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Abstract
When running edge intelligence applications 

with 6G networks, model pipeline effectively 
reduces inference latency via parallelizing layers 
across multiple edge devices. Today’s edge infer-
ence systems usually employ static architecture 
of layers in pipeline parallelism but dynamically 
skip part of layers in early-exit, which may signifi-
cantly degrade system throughput. In this paper, 
we introduce DensePipe, an online layer sched-
uling approach that optimally allocates early-exit 
layers to edge devices to maximize their through-
put in model pipeline. To this end, DensePipe 
profiles all network layers’ skipping probabilities 
in early-exit. At run-time, DensePipe maximizes 
the pipeline throughput by balancing the pro-
cessing of all unskipped layers among devices 
according to the current loads and device 
resource utilizations. We implement DensePipe 
with Transformer models and demonstrate its 
effectiveness against state-of-the-art pipeline 
methods. Comparative experiments show that 
DensePiple successfully finds the best devices 
for most of the layers and significantly improves 
throughput by 3.09x.

Introduction
The rise of 6G communication technology con-
nects edge devices with fast data transmission 
speeds and facilitates their collaborations in edge 
intelligence systems. When running large deep 
learning models (e.g. ViT (Vision Transformer)) on 
resource-constrained edge devices, model pipeline 
effectively reduces their inference latencies by par-
allelizing network layers across multiple devices [1], 
[2]. At the same time, early exit [3] allows an infer-
ence ends immediately when the required model 
accuracy is met. Today’s edge intelligence systems 
employ both techniques to improve system perfor-
mance, but also introduce additional management 
complexity of edge devices’ resources. Specifically, 
model pipeline techniques usually rely on a static 
deployment of models’ layers [1], [4], [5], but early 
exit techniques dynamically skip part of these layers 
according to the characterizes of inference samples 
[6], thus may cause low resource utilizations for 
devices with large proportions of skipped layers.

Example. Figure 1(a) illustrates an example sce-
nario where a traffic sign classification transformer 
of three layers is deployed on three autonomous 
vehicles. All vehicles are equipped with the same 

Raspberry Pi 4B board, and the skip probabilities 
of three layers are 0%, 50%, and 90%, respectively. 
When using both model pipeline and early exit in 
inference samples I1 to I3, we can see that device 
1 has 100% resource utilization while this value is 
only 33% for device 3. This is because when infer-
ences I2 and I3, early exit skips layer 3 on device 
3 and thus causes unbalanced resource usages 
among three devices. Figure 1(b) supports this 
claim by testing the layers’ skipping probabilities 
when applying early exit in ViT-base model and 
CIFAR-10 dataset. The result shows more than 60% 
of layers are skipped with a probability higher than 
50%. Successfully applying model pipeline and 
early exit faces two key challenges in practice.

First of all, existing pipeline techniques (e.g. 
AP2 [4] and PipeEdge [5]) deploy each model 
layer to a fixed device, based on the best match-
ing between this layer’s computational cost and 
the device’s computing capacity [1], [2]. How-
ever, such static deployment pre-determines 
the layers’ allocated devices in inference. Using 
Figure 1(a)’s scenario as an example, existing 
pipeline techniques equally deploy one layer 
in one device, because three devices have the 
same computing capacity. However, with early 
exit techniques, more than 50% of inference 
samples skip the processing on devices 2 and 
3. An ideal deployment, is to deploy the layers 
with low skip probabilities on more devices, and 
deploy the layers with high skip probabilities 
on fewer devices. For example, layer 1 can be 
deployed on all devices. As a result, devices 2 
and 3 have a higher utilization because they can 
be used to process layer 1. The first challenge, 
therefore, is how to understand the layers’ proba-
bilities of being skipped in early exit and construct 
a deployment that supports layers’ dynamic allo-
cation in pipeline inference.

