
Insect-Inspired Optic Flow Estimation
and Obstacle Avoidance

Thesis Report
July 2022

Yvonne Eggers

Fa
cu

lty
of

Ae
ro

sp
ac

e
En

gi
ne

er
in
g



Cover Image: House fly red eye and green background (2022) by Amal biju Unni under Unsplash License.
Available at: https://unsplash.com/photos/z-h45uj_fmY

https://unsplash.com/photos/z-h45uj_fmY


Insect-Inspired Optic Flow
Estimation and Obstacle

Avoidance

Thesis Report
July 2022

by

Yvonne Eggers
to obtain the degree of Master of Science

at Delft University of Technology,
to be defended publicly on Wednesday July 13, 2022 at 13:00 PM.

Student number: 4444922
Thesis committee: Prof. Dr. G.C.H.E de Croon, TU Delft, supervisor

Dr. J. C. van Gemert, TU Delft
Dr. E. J. J. Smeur, TU Delft





Preface

This report summarizes the findings of my MSc thesis within the Control and Simulation department at the
Aerospace Engineering faculty at Delft University of Technology. I would like to thank my supervisors Guido
de Croon and Julien Dupeyroux for their guidance and support throughout the thesis process. A big thanks
also goes to my friends Killian Swannet and Michael Westheim. Our weekly game nights were a welcome
distraction from work when things were not going well. A special word of appreciation also goes to Miha
Zupanič. Thank you for planning all these little trips that made life a little brighter and for constantly taking
some of the load off my shoulders. Finally, I would like to thank my parents for their understanding and
patience.

Yvonne Eggers
July 11, 2022

iii





Abstract

Event cameras and spiking neural networks (SNNs) allow for a highly bio-inspired, low-latency and power
efficient implementation of optic flow estimation. Just recently, a hierarchical SNN was proposed in which
motion selectivity is learned from raw event data in an unsupervised manner using spike-timing-dependent
plasticity (STDP). However, real-life applications of this SNN are currently still limited by the fact that the ex-
act choice of neuron parameters depends on the spatiotemporal properties of the input. Furthermore, tuning
the network is a challenging task due to the high degree of coupling between the various parameters. Inspired
by neurons in biological brains that modify their intrinsic parameters through a process called intrinsic plas-
ticity, this research proposes update rules which adapt the voltage threshold and maximum synaptic delay
during inference. This allows applying the already trained network to a wider range of operating conditions
and simplifies the tuning process. Starting with a detailed parameter analysis, primary functions and un-
desired side effects are assigned to each parameter. The update rules are then designed in such a way as to
eliminate these side effects. Unlike existing update rules for the voltage threshold, this work does not attempt
to keep the firing activity of output neurons within a specific range, but instead aims to adjust the threshold
such that only the correct output maps spike. In particular, the voltage threshold is adapted such that output
spikes occur in no more than two maps per retinotopic location. The maximum synaptic delay is adapted
such that the resulting apparent pixel velocities of the input match those of the data used during training.
A sensitivity analysis is presented which illustrates the effects of newly introduced parameters on the net-
work performance. Furthermore, the adapted network is tested on real event data recorded onboard a drone
avoiding obstacles. Due to the difficulties in matching the output of the adapted SNN to the ground truth
data, quantitative results are inconclusive. However, qualitative results show a clear improvement in both
the density and correctness of output spikes. The complementary code for this research can be found here:
https://github.com/tudelft/IP-STDP-FlowNet.

v

https://github.com/tudelft/IP-STDP-FlowNet




Contents

Preface iii

Abstract v

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation and Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Scientific Paper 5

II Literature Study 47

2 Foundations of Optic Flow 49
2.1 Optic Flow Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Optic Flow Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Derotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.2 Orthogonal Flat Surface Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.3 Focus of Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4 Time-to-Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.5 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Frame-Based Optic Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Lucas-Kanade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.2 Horn-Schunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Motion Detection and Obstacle Avoidance in Flying Insects 57
3.1 The Generic Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 The Compound Eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Mechanisms for Motion Detection in Flying Insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Saccadic Flight Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 The Elementary Motion Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 The Lobula Giant Movement Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Obstacle Avoidance in Flying Insects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Towards a Neuromorphic Approach for Optic Flow Estimation 69
4.1 Event Cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Available Event Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Advantages Over Frame-Based Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.4 Event-Based Optic Flow Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Spiking Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Spiking Neuron Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Synaptic Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



viii Contents

4.2.4 Intrinsic Plasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.5 Spike-Based Optic Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Neuromorphic Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Available Neuromorphic Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Optic Flow Estimation with Neuromorphic Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Insect-Inspired Obstacle Avoidance 81
5.1 Frame-Based Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Algorithmic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Neural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Event-Based Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.1 Algorithmic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 Neural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Synthesis and Conclusion 93
6.1 Robust Event-Based Optic Flow Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Insect-Inspired Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 97



Nomenclature

List of Abbreviations

ANN Artificial Neural Network

ATIS Asynchronous Time-Based Image Sensor

CFA Color Filter Arrays

CNN Convolutional Neural Network

CoG Center of Gravity

COMANV Center-Of-Mass Average Nearness Vector

CW Clockwise

DAVIS Dynamic and Active-Pixel Vision Sensor

DCMD Descending Contralateral Movement Detector

DL Drive Left Population

DMWTA Decision-Making Winner Take All

DNN Deep Neural Network

DR Drive Right Population

DVS Dynamic Vision Sensor

eDVS Embedded Dynamic Vision Sensor

EMD Elementary Motion Detector

exc Excitatory Speed Population

FAITH FAst ITerative Half- plane

FCN Fully Convolutional Network

FoE Focus of Expansion

FoV Field of View

FPGA Field-Programmable Gate Array

IF Integrate-and-Fire

IMU Inertial Measurement Unit

IP Intrinsic Plasticity

LGMD Lobula Giant Movement Detector

LIF Leaky Integrate-and-Fire

LST Lateral Sound Transmitter

LTP Long-Term Depression

LTP Long-Term Potentiation

ix



x Nomenclature

MAV Micro Aerial Vehicle

meDVS Miniature Embedded Dynamic Vision Sensor

NAS Neuromorphic Auditory Sensor

OA Obstacle Avoidance

OFE Optic Flow Encoder

OF Optic Flow

OL Obstacle Left Population

OR Obstacle Right Population

RL Reinforcement Learning

ROI Region of Interest

RQ Research Question

sEMD Spiking Elementary Motion Detector

SNN Spiking Neural Network

sp Speed Population

SRM Spike-Response-Model

SRQ Sub-Research Question

SSD Sound Source Direction

STDP Spike-Timing-Dependent Plasticity

SURF Speeded Up Robust Features

TTC Time-to-Contact

UAV Unmanned Aerial Vehicle

VLNP Ventrolateral Neuropils

VLSI Very-Large-Scale-Integration

List of Roman Symbols

Ẋ Velocity component along x-axis

ẋ Retinal velocity along x-axis of retinal plane

Ẏ Velocity component along y-axis

ẏ Retinal velocity along y-axis of retinal plane

Ż Velocity component along z-axis

t̂ Time of last output spike

I ext External driving current

p0 Principal point and origin of retinal plane coordinate system

t ( f ) Firing time of presynaptic neuron

vrest Neuron resting membrane potential

wmax Maximum weights

x0 x-component of focus of expansion



Nomenclature xi

y0 y-component of focus of expansion

x Pixel location

A Observer’s rotation along x-axis

a Parameter controlling time scale of recovery variable

B Observer’s rotation along y-axis

b Parameter controlling sensitivity of recovery variable

c Reset value of membrane potential

C (p. 31) Capacitance

C (p. 6) Observer’s rotation along z-axis

D Divergence

d Reset value of recovery variable

E (p. 10) Difference equation of pixel brightness values between two subsequent frames

E (p. 21) Excitatory

e(x,y,t) Event at pixel location (x,y) and time t

f Focal length

F(x) Brightness values at pixel location x in the first of two subsequent frames

F(w) Dependence of the STDP update on the current synapse weights w

G(x) Brightness values at pixel location x in the second of two subsequent frames

h Disparity vector

I Inhibitory

I(t) Neuron current at time t

O Origin of the coordinate system

p Projection of point P onto the retinal plane

P (p. 21) Photoreceptor

P (p. 6) Location of texture element within the visual field

R Resistance

R(t) Output of EMD at time t

S Summing

t Time

U Observer’s velocity along x-axis

u Retinal velocity along x-axis of retinal plane

u(t) Recovery variable at time t

V Observer’s velocity along y-axis

v Retinal velocity along y-axis of retinal plane

v(t) Neuron membrane potential at time t

W Observer’s velocity along z-axis

x Normalized image coordinate in x-direction

y Normalized image coordinate in y-direction



xii Nomenclature

List of Greek Symbols

α Weighing factor

∆t Time step

∆w Change in synaptic strength

ϵ (p.31) Time course of membrane potential upon receiving presynaptic spike

ϵ (p.38) Elevation

ϵb Brightness constancy constraint

ϵc Smoothness constraint

η (p.20) Adaptation gain

η (p.31) Time course of membrane potential after input spike

κ Variation of membrane potential for external driving current

λ Time constant

µ (p. 20) Parameter controlling amount of leakage

µ (p. 38) Nearness

ν Normalized velocity of observer

ω Ventral flow

φ Azimuth

τ Delay in elementary motion detector

List of Subscripts

+ Long-Term Potentiation

- Long-Term Depression

hp High-pass filter

i i th neuron

j j th presynaptic neuron

lp Low-pass filter

x Along x-axis

y Along y-axis

z Along z-axis

List of Superscripts

+ Long-Term Potentiation

- Long-Term Depression

R Rotational component

T Translational component



List of Figures

2.1 Illustration of optic flow in the visual field of a pilot during landing. Retrieved from Gibson (1979). 49
2.2 Illustration of the pinhole camera model. Retrieved from Longuet-Higgins and Prazdny (1980). . 50
2.3 Disparity h between the one-dimensional brightness functions F(x) and G(x) of a sequence of

two images. Retrieved from Lucas and Kanade (1981). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4 Fast moving scene captured with an event-based camera (left side) and with a grayscale frame-

based camera (right side). Retrieved from Chen (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 The insect visual pathway. Adapted from Graham and Philippides (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Illustration of: (a) the anatomy of a generic neuron, (b) the action potential and (c) input spikes

and output for strong and weak stimuli. Adapted from Wei et al. (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Detailed view of a single Ommatidium. Retrieved from Wolff and Ready (1993). . . . . . . . . . . . . . . . . . . . . 60
3.5 Neural implementation of the EMD in the Drosophila. Retrieved from Borst et al. (2019). . . . . . . . . . 62
3.6 Neuronal response in the fly lobula plate to sustained motion at two temporal frequencies (solid

line: 2.4 Hz, dashed line: 19.2 Hz). Retrieved from Clifford et al. (1997).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Illustration of A: the classical Reichhardt detector, B: a Reichhardt detector with four combi-

nations of ON/OFF channels and C: a Reichhard detecor with two combinations of ON/OFF
channels. Retrieved from Eichner et al. (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Schematic illustration of an EMD with adaptive delays. Retrieved from Clifford and Langley
(1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 Mapping of the traditional Reichhardt detector onto the optic lobe. Retrieved from Tuthill et al.
(2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Computational model of a neural network involving the LGMD neuron. Retrieved from Rind
and Bramwell (1996). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 Illustration of the computational model explaining avoidance and landing reactions in the fly
based on optic flow input. Retrieved from Tammero and Dickinson (2002). . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Illustration of event camera output in response to a moving hand. The left image shows the
output events buffered over a time window of 250 ms. ON- and OFF-events are represented as
light and dark gray-values. In the right image the corresponding spatiotemporal representation
is depicted. Retrieved from Barranco et al. (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Illustration of the working principle of an event camera pixel. Retrieved from Lichtsteiner et al.
(2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Illustration of the plane-fitting algorithm. Retrieved from Aung et al. (2018). . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Comparison between working principle of deep ANN and SNN. More details can be found in

the text. Retrieved from Pfeiffer and Pfeil (2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Illustration asymmetric STDP learning window. Retrieved from Madadi Asl et al. (2018). . . . . . . . . . . 76
4.6 Illustration of spatio-temporal filters for optic flow estimation. Retrieved from Orchard et al.

(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Illustration of collision avoidance method proposed in (Bertrand et al., 2015). Details can be
found in the text. Retrieved from Bertrand et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Optical flow as seen by a 120 deg FoV 2D camera when approaching a wall. The first column
shows the 30 g indoor aircraft when approaching a wall frontally (first row) and when approach-
ing at an angle of 30 deg (second row). In the second column, the OF fields for the corresponding
cases are shown. Column three depicts the OF divergences for the two different cases. Retrieved
from Zufferey and Floreano (2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Definition of the polar angle θ and the azimuth angle ψ. Retrieved from Beyeler et al. (2009). . . . . 84

xiii



xiv List of Figures

5.4 Illustration of chosen polar angle θ̂ (left) and division of the FoV (right). Retrieved from Beyeler
et al. (2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Design of a MAV robust to collisions. Retrieved from Klaptocz et al. (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Illustration of passive recentering mechanism. Retrieved from Klaptocz et al. (2010). . . . . . . . . . . . . . . 85
5.7 Architecture of SNN presented in (Low and Wyeth, 2007). Retrieved from Low and Wyeth (2007) 86
5.8 Architecture of the CNN presented in (Mancini et al., 2016). Retrieved from Mancini et al. (2016) 87
5.9 Architecture of the CNN presented in (Ponce et al., 2018). Retrieved from Ponce et al. (2018) . . . . . 87
5.10 Demonstration of the determination of the FoE. Retrieved from Clady et al. (2014). . . . . . . . . . . . . . . . . 88
5.11 Illustration of network presented in (Salt et al., 2017). a) Overview of the neural architecture. b)

Illustration of the control law. Retrieved from Salt et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.12 Overview of the neural architecture presented in (Milde et al., 2017). Retrieved from Milde et al.

(2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.13 Overview of neural architecture presented in (Schoepe et al., 2019). Retrieved from Schoepe

et al. (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.14 Illustration of the network architecture presented in (Stewart et al., 2016). Retrieved from Stew-

art et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



List of Tables

4.1 Specifications of the DVS128, DAVIS240 and ATIS. Adapted from Gallego et al. (2019) . . . . . . . . . . . . . . 71
4.2 Overview of currently available neuromorphic processors. Adapted from Gallego et al. (2019). . . . 80

6.1 Overview of presented event-based methods for optic flow estimation. "Simulation" in the Im-
plementation tab refers to models in which spiking neurons are simulated on conventional syn-
chronous Von-Neumann architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Overview of presented obstacle avoidance models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xv





1
Introduction

Flying robots have the ability to operate in hostile, cluttered environments and hard-to-reach places such
as tall structures or isolated locations. This makes them suitable for many tasks that are either too tedious,
difficult, or dangerous for human beings. Examples of this include looking for victims in crisis areas (Arnold
et al., 2018), inspections of windmills (Shafiee et al., 2021) and bridges (Chen et al., 2014), agricultural field
surveying (Christiansen et al., 2017), and predictive maintenance of gas pipes (Duisterhof et al., 2021). These
tasks frequently require the employed drones to autonomously perform complex navigational tasks such as
take-off and landing, path-planning, and obstacle avoidance, which is commonly done with the help of com-
puter vision. Furthermore, the typically cluttered operating environments pose size restrictions on the flying
robots, leading to an increased interest in tiny drones or micro air vehicles (MAVs). However, computer vision
applications onboard MAVs are often still limited by the relatively heavy weight, high power consumption,
and computational cost of the required hardware and processing algorithms.

To overcome this issue, inspiration can be drawn from flying insects as they perform fast maneuvers in unpre-
dictable, cluttered environments despite their tiny brains that come with highly limited neural and sensory
resources. Honey bees, for instance, forage for food for up to 13 km, at high speeds of around 24 km/s, while
avoiding obstacles like trees and tussocks encountered during the journey (Srinivasan, 2011). Flying insects
are known to primarily depend on visual input to perform navigational tasks, such as landing and obstacle
avoidance. In particular, they have been found to utilize optic flow, which quantifies the perceived motion of
features in the visual field of an observer. A great effort has been made to mimic this behavior and compute
optic flow using imaging sensors. However, the majority of research utilizes conventional frame-based cam-
eras, which provide full pixel arrays with brightness information at a fixed and often low (30 - 60 fps) frame
rate. This stands in stark contrast to photoreceptors in flying insects, which react asynchronously to changes
in brightness. Consequently, the use of frame-based cameras inherently limits the temporal accuracy of optic
flow estimates. This can lead to motion blur when recording fast-moving objects and redundant information
processing in the absence of motion within the visual field.

Inspired by biological retinas, a new class of vision sensors has recently emerged that do not output a se-
quence of static images, but rather a spike-like stream of data that only contains information about the time,
location, and polarity of pixels in which the log-illumination has changed by a certain threshold. These sen-
sors are called Dynamic Vision Sensors (DVS), event cameras or silicon retinas (Lichtsteiner et al., 2008; Posch
et al., 2011; Brandli et al., 2014). Event cameras achieve very high temporal resolutions, a wide dynamic range,
as well as a low power consumption. This makes them promising for the computation of optic flow onboard
MAVs. However, due to the asynchronous nature of these sensors, their output varies greatly from that of
conventional cameras. Consequently, established frame-based methods for optic flow computation cannot
directly be applied to event-based input. First efforts have already been made to translate frame-based algo-
rithmic methods (Benosman et al., 2011; Benosman et al., 2014; Hordijk et al., 2018), but also methods using
artificial neural networks (ANNs) (Zhu et al., 2018) to the event-based domain. Since ANNs mimic neural
computations in biological brains, they already represent a step towards bio-inspired optic flow estimation.
However, they still synchronously transmit information at each propagation cycle and thus do not fully utilize
the high temporal resolution of event-based cameras. This limitation can be overcome with spiking neural

1



2 1. Introduction

networks (SNNs). Unlike conventional neural networks, they imitate the asynchronous, spike-like informa-
tion transmission in biological neurons (Pfeiffer and Pfeil, 2018). This way, they can fully benefit from the
advantages of event-based vision sensors. Furthermore, they allow for efficient implementation on neuro-
morphic processors (Furber et al., 2013; Akopyan et al., 2015; Davies et al., 2018; Moradi et al., 2018; Neckar
et al., 2019) which directly reflect the structure of neural computations on a hardware level.

