

Delft University of Technology

Document Version
Final published version

Licence
Dutch Copyright Act (Article 25fa)

Citation (APA)
Liu, Y., Han, R., Zhang, Q., Hou, H., Liu, C. H., & Chen, L. Y. (2025). On Scheduling Early-Exit Layers for Model
Pipeline in 6G-Based Edge Inference. IEEE Network, 39(5), 131-137. https://doi.org/10.1109/MNET.2024.3520555

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1109/MNET.2024.3520555

IEEE Network • September/October 2025 131
0890-8044 © 2024 IEEE. All rights reserved, including rights for text and data mining,

and training of artificial intelligence and similar technologies.

Abstract
When running edge intelligence applications

with 6G networks, model pipeline effectively
reduces inference latency via parallelizing layers
across multiple edge devices. Today’s edge infer-
ence systems usually employ static architecture
of layers in pipeline parallelism but dynamically
skip part of layers in early-exit, which may signifi-
cantly degrade system throughput. In this paper,
we introduce DensePipe, an online layer sched-
uling approach that optimally allocates early-exit
layers to edge devices to maximize their through-
put in model pipeline. To this end, DensePipe
profiles all network layers’ skipping probabilities
in early-exit. At run-time, DensePipe maximizes
the pipeline throughput by balancing the pro-
cessing of all unskipped layers among devices
according to the current loads and device
resource utilizations. We implement DensePipe
with Transformer models and demonstrate its
effectiveness against state-of-the-art pipeline
methods. Comparative experiments show that
DensePiple successfully finds the best devices
for most of the layers and significantly improves
throughput by 3.09x.

Introduction
The rise of 6G communication technology con-
nects edge devices with fast data transmission
speeds and facilitates their collaborations in edge
intelligence systems. When running large deep
learning models (e.g. ViT (Vision Transformer)) on
resource-constrained edge devices, model pipeline
effectively reduces their inference latencies by par-
allelizing network layers across multiple devices [1],
[2]. At the same time, early exit [3] allows an infer-
ence ends immediately when the required model
accuracy is met. Today’s edge intelligence systems
employ both techniques to improve system perfor-
mance, but also introduce additional management
complexity of edge devices’ resources. Specifically,
model pipeline techniques usually rely on a static
deployment of models’ layers [1], [4], [5], but early
exit techniques dynamically skip part of these layers
according to the characterizes of inference samples
[6], thus may cause low resource utilizations for
devices with large proportions of skipped layers.

Example. Figure 1(a) illustrates an example sce-
nario where a traffic sign classification transformer
of three layers is deployed on three autonomous
vehicles. All vehicles are equipped with the same

Raspberry Pi 4B board, and the skip probabilities
of three layers are 0%, 50%, and 90%, respectively.
When using both model pipeline and early exit in
inference samples I1 to I3, we can see that device
1 has 100% resource utilization while this value is
only 33% for device 3. This is because when infer-
ences I2 and I3, early exit skips layer 3 on device
3 and thus causes unbalanced resource usages
among three devices. Figure 1(b) supports this
claim by testing the layers’ skipping probabilities
when applying early exit in ViT-base model and
CIFAR-10 dataset. The result shows more than 60%
of layers are skipped with a probability higher than
50%. Successfully applying model pipeline and
early exit faces two key challenges in practice.

First of all, existing pipeline techniques (e.g.
AP2 [4] and PipeEdge [5]) deploy each model
layer to a fixed device, based on the best match-
ing between this layer’s computational cost and
the device’s computing capacity [1], [2]. How-
ever, such static deployment pre-determines
the layers’ allocated devices in inference. Using
Figure 1(a)’s scenario as an example, existing
pipeline techniques equally deploy one layer
in one device, because three devices have the
same computing capacity. However, with early
exit techniques, more than 50% of inference
samples skip the processing on devices 2 and
3. An ideal deployment, is to deploy the layers
with low skip probabilities on more devices, and
deploy the layers with high skip probabilities
on fewer devices. For example, layer 1 can be
deployed on all devices. As a result, devices 2
and 3 have a higher utilization because they can
be used to process layer 1. The first challenge,
therefore, is how to understand the layers’ proba-
bilities of being skipped in early exit and construct
a deployment that supports layers’ dynamic allo-
cation in pipeline inference.