Second, during online inference, early exit 
techniques (e.g. Deebert [7]) may skip a different 
number of layers for each inference sample, and 
each device’s load and available resource dynam-
ically change. Such unpredictable changes make 
load balancing difficult to achieve. For example, 
given the ideal deployment described above, 
an inference sample may have two scheduling 
options: sequentially processed on devices 1,2, 
and 3, or sequentially processed on devices 3, 2, 
and 1. If device 1 has three running inferences 
but device 3 is idle, the second option can allevi-
ate the resource contention on device 1 and thus 
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improve the throughput. This gives rise to the sec-
ond challenge about how to efficiently search the 
optimal device for each layer under dynamically 
changing skipping probability and system status at 
run-time.

This paper proposes DensePipe, an online 
scheduling approach that dynamically allocates 
each early exit’s unskipped layer to an optimal 
device in model pipeline. The key idea of Den-
sePipe is to offline profile all layers’ information 
related to early exit, and use it to guide the lay-
ers’ deployment on devices. At run-time, this 
deployment supports the dynamic scheduling of 
unskipped layers according to the system’s lat-
est status. In doing so, DensePipe balances the 
resource usages among different edge devices 
and maximizes the throughput of model pipeline 
in inference. In particular, the contributions of this 
paper are as follows:
•	 Offline layer deployment planner profiles 

the skip probabilities, memory footprint, 
and inference latency of all model layers in 
early exit, and outputs a deployment of lay-
ers such that each device has layers of both 
high and low skipping probabilities.

•	 Online layer scheduler takes the current lay-
ers’ deployment, system load and resource 
utilizations as inputs, and allocates each 
layer to an optimal device to maximize the 
overall throughput of all inferences

•	 We implement a system prototype of Den-
sePipe and conduct evaluation against 
the state-of-the-art techniques, i.e. Pico, 
PipeEdge, and AP2 using typical early-exit 
transformer models (ViT-Base and ViT-
Large). Comparative experiments show 
that our approach achieves 3.46 x higher 
throughput on homogeneous devices and 
2.72x higher throughput on heterogeneous 
devices, and works well within 6G networks.

Background
6G networks feature high bandwidth and 
low latency, promoting collaborative inference 
across multiple devices. When deploying large 
deep learning models (e.g. transformers) on 
resource-constrained edge devices, model par-
allelism splits a model into multiple layers and 
distributes them across multiple devices for col-
laborative inference. This technique improves 
inference throughput via model parallelism and it 
can be divided into two categories: tensor paral-
lelism and pipeline parallelism.

Tensor parallelism splits the tensors of large 
models into multiple devices for parallel infer-
ence. For example, MegatronLM [8] introduces 
a one-dimensional tensor parallelism method for 
Transformer models based on matrix partitioning 
rules. It divides the weight matrices of the self-at-
tention layer and the feed-forward network layer 
along the column dimension, and distributes them 
to different devices. However, such fine-grained 
tensor parallelism requires numerous all-reduce 
communication operations, leading to significant 
communication costs in collaborative inference 
between edge devices.

Pipeline parallelism partitions the model into 
multiple stages (each stage is a set of consecu-
tive layers) and deploys each stage to a device. 
On each device, pipeline parallelism ensures 
that the forward operation of one inference is 
overlapped with the communications of another 
inference. It significantly reduces the frequency 
and volume of communication between devices 
and brings lower latency compared to tensor par-
allelism. Existing pipeline parallelism techniques 
has three types.

The first type is designed for data centers with 
homogeneous machines [4], [5], [9], [10], such as 
GPipe [4] and PipeDream [5]. GPipe [4] equally 
partitions the model layers into devices, and 

FIGURE 1. Introduction of pipeline model parallelism and early exit. a) An example scenario of applying pipeline techniques on early-exit 
model inference. b) Skipping probabilities of layers.
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PipeDream [5] further considers the topology of 
homogeneous devices in partitioning.

The second type further considers heteroge-
neous devices, where each device has several 
heterogeneous GPUs. For example, HetPipe [11] 
first aggregates multiple heterogeneous GPUs 
into a single virtual worker, and then uses pipeline 
model parallelism within the virtual worker and 
data parallelism among different virtual workers.