However, the complex internal dynamics and discrete nature of spiking neurons increase the difficulty of op-
tic flow estimation, and there are only few end-to-end spiking solutions to date. In these approaches, motion
selectivity arises either directly from the chosen architecture of the network (Salt et al., 2020; Milde et al.,
2018; Haessig et al., 2018) or through learning which adapts the strength of synaptic connections (Paredes-
Valles et al., 2020; Paredes-Vallés et al., 2021). Since learning approaches bear the promise of innovative so-
lutions and higher levels of robustness, they are of great interest for optic flow estimation onboard MAVs.
Remembering the efficiency with which flying insects perform navigational tasks, especially the approach
presented in (Paredes-Valles et al., 2020) is promising since it provides local and global optic flow estimates
in a highly biologically plausible manner. Inspired by Reinhardt detectors (Reichardt and Rosenblith, 1961),
which model motion detection in flying insects, it applies delays to several synaptic delays, and training is
performed through an unsupervised, bio-inspired learning rule called spike-timing plasticity (STDP). How-
ever, currently the choice of neuron parameters still largely depends on the spatiotemporal properties of the
input, which inherently limits the range of possible operating environments. Furthermore, the effects of the
various parameters on the network performance are coupled, which makes tuning the network a challenging
task. To overcome this issue, once again, inspiration can be drawn from nature.

In addition to changing the strength of synaptic connections, neurons in the lobula plate of insects have been
shown to adapt their intrinsic parameters through a process called intrinsic plasticity (Borst and Egelhaaf,
1987; de Ruter van Steveninck et al., 1986). Several authors have proposed approaches that utilize intrinsic
plasticity to adapt neuron parameters such as the voltage threshold, the membrane potential or the time
constant in real time, to keep the spiking activity of neurons within a desired operating range. However, these
approaches simply aim to drive the activity of neurons to a desired target value without directly incorporating
information about the network performance. This can lead to the amplification of noise within the input
signal, and thus to erroneous network outputs. Furthermore, to the best of this author’s knowledge, there
currently exist no method which adapts the maximum synaptic delay in approaches using multisynaptic
connections, such as the one presented in (Paredes-Valles et al., 2020).

1.1. Motivation and Research Question
The goal of this research is to design intrinsic plasticity update rules which adapt the maximum synaptic de-
lay and the voltage threshold within the spiking architecture presented in (Paredes-Valles et al., 2020) in real
time. The update rules shall decrease the amount of coupling between parameters to simplify the tuning
process. Furthermore, the proposed voltage threshold update rule shall not only consider the frequency but
also the correctness of output spikes. This shall increase the robustness of the network and allow applying
an existing set of trained weights to a wider range of operating conditions. This is useful since the SNN in
question can compute optic flow from raw event data in a fully spiking manner. Consequently, it can provide
lightweight, energy-efficient optic flow estimates at a significantly higher temporal resolution than existing
approaches. Furthermore, it can potentially be implemented on neuromorphic hardware. Overcoming its
current limitations would thus open the doors to high-speed visual navigation onboard MAVs which is cur-
rently still limited by weight and power restrictions. With these considerations in mind, this report aims to
address the following research question.

Can intrinsic plasticity reduce the amount of coupling between neuron parameters and increase the
robustness of the SNN for optic flow estimation presented in (Paredes-Valles et al., 2020)?



1.2. Structure of this Work 3

1.2. Structure of this Work
This report is divided into two parts. Part I is a scientific paper presenting the main contributions of the
research presented in this work. It can be read as a stand-alone document and contains background infor-
mation about the most important concepts related to this thesis as well as a summary of related work. Fur-
thermore, it provides a thorough analysis of the neural parameters of the SNN presented in (Paredes-Valles
et al., 2020) and a description of the proposed intrinsic plasticity update rules. The paper is concluded with
an evaluation of the update rules and recommendations for future work.

While the scientific paper specifically focuses on optic flow estimation, part II focuses more on its practical
applications. In particular, it presents a detailed literature review on optic flow estimation in the context of
insect-inspired obstacle avoidance onboard MAVs. First, chapter 2 provides a more detailed introduction to
optic flow including a mathematical definition and several directly related quantities. In addition, conven-
tional frame-based approaches to optic flow estimation are presented and it is explained why they are not
suitable for the use onboard MAVs. To draw inspiration for possible improvements, the working principle
of motion detection and obstacle avoidance in insects is explained in chapter 3. Subsequently, in chapter 4
technological advancements are presented which help to make optic flow estimation more power-efficient
and resilient. Furthermore, existing optic flow-related engineering applications are presented for each of
these technological advancements. In chapter 5 an overview of existing insect-inspired obstacle avoidance
methods is provided and the presented literature is synthesized in chapter 6.





I
Scientific Paper

5





1

Intrinsic Plasticity for Robust Event-Based Optic
Flow Estimation

Yvonne Eggers, Julien Dupeyroux, and Guido C.H.E. de Croon

Abstract—Event cameras and spiking neural networks (SNNs) allow for a highly bio-inspired, low-latency and power efficient
implementation of optic flow estimation. Just recently, a hierarchical SNN was proposed in which motion selectivity is learned from raw
event data in an unsupervised manner using spike-timing-dependent plasticity (STDP). However, real-life applications of this SNN are
currently still limited by the fact that the exact choice of neuron parameters depends on the spatiotemporal properties of the input.
Furthermore, tuning the network is a challenging task due to the high degree of coupling between the various parameters. Inspired by
neurons in biological brains that modify their intrinsic parameters through a process called intrinsic plasticity, this research proposes
update rules which adapt the voltage threshold and maximum synaptic delay during inference. This allows applying the already trained
network to a wider range of operating conditions and simplifies the tuning process. Starting with a detailed parameter analysis, primary
functions and undesired side effects are assigned to each parameter. The update rules are then designed in such a way as to eliminate
these side effects. Unlike existing update rules for the voltage threshold, this work does not attempt to keep the firing activity of output
neurons within a specific range, but instead aims to adjust the threshold such that only the correct output maps spike. In particular, the
voltage threshold is adapted such that output spikes occur in no more than two maps per retinotopic location. The maximum synaptic
delay is adapted such that the resulting apparent pixel velocities of the input match those of the data used during training. A sensitivity
analysis is presented which illustrates the effects of newly introduced parameters on the network performance. Furthermore, the
adapted network is tested on real event data recorded onboard a drone avoiding obstacles. Due to the difficulties in matching the
output of the adapted SNN to the ground truth data, quantitative results are inconclusive. However, qualitative results show a clear
improvement in both the density and correctness of optic flow estimates. The complementary code for this research can be found here:
https://github.com/tudelft/IP-STDP-FlowNet.

Index Terms—Optic flow estimation, spiking neural networks, spike-timing dependent plasticity, intrinsic plasticity, dynamic vision
sensors, computer vision, neuron adaptation

✦

1 INTRODUCTION

F LYING robots have the ability to operate in hostile, clut-
tered environments and hard-to-reach places such as tall

structures or isolated locations. This makes them suitable for
many tasks that are either too tedious, difficult, or danger-
ous for human beings. Examples of this include looking for
victims in crisis areas [1], inspections of windmills [2] and
bridges [3], agricultural field surveying [4], and predictive
maintenance of gas pipes [5]. These tasks frequently re-
quire the employed drones to autonomously perform com-
plex navigational tasks such as take-off and landing, path-
planning, and obstacle avoidance, which is commonly done
with the help of computer vision. Furthermore, the typically
cluttered operating environments pose size restrictions on
the flying robots, leading to an increased interest in tiny
drones or micro air vehicles (MAVs). However, computer
vision applications onboard MAVs are often still limited by
the relatively heavy weight, high power consumption, and
computational cost of the required hardware and processing
algorithms.

To overcome this issue, inspiration can be drawn from
flying insects since they perform fast maneuvers in unpre-
dictable, cluttered environments despite their tiny brains
that come with highly limited neural and sensory resources.

• Y. Eggers (MSc student), J. Dupeyroux (supervisor), and G.C.H.E. de
Croon (supervisor) are with the Control & Simulation Department at
Delft University of Technology, Delft, The Netherlands

Honey bees, for instance, forage for food for up to 13 km,
at high speeds of around 24 km/s, while avoiding obstacles
like trees and tussocks encountered during the journey [6].
Flying insects are known to primarily depend on visual
input to perform navigational tasks, such as landing and
obstacle avoidance. In particular, they have been found to
utilize optic flow, which quantifies the perceived motion of
features in the visual field of an observer. A great effort has
been made to mimic this behavior and compute optic flow
using imaging sensors. However, the majority of research
utilizes conventional frame-based cameras, which provide
full pixel arrays with brightness information at a fixed and
often low (30 - 60 fps) frame rate. This stands in stark
contrast to photoreceptors in flying insects, which react
asynchronously to changes in brightness. Consequently, the
use of frame-based cameras inherently limits the temporal
accuracy of optic flow estimates. This can lead to motion
blur when recording fast-moving objects and redundant
information processing in the absence of motion within the
visual field.

Inspired by biological retinas, a new class of vision sen-
sors has recently emerged that do not output a sequence of
static images, but rather a spike-like stream of data that only
contains information about the time, location, and polarity
of pixels in which the log-illumination has changed by a
certain threshold. These sensors are called Dynamic Vision
Sensors (DVS), event cameras or silicon retinas [7], [8], [9].
Event cameras achieve very high temporal resolutions, a



2

wide dynamic range, as well as a low power consumption.
This makes them promising for the computation of optic
flow onboard MAVs. However, due to the asynchronous
nature of these sensors, their output varies greatly from that
of conventional cameras. Consequently, established frame-
based methods for optic flow computation cannot directly
be applied to event-based input. First efforts have already
been made to translate frame-based algorithmic methods
[10], [11], [12], but also methods using artificial neural
networks (ANNs) [13] to the event-based domain. Since
ANNs mimic neural computations in biological brains, they
already represent a step towards bio-inspired optic flow
estimation. However, they still synchronously transmit in-
formation at each propagation cycle and thus do not fully
utilize the high temporal resolution of event-based cameras.
This limitation can be overcome with spiking neural net-
works (SNNs). Unlike conventional neural networks, they
imitate the asynchronous, spike-like information transmis-
sion in biological neurons [14]. This way, they can fully
benefit from the advantages of event-based vision sensors.
Furthermore, they allow for efficient implementation on
neuromorphic processors [15], [16], [17], [18], [19] which
directly reflect the structure of neural computations on a
hardware level.

However, the complex internal dynamics and discrete
nature of spiking neurons increase the difficulty of optic
flow estimation, and there are only few end-to-end spiking
solutions to date. In these approaches, motion selectivity
arises either directly from the chosen architecture of the
network [20], [21], [22] or through learning which adapts
the strength of synaptic connections [23], [24]. Since learning
approaches bear the promise of innovative solutions and
higher levels of robustness, they are of great interest for
optic flow estimation onboard MAVs. Remembering the
efficiency with which flying insects perform navigational
tasks, especially the approach presented in [23] is promising
since it provides local and global optic flow estimates in
a highly biologically plausible manner. Inspired by Rein-
hardt detectors [25], which model motion detection in fly-
ing insects, it applies delays to several synaptic delays,
and training is performed through an unsupervised, bio-
inspired learning rule called spike-timing plasticity (STDP).
However, currently the choice of neuron parameters still
largely depends on the spatiotemporal properties of the
input, which inherently limits the range of possible oper-
ating environments. Furthermore, the effects of the various
parameters on the network performance are coupled, which
makes tuning the network a challenging task. To overcome
this issue, once again, inspiration can be drawn from nature.

Neurons in the lobula plate of insects have been shown
to adapt their intrinsic parameters through a process called
intrinsic plasticity [26], [27]. Several authors have utilized
intrinsic plasticity to adapt neuron parameters such as the
voltage threshold, the membrane potential or the time con-
stant, to keep the spiking activity within a desired operating
range. However, these approaches simply aim to drive the
activity of neurons to a desired target value without directly
incorporating information about the network performance.
This can lead to the amplification of noise within the input
signal, and thus to erroneous network outputs. Further-
more, to the best of this author’s knowledge, there currently

exist no method which adapts the maximum synaptic delay
in approaches using multisynaptic connections, such as the
one presented in [23].

This research contains three main contributions. First of all,
we provide a detailed analysis of the effects of the neuron
parameters on the network performance during inference.
Based on this analysis, we propose two intrinsic plasticity
update rules which adapt the voltage threshold and the
maximum synaptic delay within the spiking architecture
presented in [23]. The update rules increase the robustness
of the network and allow applying an existing set of trained
weights to a wider range of operating conditions. Further-
more, they decrease the amount of coupling between the
various parameters, which simplifies the tuning process.
This is useful since the SNN in question can compute optic
flow from raw event data in a fully spiking manner. Con-
sequently, it can provide lightweight, energy-efficient optic
flow estimates at a significantly higher temporal resolution
than existing approaches. Due to its spiking nature, it also
bears the potential for implementation on neuromorphic
hardware. Overcoming its current limitations thus opens the
door to high-speed visual navigation onboard MAVs, which
is currently still limited by weight and power restrictions.
Finally, we provide a Python implementation of the network
proposed in [23] (originally implemented in C++), which
allows for quicker prototyping and easier interfacing with
other Python-based SNN libraries.

The remainder of this paper is structured as follows:
section 2 provides more detailed background information
about event cameras, spiking neural networks, intrinsic
plasticity, and optic flow estimation. Subsequently, the SNN
from [23], which represents the foundation for this research,
is briefly introduced in section 3 and its current limitations
are highlighted to better illustrate the motivation behind this
paper. In section 4 the analysis of the neural parameters is
performed, while section 5 - section 7 introduce the update
rules for the voltage threshold and the maximum synaptic
delay. To highlight the effects of the newly introduced
parameters, a sensitivity analysis is performed in section 8
and finally, the proposed update rules are evaluated on real
event sequences in section 9.

2 BACKGROUND

2.1 Dynamic Vision Sensors
Dynamic vision sensors mimic the working principle of
biological retinas. Rather than sampling the visual scene
at a fixed frame rate like conventional frame-based cam-
eras, each of their pixels asynchronously generates so-called
events in response to changes in the perceived brightness.
This makes their working principle similar to vision in
flying insects. Event-based vision sensors generate out-
put events whenever the logarithmic change in brightness
exceeds a predefined threshold. The changes in image
intensity are measured with respect to a reference log-
illumination saved during the last event. This information
is communicated in the form of an event stream containing
information about the location (x, y), the time stamp t, and
the polarity (ON/OFF) of the brightness change where ON
and OFF events represent increases and decreases in the log-
illumination, respectively [28].



3

2.2 Spiking Neural Networks

Spiking neural networks (SNN), are artificial neural net-
works (ANN) that imitate the working principle of bio-
logical neural networks more accurately than conventional
ANNs. While ANNs transmit information at each propaga-
tion cycle, SNNs mimic the spike-like information process-
ing in real biological processes by operating asynchronously
and in a parallel fashion. This way, information can quickly
pass through multiple network layers, resulting in an initial
output estimate as soon as the first input spikes arrive.
Consequently, neural computations boil down to the timing
of the spikes and the identity of the used synapses [14]. This
is also referred to as pseudo-simultaneous information pro-
cessing [29], [30] and is highly efficient since computations
only have to be performed in the active parts of the network.
These properties allow SNNs to fully utilize the benefits of
event-based vision sensors, which makes them promising
for the use of visual navigation onboard MAVs.

2.2.1 Neuron Models

To simulate the spike-like communication of neurons in
SNNs, a multitude of different models have been proposed
with varying levels of computational complexity and bi-
ological plausibility. Generally speaking, it can be differ-
entiated between conductance-based models that strive to
quantify the actual electrophysiological processes occurring
in real neurons, and phenomenological models which simply
aim to model the outputs of real neurons. The Hodgkin-
Huxley Model [31] e.g. is considered one of the most realistic
conductance-based models. While it is not commonly used
in engineering applications, it has served as an inspiration
for more efficient, practical approaches such as the Morris-
Lecar [32] and FitzHugh-Nagumo Model [33]. However, the
most frequently used models include the Izhikevich [34],
(Leaky) Integrate-and-Fire (LIF) [35] and Spike-Response-
Model (SRM) [36].