Second, during online inference, early exit
techniques (e.g. Deebert [7]) may skip a different
number of layers for each inference sample, and
each device’s load and available resource dynam-
ically change. Such unpredictable changes make
load balancing difficult to achieve. For example,
given the ideal deployment described above,
an inference sample may have two scheduling
options: sequentially processed on devices 1,2,
and 3, or sequentially processed on devices 3, 2,
and 1. If device 1 has three running inferences
but device 3 is idle, the second option can allevi-
ate the resource contention on device 1 and thus

On Scheduling Early-Exit Layers for Model Pipeline in 6G-Based Edge Inference
Yuxiao Liu , Rui Han , Qinglong Zhang , Haiting Hou , Chi Harold Liu , and Lydia Y. Chen

OPEN CALL ARTICLE

Digital Object Identifier:
10.1109/MNET.2024.3520555

Date of Current Version:
16 September 2025

Date of Publication:
19 December 2024

Yuxiao Liu, Rui Han (corresponding author), Qinglong Zhang, Haiting Hou, and Chi Harold Liu are with the Beijing Institute of Technology,
Beijing 100081, China; Lydia Y. Chen is with the Department of Computer Science, Delft University of Technology (TU Delft), 2628 CD

Delft, The Netherlands.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

http://orcid.org/0000-0002-4147-9797
http://orcid.org/0000-0001-6894-1921
http://orcid.org/0000-0003-4072-1198
http://orcid.org/0009-0005-6971-9261
http://orcid.org/0000-0002-0252-329X
http://orcid.org/0000-0002-4228-6735

IEEE Network • September/October 2025132

improve the throughput. This gives rise to the sec-
ond challenge about how to efficiently search the
optimal device for each layer under dynamically
changing skipping probability and system status at
run-time.

This paper proposes DensePipe, an online
scheduling approach that dynamically allocates
each early exit’s unskipped layer to an optimal
device in model pipeline. The key idea of Den-
sePipe is to offline profile all layers’ information
related to early exit, and use it to guide the lay-
ers’ deployment on devices. At run-time, this
deployment supports the dynamic scheduling of
unskipped layers according to the system’s lat-
est status. In doing so, DensePipe balances the
resource usages among different edge devices
and maximizes the throughput of model pipeline
in inference. In particular, the contributions of this
paper are as follows:
•	 Offline layer deployment planner profiles

the skip probabilities, memory footprint,
and inference latency of all model layers in
early exit, and outputs a deployment of lay-
ers such that each device has layers of both
high and low skipping probabilities.

•	 Online layer scheduler takes the current lay-
ers’ deployment, system load and resource
utilizations as inputs, and allocates each
layer to an optimal device to maximize the
overall throughput of all inferences

•	 We implement a system prototype of Den-
sePipe and conduct evaluation against
the state-of-the-art techniques, i.e. Pico,
PipeEdge, and AP2 using typical early-exit
transformer models (ViT-Base and ViT-
Large). Comparative experiments show
that our approach achieves 3.46 x higher
throughput on homogeneous devices and
2.72x higher throughput on heterogeneous
devices, and works well within 6G networks.

Background
6G networks feature high bandwidth and
low latency, promoting collaborative inference
across multiple devices. When deploying large
deep learning models (e.g. transformers) on
resource-constrained edge devices, model par-
allelism splits a model into multiple layers and
distributes them across multiple devices for col-
laborative inference. This technique improves
inference throughput via model parallelism and it
can be divided into two categories: tensor paral-
lelism and pipeline parallelism.

Tensor parallelism splits the tensors of large
models into multiple devices for parallel infer-
ence. For example, MegatronLM [8] introduces
a one-dimensional tensor parallelism method for
Transformer models based on matrix partitioning
rules. It divides the weight matrices of the self-at-
tention layer and the feed-forward network layer
along the column dimension, and distributes them
to different devices. However, such fine-grained
tensor parallelism requires numerous all-reduce
communication operations, leading to significant
communication costs in collaborative inference
between edge devices.