The third type focuses on heterogeneous edge 
devices. PipeEdge [1] considers the computing 
capacity, communication, and memory of devices 
during partitioning layers. AP2 [2] views the infer-
ence process of each micro-batch in each stage as 
a separate sub-inference, and uses a genetic algo-
rithm to optimize the allocation and scheduling of 
all sub-inferences across devices. PICO [12] views 
a CNN as a directed acyclic graph, and partitions 
it using a graph partitioning algorithm. Specifically, 
it first partitions the stages according to the aver-
age resources of devices and then fine-tunes the 
partitions.

Moreover, early exit [3] allows inference to 
terminate once the desired model accuracy is 
achieved. It adds early-exit branches into the mid-
dle of the model, and allows simple samples to 
early exit from these branches during inference. 
when applying in Transformers, it adds early-exit 
branches between each two adjacent Transformer 
layers [13], [14], [15].

When applying both techniques in 
resource-constrained edge devices, the static deploy-
ment of layers in pipeline and the unpredictable 
skips of these layers in early exit may cause unbal-
anced loads and resource utilizations across devices, 
leading to considerable performance degradation.

DensePipe

Overview
DensePipe is designed with two objectives: 
(1) how to deploy early-exit layers into devices 

according to layers’ skipping probabilities (the sec-
tion “Offline Layer Deployment Planner”); and (2) 
how to online schedule early-exit layers based on 
the inference sample’s unskipped layers and cur-
rent loads of devices (the section “Online Layer 
Scheduler”). Figure 2 illustrates the architecture of 
DensePipe, which is divided into an offline stage 
and an online stage.

At the offline stage, DensePipe consists of 
two modules: the layer profiler and the layer 
deployment planner. Given an early-exit model, 
the layer profiler first analyzes the memory foot-
print and the inference latency of layer on edge 
device. Existing pipeline methods only consider 
this information when performing pipeline stage 
partitioning, leading to low utilization of devices 
with less used layers. In contrast, DensePipe’s 
profiler further collects the layers’ skipping prob-
abilities by performing inference on all samples 
in the training dataset. Based on these profiles 
and the available resource of each device, the 
layer deployment planner outputs a deployment 
solution, which deploys layers with higher skip-
ping probabilities to more powerful devices and 
vice versa.

Formally, let Pi be layer i‘s skipping probabil-
ity, Cj be device j‘s computing capacity, and Oi,j 
be a binary variable representing whether layer 
i is deployed on device j(Oi,j = 1) or not (Oi,j = 
0). The planner aims to find a solution Oi,j that 
minimizes the sum of the product of each layer’s 
skipping probabilities Pi and each device’s com-
puting capacity Cj (where j satisfies Oi,j = 1), as 
shown in Figure 2.

At the online stage, the online layer scheduler 
operates on each unskipped layer of an infer-
ence sample. Specifically, the scheduler takes 
three information as input: the layers’ offline 
deployment, an inference table that maintains 
all devices’ current inference tasks, and all the 
information of the current inference. Formally, the 
scheduler selects the device d with the smallest 

FIGURE 2. DensePipe architecture.
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computational load Nd/Cd to process the sched-
uled layer i, where Nd is the number of running 
inferences on device d.

Offline Layer Deployment Planner
1) Layer Profiler: DensePipe has three types of 
layer profiler: memory profiler, latency profiler, 
and skipping probability profiler. The memory 
profiler obtains the memory usage of each layer 
by sequentially loading the layers of the given 
model. The latency profiler measures the infer-
ence latency of each layer on each device, and 
calculates the computational capability of each 
device as the inverse of model inference latency 
on this device. Finally, the skipping probability pro-
filer includes two steps: step 1 lets the early-exit 
model perform inference on all samples in the 
pre-training dataset; step 2 computes the skipping 
probability of a layer, which is defined as the ratio 
of the number of times this layer is skipped to the 
number of samples. Note that at the online stage, 
the profiling result can be calibrated according to 
the latest collected information.