Despite the large number of available formulations, most
of them share the same fundamental working principle.
Generally speaking, a generic neuron fulfills three functions.
These include receiving signals, integrating them over time,
and communicating information to subsequent cells. Indi-
vidual neurons are connected through so-called synapses.
Neurons transmitting through the synapses are referred to
as presynaptic, while the receiving ends are referred to as
postsynaptic. The strength of synaptic connections is called
the synaptic efficacy and is often represented in terms of
weights that are convolved with incoming spikes. Each
neuron integrates the incoming electric signals over time,
resulting in the internal state variable called the membrane
potential v(t). Signals which increase the value of the mem-
brane potential are named excitatory, while signals which
decrease it are referred to as inhibitory. If the membrane
potential exceeds a certain voltage threshold vth, the postsy-
naptic neuron produces an output spike, and the membrane
potential is set back to the reset value vreset. Furthermore,
the neuron enters a refractory period ∆trefr during which in-
coming spikes do not affect the magnitude of the membrane
potential. In the absence of input spikes, the membrane
potential decays to its resting value vrest. This process is
illustrated in Figure 1 using the LIF model as an example.

jnj1

W1,i Wn,i

i

s j
1
(t

)
s j

n
(t

)
v i

(t
)

∆trefr

vth

vreset

t

s i
(t

)

Fig. 1: Illustration of spike propagation in the LIF model.
The spike trains sj1 to sjn of presynaptic neurons j1 to
jn are multiplied with their respective synaptic weights
W1,i to Wni

. The weighted spikes are then integrated over
time, which drives changes in the membrane potential vi(t).
Once the membrane potential crosses the threshold vth, the
postsynaptic neuron i produces an output spike si(t). At the
same time its membrane potential is reset to vi = vreset and
it enters into the refractory period ∆trefr. In the absence of
input spikes, the membrane potential decays to its resting
value vrest.

2.2.2 Synaptic Plasticity

The strengths of synaptic connections are not constant but
vary through a mechanism called synaptic plasticity which
represents the basis for learning and the forming of mem-
ories in biological neural networks [37]. To translate this
form of learning to engineering applications, a wide range of
update rules for the synaptic efficacies have been proposed.
These approaches can be divided into supervised and unsu-
pervised methods.

In unsupervised learning, no ground truth is available
and there is no notion of specific adaptations being ’good’
or ’bad’ [38]. Consequently, changes in synaptic efficacy
merely emerge locally from the spatiotemporal patterns of
the neural input. Synaptic connections between neurons are
strengthened or weakened based on the relative timing of
their output spikes. This kind of learning is referred to as
Hebbian learning after Hebb’s postulate “neurons that fire
together, wire together” [39]. The most commonly used
form of Hebbian learning is Spike-Timing-Dependent Plastic-
ity (STDP). Using this approach, the synaptic connections
are strengthened if presynaptic cells persistently activate
nearby postsynaptic cells through a process called Long-
Term Potentiation (LTP). Reversely, synaptic connections are
weakened if postsynaptic spikes persistently occur just be-
fore the presynaptic spikes. This process is called Long-Term
Depression (LTD). A wide range of STDP methods have
been proposed, which vary in their exact implementation
of the weight update rules. It can e.g. be distinguished
between additive rules, which only consider the relative



4

timing of pre- and postsynaptic spikes, and multiplicative
rules, which also account for the current synaptic efficacy
[40]. A comprehensive overview of STDP in SNNs for
pattern recognition is provided in [40]. While traditional
STDP formulations have already shown great success in
computer vision applications, such as image classification
or optic flow computation [23], [41], [42], most of them still
utilize static training approaches. This means they do no
longer update their weights to adapt to new input statistics
once the training phase has finished. This makes them less
robust to changes in the operating environment. In an effort
to overcome this issue, several authors have proposed STDP
rules that utilize controlled forgetting [43], [44], [45]. This
means that weights retain life-long plasticity without the
risk of catastrophic forgetting1 by introducing a leaky term
in the traditional STDP formulation.

In supervised learning, the output of the network is
compared to a previously established ground truth and the
synaptic weights are modified to minimize the difference
between the actual and the desired output. However, the
discontinuous nature of spiking neuron models makes the
translation of commonly used methods, such as backpropa-
gation, to SNNs challenging [46]. A multitude of approaches
aim to overcome this issue by performing backpropaga-
tion on continuous approximations of the spiking neuron
dynamics, which are often referred to as surrogate gradi-
ents [47], [48], [49], [50]. Another common strategy is to
binarize the activation functions of conventional ANNs for
efficient inference [51], [52], [53]. While binarized networks
resemble the spike-like nature of SNNs, they maintain syn-
chronous layer-by-layer information processing. However,
binarization still leads to a more energy-efficient computa-
tion on neuromorphic systems due to the sparse activations.
Other approaches avoid the issue of gradient descent in
SNNs altogether by performing the training on conventional
ANNs and subsequently converting them into SNNs [54],
[55], [56], [57]. The obtained SNNs show similar perfor-
mances as their underlying conventional neural networks
in benchmark tests, but require a large number of spikes to
accurately model the network dynamics [58], [59]. Finally,
reinforcement learning has also been applied to learning
in SNNs. While the majority of these approaches focus on
reward-modulated STDP [60], [61], there are also practical
applications including robotics tasks, such as navigation and
obstacle avoidance [62], [63].

2.2.3 Intrinsic Plasticity
In several experiments investigating the dynamic response
properties of motion detection in flying insects [26], [27],
neurons in the insect brain have been found to show
adaptation. Rather than changing the strength of synaptic
connections, this form of adaption modifies intrinsic elec-
trical neuron parameters and is thus referred to as intrinsic
plasticity. It is useful in the context of SNNs since spiking
neurons only have a limited range of responses available
and modifying the neuron parameters can help in keeping
the average activity of neurons within a desired operating
range [64].

1. Catastrophic forgetting refers to the tendency of artificial neural
networks to forget previously learned patterns when confronted with
new input.

Several authors have utilized this mechanism to adapt
the voltage threshold within SNN architectures. For this
purpose, the majority of approaches consider postsynaptic
information. In [64] e.g. the threshold is adapted to make
LIF neurons spike an average k out of N times or similarly
[65] adapt the neuron’s excitability in the Izhikevich model
to make the output firing activity match a specific goal.
Furthermore, the method proposed in [66] utilizes a low
pass filter capturing the past output activity of neurons and
adjusts the threshold accordingly.

However, experiments performed in [24] have shown
that postsynaptic approaches are often too slow to capture
the typically rapidly changing input dynamics of event
cameras. In [23] this issue is avoided by introducing a
presynaptic trace that keeps track of the recent input spike
history. By subtracting the presynaptic trace from the neuron
current, highly active neurons are penalized. However, this
also leads to an overall decrease in spiking activity, which
makes this approach less suitable for very sparse inputs.
Aiming to combine the best of both worlds, [24] have pro-
posed a crossover model which adapts the voltage threshold
based on presynaptic activity. However, their experiments
have shown no clear improvements in performance when
compared to other neuron models. Moreover, all the models
above simply aim to regulate the spiking activity, but do not
specifically aim to maximize the information content. [67]
showed that the output response of neurons in the visual
cortical follows an approximately exponential distribution.
Furthermore, they argue that this exponential distribution
yields maximal information entropy2. Consequently, sev-
eral authors have proposed neuron models with adaptive
parameters aiming to achieve an exponential output dis-
tribution. The issue of the discontinuous nature of spiking
neurons is circumvented by either directly substituting spik-
ing neuron parameters into an existing model for Sigmoid
neurons [68], assuming a constant input firing rate allowing
for a continuous formulation of the output firing rate [69],
[70], or by employing a soft-reset spiking neuron which
resets the neuron membrane potential in a mathematically
continuous manner [70].

However, all of these approaches are derived for specific
neuron models and cannot easily be translated to other
approaches. Furthermore, they only consider the spiking
activity of neurons and not the ’quality’ of output spikes.
This means that they do not directly account for the network
performance in the adaptation of the neuron parameters.
Finally, to the best of this author’s knowledge, there cur-
rently exists no update rule which adapts multiple synaptic
delays in architectures inspired by Hassenstein-Reichhardt
correlators such as the one presented in [23].

2.3 Event-Based Optic Flow Estimation
Optic flow is defined as the vectors describing the displace-
ments of features in the visual field induced by the relative
motion between an observer and its environment. Since
event cameras bear the promise of low-latency, light-weight,
and power-efficient image processing, several event-based
approaches to optic flow estimation have been proposed in

2. Information entropy describes the average level of information or
uncertainty contained in a random variable’s possible outcomes.



5

recent years. These approaches can be divided into algorith-
mic and neural methods. Examples of algorithmic solutions
include the gradient-based approach in [10] which translates
the well-known frame-based Lucas-Kanade method [71] to
event-based applications. Furthermore, several authors uti-
lize plane-fitting algorithms which estimate optic flow from
the gradients of spatiotemporal event surfaces [11], [12],
[72], [73]. Drawing inspiration from biology, spatiotemporal
filters or frequency-based methods are also often used for
algorithmic event-based optic flow estimation [74], [75],
[76]. Finally, [77], [78], [79] utilize correlation-based meth-
ods which predict optic flow by warping event images
to identify correspondences between different frames of
accumulated events.

With regard to non-spiking neural approaches, the au-
thors from [13] proposed the first convolutional neural
network (CNN) which learns optic flow in a self-supervised
manner from the photometric error of subsequent grayscale
images. They further improved on this approach in [80]
where they presented a method that no longer relies on
grayscale images as a supervisory signal, but directly uti-
lizes events for this task. In [81] an ANN similar to the
one in [13] was proposed. However, this network utilizes
the image depth and camera pose to warp successive event
slices [82]. Finally, several authors have proposed smaller
ANNs with the intention to fully utilize the high temporal
frequency of event cameras. [83], [84].

In a step toward an end-to-end spiking implementation
of optic flow estimation, the authors in [85], [86] proposed
a hybrid network that implements the ANN presented in
[13] with spiking neurons in the encoder, while still using
conventional neurons in the decoder. Furthermore, numer-
ous fully spiking neural networks have been proposed that
mimic specific neuron structures in the insect brain. These
include e.g. the elementary motion detector (EMD) [21], [22],
[87], [88] and lobula giant movement detector [20], [89].
While these models provide fast optic flow estimates and
have also been implemented on neuromorphic hardware,
they do not involve learning. To the best of this author’s
knowledge, there currently only exist two learning SNNs
for optic flow estimation. The first one is presented in [83]
and consists of a spiking implementations of the network
architectures EV-FLowNet [13] and FireNet [90]. The second
one is the previously mentioned hierarchical spiking neural
network for local and global optic flow estimation presented
in [23]. As explained in section 1, this SNN is especially
promising since it utilizes local update rules, which makes
it highly biologically plausible and thus amenable to on-
chip learning. However, currently, this network does not
generalize well to input data with spatiotemporal properties
different from those encountered during training, which
limits its use for practical applications. A more detailed
description of this network is provided in the following
section.

3 HIERARCHICAL SPIKING NEURAL NETWORK
FOR OPTIC FLOW ESTIMATION

This research aims to increase the robustness of the SNN
presented in [23]. Hence, this section provides a brief sum-
mary of its key components, architecture and the employed

neuron model (for a more detailed explanation, please refer
to [23]). Furthermore, an overview of the implementation
performed in this research is given and the current limita-
tions of the SNN are highlighted to illustrate why the use of
intrinsic plasticity is promising to increase its robustness.

To perform optic flow estimation, the SNN utilizes
velocity-tuned filters which are learned in an unsupervised
fashion from raw event data using a novel multiplicative
STDP learning rule. Motion selectivity arises with the help
of several temporal delays, which are applied to multisy-
naptic connections between neurons and mimic the working
principle of insect-inspired Hassenstein-Reichhardt correla-
tors [25]. These delays are denoted as τ and are linearly
spaced between the minimum delay τ1 = 1 ms and a
maximum delay τmax, i.e. τ ∈ [1, τmax]. Furthermore, the
proposed SNN makes use of a modified LIF neuron model,
which regulates the spiking activity of individual cells by
penalizing highly active neurons. The following sections ex-
plain the network architecture and adaptive neuron model
in more detail.

3.1 SNN Architecture

As illustrated in Figure 2, the SNN comprises of six layers.
The Input Layer encodes the event-based data into two
retinotopically arranged, two-dimensional neural maps (one
each for ON- and OFF-events). Next, the input is filtered by
extracting visual features in the Single-Synaptic Convolu-
tional (SS-Conv) Layer. To reduce the number of required
convolutional kernels, the ON- and OFF-channels are com-
bined into a single map in the Merge Layer. Subsequently,
in the Multi-Synaptic Convolutional (MS-Conv) Layer, local
motion estimates of the features extracted in the SS-Conv
layer are provided with the help of multisynaptic delays. As
a first step towards global motion estimation, the Pooling
Layer reduces the spatial dimensionality of the MS-Conv
layer. Finally, the Dense Layer, consisting of fully connected
neurons, provides a global motion estimate. The SS-Conv,
MS-Conv, and Dense layers comprise plastic neuron con-
nections which are trained with the proposed STDP rule.
The remaining layers mainly serve to merge information
and reduce the dimensionality of the network. Accordingly,
they utilize constant weights. As this work primarily focuses
on navigational tasks such as obstacle avoidance, which
heavily rely on local optic flow, only the first four layers
up to the MS-Conv layer providing local motion estimates
are considered.

3.2 Adaptive Neuron Model

Since event-based vision sensors show rapidly changing
input statistics, an adaptive neuron model was introduced
in [23]. It is based on the LIF neuron and accordingly its
internal dynamics are characterized by Equation 1, where
v represents the membrane potential, λv the voltage time
constant, vrest the resting membrane potential, and i the
forcing function. The subscript i = 1, 2, ..., nl refers to the
ith neuron in the postsynaptic layer l.

λv
dvi(t)

dt
= −(vi(t)− vrest) + ii(t) (1)



6

Input
SS-Conv

Merge
MS-Conv

Pooling Dense

Fig. 2: Illustration of the SNN architecture presented in [23].
The black arrow represents the fully connected synapses
and the red box indicates the part of the network considered
in this research.

Similarly to the LIF neuron, the modified model pro-
duces output spikes once a specific voltage threshold vth
has been reached and subsequently enters into a refractory
period ∆trefr during which incoming spikes do not affect its
membrane potential. However, in addition to the weighted
input spikes, the forcing function includes a homeostasis
parameter, penalizing highly active neurons. Denoting the
presynaptic neurons from layer l − 1 as j = 1, 2, ..., nl−1

and the delays of the multisynaptic connections as d =
1, 2, ...,m, the forcing function is defined as:

ii(t) =

nl−1∑

j=1

m∑

d=1

(
Wi,j,d sl−1

j (t− τd)−Xi,j,d(t)
)

(2)

The synaptic efficacies are denoted by W ∈ IRnl×nl−1×m

and the binary variable sl−1(t − τd) ∈ IRnl−1

represents
incoming spikes delayed by the synapse specific delay
τ ∈ IRm. Finally, the homeostasis parameter is defined in
terms of the presynaptic trace X ∈ IRnl×nl−1×m which
quantifies the recent history of transmitted spikes. The tem-
poral dynamics of this parameter are defined in Equation 3,
where λX represents the time constant of the presynaptic
trace, and α a scaling factor regulating the impact of incom-
ing spikes.

λX
dXi,j,d(t)

dt
= −Xi,j,d(t) + αsl−1

j (t− τd) (3)

Since the presynaptic trace is subtracted from the
weighted input spikes, it reduces the value of the forcing
function for highly active neurons to a higher degree than
for less active ones and thus regulates the spiking activity.
It should be noted that the formulation of the forcing func-
tions for the SS-Conv and MS-Conv layers varies slightly
from the general formulation shown in Equation 2. Rather
than subtracting the neuron-specific presynaptic trace from
the weighted input spikes, the maximum presynaptic trace
within the direct neural neighborhood Ni,k of neuron i is
considered. This way it is ensured that filters specialize
in the visual features themselves rather than their leading
edges (please refer to [23] for a more detailed explanation).
Denoting the channels in the Input layer as ch = 1, 2, ..., f (0)

and the convolutional window size as r, yields the following
formulation for the forcing function in the SS-Conv layer:

ii,k(t) =
r∑

j=1

f(0)∑

ch=1

Wj,ch,ks
(0)
j,ch(t− τ)

− max
∀b∈Ni,k

r2∑

j=1

f(0)∑

ch=1

Xb,j,ch(t)

(4)

The forcing function of the MS-Conv layer consists of
excitatory weights which are positive at filter locations
which correspond to feature edges and inhibitory weights
which are negative everywhere else. This way input features
that only partially match the excitatory component of the
weights are penalized and incorrect outputs spikes are pre-
vented. This is shown in Equation 5 where the superscripts
exc and inh refer to the excitatory and inhibitory parts of the
weights, respectively, and β ∈ [0, 1] determines the impact
of the inhibitory synapses on the weights.

ii,k(t) =

r∑

j=1

m∑

d=1

(
W exc

j,d,k + βW inh
j,d,k

)
s
(2)
j (t− τd)

− max
∀b∈Ni,k

r∑

j=1

m∑

d=1

Xb,j,d(t)

(5)

3.3 Implementation
In this research, the presented SNN was implemented using
the SNN deep learning library NORSE [91] and the open-
source machine learning framework PyTorch [92]. For train-
ing, we purposely chose a single event sequence that only
contains constant velocities and no 3D motion. This way, we
aim to illustrate that employing intrinsic plasticity allows
generalizing generic weights to input data with entirely dif-
ferent spatiotemporal dynamics. Training was performed in
a layer-by-layer manner with the event sequence presented
in [72]. It comprises a circular disk with eight compartments
of different gray levels, rotating at a constant angular veloc-
ity. The sequence has a resolution of 240 x 180 pixels and
was recorded with a DAVIS DVS [9].

As illustrated in Figure 3, this sensor produces
more events in odd-numbered than even-numbered pixel
columns. To prevent the occurrence of vertical stripes in
the weights, and to reduce the computational load, the
input was consequently downsampled by a factor of two
for both training and inference. To obtain a more circular
distribution of optic flow vectors and thus allow for a better
generalization of the weights, the rotating disk was cropped
into a square format and rotated by ± 90 degrees during
training. Furthermore, random flips in polarity and spatial
orientation were used as data augmentation mechanisms.
For evaluation, we use the ODA dataset [93] created by our
research team in the Cyber Zoo at TU Delft. It contains more
realistic sequences, including 3D motion recorded onboard
a drone avoiding indoor obstacles.