Pipeline parallelism partitions the model into
multiple stages (each stage is a set of consecu-
tive layers) and deploys each stage to a device.
On each device, pipeline parallelism ensures
that the forward operation of one inference is
overlapped with the communications of another
inference. It significantly reduces the frequency
and volume of communication between devices
and brings lower latency compared to tensor par-
allelism. Existing pipeline parallelism techniques
has three types.

The first type is designed for data centers with
homogeneous machines [4], [5], [9], [10], such as
GPipe [4] and PipeDream [5]. GPipe [4] equally
partitions the model layers into devices, and

FIGURE 1. Introduction of pipeline model parallelism and early exit. a) An example scenario of applying pipeline techniques on early-exit
model inference. b) Skipping probabilities of layers.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2025 133

PipeDream [5] further considers the topology of
homogeneous devices in partitioning.

The second type further considers heteroge-
neous devices, where each device has several
heterogeneous GPUs. For example, HetPipe [11]
first aggregates multiple heterogeneous GPUs
into a single virtual worker, and then uses pipeline
model parallelism within the virtual worker and
data parallelism among different virtual workers.

The third type focuses on heterogeneous edge
devices. PipeEdge [1] considers the computing
capacity, communication, and memory of devices
during partitioning layers. AP2 [2] views the infer-
ence process of each micro-batch in each stage as
a separate sub-inference, and uses a genetic algo-
rithm to optimize the allocation and scheduling of
all sub-inferences across devices. PICO [12] views
a CNN as a directed acyclic graph, and partitions
it using a graph partitioning algorithm. Specifically,
it first partitions the stages according to the aver-
age resources of devices and then fine-tunes the
partitions.

Moreover, early exit [3] allows inference to
terminate once the desired model accuracy is
achieved. It adds early-exit branches into the mid-
dle of the model, and allows simple samples to
early exit from these branches during inference.
when applying in Transformers, it adds early-exit
branches between each two adjacent Transformer
layers [13], [14], [15].

When applying both techniques in
resource-constrained edge devices, the static deploy-
ment of layers in pipeline and the unpredictable
skips of these layers in early exit may cause unbal-
anced loads and resource utilizations across devices,
leading to considerable performance degradation.

DensePipe

Overview
DensePipe is designed with two objectives:
(1) how to deploy early-exit layers into devices

according to layers’ skipping probabilities (the sec-
tion “Offline Layer Deployment Planner”); and (2)
how to online schedule early-exit layers based on
the inference sample’s unskipped layers and cur-
rent loads of devices (the section “Online Layer
Scheduler”). Figure 2 illustrates the architecture of
DensePipe, which is divided into an offline stage
and an online stage.

At the offline stage, DensePipe consists of
two modules: the layer profiler and the layer
deployment planner. Given an early-exit model,
the layer profiler first analyzes the memory foot-
print and the inference latency of layer on edge
device. Existing pipeline methods only consider
this information when performing pipeline stage
partitioning, leading to low utilization of devices
with less used layers. In contrast, DensePipe’s
profiler further collects the layers’ skipping prob-
abilities by performing inference on all samples
in the training dataset. Based on these profiles
and the available resource of each device, the
layer deployment planner outputs a deployment
solution, which deploys layers with higher skip-
ping probabilities to more powerful devices and
vice versa.

Formally, let Pi be layer i‘s skipping probabil-
ity, Cj be device j‘s computing capacity, and Oi,j
be a binary variable representing whether layer
i is deployed on device j(Oi,j = 1) or not (Oi,j =
0). The planner aims to find a solution Oi,j that
minimizes the sum of the product of each layer’s
skipping probabilities Pi and each device’s com-
puting capacity Cj (where j satisfies Oi,j = 1), as
shown in Figure 2.