2) Layer Deployment Planner: With profiling 
information, the planner decides how to allocate 
model layers to different devices. The planner 
treats this as an integer linear programming prob-
lem with an objective and three constraints. The 
objective is to minimize the sum of the product 
of each layer’s skipping probabilities and each 
device’s computing capacity. This ensures that 
more powerful devices are deployed with lower 
skip probability layers. The constraints are that: 
(1) for each device, the memory footprint of 
deployed layers must not exceed the available 
memory; (2) each layer is deployed on at least 
one device; and (3) for any two adjacent layers 
with similar skipping probabilities, the planner 
limits the difference between their numbers of 
deployed devices. This ensures the computational 
load from the previous layer does not congest in 
the next layer. The planner solves this optimiza-
tion problem to output the deployment of layers.

The feasibility of the planner is based on two 
assumptions. First, it assumes that the through-
put is indeed higher if the layers with lower skip 
probabilities are deployed to more powerful 
devices. Second, it assumes that the optimization 
problem can be solved if the sum of all devices’ 
available memories is larger than the sum of all 
layers’ memory footprint. The planner employs 
the branch-and-bound algorithm to solve the opti-
mal solution.

Analysis of Overhead. The planner’s over-
head can be divided into three parts: (1) the 
layer profiler sequentially loads each layer and 
performs one inference to test memory and 
latency. Its time usage is the sum of the whole 
model’s load time and inference latency at edge; 
(2) the layer profiler tests skipping probability on 
the powerful server. Its time usage is the infer-
ence latency on cloud multiplied by the number 
of training samples; (3) for the layer deployment 
planner, the number of candidate solutions is up 
to 2D⋅L, where D is the number of devices and 
L is the number of layers. The planner adopts 
the branch-and-bound algorithm to find the best 
one, and it has a polynomial time complexity 
with respect to D ⋅ L. For instance, given a model 
ViT-base (L = 12), three Raspberry Pi 4 B boards 

(D = 3), and a server with NVIDIA Quadro RTX 
8000, the above three parts take 100ms, 3 min-
utes and 200 ms to complete, respectively. Note 
that both the profiler and the planner are exe-
cuted at the offline stage once.

Online Layer Scheduler
At run-time, the online layer scheduler determines 
the optimal device to process each inference’s 
unskipped layers, so as to balance load among all 
devices to maximize the overall pipeline through-
put. Once the processing of a layer is completed, 
the scheduler selects a device for processing this 
inference’s next unskipped layer. The scheduler 
maintains an inference table to record currently 
running inferences on each device. In each sched-
uling, it accesses this table to calculate the ratio of 
the number of running inferences on each device 
divided by the computational capacity of the cor-
responding device. The scheduler then selects 
the device with the lightest load as the execution 
device for that layer, regardless of whether the 
selected device is already occupied by some run-
ning inferences or not. The scheduler is feasible 
and the selected device is always optimal. This 
is because the calculated load is proportional to 
the that layer’s waiting time before processing. 
By selecting the device with the lightest load, the 
layer’s waiting time is minimized and brings higher 
throughput.

The scheduler is designed to handle three con-
ditions. First, if some running inferences already 
occupy the selected device, the newly scheduled 
inference waits until they complete. Second, if 
no device has sufficient memory to run the new 
inference, the scheduler waits until some running 
inferences are completed and release enough 
memory. Finally, two devices will encounter a 
deadlock when they need to send information 
to each other but do not have sufficient mem-
ory to store the received information. In this case, 
the scheduler first selects some layers not used 
in inference at present and then offloads them to 
hard disk, thus releasing some memory to resolve 
the deadlock.

Discussion of communication overhead with 
6G networks. The scheduler minimizes com-
munication overhead from two aspects. First, 
it compactly stores the transferred information 
(e.g., device statuses and layers’ outputs) in hash 
tables and tensors. For ViT-base model, they take 
only 0.78 MB of memory and can be quickly 
transmitted within the 6G network (using 10 ms 
under 1 Gbps bandwidth). Second, the sched-
uler concurrently executes data transmission and 
inference computation. By doing so, most of the 
communication time can be hidden behind infer-
ence latency and does not reduce throughput. 
Moreover, the scheduler can further reduce com-
munication time by being aware of the network 
bandwidth. For example, the scheduler can prior-
itize the device with the highest bandwidth and 
light/medium load, rather than the device with 
the lightest load but low bandwidth.