Figure 4 illustrates the rotating disk as well as an
example from the ODA sequences. Table 1 provides an
overview of the parameters used during training and in-
ference. The trained SS-Conv and MS-Conv weights are
illustrated in Figure 5 and Figure 6, respectively. For the
latter, only the weights corresponding to the first and last



7

TABLE 1: Overview of parameters used during training (Tr.) and inference (Inf.). The delays are linearly spaced within the
range [1, τmax] and all simulations were performed with a time step of ∆t = 1 ms.

Rotating disk ODA sequences

SS-Conv Merge MS-Conv SS-Conv Merge MS-Conv

Parameter Symbol Unit Inf. Tr. Inf. Inf. Tr. Inf. Inf. Inf.

N
eu

ra
l

Voltage threshold vth [-] 0.3 0.3 0.001 0.2 0.2 0.2 0.001 0.4
Resting/reset membrane potential vrest/vreset [-] 0 0 0 0 0 0 0 0
Presynaptic trace scaling factor α [-] 0.3 0.5 - 0.3 0.4 0.3 - 0.3
Presynaptic trace time constant λX [ms] 5 5 5 30 30 5 5 30
Voltage time constant λv [ms] 5 5 5 30 30 5 5 30
Refractory period ∆trefr [ms] 1 1 1 1 1 1 1 1
Maximum synaptic delay τmax [ms] 1 1 1 200 200 1 1 120

A
rc

hi
te

ct
ur

e Kernel size r [-] 5 1 5 5 1 5
Stride s [-] 2 1 2 2 1 2
Padding p [-] 0 0 0 0 0 0
Number of output maps f [-] 32 1 64 32 1 64
Number of delays m [-] 1 1 10 1 1 10

Tr
ai

ni
ng

Initialization weights winit [-] 0.5 - ± 0.5 0.5 - ± 0.5
Learning rate η [-] 5 · 10−4 - 5 · 10−4 5 · 10−4 - 5 · 10−4

Convergence threshold Lth [-] 0.05 - 0.05 0.05 - 0.05
Scale of inhibitory synapses β [-] - - 0.5 - - 0.5
Weight distribution factor a [-] 0 - 0 0 - 0

0 50 100 150 200

x-pixel [-]

0

500

1000

1500

2000

2500

N
u
m
b
er

o
f
ev
en
ts

[-
]

Fig. 3: Number of events occurring along the horizontal axis
of the event array during one sequence of the rotating disk
recorded with the DAVIS DVS.

delay are depicted due to the large number of kernels in
this layer. This allows retracing how the respective features
move through the delays and thus provides an intuitive
representation of the learned motion estimates. The optic
flow vectors depicted on the right side of Figure 6 were
computed from the MS-Conv weights following the same
approach as presented in [23]. In particular, a variation of the
histogram matching method EdgeFlow [94] was employed.
It provides optic flow estimates by summing the brightness
of the weights at two different delays in the horizontal and
vertical direction, respectively. Subsequently, a linear curve
is fitted to the difference between the resulting histograms
of the two chosen delays for both the horizontal and vertical
direction. The slopes of the lines fitted to the horizontal
and vertical histograms then represent the horizontal and
vertical optic flow components, respectively. It should be
noted that the resulting estimates are dimensionless and
normalized w.r.t. the largest optic flow magnitude. Figure 7

(a) Rotating disk [72] (b) Example ODA sequence

Fig. 4: Motives used in the generation of the event sequences
employed for training (left) and inference (right).

provides an example of the network output for the rotating
sequence during inference. Unless specified otherwise, the
parameters, units and weights presented in this section are
used for all analyses and experiments conducted in this
research.

3.4 Limitations and Motivation

While the proposed SNN has been shown to successfully
provide optic flow estimates, it is still subject to several
limitations. These are explained hereafter to highlight the
motivation behind this research.

The first limitation concerns the high degree of coupling
between the various parameters and network layers, which
makes it very challenging to tune the SNN. Ideally, every
parameter should only affect one aspect of the network
performance. From now on, we will refer to this as the
primary function. However, in reality, most parameters affect
the inference process in more than one way such that the
primary function is overshadowed by other changes which
we will refer to as side effects. The parameter α e.g. regulates



8

Fig. 5: SS-Conv weights learned from the rotating disk sequence. The first row depicts the color legend used to encode the
various output maps and the second row shows the shape of the learned kernels. ON and OFF channels are represented in
green and red, respectively.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

(a) τ = 1 ms

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

(b) τ = 200 ms

1.0 0.5 0.0 0.5 1.0
u [-]

1.0

0.5

0.0

0.5

1.0

v 
[-] 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26
27

28 29

30

31

3233

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51

52

53

54 55

56

57

58

59 60

61
62

63
64

(c) Optic flow vectors

Fig. 6: MS-Conv kernels obtained from the rotating disk sequence. The left and middle images show the kernels
corresponding to the first and last delay of the weights, respectively. Each square represents one kernel and the kernels are
sorted in increasing order of optic flow magnitude from the top left to the bottom right. The right image shows the color
legend of the optic flow vectors corresponding to the respective kernels. The directions and magnitudes are encoded in
hue and brightness, respectively, and all vectors are normalized w.r.t. the vector with the largest magnitude.

the spiking activity by penalizing the forcing function of
neurons with large presynaptic traces. Consequently, its
main function could be defined as regulating the difference
in spiking activity between various neurons. However, this
effect is overshadowed by the overall increase/decrease in
the number of output spikes that occurs, since the forcing
functions of all active neurons are penalized. This means
that the actual effect of changing α can only be seen if the
voltage threshold is also adjusted accordingly. In addition,
the tuning of the various layers is coupled. This means that
any changes made in the first layers of the network require
that subsequent layers are re-tuned.

The second limitation concerns the dependency of the
parameters on the spatiotemporal properties of the input
data. A first indicator for this issue is the fact that different
sets of parameters are needed for different kinds of input
data, as can be seen in Table 1. Furthermore, optic flow
is encoded in discrete maps whose magnitude is scaled
by a constant value of the maximum synaptic delay. This
greatly limits the range of optic flow magnitudes that can
be captured by the network. Ideally, it should be possible to
use one set of weights and parameters for a wide range
of operating conditions. However, as will be shown in
section 9, the MS-Conv layer provides poor local motion
estimates when simply applying the rotating disk parame-
ters to the ODA sequences. While this could mean that the

rotating disk weights are insufficient to capture the more
complex dynamics of the ODA sequences, simply adjusting
the inference parameters already greatly improves the optic
flow estimates. This implies that one set of weights can
be used for a wider range of input data if the inference
parameters are adjusted accordingly. It can be concluded
that both the issue of the high degree of coupling between
the parameters and the parameter’s dependency on the
input can be overcomed by adjusting the intrinsic neuron
parameters. This process corresponds exactly to the concept
of intrinsic plasticity introduced in subsubsection 2.2.3.

4 PARAMETER ANALYSIS

To establish parameter update rules, it is crucial to un-
derstand how the various parameters affect the network
performance. Consequently, this section presents a detailed
parameter analysis. For this purpose, we perform test runs
using the rotating disk data and slightly vary one param-
eter at a time. This way, we aim to identify the primary
functions and side effects of each parameter, as well as their
dependencies on the input. In doing so, we focus on neural
parameters (as opposed to parameters related to training
or the network architecture). The obtained insights are then
synthesized to evaluate how they can be utilized to propose
intrinsic plasticity update rules.



9

Input SS-Conv Merge MS-Conv

Fig. 7: Example of the outputs within the several layers of the SNN for the rotating disk sequence. ON and OFF events
within the Input layer are represented in green and red, respectively. The colour encoding schemes for the SS-Conv and
MS-Conv layers are shown in Figure 5 and Figure 6, respectively.

4.1 Analysis
For the analysis, we consider the output of the MS-Conv
layer, since the effect of the parameter τmax can only be
observed there. However, please note that the results can
also be applied to the SS-Conv layer. Figure 8 provides an
overview of the MS-Conv output using the input depicted
in Figure 7 for varying values of the network parameters.
Each of these parameters will be discussed in the following
subsections.

4.1.1 Voltage Threshold
The first row of Figure 8 shows that the output becomes
noisy for low values of the voltage threshold, vth. This
comes as no surprise, since fewer input spikes are required
to make the neurons in the subsequent layer spike. As a
result, even the noise in the input is sufficient to drive the
membrane potential over the voltage threshold. In contrast,
not all moving features are captured if the threshold is
too high. Considering that the disk is rotating clockwise
and comparing the output colors for vth = 0.1 to the
color legend depicted in Figure 6, it can also be seen
that choosing a threshold that is too low results in output
spikes in maps that do not correctly represent the motion
of the input features. Consequently, the voltage threshold’s
primary function is to regulate how closely the presynaptic
trace has to match the weights to produce output spikes.
Furthermore, it appears that the primary function of the
voltage threshold is not overshadowed by any other side
effects. This means that adjusting the threshold directly
yields the expected impact on the output without the need
to adjust any of the other parameters. The voltage threshold
does, however, depend on the input. Inputs with higher
spike frequencies require higher thresholds and vice versa,
which means that the threshold has to be adjusted to the
dynamics of the input.

4.1.2 Presynaptic Trace Scaling Factor
As explained in subsection 3.4 the primary function of the
presynaptic trace scaling factor α is to balance out differ-
ences in the spiking activity. Looking at the input depicted
in Figure 7, it can be seen that the neurons in the center
of the image spike less frequently than those at the edges.
We would expect this difference to decrease for increasing
values of α. However, in the second row of Figure 8, it
can be seen that this is not the case. Instead, the overall
number of spikes decreases. This happens since an increase

in α leads to an increase in the presynaptic trace, which in
return reduces the value of the forcing function and thus
also the membrane potential, which ultimately leads to a
decrease in the number of output spikes. Consequently, the
balancing influence of α is overshadowed by the side effect
of an overall decrease in spikes. To counteract this effect and
achieve the desired result, the voltage threshold needs to be
adjusted accordingly. Furthermore, the value of α depends
on the range of spiking activity in the input. Inputs with a
wide range of firing frequencies require large values of α to
reduce the activity of frequently spiking neurons. However,
applying the same large value of α to an input with a smaller
range of spike frequencies decreases the activity of the more
active neurons drastically. In fact, their spiking frequency
can reduce so much that they become less active than the
previously less frequently spiking neurons. This effect can
even drive the neuron activity below the noise level.

4.1.3 Presynaptic Trace Time Constant
Figure 9 depicts the schematic solution to a differential
equation equivalent to the ones shown in Equation 3 and
Equation 1 for varying magnitudes of the time constant
λ. It can be seen that changing this parameter has two
effects: larger values of λ slow down the decay of the output
and lead to an overall decrease in its magnitude, while the
reverse is true for smaller values of λ. Since changes in the
output magnitude can simply be compensated for by ad-
justing the voltage threshold, we propose that the primary
function of λX , is to control how quickly the presynaptic
trace decays. For a time constant that is too small for the
temporal dynamics of the input, the presynaptic trace fully
decays before the arrival of the next spike, similarly to the
graph corresponding to the small time constant in Figure 9.
This means that only one spike at a time can contribute to
the growth of the presynaptic trace, such that frequently
spiking neurons cannot actually be penalized. For a time
constant that is too large, on the other hand, the presynaptic
trace decays so slowly that even input spikes which have
occurred a long time ago still contribute to an overall
increase in the presynaptic trace. This phenomenon can also
be observed in Figure 9, where the graph corresponding to
a large λ value has not fully decayed yet by the time of
the arrival of the fourth input spike. As a consequence, the
output is driven to a value larger than the one after the
first spike. This means that previous spikes still contribute
to increasing the output magnitude, despite the long break



10

vth = 0.1 vth = 0.2 vth = 0.4 vth = 0.6 vth = 0.9

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

λX = 1 λX = 5 λX = 30 λX = 50 λX = 100

λv = 1 λv = 5 λv = 30 λv = 50 λv = 100

∆trefr = 1 ∆trefr = 2 ∆trefr = 4 ∆trefr = 8 ∆trefr = 16

τmax = 25 τmax = 200 τmax = 400 τmax = 600 τmax = 1000

Fig. 8: MS-Conv output for the rotating disk for varying values of the network parameters.

between spikes s3 and s4. For the presynaptic trace this
would mean that spiking neurons are penalized too much,
leading to an overall decrease in spiking activity. However,
this effect cannot be observed in the third row of Figure 8.
Instead, the overall spiking activity increases for increasing
values of λX . The reason for this becomes clear when
remembering that smaller values of λX lead to larger presy-
naptic trace magnitudes, which in return leads to smaller
values in the forcing function and thus fewer output spikes.
Furthermore, inputs with varying spike frequencies require
different values of λX which means that this parameter also
depends on the spatiotemporal properties of the input.

4.1.4 Voltage Time Constant

Similarly to the presynaptic trace time constant λX , the
primary function of the voltage time constant λv , is to
control how quickly the membrane potential decays. In
particular, the membrane potential decays more slowly in
the absence of input spikes when increasing λv and vice
versa. As explained in subsubsection 4.1.3, this increases
the maximum amount of time between two spikes, during
which the second spike still contributes to an increase in the
membrane potential. Consequently, we would like to see
the occurrence of output spikes produced by less frequently
spiking neurons when increasing λv . However, increasing



11

s1 s2 s3 s4

Time

S1

M1

L1

O
ut

pu
t

Small λ
Medium λ

Large λ

Fig. 9: Schematic representation of the solution to a generic
differential equation of the same form as Equation 1 and
Equation 3. The output is presented for three different
magnitudes of the time constant λ and the parameters s1 -
s4 represent the time of input spikes. For easier comparison,
the magnitudes of the output at the time of the first input
spike s1, are indicated as S1, M1 and L1 for the small,
medium, and large time constant, respectively.

the time constant also leads to the side effect of an overall
decrease in the membrane potential, which reduces the
number of output spikes. This effect can be seen in the
fourth row of Figure 8. Consequently, the voltage threshold
would have to be lowered for this effect to become visible.
Similarly to the presynaptic trace time constant, the spiking
frequency of the input needs to be taken into account when
tuning λv .

4.1.5 Refractory Period
The primary function of the refractory period ∆trefr is to
temporally separate output spikes by controlling for how
long neurons remains inactive after firing. If the duration
of this period increases, the density of output spikes is
expected to decrease since at each moment in time, neurons
that have previously spiked are still in the refractory period
and are thus unable to produce more output spikes. Looking
at the third row of Figure 8 it can be seen that the density of
output spikes does indeed decrease for increasing values
of ∆trefr and that there are no side effects coupling this
parameter to other parameters.

4.1.6 Maximum Synaptic Delay
Looking at the last row of Figure 8, it can be seen that
the width of the MS-Conv output increases for increasing
values of the maximum synaptic delay τmax (the remaining
delays are adjusted such that they are still linearly spaced
within the range [1, τmax]) and that the relative number of
spikes in the center increases while it decreases at the edges.
Furthermore, maps representing local motion estimates of
the same orientation but in the opposite direction start
spiking for very small values of τmax. The increased width
can be explained by the fact that inputs contributing to
the generation of an output spike reach further into the
past, such that spikes can also occur at locations further
away from the leading edge of features. If the maximum
delay used during inference is smaller than the delay that

was used during training, smaller feature displacements are
mapped onto the same weights. This means that motion,
which has previously triggered spikes in maps correspond-
ing to larger optic flow vectors, now causes spikes in maps
corresponding to slower motion. As a result, only the parts
of the image with the fastest motion still have sufficient
overlap with the weights to produce output spikes. The
reverse is true for maximum delays larger than the one used
during training. This explains why the number of spikes
in the center, corresponding to slower image velocities, in-
creases for increasing maximum delays while it decreases in
the outer parts. Finally, the use of very small delays results
in features that do effectively not move across the different
delays within the presynaptic trace. This means that they
trigger output spikes in maps that represent features of the
same orientation but moving in opposite directions. This
effects can be seen in the last row of Figure 8 for a maximum
synaptic delay of τmax = 25 ms.

4.2 Evaluation

Table 2 provides an overview of the identified primary
functions, side effects, and dependencies on the input for
each parameter. It can be seen that the side effects of three
parameters consist of changing the overall spiking activity.
Furthermore, the choice of all parameters but the maximum
synaptic delay depends on the spike frequency of the in-
put. Since adjusting the voltage threshold can compensate
for very high or low spiking activities, vth appears to be
a promising candidate for the adaption during inference.
While adjusting the threshold cannot decrease the depen-
dency on the input for presynaptic parameters (vth does not
affect the presynaptic trace), it can counteract the undesired
side effects and thus decrease the amount of coupling.
Consequently, we aim to replace the voltage threshold with
a new parameter that does not depend on the dynamics
of the input and whose value can thus be kept constant
for a wide range of different inputs. The voltage threshold
will then be adapted during inference such as to achieve
this constant value of the new parameter. The synaptic
delays represent the centerpiece of motion selectivity in
the investigated SNN. However, the analysis in this section
has shown that a suitable value of τmax is crucial for the
proper functioning of the network. Since the magnitude of
this value also depends on the spatiotemporal properties of
the input, we follow the same approach as for the voltage
threshold and introduce a new parameter for which this
is not the case. We will then adapt the maximum synaptic
delay such as to achieve a previously established constant
target value of the new parameter.

5 INTRINSIC PLASTICITY UPDATE RULES

In the previous section, it was shown that the majority of
neuron parameters are coupled to the voltage threshold and
that a suitable value for the maximum synaptic delay is
crucial for the correct functioning of the SNN presented in
[23]. Consequently, we propose update rules for these two
parameters in the following subsections.