At the online stage, the online layer scheduler
operates on each unskipped layer of an infer-
ence sample. Specifically, the scheduler takes
three information as input: the layers’ offline
deployment, an inference table that maintains
all devices’ current inference tasks, and all the
information of the current inference. Formally, the
scheduler selects the device d with the smallest

FIGURE 2. DensePipe architecture.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2025134

computational load Nd/Cd to process the sched-
uled layer i, where Nd is the number of running
inferences on device d.

Offline Layer Deployment Planner
1) Layer Profiler: DensePipe has three types of
layer profiler: memory profiler, latency profiler,
and skipping probability profiler. The memory
profiler obtains the memory usage of each layer
by sequentially loading the layers of the given
model. The latency profiler measures the infer-
ence latency of each layer on each device, and
calculates the computational capability of each
device as the inverse of model inference latency
on this device. Finally, the skipping probability pro-
filer includes two steps: step 1 lets the early-exit
model perform inference on all samples in the
pre-training dataset; step 2 computes the skipping
probability of a layer, which is defined as the ratio
of the number of times this layer is skipped to the
number of samples. Note that at the online stage,
the profiling result can be calibrated according to
the latest collected information.

2) Layer Deployment Planner: With profiling
information, the planner decides how to allocate
model layers to different devices. The planner
treats this as an integer linear programming prob-
lem with an objective and three constraints. The
objective is to minimize the sum of the product
of each layer’s skipping probabilities and each
device’s computing capacity. This ensures that
more powerful devices are deployed with lower
skip probability layers. The constraints are that:
(1) for each device, the memory footprint of
deployed layers must not exceed the available
memory; (2) each layer is deployed on at least
one device; and (3) for any two adjacent layers
with similar skipping probabilities, the planner
limits the difference between their numbers of
deployed devices. This ensures the computational
load from the previous layer does not congest in
the next layer. The planner solves this optimiza-
tion problem to output the deployment of layers.

The feasibility of the planner is based on two
assumptions. First, it assumes that the through-
put is indeed higher if the layers with lower skip
probabilities are deployed to more powerful
devices. Second, it assumes that the optimization
problem can be solved if the sum of all devices’
available memories is larger than the sum of all
layers’ memory footprint. The planner employs
the branch-and-bound algorithm to solve the opti-
mal solution.

Analysis of Overhead. The planner’s over-
head can be divided into three parts: (1) the
layer profiler sequentially loads each layer and
performs one inference to test memory and
latency. Its time usage is the sum of the whole
model’s load time and inference latency at edge;
(2) the layer profiler tests skipping probability on
the powerful server. Its time usage is the infer-
ence latency on cloud multiplied by the number
of training samples; (3) for the layer deployment
planner, the number of candidate solutions is up
to 2D⋅L, where D is the number of devices and
L is the number of layers. The planner adopts
the branch-and-bound algorithm to find the best
one, and it has a polynomial time complexity
with respect to D ⋅ L. For instance, given a model
ViT-base (L = 12), three Raspberry Pi 4 B boards

(D = 3), and a server with NVIDIA Quadro RTX
8000, the above three parts take 100ms, 3 min-
utes and 200 ms to complete, respectively. Note
that both the profiler and the planner are exe-
cuted at the offline stage once.

Online Layer Scheduler
At run-time, the online layer scheduler determines
the optimal device to process each inference’s
unskipped layers, so as to balance load among all
devices to maximize the overall pipeline through-
put. Once the processing of a layer is completed,
the scheduler selects a device for processing this
inference’s next unskipped layer. The scheduler
maintains an inference table to record currently
running inferences on each device. In each sched-
uling, it accesses this table to calculate the ratio of
the number of running inferences on each device
divided by the computational capacity of the cor-
responding device. The scheduler then selects
the device with the lightest load as the execution
device for that layer, regardless of whether the
selected device is already occupied by some run-
ning inferences or not. The scheduler is feasible
and the selected device is always optimal. This
is because the calculated load is proportional to
the that layer’s waiting time before processing.
By selecting the device with the lightest load, the
layer’s waiting time is minimized and brings higher
throughput.