Running Example
Figure 3 illustrates an example where DensePipe 
first deploys a model’s layers to three devices 
offline, and then schedules inference I3‘s layer 2 to 
device 2 after its layer 1 is processed on device 3.
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At the offline stage, as shown in Figure 3(a), 
the layer profiler profiles an early exit model with 
three identical layers, and outputs both model 
profiles and device profiles. The model profiles 
show that each layer has a memory usage of 50 
MB and skipping probabilities ranging from 0 to 
0.8. The device profiles show that the computa-
tion time for each layer on each device is 0.3 s, 
and the available memory for each device is 100 
MB. Using these profiles, the layer deployment 
planner solves the optimization problem to gen-
erate a deployment solution: layer 1 with the 
lowest skipping probability is deployed on all 
three devices, and layer 3 with the highest proba-
bility is only deployed on device 3.

At the online stage, after device 3 processes 
layer 1 of inference I3‘s and layer 2 is not 
skipped in early exit, the online layer scheduler 
searches the optimal device for layer 2 using 7 
steps, as illustrated in Figure 3(b). Step 1 sends 
the following information to the scheduler: the 
ID of I3 (3), the early exit status (false), and the 
current execution count (1). Step 2 queries the 
Layer deployment obtained during the offline 
stage to identify the devices with layer 2. Step 
3 finds that layer 2 is deployed on devices 1 
and 2. Step 4 queries the Inference table for the 
current inferences on these two devices. Step 
5 finds that device 1 is processing inference I2 
and device 2 is idle. Step 6 instructs device 3 
to perform layer 2 of inference I3. Finally, step 

7 sends the processing results of I3‘s layer 1 to 
device 2. In this example, the scheduler success-
fully balances the loads among three devices and 
hence improves the overall pipeline throughput 
in inference.

Evaluation
In this section, we evaluate DensePipe against 
the state-of-the-art methods in three scenarios: 
homogeneous edge devices (the section “Homo-
geneous Edge Devices”), heterogeneous edge 
Devices (the section “Heterogeneous Edge 
Devices”) and simulated 6G environment (the 
section “Simulation of 6G Scenario”).

Experimental Settings
Testbeds. We select Raspberry Pi 4B devices with 
8GB memory and up to 1.8 Ghz CPU frequency, 
and test both homogeneous and heterogeneous 
edge devices by adjusting their CPU frequencies 
and available memories using cgroup tools.

Models and Dataset. We use the early-exit ViT-
Base and ViT-Large pre-trained on CIFAR-10 image 
classification dataset. We add the early-exit branches 
between each two consecutive layers [13].

Compared Baselines. We implement and com-
pare six state-of-the-art pipeline parallel methods: 
(1) AP2 is specifically designed for 6G scenarios; 
(2) PICO first performs homogeneous pipeline 
partitioning and then adapts to heterogeneous 
scenarios; (3) PipeDream and GPipe equally 

FIGURE 3. A example of scheduling layer with DensePipe. a) An example in offline stage. b) An example in offline stage.
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divides the pipeline based on the number of 
devices; (4) 2Stage incorporates data parallelism 
and forms a pipeline between each two devices; 
and (5) PipeEdge considers the device heteroge-
neity and optimizes the pipeline planning for such 
scenario.

Metrics. We evaluate the throughput of each 
method in our experiments, which is defined as 
the number of processed images per second.

Homogeneous Edge Devices
Setting. We conduct this evaluation using 2 to 8 
devices with the same maximal CPU frequency 
and available memory.

Results. In Figure 4, we can see DensePipe 
achieves the highest throughput compared to all 
baselines. This is because DensePipe deploys lay-
ers with higher computation probabilities on as 
many devices as possible and thus fully utilizes 
the computational resources on these devices. 
The results show that DensePipe’s throughput 
increases linearly when the number of devices. 
In contrast, AP2, PICO, PipeDream, and GPipe 
equally divide the pipeline into several stages/
layers and deploy each stage to a device. Hence 
with early-exit layers, the devices deployed the for-
mer layers undertake most of the computations, 
and other idle devices lower the overall system 
throughput. In conclusion, DensePipe achieves 
3.35 x to 3.56 x (3.46x in average) higher through-
put compared to baselines.