12

TABLE 2: Summary of parameter analysis

Parameter Primary function Side effects Dependency on input

vth Regulates how closely the presynaptic
trace must match the weights to pro-
duce output spikes

- Spike frequency of input

α Balances differences in spiking activity
between neurons

Decreases overall spiking activity Range of spike frequencies
in input

λX Controls the rate of decay in the presy-
naptic trace

Increases overall spiking activity Spike frequency of input

λv Controls the rate of decay in the mem-
brane potential

Decreases overall spiking activity Spike frequency of input

∆trefr Controls the temporal separation of out-
put spikes

- Spike frequency of input

τmax Controls the temporal spacing between
presynaptic trace samples

Increases the number of active out-
put maps for small values of τmax

Pixel velocity of input

5.1 Voltage Threshold Update Rule

In section 4 we established that tuning the voltage threshold
can effectively increase or decrease the number of output
spikes and can thus help regulate the spiking activity of
output neurons. As shown in subsubsection 2.2.3 this effect
has been utilized by several authors to propose intrinsic
plasticity update rules. However, these approaches do not
directly account for the correctness of the network output.
To fill this gap, we propose an update rule which does not
explicitly regulate the spiking activity, but instead, aims to
control to what degree the presynaptic trace has to match
the filters to produce output spikes. For this purpose, we
introduce a new parameter called the synaptic stiffness S
which quantifies in how many different maps the same
input produces output spikes. Unlike the voltage threshold,
it does not depend on the spatiotemporal properties of the
input and can thus be set to a constant value. This will be
explained in more detail in section 6. We then propose the
following update rule, which adapts the voltage threshold
at neuron i such as to achieve a previously established target
value Star of the synaptic stiffness.

∆vthi
(t) = ηvth

(
(1− ci(t))(1− λvth)(vthrest

− vth(t))

−ci(t)λvthvth(t)
1∑
ck(t)

Nth∑

k=1

ck(t)(S
tar − Sk(t))

) (6)

The update rule consists of a term decreasing the voltage
threshold in the absence of output spikes (first term of
Equation 6) and a term increasing it when there are output
spikes (second term of Equation 6). The latter is computed
from the difference between the actual and the target value
of the synaptic stiffness averaged over a neural neighbor-
hood of size Nvth . In the average calculation, only the
synaptic stiffness of spiking neurons is taken into account.
Whether a neuron is spiking is indicated with the parameter
ck which takes on the value ck = 1 for spiking neurons
and ck = 0 for non-spiking neurons. Updates are only
performed on neurons that have at least one spiking neuron
within the averaging neighborhood. This is quantified by
the parameter ci which takes on the value ci = 1 if at least
one neuron within the neighborhood is spiking and ci = 0

otherwise. Choosing a window equal to the image size
results in a single voltage threshold update for all neurons,
while choosing a window size of Nvth = 1 results in a
local rule with independent updates for all neurons. While
the voltage threshold can vary across different retinotopic
locations of the image, it is constant across different maps
since the quantification of the synaptic stiffness is not map-
specific (see section 6). Since the proposed update rule
translates errors in the dimensionless synaptic stiffness to
changes in the voltage threshold, we multiply it with the
current value of the voltage threshold to avoid the need for
gain scheduling. In the absence of output spikes within the
averaging window (ci = 0), the voltage threshold is driven
to a small resting value vthrest

. The ratio between decay in
the absence of spikes and increases in the presence of spikes
is regulated with the parameter λvth . Finally, ηvth represents
the learning rate of the update rule.

5.2 Maximum Synaptic Delay Update Rule
In section 4 it was shown that an existing set of spatiotempo-
ral filters can only produce meaningful optic flow estimates
if the spatiotemporal properties of the input are similar to
the ones of the data used during training. To overcome this
limitation, we propose an update rule which adapts the
maximum synaptic delay τmax. Since the delays are linearly
spaced within the range [1, τmax], this increases/decreases
their temporal spacing and effectively slows down/speeds
up the input. By choosing an appropriate value for τmax,
this way the presynaptic trace of the input can be matched
to the shape of the existing synaptic weights. This process is
illustrated in Figure 10. On the left-hand side, the history of
the schematic presynaptic trace of a bar moving vertically
through space is depicted for varying pixel velocities. On
the right side, a schematic representation of an existing
spatiotemporal filter is shown. It can be seen that the
presynaptic traces can be matched to the existing filter by
increasing the maximum delay for the slowly moving bar
and decreasing it for the fast bar. This way, an existing set of
weights can still be used on input data with spatiotemporal
properties different from those of the training data. With this
adaptation, motion estimates are no longer only encoded
in the identity of the spiking output maps, but also in the
current value of τmax.



13

B

210 3 4 765 12118 9 10

Time [ms]

0 321 4

0 321 4 5 876

A

Fig. 10: Illustration of the suggested delay adaptation for one established spatiotemporal filter with m = 5 delays and
inputs with varying image velocities. A: schematic representation of the presynaptic trace of a bar moving vertically
through space at varying pixel velocities. Larger maximum delays are applied to slower motion and vice versa to achieve
the same apparent motion across the delays. The colorful boxes highlight the linearly spaced delays ∈ [0, τmax]. The
presynaptic traces are compressed/stretched out in time to match the existing spatiotemporal filter (B). The current time
tcur , i.e. the time relative to which the delays are applied, is set to the time at which the bar is about to leave the respective
windows. B: schematic representation of an established spatiotemporal filter to be matched. It should be noted that the
order of the windows appears to be reversed, since τ1 corresponds to the smallest delay and thus to the most recent
presynaptic trace appearing at the latest time step.

To adapt the maximum synaptic delay we introduce a
new parameter, the relative optic flow magnitude A, which
is proportional to the product of the actual optic flow
magnitude and the maximum synaptic delay, i.e.

A =
(√

u2 + v2
)
· (τmax − τ1) (7)

where u and v represent the horizontal and vertical com-
ponents of the optic flow vectors, respectively. The relative
optic flow magnitude is an indicator for how far a feature
travels across the window of a spatiotemporal filter during
the time period ∆t = τmax − τ1. As shown in Figure 10
features moving at different optic flow magnitudes can have
the same relative optic flow magnitudes if they utilize dif-
ferent maximum delays. Similarly to the synaptic stiffness,
the relative optic flow magnitude does not depend on the
properties of the input and can thus be kept at a constant
value. To match the dynamics of any input signal to a set of
existing weights, we thus propose a simple controller which
drives the relative optic flow magnitude A at neuron i to a
target value Atar. This results in the following update rule
for the change in the maximum synaptic delay τmax:

∆τmaxi
(t) =

ci(t)ητmaxτmaxi(t)
1∑
ck(t)

Nτmax∑

k=1

ck(A
tar
i −Ai(t))

(8)

The overall structure of this update rule is equivalent
to the one proposed for the voltage threshold. However,
since this rule does not rely on output spikes, the decaying
term is not required. The update is computed based on the

difference between the current relative optic flow magnitude
A and the target value Atar averaged over a window of
size Nτmax

. Since the true optic flow is not available within
the network the actual value of A cannot directly be com-
puted. Consequently, we will present several approaches to
approximate it in section 7. Choosing a window equal to the
image size results in a single τmax update for all neurons,
while choosing a window size of Nvth = 1 results in a local
rule with independent updates for all neurons. While the
maximum synaptic delay can vary across different retino-
topic locations of the image, it is constant across different
maps. Similarly to Equation 6, the parameter ck ∈ [0, 1]
indicates whether the presynaptic trace of neuron k is active
and the parameter ci ∈ [0, 1] indicates if at least one of the
presynaptic traces within the averaging window is active.
Again, updates are only performed at neurons for which
ci = 1 and only neurons with active presynaptic traces
are accounted for in the averaging computation (ck = 1).
Furthermore, the update is multiplied with the current value
of τmax to compensate for the mismatch in units between
errors in the relative optic flow magnitude (as will be
shown in section 7 the proposed approximations of A are
dimensionless) and increments in the maximum synaptic
delay. Finally, ητmax

represents the learning rate.

6 QUANTIFYING THE SYNAPTIC STIFFNESS

Given a set of distinct weights, the number of maps in which
the same input produces an output spike can be controlled
by adjusting the voltage threshold. If the voltage threshold
is set to a very low value, even a very small amount of
overlap between the presynaptic trace and the weights of



14

any map will be sufficient to drive the membrane potential
of the corresponding neurons over the spiking threshold.
Therefore, the same input will produce output spikes in a
number of different maps. However, this implies that not all
of the resulting output spikes actually classify the properties
of the input well. The opposite is true if the voltage thresh-
old is set to a very large value. Only if the input matches the
filters extremely well, does the membrane potential increase
enough to produce an output spike. Consequently, adjusting
the voltage threshold does not only allow regulating the
neuron spiking activity, but also the accuracy of the network
output. Furthermore, the number of maps in which the same
input produces output spikes is a direct indicator of this
accuracy.

An example of this is shown in Figure 11. It depicts the
number of maps in which the same input produces output
spikes for varying values of the voltage threshold during
one sequence of the rotating disk data. It can be seen that
there is indeed a direct correlation between the number of
spiking output maps and the voltage threshold. Hence, we
use this quantity to define the synaptic stiffness S. Given a
distinct set of fully trained weights, we propose that spiking
neurons increase or decrease their voltage threshold until
output spikes occur in on average S = Star output channels
within their neural neighborhood of size Nvth . We do this, to
assure that only those velocity-tuned filters, which correctly
represent the motion within the image, are spiking. Using
this idea, the complete update rule for the voltage threshold
can then be defined as

∆vthi
(t) = ηvth

(
(−ci(t))(1− λvth)(vthrest

− vth(t))

−ci(t)λvthvth(t)
1∑
ck(t)

Nth∑

k=1

ck(t)(Sk(t)− Star)
) (9)

Sk =

f(l)∑

ch=1

slk,ch(t− τd) (10)

where slk,ch ∈ [0, 1] indicates whether a spike has occurred
in map number ch at neuron location k. It should be noted
that small values of the maximum synaptic delay also in-
crease the number of maps in which output spikes occur (see
subsubsection 4.1.6). Consequently, it is also coupled to the
synaptic stiffness, and it cannot necessarily be distinguished
whether increases in S have been caused by low values of
vth or low values of τmax. While this could theoretically
lead to errors in the vth updates, the maximum synaptic
delay is also adapted to a suitable level. Thus, this issue is
only prevalent in the transient time until the value of τmax

has converged. In the design of the τmax update rule, it is
then however crucial to avoid coupling with the voltage
threshold.

7 QUANTIFYING THE RELATIVE OPTIC FLOW
MAGNITUDE

In this section, we present several approaches to quantify
the relative optic flow magnitude introduced in subsec-
tion 5.2. While not all of them have proven fruitful, we still
include them hereafter for future reference. The explored

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Voltage threshold [-]

1

6

11

16

21

26

31

36

M
ea

n
nu

m
be

r
of

sp
ik

in
g

m
ap

s
[-

]

Fig. 11: Number of MS-Conv maps in which spikes occur
per retinotopic location. The values are averaged over the
entire image and duration of the rotating disk sequence for
varying values of the voltage threshold.

approaches can be divided into post- and presynaptic, as
well as combined methods. While the postsynaptic methods
rely on information about the output spikes to quantify
A, the presynaptic methods only consider the presynaptic
trace, which makes them inherently faster. However, using
the postsynaptic approaches, computations only need to
be performed for spiking neurons while the presynaptic
methods are applied to all neurons. Finally, the combined
methods merge the two approaches by considering the
presynaptic traces of spiking neurons.

For a fair comparison between the various approaches,
we perform test runs using the same input, namely the
rotating disk sequence, for all methods. Consequently, the
real optic flow magnitude

√
u2 + v2 is kept constant across

all runs. We then vary the maximum synaptic delay, and
adjust all delays such that they are linearly spaced within
the range [1, τmax] to achieve changes in the relative optic
flow magnitude, A (see Equation 7).

7.1 Postsynaptic Approach

In order to quantify A, we need to establish how far features
travel across the presynaptic trace window within the time
frame ∆t = τmax−τ1. If the chosen value of τmax is too large
for the temporal dynamics of the input, features travel a
far distance within this time, which predominantly triggers
output spikes in maps corresponding to fast motion and vise
versa. The perhaps most obvious way of quantifying A is
thus to consider the magnitudes of the motion represented
by the spiking maps. In subsection 3.3 we have already
assigned optic flow vectors to each output map, resulting
in the distribution depicted on the right side of Figure 6.
Since A is simply the product of the optic flow magnitude
and the time difference between the first and last synaptic
delay (see Equation 7), we can assign a relative optic flow
magnitude Ach to each map. For this purpose, we should
theoretically multiply the computed optic flow magnitudes
with the value of (τmax−τ1) used during training. However,
we omit this step since the same constant value of (τmax−τ1)



15

0 200 400 600 800 1000

τmax [ms]

0.750

0.775

0.800

0.825

0.850

A
p
o
st

[-
]

vth = 0.1

vth = 0.2

vth = 0.3

vth = 0.4

(a) Apost vs τmax

0 1000 2000 3000

Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

A
p
o
st

[-
]

τmax = 25 ms

τmax = 400 ms

τmax = 600 ms

τmax = 1000 ms

(b) Apost vs time

Fig. 12: Approximated relative optic flow magnitude Apost, during one sequence of the rotating disk data. The left image
shows Apost averaged over the entire image and sequence duration for different voltage thresholds. The right image shows
the history of Apost only averaged over the entire image for varying values of the maximum synaptic delay and a constant
voltage threshold of vth = 0.2.

was used for all maps and since the optic flow vectors are
normalized to be within the range [0,1]. Consequently, we
simply define Ach as the optic flow magnitude assigned
to map ch. It should be noted that the resulting values
are not indicated in pixels, since the method described
in subsection 3.3 returns dimensionless estimates of the
optic flow vectors. Unfortunately, it is not straight-forward
to determine the optic flow vectors in a spiking manner.
Consequently, we assume the presence of a fully trained set
of weights. This allows us to only perform this computation
once and save the results such that they can be accessed
during inference. We then propose that the relative optic
flow magnitude A within the presynaptic trace of neuron
i can be approximated as the average value of Ach of the
spiking maps at the same neuron location. Denoting this
approximation as Apost, the following relationship holds

Aposti(t) =
1

∑
s
(3)
i,ch(t− τd)

f(3)∑

ch=1

s
(3)
i,ch(t− τd)Ai,ch (11)

where the binary variable s
(3)
i,ch(t − τd) represents output

spikes in the chth map at neuron i, delayed by the synapse
specific delay τd, and f (3) the number of output maps in the
MS-Conv layer.

Ideally, we would like to see a linear increase in Apost for
increasing values of A since this would indicate that Apost

does indeed approximate the relative optic flow magnitude
within the presynaptic trace well. To investigate if this is
the case, we compute Apost during several test runs with
the rotating disk sequence and vary the relative optic flow
magnitude by adjusting τmax. Furthermore, test runs are
performed for various values of vth to identify a possible
coupling with the voltage threshold, which would feed into
the issue described in section 6. The result of this analysis
is depicted on the left side of Figure 12. It can be seen

that Apost does indeed increase in an approximately linear
manner for values of up to τmax ≈ 400 ms. Subsequently, the
slope of Apost starts decreasing until it finally becomes neg-
ative. Consequently, from this point on, inputs with larger
relative optic flow magnitudes trigger spikes in output maps
which capture slower motion. This is the case since the
duration ∆t = τmax − τ1 becomes so long, that features
captured in one delay have already moved out of the presy-
naptic trace window at the time of the next delay. Instead,
neighboring features have entered the same window, and
consequently, the resulting pattern in the presynaptic trace
triggers output spikes in maps representing slower motion.
When thinking about the temporal delays as samples from
the presynaptic trace, and the amount of time it takes for a
feature to cross the presynaptic trace window as the signal
period, this is similar to aliasing in digital signal processing.
When the sampling frequency (the inverse of the temporal
spacing between the delays) is too low for the frequency
of the considered input (inverse of the signal period), the
original signal cannot be reconstructed unambiguously. Due
to this similarity, we will refer to the observed phenomenon
as temporal delay aliasing. For the purpose of quantifying A,
this is an undesirable property, since any value of Apost

cannot be clearly assigned to one individual value of A.
When trying to match the relative optic flow magnitude
to a previously established target value as proposed in
subsection 5.2, it can consequently not be determined how
τmax needs to be adjusted to meet this target.

This issue is further amplified by the fact that Apost also
depends on the voltage threshold, as can be seen on the
left side of Figure 12. This is the case since lower threshold
values allow for presynaptic traces, which do not match the
weights as closely, to produce output spikes. Consequently,
output maps corresponding to slower motion continue
spiking when increasing τmax which results in a reduced
increase in Apost when compared to larger threshold values.



16

The same value of τmax thus leads to different values of
Apost and, consequently, different approximations of A for
varying values of vth. Since the proposed update rule drives
A to a desired value by changing τmax, this would lead to
different updates for different threshold values. However,
since vth does not affect the temporal dynamics of the input,
this should not be the case. Furthermore, as explained in
section 6, the update rule of the voltage threshold is coupled
to τmax since small values of the maximum synaptic delay
can also increase the synaptic stiffness S. If the update rule
of τmax is also coupled to vth, neither parameter will be able
to converge.

Finally, the identity of spiking output maps does not
only depend on the relative optic flow magnitude, but
also largely on the motion direction. Consequently, specific
output maps might continue spiking after A has changed,
since the overall motion direction still matches the corre-
sponding filters well. This effect is further amplified by
the fact that not all optic flow directions are represented at
multiple magnitudes. Looking at the right side of Figure 6,
it can be seen that there is e.g. a lack of MS-Conv filters
which capture motion towards the bottom left at larger pixel
velocities. While maps 56 and 48 identify motion which is
at an angle of approximately 45 degrees with the horizontal,
motion to the bottom left at smaller or larger angles can
only be captured for smaller pixel velocities. Accordingly,
increasing/decreasing A does not necessarily yield output
spikes in maps corresponding to smaller/larger values of
Ach, but might just result in no output spikes whatsoever.
All of the above, leads to fluctuations in Apost which are not
necessarily caused by changes in A. This results in a poor
real-time coupling between Apost and A as shown on the
right side of Figure 12 (A is again varied by adjusting τmax).
It can be seen that the variance in Apost is larger than the
difference in the mean value for varying maximum delays.
Knowing Apost at any given moment in time does thus not
provide sufficient information to make conclusions about
the real value of A.