The scheduler is designed to handle three con-
ditions. First, if some running inferences already
occupy the selected device, the newly scheduled
inference waits until they complete. Second, if
no device has sufficient memory to run the new
inference, the scheduler waits until some running
inferences are completed and release enough
memory. Finally, two devices will encounter a
deadlock when they need to send information
to each other but do not have sufficient mem-
ory to store the received information. In this case,
the scheduler first selects some layers not used
in inference at present and then offloads them to
hard disk, thus releasing some memory to resolve
the deadlock.

Discussion of communication overhead with
6G networks. The scheduler minimizes com-
munication overhead from two aspects. First,
it compactly stores the transferred information
(e.g., device statuses and layers’ outputs) in hash
tables and tensors. For ViT-base model, they take
only 0.78 MB of memory and can be quickly
transmitted within the 6G network (using 10 ms
under 1 Gbps bandwidth). Second, the sched-
uler concurrently executes data transmission and
inference computation. By doing so, most of the
communication time can be hidden behind infer-
ence latency and does not reduce throughput.
Moreover, the scheduler can further reduce com-
munication time by being aware of the network
bandwidth. For example, the scheduler can prior-
itize the device with the highest bandwidth and
light/medium load, rather than the device with
the lightest load but low bandwidth.

Running Example
Figure 3 illustrates an example where DensePipe
first deploys a model’s layers to three devices
offline, and then schedules inference I3‘s layer 2 to
device 2 after its layer 1 is processed on device 3.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2025 135

At the offline stage, as shown in Figure 3(a),
the layer profiler profiles an early exit model with
three identical layers, and outputs both model
profiles and device profiles. The model profiles
show that each layer has a memory usage of 50
MB and skipping probabilities ranging from 0 to
0.8. The device profiles show that the computa-
tion time for each layer on each device is 0.3 s,
and the available memory for each device is 100
MB. Using these profiles, the layer deployment
planner solves the optimization problem to gen-
erate a deployment solution: layer 1 with the
lowest skipping probability is deployed on all
three devices, and layer 3 with the highest proba-
bility is only deployed on device 3.

At the online stage, after device 3 processes
layer 1 of inference I3‘s and layer 2 is not
skipped in early exit, the online layer scheduler
searches the optimal device for layer 2 using 7
steps, as illustrated in Figure 3(b). Step 1 sends
the following information to the scheduler: the
ID of I3 (3), the early exit status (false), and the
current execution count (1). Step 2 queries the
Layer deployment obtained during the offline
stage to identify the devices with layer 2. Step
3 finds that layer 2 is deployed on devices 1
and 2. Step 4 queries the Inference table for the
current inferences on these two devices. Step
5 finds that device 1 is processing inference I2
and device 2 is idle. Step 6 instructs device 3
to perform layer 2 of inference I3. Finally, step

7 sends the processing results of I3‘s layer 1 to
device 2. In this example, the scheduler success-
fully balances the loads among three devices and
hence improves the overall pipeline throughput
in inference.

Evaluation
In this section, we evaluate DensePipe against
the state-of-the-art methods in three scenarios:
homogeneous edge devices (the section “Homo-
geneous Edge Devices”), heterogeneous edge
Devices (the section “Heterogeneous Edge
Devices”) and simulated 6G environment (the
section “Simulation of 6G Scenario”).

Experimental Settings
Testbeds. We select Raspberry Pi 4B devices with
8GB memory and up to 1.8 Ghz CPU frequency,
and test both homogeneous and heterogeneous
edge devices by adjusting their CPU frequencies
and available memories using cgroup tools.

Models and Dataset. We use the early-exit ViT-
Base and ViT-Large pre-trained on CIFAR-10 image
classification dataset. We add the early-exit branches
between each two consecutive layers [13].