Heterogeneous Edge Devices
Setting. We conduct this experiment on 4 or 8 
devices. For 4 devices, we set their CPU frequen-
cies to 1.8GHz/1.2GHz/1.2GHz/0.6GHz, available 
memory to 100MB/200MB/300MB/150MB for 
ViT-Base, 300MB/600M/800M/400M for ViT-Large, 
respectively. For 8 devices, we set CPU frequen-
cies of three devices to 1.8 GHz, three devices to 
1.2 GHz, and one device to 0.6 GHz, respectively. 
We set three different available memories: (i) two 
devices: 150MB for ViT-Base, and 400M for ViT-
Large; (ii) three devices: 200MB for ViT-Base, and 
600M for ViT-Large; and (iii) three devices: 250MB 
for ViT-Base, and 800M for ViT-Large.

Results. Figure 5 shows that DensePipe still 
consistently achieves the highest throughput in 
heterogeneous device scenario. This is because 
DensePipe’s planner considers layers’ skipping 
probabilities in early exit and dynamically distributes 
unskipped layers to devices according to their dis-
tinct computing capacities and available resources 
at run-time. In contrast, although PipeEdge, PICO, 
and AP2 consider the device heterogeneity, their 
pipeline planning is still based on the pre-specified 
deployment of layers and overlooks the dynamic 
load and resource changes in the system. That is, 
these techniques always assign more inferences to 
faster devices, regardless of these devices’ current 
load. This exacerbates the resource contention of 
these devices and also lowers the resource utiliza-
tion of slower devices. As a result, their throughput 
can be even lower than the equal partitioning 
methods (e.g. PipeDream and GPipe). In conclu-
sion, DensePipe achieves 2.15 x to 3.30 x (2.72x in 
average) higher throughput compared to baselines.

Simulation of 6G Scenario
Setting. We simulate 10 to 50 devices connected 
with the theoretical 6G connection speed, and 
test the throughput of DensePipe.

Results. As shown in Figure 6, the throughput 
of DensePipe increases linearly with the number 
of devices, indicating that DensePipe remains 
effective when deployed on more devices. This 

FIGURE 6. Throughput versus Number of Devices in Large-Scale 6G Device Inter-
connection Scenarios. a) ViT-Base with early exit on Cifar10. b) ViT-Large 
with early exit on Cifar10.

FIGURE 5. Throughput versus Number of Devices in Heterogeneous Scenari-
os. a) ViT-Base with early exit on Cifar10. b) ViT-Large with early exit on 
Cifar10.

FIGURE 4. Throughput versus Number of Devices in Homogeneous Scenarios. a) 
ViT-Base with early exit on Cifar10. b) ViT-Large with early exit on Cifar10.
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is because DensePipe’s heuristic online schedul-
ing is near-optimal and has negligible overhead, 
hence works well with 6G network environment. 
In contrast, baseline techniques’ throughput is still 
limited by the conflict between pre-specified layer 
deployment and dynamically changing resources.

Conclusion
This paper presents the design and evaluation of 
DensePipe, an approach that efficiently sched-
ules early-exit layers in model pipeline parallelism. 
DensePipe maximizes the pipeline throughput by 
balancing the processing of all inferences’ layers 
among edge devices according to the latest sys-
tem status at run-time. We tested our method on 
typical transformer models and edge environment 
to validate its effectiveness in improving system 
throughput.

Our future work focuses on extending DensePipe 
in two directions. First, the current implementa-
tion of DensePipe is designed for encoder-based 
transformers and we will extend it to support 
decoder-based transformers (e.g. GPT and LLaMA) 
in natural language processing applications. These 
models have two stages of inferences, which require 
separate optimizations in layer deployment and 
scheduling. Second, DensePipe sequentially exe-
cutes multiple inferences that are scheduled to the 
same device, incorporating it with batching tech-
niques can further improve the throughput.
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