quality of data collected) and reduce cost.  

From in situ measurement to regression-based approaches (static) 

In this section we describe briefly the steps necessary to link U value estimation, HLC estimation and energy 
signature. We can start from the stationary thermal energy transfer for a multi-layered construction component that 
can be calculated, using ISO 6946 [27], as follows: 

𝑈  
1
𝑅

 
1

𝑅 ∑ 𝑠
𝜆 𝑅

1
1

ℎ ∑ 𝑠
𝜆

1
ℎ

  (1) 

𝑞 𝑈𝐴∆𝑇 𝑈𝐴 𝑇 𝑇 (2) 

where U (W/m2K) is thermal transmittance, R (m2K/W) is total thermal resistance, λi (W/m2K) is thermal 
conductivity of layer i, si (m) is depth of material layer of layer i, Rsi (m2K/W) is thermal resistance on internal side, 
Rse (m2K/W) is thermal resistance on external side, hi (W/m2K) is thermal heat transfer coefficient on internal side, 
accounting for convection and radiation, he (W/m2K)is thermal heat transfer coefficient on external side, accounting 
for convection and radiation, q (W/m2) is heat flux per unit of surface in stationary conditions, ΔT= Ti - Te, Ti (°C) is 
internal air temperature, Te (°C) is external air temperature. 
 

In order to estimate U value from in situ measurement (with an experimental setup such as the one reported later 
in Figure 1) following ISO 9896 [35] methodology, we consider the subsequent averaging method: 

𝑈
∑ 𝑞 ,

∑ ∆𝑇
  (3) 

where U (W/m2K) is thermal transmittance experimentally determined, qin (W/m2) is the heat flux entering in the 
wall, n is the number of data points (at least 72h of monitoring data are necessary according to the standard). 

If we consider then the daily average heat flux (instead of instantaneous measurements for a single component) to 
maintain a thermal zone in constant internal temperature conditions, we can formulate a simplified representation of 
the energy balance of the zone as shown in Equation 4. This equation corresponds to simplification used in co-heating 
test method [37]: 

𝑞 𝐻𝐿𝐶∆𝑇 𝑔𝐴 𝐼 𝑞   (4) 

where qh (kW) is average daily heat flux, HLC (W/K) is heat loss coefficient, gAsol (m2) is solar aperture, Isol is the 
average daily solar irradiation (on horizontal or south plane), qint (kW) is average daily heat flux due to internal gains 
(people, light, appliances). gAsol parameter is a very approximated estimation of the actual solar geometry of the 
building, as it is highly dependent on the orientation chosen for Isol (horizontal or south). 

Assuming the possibility of performing measurement without internal gain (qint=0), we can reduce Equation 4 to 
Equation 5, which may be fit with a linear bivariate regression with intercept equal to 0. 

𝑞 𝐻𝐿𝐶∆𝑇 𝑔𝐴 𝐼   (5) 
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If we then divide both sides of Equation 5 by ΔT we obtain Equation 6, which represents an alternative formulation 
of co-heating test. The left hand side of this equation is similar in principles to Equation 2. This property has been 
exploited in recent research [40, 41] to estimate the value of HLC for thermal zones with a dynamic averaging method 
conceptually similar to the one proposed by ISO 9869 (in situ measurement of U value) for individual construction 
components. 

𝑞
∆𝑇

𝐻𝐿𝐶 𝑔𝐴
𝐼
∆𝑇
  (6) 

Finally, we can use the same measurements to obtain an energy signature model [38], represented in Equation 7: 

𝑞 𝑎 𝑇 𝑇   (7) 

where a is the slope of the linear regression (negative for heating), Te represent daily average external air 
temperature and Tbp represent balance-point temperature (qh = 0). 

Energy signature uses regression to derive parameters, without assuming internal air temperature as an input, and 
can be used for inexpensive long term monitoring (e.g. using utility bills collected on a monthly base). For this 
approach also an approximated physical interpretation of the coefficients can be found in literature [21]. Therefore, 
energy signature can essentially complement (for long-term monitoring) co-heating test, which needs measures of 
indoor air temperatures as an input and short term measurements under controlled conditions. Further, extensions of 
this methodology can be achieved by means of integration with variable-base degree-days method, as shown in recent 
literature [44], potentially extending the applicability for large scale energy system planning [43]. 