Compared Baselines. We implement and com-
pare six state-of-the-art pipeline parallel methods:
(1) AP2 is specifically designed for 6G scenarios;
(2) PICO first performs homogeneous pipeline
partitioning and then adapts to heterogeneous
scenarios; (3) PipeDream and GPipe equally

FIGURE 3. A example of scheduling layer with DensePipe. a) An example in offline stage. b) An example in offline stage.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2025136

divides the pipeline based on the number of
devices; (4) 2Stage incorporates data parallelism
and forms a pipeline between each two devices;
and (5) PipeEdge considers the device heteroge-
neity and optimizes the pipeline planning for such
scenario.

Metrics. We evaluate the throughput of each
method in our experiments, which is defined as
the number of processed images per second.

Homogeneous Edge Devices
Setting. We conduct this evaluation using 2 to 8
devices with the same maximal CPU frequency
and available memory.

Results. In Figure 4, we can see DensePipe
achieves the highest throughput compared to all
baselines. This is because DensePipe deploys lay-
ers with higher computation probabilities on as
many devices as possible and thus fully utilizes
the computational resources on these devices.
The results show that DensePipe’s throughput
increases linearly when the number of devices.
In contrast, AP2, PICO, PipeDream, and GPipe
equally divide the pipeline into several stages/
layers and deploy each stage to a device. Hence
with early-exit layers, the devices deployed the for-
mer layers undertake most of the computations,
and other idle devices lower the overall system
throughput. In conclusion, DensePipe achieves
3.35 x to 3.56 x (3.46x in average) higher through-
put compared to baselines.

Heterogeneous Edge Devices
Setting. We conduct this experiment on 4 or 8
devices. For 4 devices, we set their CPU frequen-
cies to 1.8GHz/1.2GHz/1.2GHz/0.6GHz, available
memory to 100MB/200MB/300MB/150MB for
ViT-Base, 300MB/600M/800M/400M for ViT-Large,
respectively. For 8 devices, we set CPU frequen-
cies of three devices to 1.8 GHz, three devices to
1.2 GHz, and one device to 0.6 GHz, respectively.
We set three different available memories: (i) two
devices: 150MB for ViT-Base, and 400M for ViT-
Large; (ii) three devices: 200MB for ViT-Base, and
600M for ViT-Large; and (iii) three devices: 250MB
for ViT-Base, and 800M for ViT-Large.

Results. Figure 5 shows that DensePipe still
consistently achieves the highest throughput in
heterogeneous device scenario. This is because
DensePipe’s planner considers layers’ skipping
probabilities in early exit and dynamically distributes
unskipped layers to devices according to their dis-
tinct computing capacities and available resources
at run-time. In contrast, although PipeEdge, PICO,
and AP2 consider the device heterogeneity, their
pipeline planning is still based on the pre-specified
deployment of layers and overlooks the dynamic
load and resource changes in the system. That is,
these techniques always assign more inferences to
faster devices, regardless of these devices’ current
load. This exacerbates the resource contention of
these devices and also lowers the resource utiliza-
tion of slower devices. As a result, their throughput
can be even lower than the equal partitioning
methods (e.g. PipeDream and GPipe). In conclu-
sion, DensePipe achieves 2.15 x to 3.30 x (2.72x in
average) higher throughput compared to baselines.

Simulation of 6G Scenario
Setting. We simulate 10 to 50 devices connected
with the theoretical 6G connection speed, and
test the throughput of DensePipe.

Results. As shown in Figure 6, the throughput
of DensePipe increases linearly with the number
of devices, indicating that DensePipe remains
effective when deployed on more devices. This

FIGURE 6. Throughput versus Number of Devices in Large-Scale 6G Device Inter-
connection Scenarios. a) ViT-Base with early exit on Cifar10. b) ViT-Large
with early exit on Cifar10.

FIGURE 5. Throughput versus Number of Devices in Heterogeneous Scenari-
os. a) ViT-Base with early exit on Cifar10. b) ViT-Large with early exit on
Cifar10.

FIGURE 4. Throughput versus Number of Devices in Homogeneous Scenarios. a)
ViT-Base with early exit on Cifar10. b) ViT-Large with early exit on Cifar10.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2025 137

is because DensePipe’s heuristic online schedul-
ing is near-optimal and has negligible overhead,
hence works well with 6G network environment.
In contrast, baseline techniques’ throughput is still
limited by the conflict between pre-specified layer
deployment and dynamically changing resources.