In conclusion, the proposed method is not suitable for an
intrinsic plasticity update rule for τmax due to the occurrence
of temporal delay aliasing, the coupling of the output spikes
with the voltage threshold, and the discrete nature of the
output maps which all allow spikes to occur in maps which
do not accurately represent the true relative optic flow
magnitude of the input. Furthermore, this method relies on
the presence of an existing set of weights, which means that
it cannot be expanded to be used during training in future
research.

7.2 Combined Approaches

The shortcomings of the postsynaptic approach presented
in the previous section can mainly be attributed to discrep-
ancies between the real relative optic flow magnitude, A,
and its approximation, Apost, which is based on the identity
of spiking output maps. In this section, we thus present
approaches that do not solely focus on output spikes,
but instead combine post- and presynaptic information by
looking at the presynaptic traces of spiking neurons. In
particular, we propose that the activity of delays within the
presynaptic trace of spiking neurons is directly connected

to the relative optic flow magnitude. For this purpose, we
define the activity ci,d of the presynaptic trace at neuron i
and synaptic delay d as follows

ci,d(t) =





1, if
1

nl−1

nl−1∑

j=1

ci,j,d(t) ≥ cith

0, if
1

nl−1

nl−1∑

j=1

ci,j,d(t) < cith

(12)

ci,j,d(t) =

{
1, if X̂i,j,d(t− τd) ≥ cjth
0, if X̂i,j,d(t− τd) < cjth

(13)

where j = 1, 2, ..., nl−1 refers to the presynaptic neurons
locally connected to neuron i (see subsection 3.2). The delay
d of the presynaptic trace of neuron i is considered active
if the average number of active individual connections
between neuron i and its presynaptic neurons exceeds the
threshold cith . This threshold was introduced to ensure that
the proposed definition of activity captures features and
not just active individual neurons, which could correspond
to noise. Individual synaptic connections are considered
active (ci,j,d = 1) if their normalized presynaptic trace X̂i,j,d

exceeds the threshold cj,th. This threshold was introduced
since the value of the presynaptic trace does not directly
reset to zero in the absence of spikes, but slowly decays
and only approaches a value of zero. The presynaptic trace
is normalized to be within the range [0,1] to avoid the need
for varying threshold values for inputs with varying spike
frequencies. Using this definition of activity, we investigate
two approaches to quantify A, including one considering
the distribution of activity across the delays and one consid-
ering the number of active delays.

7.2.1 Distribution of Active Delays
At first thought, one might expect that smaller delays within
the presynaptic trace are active more frequently for small
values of τmax and vice versa. To investigate this idea, we
have recorded the frequency of the delay activity (ci,d =
1) within the MS-Conv layer during one sequence of the
rotating disk data. The result of this is depicted in Figure 13.
It can be seen that the frequency of activity decreases across
all delays for increasing values of τmax. This is the case since
the delays take longer to fill up and stay full for a shorter
period of time for input features moving at the same pixel
velocity. This results in a lower number of output spikes.

However, the distribution of activity across the delays
does not vary much for different values of τmax. It can
be seen that it stays approximately constant for maximum
delays up to τmax ≈ 200 ms. Only if the maximum delay is
larger than the amount of time it takes for input features to
cross the presynaptic trace window, do some delays become
inactive. Predominantly, the last delays are affected by this.
A possible reason for this becomes apparent when looking
at Figure 6. There, it can be seen that the features within
the MS-Conv filters are more centered in the first than in
the last delay and as a result, inputs with the last delay
inactive are more likely to match the filters than inputs with
the first delay inactive. However, either way, there appears
to be a stronger correlation between the number of active



17

1 2 3 4 5 6 7 8 9 10

Delay number [-]

0

50000

100000

150000

Fr
eq

ue
nc

y
of

ac
ti

vi
ty

[-
]

τmax = 25 ms
τmax = 100 ms
τmax = 200 ms

τmax = 400 ms
τmax = 600 ms
τmax = 1000 ms

Fig. 13: Distribution of active delays within the presynaptic
traces of spiking neurons in the MS-Conv layer during one
sequence of the rotating disk data for varying values of τmax.
Delays are considered active if ci,d = 1 and the activity of
delays is summed over the entire image and sequence.

delays and changes in τmax than between the distribution
of activity across the delays and τmax. Consequently, we
investigate the number of active delays in the following
subsection.

7.2.2 Number of Active Delays
The specific combination of the pixel velocity of the input
data and the employed maximum synaptic delay deter-
mines within how many delay steps a feature travels across
the presynaptic trace. If the maximum synaptic delay is very
large, features can travel a long distance within the time
between two subsequent delays. As a consequence, they
may pass the entire presynaptic trace window before the
time of the last delay. This means that, at no point in time,
all delays become active. A similar effect can be observed for
features traveling at a large pixel velocity, while the opposite
is true for small values of τmax or small pixel velocities.
Consequently, the number of active delays is proportional
to the product of the pixel velocity and τmax and thus
directly correlated to the relative optic flow magnitude.
Consequently, we propose to approximate A at any spiking
neuron i with the parameter Acomb which represents the
number of active delays within the presynaptic trace of
spiking neurons i:

Acombi
(t) =

m∑

d=1

ci,d(t) (14)

Following the same reasoning as in subsection 7.1, we
would like to see a linear relationship between A and Acomb.
However, since larger values of A result in a smaller number
of active maps, we would like to see decreasing values of
Acomb for increasing values of A. The left side of Figure 14
depicts Acomb as a function of τmax for varying values of

vth. It can be seen that after an initial plateau, the number
of active delays indeed decreases in an approximately linear
fashion. The plateau is caused by the fact that the number
of active delays only starts decreasing once τmax is larger
than the amount of time it takes for features to travel across
the presynaptic trace. Unlike the postsynaptic approach,
this method does not appear to provoke temporal delay
aliasing and shows the desired trend even for larger values
of τmax. For the postsynaptic method, the presence of just
one neighboring feature within the first presynaptic delay
is sufficient to trigger spikes in output maps corresponding
to much lower values of Ach. For the combined method,
however, this only increases the number of active delays by
one and thus has a much smaller effect on the approximated
relative optic flow magnitude. Consequently, the influence
of temporal delay aliasing is greatly reduced for this ap-
proach.

Furthermore, the approximated relative optic flow mag-
nitude varies less for different values of vth when compared
to the postsynaptic approach. While the identity of the
spiking output maps still depends on the voltage threshold,
we are now considering the presynaptic trace of the spik-
ing neurons rather than the value of Ach assigned to the
maps in which they occurred. A poorly-chosen value of the
voltage threshold can still lead to erroneous output spikes,
but they now ’link’ to their presynaptic traces, which do
not depend on vth. Consequently, the voltage threshold no
longer directly controls the approximated value of A, but
only determines which presynaptic traces are considered.
This results in more consistent estimates of the relative
optic flow magnitude, and thus makes this approach more
suitable for the proposed update rule of τmax.

Moreover, the number of active delays can take on any
integer value and is not restricted to the discrete optic
flow magnitudes assigned to the output maps. This leads
to an improved real-time coupling between Acomb and the
maximum synaptic delay, as shown on the right side of
Figure 14. While there is still a large amount of overlap, the
means of the curves are more ’pulled apart’ when compared
to the right side of Figure 12. This makes it easier to draw
conclusions about τmax based on the number of active
delays. In addition, this method does not rely on an existing
set of weights and consequently also has the potential to be
applied during training in future research.

However, a major drawback of this method becomes
apparent when remembering that the presynaptic trace is
supposed to match the shape of the trained weights. To cap-
ture as many motion directions and magnitudes as possible
with the smallest possible set of weights, all delays within
the weights need to be utilized. Consequently, the target
value of Acomb should be set to Atar

comb = m. However, this
corresponds exactly to the plateau region in Figure 14 and
does thus once again create ambiguity, since different values
of τmax result in the same number of active delays. This issue
can be circumvented by setting the desired value of Acomb

just below the maximum number m. For m = 10, this value
could e.g. be Atar

comb = 9.9. However, this results in τmax

values which are too large for the input. Furthermore, it
requires averaging the number of active delays over several
neurons to drive the integer values of individual neurons to
the desired non-integer value.



18

0 200 400 600 800 1000

τmax [ms]

8

9

10

A
c
o
m
b
[-

]
vth = 0.1
vth = 0.2

vth = 0.3
vth = 0.4

(a) Acomb vs τmax

0 1000 2000 3000

Time [ms]

0

2

4

6

8

10

A
c
o
m
b
[-

]

τmax = 25 ms
τmax = 400 ms

τmax = 600 ms
τmax = 1000 ms

(b) Acomb vs time

Fig. 14: Approximated relative optic flow magnitude Acomb of spiking neurons in the MS-Conv layer during one sequence
of the rotating disk. The left image shows Acomb averaged over the entire image and sequence duration for varying values
of the voltage threshold. The right image shows the history of Acomb only averaged over the entire image for varying
values of the maximum synaptic delay and a constant voltage threshold of vth = 0.2.

7.3 Presynaptic Approaches

While the combined approach presented in the previous
section has already addressed some issues of the method
presented in subsection 7.1, it still relies on postsynaptic
information, which makes it inherently slower. In this sec-
tion we thus aim to translate this approach into a purely
presynaptic one which allows providing quicker estimates
of A using only the presynaptic trace.

However, this involves the challenging task of defining
which parts of the presynaptic trace to consider. For the
mixed approach, we simply looked at the presynaptic traces
of spiking neurons, but this is no longer possible since we
have no information about the output spikes. To illustrate
this issue, we consider an artificial sequence of a horizontal
bar moving vertically through space. To simplify this pro-
cess, the exact dynamics of the presynaptic trace as shown
in Equation 3 are omitted and the value of the presynaptic
trace is simply set to Xi,j,d = ci,j,d with cjth = 0. For
illustrative purposes, we also introduce the concept of the
folded presynaptic trace. It refers to a representation of the
presynaptic trace in which its dimensions are reduced from
X ∈ IRnl×nl−1×m to X ∈ IRnl×m, where nl, nl−1 and m
refer to the number of postsynaptic neurons i, the number
of presynaptic neurons j locally connected to any neuron
i, and m the number of delays, respectively (see subsec-
tion 3.2). Effectively, this means that the presynaptic traces
of all postsynaptic neurons are represented in a 2D image
(when representing nl in 2D) at each delay. The presynaptic
trace of individual neurons i can then be obtained from
this image by extracting a window of the size of the con-
volutional kernel, r from the folded presynaptic trace at the
corresponding retinotopic position.

As illustrated in Figure 15, we analyze the folded presy-
naptic trace of the moving bar in two separate ways. First,
it is recorded within the same convolutional window but at

different times. Subsequently, it is recorded at one specific
time, but the presynaptic trace window is translated along
the direction of motion. Consequently, the relative position
of the bar within the presynaptic trace window moves due
to the actual movement of the bar over time for the first
scenario and due to the movement of the presynaptic trace
window in space for the second scenario. For both cases,
there are four parameters of interest. These include the
reference time/distance, t0/d0, at which the moving bar
first enters the presynaptic trace window, the time/distance,
tma/ dma, at which the maximum number of delays become
active, the time/distance, td/ dd, at which the number of
active delays starts decreasing again, and the period of
time/distance, tf = td − tma/ df = dd − dma, during which
all delays are active (not indicated in Figure 15).

We consider six different combinations of the pixel ve-
locity, vp, of the bar and the maximum synaptic delay. Fur-
thermore, we introduce the parameter NAD which indicates
how many delays are active within the folded presynaptic
trace at any neuron i and any given time:

NADi
=

m∑

d=1

ci,d (15)

This definition stands in contrast to Acomb which only
refers to the number of active delays within the presynaptic
traces of spiking neurons. We do however employ the same
definition of activity as shown in Equation 12. Figure 16
depicts the history of NAD as a function of both time and
pixel distance for the six different combinations of vp and
τmax. Furthermore, for each scenario, the full presynaptic
trace history is provided for one combination of param-
eters to provide a better understanding of how features
travel across the presynaptic trace delays. Please refer to
the Appendix for the full presynaptic trace histories of the
remaining parameter combinations.



19

Z

t0 tma td

d0 dma dd

r

Fig. 15: Simplified folded presynaptic trace of an artificial
bar sequence moving vertically through space at a pixel
velocity of vp = 1px/ms. The first delay of a total of m = 5
delays is depicted. The delays are linearly spaced within
the range [1, 5] ms. The red boxes indicate convolutional
windows of size r = 9 px and the bar has a thickness of 1
px. In the upper image, the convolutional window is fixed
in space and the bar moves over time as indicated by the
green arrows. In the lower image, the location of the bar is
fixed and the window moves in space. Please refer to the
text for an explanation of the remaining symbols.

Looking at Figure 16, it can be seen that the presynaptic
trace undergoes periods during which it ’fills up’ and ’emp-
ties out’. During this process, only few delays are active.
Considering the number of active delays at these points,
would thus give the false impression of a very large relative
optic flow magnitude. It is therefore crucial to define which
parts of the presynaptic trace to consider when computing
A using only presynaptic information. In the following two
sections, we propose two approaches to dealing with this
issue. The first one considers the maximum number of active
delays within a specified window, while the second one con-
siders the average number of active delays. A more detailed
analysis of Figure 16 will be performed in subsection 7.3.

7.3.1 Maximum Number of Active Delays
The number of active delays within the presynaptic trace
only provides useful information about the relative optic
flow magnitude when the delays have fully ’filled up’. On
first thought, one might expect the fill-up time between
individual delays to contain valuable information about
the relative optic flow magnitude. However, in subsubsec-
tion 7.3.2 it will be shown that this quantity only depends on
the maximum synaptic delay and not on the pixel velocity
of the observed features. Consequently, we could simply
consider the presynaptic trace when the number of active
delays is at its maximum. However, this would introduce
large delays since we would have to wait for features to
fully move into the delays before we can start computations.
This is where the alternative approach depicted in the lower
part of Figure 15 comes in handy. Rather than waiting for
features to move through the presynaptic window, we can

simply look at the presynaptic trace of neighboring neurons
in the opposite direction of motion. For them, features
have already traveled further across the presynaptic trace
window, which allows us ’to see into the future’. Looking
at Figure 16 it can be seen that these two approaches are
not completely equivalent since they differ in the amount
of time/ number of pixels it takes for the delays to fill up.
However, the maximum number of active delays is the same
for both of them such that it can be identified by searching in
space rather than time, which avoids the introduction of lag.
Consequently, we propose to approximate the relative optic
flow magnitude at any neuron location i within the folded
presynaptic trace with the parameter Aprem . It represents
the maximum number of active delays within a window R
of size rτmax

surrounding neuron i in the folded presynaptic
trace. This results in the following definition:

Apremi
= max

∀i∈R
NADi

(16)

Theoretically, it is sufficient to look for the maximum
value of NAD in the direction of motion. However, in prac-
tice, this is difficult since the whole purpose of the network
is to identify optic flow which quantifies the motion direc-
tion. Consequently, we instead look for the maximum value
of NAD in the 2D-dimensional window of size rτmax

. This is
shown in Figure 17 which presents a 2D-illustration of the
number of active delays within the folded presynaptic trace
for the same artificial bar sequence as shown in Figure 16.

Once again, we investigate the correlation between the
proposed quantity Aprem to approximate A and the actual
value of the relative optic flow magnitude. We do this by
performing several test runs with the rotating disk sequence
at varying values of τmax. Since we only rely on presynaptic
information to compute Aprem , this parameter does not
depend on the voltage threshold. We do, however, present
results for varying values of the window size rτmax

. The
result of this is depicted on the left side of Figure 18. It can
be seen that for large window sizes, the graphs take on the
same overall shape as the equivalent combined approach.
However, the smaller the window gets, the shorter the initial
plateau becomes until it disappears completely, and the
graphs take on a non-linear shape. The initial shortening
of the plateau can be attributed to the fact that for very
large window sizes, the maximum number of active delays
is determined over a larger area. Consequently, it requires
large increases in τmax before that maximum number starts
decreasing. At some point the window size becomes so
small that at locations at which the presynaptic trace is not
’filled up’ the window does not reach the full regions. At
these window sizes, the initial plateau completely disap-
pears. For rτmax

= 1 px (= 2 % in Figure 18) we are no longer
computing the maximum number of delays which become
active but are simply averaging the number of active delays.
While this does not represent the initial intention for this
approach, it appears promising since it avoids the issue of
the initial plateau. However, to utilize this approach, we
need to better understand the regions of the presynaptic
trace in which the number of active delays is not at its peak.
From now on we will refer to these regions as the edges of
the presynaptic trace, and we will analyze them in more
detail in subsubsection 7.3.2.