Finally, the approach proposed can be improved in particular in terms of identification of daily dynamic 
components of energy balance in regression formulations [45] and extension to hourly regression models. The final 
goal is linking this approach transparently with surrogate modelling techniques to be used already in the design phase 
[9] to fit multiple possible building conditions. 

Simplified dynamic modelling and time series 

The development of simplified time series model for simulation and parameter identification of walls is described 
in recent literature [29, 33], and is based substantially on linear algebra formulations. A schematic representation of a 
simplified model is reported in Figure 1. 

 

FIGURE 1. Example of experimental setup for dynamic wall behavior simulation using lumped parameter models 
 
This model formulation is compatible with the ongoing normative evolution in building performance assessment 

(ISO 52016-1 [23]), considering, in this example, a wall with insulation layer on the outer side. Model is defined as 
follows: 

𝑈
1

1
𝑈

1
𝑈

1
𝑅 𝑅

1
𝑅
  (8) 
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𝐶
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𝑈 ∆𝑡
𝐶

𝑈 ∆𝑡
𝐶

𝑈 ∆𝑡
𝐶

𝑇 ,
𝑈 ∆𝑡
𝐶

𝑇 ,  (13) 

where U (W/m2K) is thermal transmittance experimentally determined using ISO 9869, qin (W/m2) is the heat flux 
entering in the lumped capacity of wall, qout (W/m2) is the heat flux exiting from the lumped capacity of wall, n is the 
number of data points, U1 and U2 (W/m2K) are conductances on the internal and external side, R (m2K/W) is the total 
resistance, R1 and R2 (m2K/W) are thermal resistances on the internal and external side, Ti (°C) is internal air 
temperature, Te (°C) is external air temperature, ΔT= Ti - Te, Cm (J/m2K) is the lumped thermal capacity per unit of 
wall area, Tm is the temperature of the lumped thermal mass, t (s) is time, i is a time index in the time series. 

Equation 13, the time series model used for calculation, corresponds to the explicit discretization of Equation 12, 
the model is in the form ARX (Autoregressive with Exogenous Input). Assumptions for the calculation of U1 can be 
made considering the thermal mass lumped on the internal side. Further, the lumped thermal capacity Cm assumed in 
the simulation is very near to the value of internal areal heat capacity k1 that can be calculated using ISO 13786 [28]. 
A detailed explanation on this assumption can be found in [33]. 

Future prospects for modelling research development 

There are many possible future developments for the research on building performance monitoring, following the 
bottom-up logic depicted in the previous section, we report here a selection of relevant topics. First of all, dynamic 
physical-statistical models can be used for Model Predictive Control [46], considering in particular the thermal storage 
capabilities of building fabric [47], and also the possibility to predict free-running operation [48]. 

With respect to regression models (including energy signatures), it is possible to work on the automated model 
selection [49], which is particularly important to ease the process of continuous monitoring and commissioning, and 
on the use of energy signatures specifically for the analysis of heat pump performance [16]. Further, the formulation 
of psychrometric equations for air-handling processes using linear algebra [50] offers interesting perspectives for 
optimization of air-handling systems in HVAC with surrogate models [51]. Finally, extensions of the variable base 
degree days method [44] could enable large scale energy performance analytics, ideally linking it with energy system 
planning and policy studies [42, 43] together with R&D strategies [52]. 

CONCLUSIONS 

In this research we presented an overview of building performance monitoring methodologies, following a bottom-
up perspective, from individual components up to the system level perspective. We highlighted a potential continuity 
among different methodological approaches acting on different building elements and scales, indicating the conceptual 
simplicity and scalability of the underlying numerical techniques. Further, comparability and ease of use also are 
important factors to improve the ability to learn from data on continuous base. However, further research efforts should 
be devoted to harmonization of computational techniques and experimental analysis procedures as done in other 
disciplines[53], as all these approaches depend critically on the quantity and quality of data. In this paper we discussed 
also about the compatibility between reduced order models used in research and model simplifications adopted for 
building performance simulation at the normative level. These dynamic models are also using stationary properties 
that can be determined by means of regression-based approaches. The possible advantages related to future advances 
in this direction are multiple, from the improvement of performance of individual technologies, up to energy systems 
planning and operation at large scale. This can lead to an integrated strategy for continuous improvement based on a 
constant feed-back from data, taking place at multiple levels with the different values chains of built environment 
products and services. Clearly, in order to exploit these potential advantages, it is necessary to automate data 
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acquisition and processing procedures (in terms of computing tools and rules) at multiple scales, from single 
components, to individual buildings, to building stock and cities. 
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