Conclusion
This paper presents the design and evaluation of
DensePipe, an approach that efficiently sched-
ules early-exit layers in model pipeline parallelism.
DensePipe maximizes the pipeline throughput by
balancing the processing of all inferences’ layers
among edge devices according to the latest sys-
tem status at run-time. We tested our method on
typical transformer models and edge environment
to validate its effectiveness in improving system
throughput.

Our future work focuses on extending DensePipe
in two directions. First, the current implementa-
tion of DensePipe is designed for encoder-based
transformers and we will extend it to support
decoder-based transformers (e.g. GPT and LLaMA)
in natural language processing applications. These
models have two stages of inferences, which require
separate optimizations in layer deployment and
scheduling. Second, DensePipe sequentially exe-
cutes multiple inferences that are scheduled to the
same device, incorporating it with batching tech-
niques can further improve the throughput.

Acknowledgment
This work was supported in part by the National
Key Research and Development Program of
China under Grant 2023YFE0209100; in part by
the National Natural Science Foundation of China
under Grant 62272046, Grant 62132019, Grant
61872337, and Grant U21A20519; and in part by
the Open Project of Ministry of Education’s Key
Laboratory of Computing Power Network and
Information Security under Grant 2023PY002.

References
[1] Y. Hu et al., “PipeEdge: Pipeline parallelism for large-scale

model inference on heterogeneous edge devices,” in Proc.
25th Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2022,
pp. 298–307.

[2] H. Shi et al., “Automatic pipeline parallelism: A parallel infer-
ence framework for deep learning applications in 6G mobile
communication systems,” IEEE J. Sel. Areas Commun., vol.
41, no. 7, pp. 2041–2056, Jul. 2023.

[3] S. Teerapittayanon, B. McDanel, and H.-T. Kung,
“BranchyNet: Fast inference via early exiting from deep
neural networks,” in Proc. 23rd Int. Conf. Pattern Recognit.
(ICPR), 2016, pp. 2464–2469.

[4] Y. Huang et al., “GPipe: Efficient training of giant neural net-
works using pipeline parallelism,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–10.

[5] D. Narayanan et al., “PipeDream: Generalized pipeline paral-
lelism for DNN training,” in Proc. 27th ACM Symp. Operat-
ing Syst. Princ., Oct. 2019, pp. 1–15.

[6] A. Bakhtiarnia, Q. Zhang, and A. Iosifidis, “Single-layer vision
transformers for more accurate early exits with less over-
head,” Neural Netw., vol. 153, pp. 461–473, Sep. 2022.

[7] J. Xin et al., “DeeBERT: Dynamic early exiting for accelerating
BERT inference,” 2020, arXiv:2004.12993.

[8] M. Shoeybi et al., “Megatron-LM: Training multi-billion
parameter language models using model parallelism,” 2019,
arXiv:1909.08053.

[9] W. Liu et al., “AutoPipe: A fast pipeline parallelism approach
with balanced partitioning and micro-batch slicing,” in Proc.
IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2022, pp.
301–312. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/9912711

[10] S. Zhao et al., “NASPipe: High performance and repro-
ducible pipeline parallel supernet training via causal syn-
chronous parallelism,” in Proc. 27th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst., Feb.
2022, pp. 374–387. [Online]. Available: https://dl.acm.org/
doi/10.1145/3503222

[11] J. Park et al., “HetPipe: Enabling large DNN training on
(Whimpy) heterogeneous GPU clusters through integra-
tion of pipelined model parallelism and data parallelism,”
in Proc. USENIX Annu. Tech. Conf., Jan. 2020, pp. 307–321.
[Online]. Available: https://www.usenix.org/conference/
atc20/presentation/park

[12] X. Yang et al., “PICO: Pipeline inference framework for ver-
satile CNNs on diverse mobile devices,” IEEE Trans. Mobile
Comput., vol. 23, no. 4, pp. 2712–2730, Apr. 2023.