20

t(5,6)ma t
(2,4,6)
dt

(1,3,5)
dt(3,4)mat(1,2)ma

0 5 10 15 20 25 30 35 40

1

2

3

4

5

N
A
D

[-
]

1: vp = 2 px/ms, τmax = 5 ms

3: vp = 2 px/ms, τmax = 10 ms

5: vp = 2 px/ms, τmax = 15 ms

2: vp = 1 px/ms, τmax = 5 ms

4: vp = 1 px/ms, τmax = 10 ms

6: vp = 1 px/ms, τmax = 15 ms

t(3)ma t
(3)
d

0 5 10 15 20 25 30 35 40

Time [ms]

2

4

6

8

10

τ
[m

s]

vp = 2 px/ms, τmax = 10 ms

(a) History of the presynaptic trace as a function of time

d(6)ma d(5)ma d
(1−6)
dd(1,4)ma d(3)mad(2)ma

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

N
A
D

[-
]

1: vp = 2 px/ms, τmax = 5 ms

3: vp = 2 px/ms, τmax = 10 ms

5: vp = 2 px/ms, τmax = 15 ms

2: vp = 1 px/ms, τmax = 5 ms

4: vp = 1 px/ms, τmax = 10 ms

6: vp = 1 px/ms, τmax = 15 ms

d(3)ma d
(3)
d

0 5 10 15 20 25 30 35 40 45 50

Distance [px]

2
4
6
8

10

τ
[m

s]

vp = 2 px/ms, τmax = 10 ms

(b) History of the presynaptic trace as a function of the pixel distance

Fig. 16: Evolution of the presynaptic trace as a function of time (upper image) and pixel distance (lower image). In each
image, the number of active delays NAD is shown in the top half for six different combinations of the pixel velocity vp
and the maximum synaptic delay τmax. The bottom parts present an example of the full presynaptic trace history for one
of these combinations. The figures were created with a presynaptic trace windows size of r = 25 px, a bar thickness of
thX = 5 px and d = 5 delays. For illustrative purposes, the delays are not spaced within [1, τmax] ms, but within the range
[τmax/m, τmax] ms.



21

1: vp = 2 px/ms, τmax = 5 ms 2: vp = 1 px/ms, τmax = 5 ms

3: vp = 2 px/ms, τmax = 10 ms 4: vp = 1 px/ms, τmax = 10 ms

5: vp = 2 px/ms, τmax = 15 ms 6: vp = 1 px/ms, τmax = 15 ms

rτmax

1 3 5

2 4 6 0

1

2

3

4

5

NAD [-]

Fig. 17: 2D-illustration of the number of active delays NAD

within the folded presynaptic trace of the artificial bar
sequence depicted in Figure 16. The blue window indicates
the size rτmax of the window R within which the maximum
value of NAD is determined in Equation 16.

Looking at the right side of Figure 18, it can be seen that
the real-time coupling between the number of active delays
and τmax is also greatly improved when compared to the
approach presented in subsection 7.2. Since the estimates
of Aprem are averaged over all neurons rather than just
the spiking ones, there is very little overlap between the
graphs corresponding to the different delays. This way,
more accurate conclusions can be drawn about the relative
optic flow magnitude based on the current value of Aprem .

7.3.2 Average Number of Active Delays

To better understand the edges of the presynaptic trace, in
this section, we do not only look at the maximum number of
delays that become active when features travels across the
presynaptic trace but its entire history. Since we are mainly
concerned with overcoming the issue of the ’plateau region’
in Figure 14, we only consider scenarios in which all delays
become active at some point. If this is not the case, it can
easily be determined that the applied maximum synaptic
delay is too large, and it can be reduced accordingly until it
hits the ’plateau region’. To see what information the edges
of the presynaptic trace contain about the relative optic flow
magnitude, we once again consider Figure 16.

For the time history, tma only depends on τmax and not
on the pixel velocity of the input. This makes sense since tma

corresponds to the time at which the last delay first becomes
active and this happens ∆t = τmax − τ1 ms after the first
delay has become active. Since tma does not depend on the
pixel velocity, it thus contains no useful information about
the relative optic flow magnitude. A similar observation can
be made for td, the time at which the number of active
delays starts decreasing again. Looking at the first row of
the full presynaptic trace history in the upper image of
Figure 16, it can be seen that td corresponds to the amount
of time it takes the feature to travel completely through the
first delay. It thus only depends on the size of the window,

the thickness of the feature and the pixel velocity. Since
the first two parameters are kept constant in Figure 16, it
appears to only depend on the pixel velocity. Consequently,
this parameter is not useful either when trying to quantify
the relative optic flow magnitude.

While the period of time during which all delays are
active does depend on both τmax and vp, it is proportional to
their difference rather than their product. Thus, once again,
it does not serve well as a means of quantifying A. This
can also be seen by comparing graphs 1 and 4 in the time
history of NAD. While they have the same relative optic flow
magnitude, they do not have the same values of tf . This
shows that the time histogram of presynaptic traces is not a
promising tool for the adaptation of the maximum delay.

The parameters of interest behave differently when con-
sidering the number of active delays as a function of space
rather than time. Similarly to td, dd corresponds to the
pixel distance within which the feature travels across the
first delay. However, since the presynaptic traces are not
considered in time but in space, it is the displacement of the
windows which makes the feature travel across the delays.
Consequently, dd does not depend on the pixel velocity
but on the window size, the thickness of the bar and the
stride with which the windows are moved. Since all of these
parameters are held constant in Figure 16, all parameter
combinations yield the same value for dd.

However, the distance dma required to fill up all delays
depends on both τmax and vp. In fact, features moving at
twice the pixel velocity take twice the number of steps to
fill up all delays when compared to the time histogram.
The reason for this becomes clear when realizing that we no
longer have the same units on the x- and y-axis. For the time
histogram the time tma it takes until tma − (τmax − τ1) = t0
is naturally just the time (τmax − τ1) itself. However, for
the distance histogram, the equivalent distance dma also
depends on the pixel velocity. This is the case since the dis-
placement of the feature within the first delay only depends
on the stride and not the chosen parameters (this can be
seen when comparing the first delay of the full histograms
shown in the Appendix ). As a result, this distance is always
the same and features that travel at a larger pixel velocity
have to move further into the window until their delayed
version first appears in the first delay. Consequently, dma

is proportional to dma ∝ τmax · vp/s which, for a con-
stant stride, corresponds exactly to the relative optic flow
magnitude! Consequently, considering the number of active
delays as a function of pixel distance rather than time does
not only avoid lag, but also captures the relative optic flow
magnitude better. In fact, Figure 16 shows that the two lines
(1,4) which correspond to the same optic flow magnitudes
coincide. This implies that inputs with the same relative
optic flow magnitude have the same values of dma and dd.

Finally, the pixel distance within which all delays remain
active is simply proportional to dd - dma. This means that
it is proportional to the negative of the relative optic flow
magnitude scaled by the stride plus dd which depends on
the stride, the window size, and the thickness of the feature.
Assuming that the thickness of the presynaptic traces is ap-
proximately constant, this entire term represents a constant.
Consequently, both dma and df are promising parameters
for the adaptation of τmax. However, dma has the additional



22

0 200 400 600 800 1000

τmax [ms]

4

6

8

10

A
p
re

m
[-

]

rτmax
= 2 %

rτmax
= 11 %

rτmax
= 16 %

rτmax
= 34 %

(a) Aprem vs τmax

0 1000 2000 3000

Time [ms]

0

2

4

6

8

10

A
p
re

m
[-

]

τmax = 25 ms
τmax = 400 ms

τmax = 600 ms
τmax = 1000 ms

(b) Aprem vs time

Fig. 18: Approximated relative optic flow magnitude Aprem of neurons in the folded presynaptic trace of the MS-Conv
layer during one sequence of the rotating disk. The left image shows Aprem averaged over the entire image and sequence
duration for varying values of the window size rτmax (provided as percentage of the total image size). The right image
shows the history of Aprem only averaged over the entire image for varying values of the maximum synaptic delay and a
constant window size of rτmax = 34 %.

advantage that it does not depend on any other constants.
The established dependencies of the various parameters
for both the time and the pixel distance histograms are
summarized in Table 3.

Unfortunately, dma and df are difficult to quantify in a
spiking manner, since they are defined in the direction of
motion. However, assuming that df is indeed constant, two
features with the same optic flow magnitude, will have the
same values for dma and df . This means that the number
of active delays NAD averaged over a small window cap-
turing the feature will be the same. This average number
of active delays can easily be computed within the neural
network. In fact, remembering the averaging window Nτmax

introduced in Equation 8, this approach is equivalent to the
one described in subsubsection 7.3.1 with a window size of
rτmax

= 1. Since this approach does not create ambiguity
for small values of τmax we deem it the most suitable to
quantify the relative optic flow magnitude. Denoting this
approximation of A, as Aprea , the complete update rule then
becomes:

∆τmaxi
(t) = ci(t)ητmax

τmaxi
(t)

1∑
ck(t)

·
Nτmax∑

k=1

ck

(
(Atar

preai
−Apreai

(t)
) (17)

Apreai
= NADi

=
m∑

d=1

ci,d (18)

ci,d(t) =





1, if
1

nl−1

nl−1∑

j=1

ci,j,d(t) ≥ cith

0, if
1

nl−1

nl−1∑

j=1

ci,j,d(t) < cith

(19)

ci,j,d(t) =

{
1, if X̂i,j,d(t− τd) ≥ cjth
0, if X̂i,j,d(t− τd) < cjth

(20)

It should, however, be noted that this approach is limited
by the feature density within the image. If the distance
between features is smaller than the desired width of dma,
their NAD-histograms start merging into each other and the
approach will start to produce erroneous results. Further-
more, this approach is based on the analysis of an artificial
sequence containing continuous movement and a constant
velocity. In addition, the temporal dynamics of the presy-
naptic trace were neglected. When translating this approach
to real life applications, we consequently implicitly make
the same assumptions about the employed real data.

8 SENSITIVITY ANALYSIS

Since the intrinsic plasticity update rules proposed in the
previous sections have introduced a number of new pa-
rameters, we perform a detailed sensitivity analysis in this
section. This shall highlight how they affect the performance
of the update rules. For this purpose, we once again consider
the MS-Conv output using the rotating disk sequence as
an input while varying one parameter at a time. Unless
specified otherwise, the remaining parameters are kept at
the values listed in Table 4.

8.1 Target Values of New Parameters
The synaptic stiffness target value Star specifies in how
many output maps the same input is allowed to produce
output spikes. The first row of Figure 19 shows how varying
this parameter affects the motion estimates provided by the
MS-Conv layer. It can be seen that small values result in
very sparse output, since we only allow one output map



23

TABLE 3: Overview of the parameters used for the analysis of the presynaptic trace edges.

Parameter Symbol Unit Dependency

Ti
m

e Time at which maximum number of delays become active tma ms f(τmax)
Time at which number of active delays starts decreasing td ms f(r, thX , vp, s)
Period of time during which all delays are active tf = tma − td ms f(r, thX , vp, s) - f(τmax)

Sp
ac

e Distance at which maximum number of delays become active dma px f(τmax · vp · 1
s

)
Distance at which number of active delays starts decreasing dd px f(r, thX , s)
Distance during which all delays are active df = dma − dd px f(r, thX , s) - f(τmax · vp · 1

s
)

TABLE 4: Overview of parameters used during intrinsic plasticity update rules of the voltage threshold vth and the
maximum synaptic delay τmax.

Parameter Symbol Unit SS-Conv MS-Conv

v
th

Synaptic stiffness target value Star [-] 2 2
Averaging window size Nth [% of image width] 100 100
Learning rate ηvth [-] 0.05 0.05
Decay Factor λvth [-] 0.5 0.5
Resting voltage threshold vthrest [-] 0.01 0.01

τ m
a
x

Relative optic flow magnitude target value Atar
prea

[-] - 6
Averaging window size Nτmax [% of image width] - 100
Learning rate ητmax [-] - -0.05
Presynaptic trace magnitude threshold cjth [-] - 0.02
Presynaptic trace quantity threshold cith [-] - 0

to spike per retinotopic location. This requires the presy-
naptic trace to match the weights very well. For increasing
values of Star this requirement is loosened, and the output
becomes denser. This does however come at the cost of a
higher density of incorrect output spikes, as can be seen
when remembering that the disk is rotating clockwise and
comparing the color legend in Figure 6 to the output for
Star = 5. Performing a trade-off between these two effects,
we chose a value of Star = 2. This value also makes sense on
an intuitive level. While allowing two output maps to spike,
limits the occurrence of contradictory estimates, it also ac-
counts for the fact that the true optic flow value might take
on a value located in between two of the discrete vectors
assigned to the output maps. As explained in section 6 we
hypothesize that this value only depends on the employed
weights and not on the input data. Consequently, we keep it
at the same, constant value regardless of the spatiotemporal
properties of the input. While Star behaves similarly to the
voltage threshold, in subsection 9.1 it will be shown that
unlike vth it is less coupled to the remaining parameters.

The target value of the estimated relative optic flow
magnitude Atar

prea
indicates how many delays we require

to be active on average within a specific presynaptic trace
window. Looking at the second row of Figure 19 it can be
seen that choosing a too small value of Atar

prea
leads to the

same behavior as choosing a too large maximum synaptic
delay and vise versa (see section 4). While the relative optic
flow magnitude has the same effect on the network perfor-
mance as the maximum synaptic delay, in section 9 it will be
shown that it depends less on the temporal dynamics of the
input. This implies that the same value of Atar

prea
provides

good results for different kinds of input data. Keeping this
in mind, we chose a value of Atar

prea
= 6 since it provides

good results for the rotating disk data.

8.2 Averaging Window Size
The averaging window size Nvth specifies the size of the
neighborhood within which individual values of the synap-
tic stiffness are averaged during the update rule. Figure 20
depicts the MS-Conv output and the resulting vth values
for varying values of Nvth using an initial threshold of
vth = 0.1 (please refer to Figure 8 for an illustration of
the initial output). Since smaller window sizes result in
an overall reduction in vth, we use a logarithmic scale,
such that differences in the voltage threshold can still easily
be identified in the corresponding images. No padding is
applied to the windows, as this would yield inconsistent
voltage threshold updates. While zero-padding does not
directly affect the computation of the window average since
only spiking neurons are taken into account, it does reduce
the number of active neurons within windows at the edges
of the image. Since the voltage threshold is reduced in
the absence of output spikes, it is thus reduced more at
the edges than in the center of the image if padding is
applied. To counteract the change in image dimensions due
to the lack of padding, the voltage threshold estimates are
upsampled using a ’nearest’ algorithm to match the original
dimensions.

While larger window sizes better eliminate erroneous
output spikes, they do not capture the less frequently
spiking features in the center and bottom of the image.
This is the case since one threshold is computed for the
entire image, resulting in a value which is too low for
some parts of the image and too high for others. This issue
seems to improve for smaller window sizes, which allow the
threshold to adapt to specific parts of the image. However,
this leads to an increase in erroneous output spikes that
can be attributed to two factors. The first one is that very
small window sizes provide little time for the algorithm to
adjust the threshold before an input feature has passed the
window. Consequently, the number of spiking maps cannot



24

Star = 1.0 Star = 2.0 Star = 3.0 Star = 4.0 Star = 5.0

Atar
prea

= 4.0 Atar
prea

= 5.0 Atar
prea

= 6.0 Atar
prea

= 7.0 Atar
prea

= 8.0

Fig. 19: MS-Conv output of the rotating disk sequence employing the intrinsic plasticity update rules for varying values of
the synaptic stiffness target value Star (first row) and the relative optic flow magnitude target value Atar

prea
(second row) .

Nvth= 100 % Nvth= 55 % Nvth= 37 % Nvth= 18 % Nvth= 3 %

Nvth= 100 % Nvth= 55 %

vth [-]

Nvth= 37 % Nvth= 18 % Nvth= 3 %
0.1

0.2

0.3
0.4
0.5
0.6

Fig. 20: Effect of the window size Nvth
on the performance of the update rule for the voltage threshold vth. The first

row shows the MS-Conv output for varying window sizes and the second row the corresponding magnitudes of vth. The
window sizes are specified as a percentage of the total image width, and for all test runs an initial value of vth = 0.1 was
used. Please refer to Figure 8 for an illustration of the initial output.

be driven to the desired value on time. The second reason
becomes clear when remembering the formulation of the
update rule. To allow the algorithm to recover from vth
values which are too high to produce any output spikes,
the term lowering the threshold in the absence of spikes
was added. However, this term becomes more and more
dependent on the input for decreasing window sizes. As-
suming that vth is too high if there are no output spikes
in the entire image is a reasonable assumption. When only
considering a small part of the image, however, a lack of
output spikes does not necessarily mean that vth is too high,
but could merely imply that there is no movement in the
corresponding part of the image. By choosing a very small
window size, we ask the algorithm to decrease the threshold
at every window until output spikes are produced, which
might also correspond to noise. This explains the overall
decrease in the voltage threshold and the occurrence of
incorrect output spikes for very small window sizes.

While the described effects are quite subtle for the pre-
sented scenario, we considered the MS-Conv layer, in which
the majority of noise has already been filtered out. We would
thus recommend the use of a larger window size in the
SS-Conv layer. Although the proposed update rule appears
to be robust in the MS-Conv layer even for small window
sizes, we still chose a value of Nvth = 100% to isolate the
performance of the proposed approach from the influence
of the window size during the evaluation.