[13] W. Liu et al., “FastBERT: A self-distilling BERT with adaptive
inference time,” 2020, arXiv:2004.02178.

[14] G. Xu et al., “LGViT: Dynamic early exiting for accelerating
vision transformer,” in Proc. 31st ACM Int. Conf. Multimedia,
Oct. 2023, pp. 9103–9114.

[15] W. Zhu, “LeeBERT: Learned early exit for BERT with
cross-level optimization,” in Proc. 59th Annu. Meeting Assoc.
Comput. Linguistics 11th Int. Joint Conf. Natural Lang. Pro-
cess., 2021, pp. 2968–2980.

Biographies
Yuxiao Liu (3220215156@bit.edu.cn) is currently pursuing the
Ph.D. degree with the School of Computer Science and Tech-
nology, Beijing Institute of Technology. His research interests
include edge intelligence and deep learning applications.

Rui Han (hanrui@bit.edu.cn) received the M.Sc. degree (Hons.)
from Tsinghua University, China, in 2010, and the Ph.D. degree
from Imperial College London, U.K., in 2014. He is currently an
Associate Professor with the School of Computer Science and
Technology, Beijing Institute of Technology, China. His research
interests are system optimization for cloud data center work-
loads (in particular highly parallel services and deep learning
applications). He has over 40 publications in these areas, includ-
ing papers at MobiCOM, IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE
Transactions on Knowledge and Data Engineering, INFO-
COM, and ICDCS.

Qinglong Zhang (3120211050@bit.edu.cn) is currently
pursuing the Ph.D. degree with the School of Computer Sci-
ence and Technology, Beijing Institute of Technology. His
research interests include edge intelligence and deep learning
applications.

Haiting Hou is currently pursuing the Ph.D. degree with the
School of Computer Science and Technology, Beijing Institute of
Technology. His research interests include edge intelligence and
deep learning applications.

Chi Harold Liu (Senior Member, IEEE) (chiliu@bit.edu.cn)
received the B.Eng. degree from Tsinghua University, Beijing,
China, and the Ph.D. degree from Imperial College London,
London, U.K. He was at IBM Research China and Deutsche
Telekom Laboratories, Berlin, Germany, and the IBM T. J. Wat-
son Research Center, USA. He is currently a Full Professor and
the Vice Dean of the School of Computer Science and Technol-
ogy, Beijing Institute of Technology, Beijing. His current research
interests include the big data analytics, mobile computing, and
deep learning. He is a fellow of IET and the Royal Society of the
Arts. He is also an Associate Editor of IEEE Transactions on
Network Science and Engineering.

Lydia Y. Chen (Senior Member, IEEE) (lydiaychen@ieee.org)
received the B.A. degree from National Taiwan University and
the Ph.D. degree from Pennsylvania State University. She was a
Research Staff Member at the IBM Zurich Research Laboratory
from 2007 to 2018. She is currently an Associate Professor
with the Department of Computer Science, Technology Uni-
versity Delft. She has published more than 80 articles in jour-
nals, such as IEEE Transactions on Distributed Systems, IEEE
Transactions on Service Computing, and conference pro-
ceedings, such as INFOCOM, Sigmetrics, DSN, and Eurosys.
Her research interests center around dependability manage-
ment, resource allocation, and privacy enhancement for large
scale data processing systems and services. She was a co-re-
cipient of the Best Paper Awards at the CCgrid’15 and the
eEnergy’15.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:18:57 UTC from IEEE Xplore. Restrictions apply.

https://ieeexplore.ieee.org/abstract/document/9912711
https://ieeexplore.ieee.org/abstract/document/9912711
https://dl.acm.org/doi/10.1145/3503222
https://dl.acm.org/doi/10.1145/3503222
https://www.usenix.org/conference/atc20/presentation/park
https://www.usenix.org/conference/atc20/presentation/park
mailto:3220215156@bit.edu.cn
mailto:hanrui@bit.edu.cn
mailto:3120211050@bit.edu.cn
mailto:chiliu@bit.edu.cn
mailto:lydiaychen@ieee.org