The window size Nτmax
defines the size of the neighbor-

hood within which individual, neuron-specific estimates of
the relative optic flow magnitude are averaged during the
update rule. The effect of this parameter on the network
performance is presented in Figure 21. For all test runs, a
starting value of τmax = 25 ms was used. It can be seen
that for all window sizes, τmax is driven to a higher, more
suitable value. Accordingly, the undesired effects resulting
from using a too small τmax value (see subsubsection 4.1.6)



25

can no longer be observed in the MS-Conv output. How-
ever, for smaller window sizes, incorrect output maps start
spiking and motion in the lower center of the image is no
longer captured. The reason for this becomes apparent when
looking at the τmax values. For Nτmax

= 48/34 % the maxi-
mum synaptic delay is larger in the general central area of
the image. This makes sense since the input contains slower
motion there. However, for smaller window sizes a drastic
increase in τmax can be observed which is contained to only
the bottom left part of the center. This is the result of one
of the limitations explained in subsubsection 7.3.2. There,
we have introduced the edge of the folded presynaptic trace,
which describes the region within the folded presynaptic
trace in which the number of active delays NAD is larger
than zero but smaller than its maximum value. In the third
row of Figure 21 this corresponds to the gray regions (as
opposed to black or white) of the image. We furthermore
established that the width of these edges in the direction
of motion is directly proportional to the relative optic flow
magnitude. However, in the lower-left center of the image,
features are located so close together that their presynaptic
traces overlap and the edges are no longer visible. This
creates the illusion of a very large relative optic flow mag-
nitude and accordingly, τmax is increased to compensate
for this. As a consequence, the maximum synaptic delay
becomes so large that motion can no longer be captured
in the corresponding parts of the input. For Nτmax

= 100
% this effect is averaged over the entire image and does
thus not have a large impact. Looking at the corresponding
image of NAD it can be seen that the presynaptic traces in
fact still overlap in this region. However, for Nτmax

= 2 %,
τmax is increased so much that the presynaptic traces are
’broken up’ in the corresponding region. Finally, the effect
of the changes in τmax on the folded presynaptic trace are
shown in the last row of Figure 21. When using the same
maximum delay across the entire image, the features in the
last delay remain straight, since they are all delayed by the
same amount. For smaller window sizes, however, this is
not the case and the features in the last delay of the folded
presynaptic trace start ’bending’ since different parts are
considered at different points in time. Once the windows
become too small, features start falling apart since different
delays are applied to neighboring neurons. This is the case
since we approximate the width of the presynaptic trace
edges as the proportion between full and non-full delays.
However, once the window size becomes smaller than the
width of the edges, this is no longer possible and separate
estimates are obtained for the two regions, resulting in
discontinuous τmax updates across the image.

This analysis shows that in principle, the proposed
update rule allows computing local updates of τmax if a
sufficiently large window size is chosen. In that case the
optic flow magnitude is no longer only encoded in the
identity of the spiking output maps but also in the intrinsic
neuron state of τmax. However, this analysis also shows
that noise and overlapping edges can lead to inconsistent
updates across the image. Since accurate information about
the relative magnitudes of optic flow vectors across the
image is crucial for navigational purposes, we thus chose
to use one τmax value for all retinotopic locations. It should,
however, be noted that most of the presented shortcomings

are not inherent to the method utilizing the width of the
presynaptic edges, but are a result of the way the width is
estimated. For future research, it might thus be interesting
to investigate alternative ways of quantifying this property.

8.3 Learning Rate
As the name reveals, the learning rates ηvth and ητmax de-
termine how quickly the respective update rules respond to
changes in the input. Naturally, we would like the response
to be as quick as possible while not resulting in instability.
Using trial and error we find that this can be achieved
with learning rates of ηvth = 0.05 and ητmax = -0.5, where
the minus signs accounts for the inversely proportional
relationship between Aprea and τmax.

8.4 Decay Factor
Looking at Equation 9 it can be seen that the decay factor
λvth determines the relationship between the rate of increase
in the voltage threshold if output spikes occur in too many
maps and the decrease in the absence of output spikes.
Figure 22 depicts the MS-Conv output for varying values
of this parameter. Since λvth is mainly of interest for small
window sizes, we use a value of Nvth = 3%. For λvth = 0 the
update rule can only ever drive the threshold to the resting
value which of course leads to a large number of erroneous
output spikes. The reverse is true for λvth = 1. Since the
update rule can now only increase the threshold, the output
becomes more sparse. Accordingly, λvth can be chosen in
such a way as to either prioritize the correctness or density
of output spikes. Since we have no specific preference in this
research, we chose a value of λvth = 0.5.

8.5 Presynaptic Trace Thresholds
In section 7 it was shown that the number of active de-
lays within the presynaptic trace ’fill up’ and ’empty out’
meaning that it consists of a full part and edges on both
sides. However, in this analysis the temporal dynamics of
the presynaptic trace were neglected and in practice, the
presynaptic trace does not become zero as soon as an edge
moves out of the visual field. Instead, it slowly decays,
which effectively increases the amount of time for which
all delays are active and thus the width of the ’full’ part.
To counteract this effect, the presynaptic trace magnitude
threshold cjth was introduced in Equation 13. The effect
of this threshold on the number of active delays NAD in
the folded presynaptic trace is shown in the first row of
Figure 23. It can be seen that a threshold of cjth = 0 causes
all delays to be constantly active, since the presynaptic trace
never fully decays to zero. For increasing values of the
threshold however, the width of the full part decreases,
and the edges become visible again. Since choosing a small
threshold value results in a wider full part, the presynaptic
traces of neighboring features are more likely to overlap. As
shown in subsection 8.2 this can result in erroneous τmax

updates. However, a threshold that is too high does not
capture all input features. Performing a trade-off between
these two considerations, we chose a value of cjth = 0.02.

The second row of Figure 23 shows that with the help of
this threshold the predicted relationship between NAD and



26

Nτmax
= 100 % Nτmax

= 48 % Nτmax
= 34 % Nτmax

= 11 % Nτmax
= 2 %

Nτmax
= 100 % Nτmax

= 48 %

τmax [ms]

Nτmax
= 34 % Nτmax

= 11 % Nτmax
= 2 %

Nτmax= 100 % Nτmax= 48 %

NAD [-]

Nτmax= 34 % Nτmax= 11 % Nτmax= 2 %

Nτmax
= 100 % Nτmax

= 48 %

Xτmax [-]

Nτmax
= 34 % Nτmax

= 11 % Nτmax
= 2 %

200

600

1000

1400

2

4

6

8

10

0.015

0.050

0.080

0.150

Fig. 21: Effect of the window size Nτmax
on the performance of the update rule for the maximum synaptic delay τmax.

The first row shows the MS-Conv output for varying window sizes and the second row the corresponding magnitudes of
τmax. The third row shows the number of active delays NAD and the fourth row the maximum delay within the folded
presynaptic trace Xτmax

. The window sizes are specified as a percentage of the total image width, and for all test runs an
initial value of τmax = 25 ms was used. Please refer to Figure 8 for an illustration of the initial output.

the relative optic flow magnitude still holds true for real
data, although the temporal dynamics of the presynaptic
trace were neglected in the derivation in subsubsection 7.3.2.
In particular, a coupling between the number of active de-
lays and the relative optic flow magnitude can be observed.
The thickness of the edges increases for increasing values of
τmax while the width of the full part decreases. Furthermore,
the edges become wider towards the outer parts of the
image which correspond to larger pixel velocities. However,
the introduction of the threshold does provoke an undesired
coupling with the presynaptic trace time constant λX . While
changes in λX do not require adjustments in the maximum
synaptic delay, they do influence the shape of NAD. The
presynaptic trace decays faster for smaller values of λX such
that it reaches the threshold more quickly which results
in a more narrow full part as illustrated in the third row
of Figure 23. The opposite holds true for larger values
of λX . This is an undesirable property as it can lead to

inconsistent τmax updates for the same input and maximum
synaptic delay. The consequences of this will be illustrated
in subsection 9.1.

While cjth accounts for the fact that the presynaptic trace
never fully decays, the quantity threshold cith defined in
Equation 13 was introduced to filter out noise. Rather than
evaluating Xi,j,d at individual synapses, it controls how
many of them need to exceed the magnitude threshold for
the delay to be considered active. This ensures that features,
rather than individually firing neurons are considered, and
is thus supposed to filter out noise from the presynaptic
trace. Looking at the last row of Figure 23 it can be seen
that the amount of noise does indeed decrease for increasing
values of cjth . However, values which are too large also filter
out sparse input. To increase the robustness of the update
rule w.r.t. variations in the input signal and keeping in mind
that the SS-Conv layer filters out the majority of noise, we
consequently set the quantity threshold to cith = 0.



27

λvth = 0.00 λvth = 0.25 λvth = 0.50 λvth = 0.75 λvth = 1.00

Fig. 22: Effect of the decay factor λvth on the MS-Conv output. All test runs were performed with a window size of Nvth =
3 % and an initial value of vth = 0.1.

cjth= 0 cjth= 0.04

NAD [-]

cjth= 0.2 cjth= 0.4 cjth= 0.5

τmax= 25 τmax= 100 τmax= 200 τmax= 400 τmax= 600

λX= 5 λX= 10 λX= 30 λX= 50 λX= 100

cith= 0 cith= 0.04 cith= 0.2 cith= 0.4 cith= 0.5

2

4

6

8

10

Fig. 23: Number of active delays NAD within the folded presynaptic trace for varying values of the presynaptic trace
magnitude threshold, cjth (first row), the maximum synaptic delay, τmax (second row), the presynaptic trace time constant,
λX (third row), and the presynaptic trace quantitiy threshold, cith (fourth row).

9 EVALUATION

To asses the proposed update rules this section will first
demonstrate that their ability to decouple the neuron pa-
rameters from one another. Subsequently, both a qualitative
and a quantitative evaluation using the ODA dataset will be
performed.

9.1 Decoupling
In this section, the parameter analysis performed in section 4
is repeated utilizing the proposed update rules during infer-
ence. The corresponding snapshots of the MS-Conv output
can be seen in Figure 24 and the time histories of the voltage
threshold and the maximum synaptic delay are depicted in
Figure 25.

9.1.1 Voltage Threshold

Looking at the first row of Figure 24 and Figure 25 it can be
seen that changing the initial voltage threshold no longer
affects the output. Since the target value of the synaptic
stiffness is kept constant, the voltage threshold update rule
always drives vth to the same value. As shown in section 8
the density and accuracy of the output spikes can now be
controlled by adjusting the synaptic stiffness. Furthermore,
the update rule for the maximum synaptic delay appears to
be unaffected by changes in vth. This was expected, since
the τmax updates only rely on presynaptic information.



28

vth = 0.1 vth = 0.2 vth = 0.4 vth = 0.6 vth = 0.9

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

λX = 1 λX = 5 λX = 30 λX = 50 λX = 50

λv = 1 λv = 5 λv = 30 λv = 50 λv = 100

∆trefr = 1 ∆trefr = 4 ∆trefr = 8 ∆trefr = 16 ∆trefr = 32

τmax = 25 τmax = 200 τmax = 400 τmax = 600 τmax = 1000

Fig. 24: MS-Conv output for the rotating disk employing the proposed update rules.

9.1.2 Presynaptic Trace Scaling Factor

In section 4 the main function of α was defined as balancing
out differences in the spiking activity of neurons. Previously,
this main function was overshadowed by the overall de-
crease in the number of output spikes caused by increases in
α. Looking at the second row of Figure 25, it can be seen that
the vth update rule automatically counteracts this effect by
decreasing vth. The second row of Figure 24 shows that this
uncovers the main function of the presynaptic trace scaling
factor. For increasing values of α the spiking activity of the
less active blue part of the output decreases less than for

the more active green part. While an overall decrease in
spiking activity can still be observed, this is only the case
since at some point α decreases the spiking activity so much
that vth approaches zero and cannot be lowered any further.
Although α affects the presynaptic trace, it does not appear
to influence the τmax update rule. This is the case since τmax

is adapted by considering the width of the edges within the
folded presynaptic trace, while α only affects its magnitude.
Using the normalized presynaptic trace in Equation 13 thus
prevents any undesired coupling between the τmax-update
and α.



29

0.0

0.5

1.0

1.5

2.0

v t
h

[-
]

vth = 0.1
vth = 0.2
vth = 0.4

vth = 0.6
vth = 0.9

0

250

500

750

1000

τ m
a
x

[m
s]

vth = 0.1
vth = 0.2
vth = 0.4

vth = 0.6
vth = 0.9

0.0

0.5

1.0

1.5

2.0

v t
h

[-
]

α = 0.1
α = 0.2
α = 0.3

α = 0.4
α = 0.5

0

250

500

750

1000

τ m
a
x

[m
s]

α = 0.1
α = 0.2
α = 0.3

α = 0.4
α = 0.5

0.0

0.5

1.0

1.5

2.0

v t
h

[-
]

λX = 5
λX = 10
λX = 30

λX = 50
λX = 100

0

250

500

750

1000

τ m
a
x

[m
s]

λX = 5
λX = 10
λX = 30

λX = 50
λX = 100

0.0

0.5

1.0

1.5

2.0

v t
h

[-
]

λv = 5
λv = 10
λv = 30

λv = 50
λv = 100

0

250

500

750

1000

τ m
a
x

[m
s]

λv = 5
λv = 10
λv = 30

λv = 50
λv = 100

0.0

0.5

1.0

1.5

2.0

v t
h

[-
]

∆trefr = 1
∆trefr = 2
∆trefr = 4

∆trefr = 8
∆trefr = 16

0

250

500

750

1000

τ m
a
x

[m
s]

∆trefr = 1
∆trefr = 2
∆trefr = 4

∆trefr = 8
∆trefr = 16

0 500 1000 1500 2000

Time [ms]

0.0

0.5

1.0

1.5

2.0

v t
h

[-
]

τmax = 25
τmax = 200
τmax = 400

τmax = 600
τmax = 1000

0 500 1000 1500 2000

Time [ms]

0

250

500

750

1000

τ m
a
x

[m
s]

τmax = 25
τmax = 200
τmax = 400

τmax = 600
τmax = 1000

Fig. 25: History of the voltage threshold vth and maximum synaptic delay τmax during one sequence of the rotating disk
data employing the proposed update rules.



30

9.1.3 Presynaptic Trace Time Constant
In section 4 it was established that choosing a value of the
presynaptic trace time constant λX which is too small for the
temporal dynamics of the input, diminishes the penalizing
effect of the presynaptic trace on frequently spiking neurons.
Furthermore, it was explained that choosing a value that is
too large would lead to an overall decease in spiking activ-
ity. However, these predicted effects cannot be observed in
Figure 24, despite the applied voltage threshold update rule.
Instead, the output appears to behave similarly to when
the maximum synaptic delay is adjusted. The reason for
this becomes clear when observing the history of τmax in
the third row of Figure 25. Although λX does theoretically
not affect the relative optic flow magnitude, τmax takes on
different values for varying values of the maximum synaptic
delay. This undesired effect is a result of the coupling
between NAD and λX as shown in subsection 8.5. Since the
presynaptic trace takes longer to decay to the threshold cjth
for larger values of λX , the width of the full part of the
presynaptic trace increases. This in return, leads to larger
estimates of the relative optic flow magnitudes and thus
to increases in τmax. Consequently, the expected behavior
of the output is overshadowed by the changes in τmax. In
practice this coupling can lead to erroneous τmax updates if
the value of λX does not match the temporal dynamics of
the input well.

9.1.4 Voltage Time Constant
The main function of λv is to control the temporal dynamics
of the modified LIF neurons. In section 4 we assumed
that smaller values of λv should thus result in outputs in
which neurons with higher input spike frequencies should
become more active and vice versa. However, this effect
was completely overshadowed by the overall decrease in
the spiking activity for increasing values of λv . Looking at
the fourth row of Figure 25, it can be seen that once again
the vth update rule counteracts this effect by decreasing
the voltage threshold for larger values of λv . Accordingly,
the main effect of λv now becomes visible in the fourth
row of Figure 24. For small values of λv the membrane
potential decays so quickly that only neurons with fast input
dynamics at the outer edges of the image can still produce
output spikes. As the value of λv increases, the membrane
potential decays less quickly and also neurons in the center
parts of the image with slower input dynamics can produce
output spikes. Since λv does not affect the presynaptic trace,
there is no coupling between this parameter and the τmax

update rule.

9.1.5 Refractory Period
In section 4 it was shown that there appears to be no major
coupling between the refractory period and the remaining
parameters. Accordingly, the update rules of both vth and
τmax are largely unaffected by changes in this parameter.
While there are slight differences in the history of the volt-
age threshold, it always fluctuates around the same value.
These small differences can be attributed to the fact the
refractory period affects the density of the output spikes,
which in return can have a minor effect on the synaptic
stiffness.

9.1.6 Maximum Synaptic Delay
In the last rows of Figure 24 and Figure 25 it can be seen
that, similarly to adapting the voltage threshold, adapting
the maximum synaptic delay no longer affects the output.
Regardless of the initial maximum synaptic delay, τmax is
always driven to the same value. This is the case since
the temporal spacing within the presynaptic trace is now
controlled with the relative optic flow magnitude as was
shown in section 8. In the history of τmax it can be seen that
τmax stays constant for a while before it starts adapting. This
is the case since the update rule is only performed once the
delays have filled up at t > τmax. Furthermore, initial oscil-
lations can be observed for larger values of τmax. These can
be attributed to the fact the τmax update is multiplied with
the current value of the maximum synaptic delay. This shall
account for the fact that the dimensionless approximation
of the relative optic flow magnitude is directly translated
into a delay and shall avoid the need for different gains for
different temporal input dynamics. However, in this case it
effectively changes the learning rate since the same input
is used and only the value of τmax is varied. The peaks in
the history of vth are a result of the coupling between the
synaptic stiffness and the maximum synaptic delay at small
values of τmax as explained in section 6.

Overall, it can be concluded that the proposed update
rules achieve the desired decoupling for all parameters but
the presynaptic trace time constant λX . Here, the coupling
between the estimate of the relative optic flow magnitude
and the presynaptic trace results in undesired changes of
the maximum synaptic delay. When tuning the network,
adjustments in λX will thus have to be accompanied with
adjustments in Atar to counteracts the undesired changes in
τmax.

9.2 Qualitative Results

As explained in subsubsection 7.3.2, the main limitation of
the τmax update rule consists of the fact that it struggles
with high spatial frequencies. However, commonly used
event camera data sets such as MVSEC [82] typically contain
very dense input. Consequently, we resort to using the ODA
sequences presented in subsection 3.3 for evaluation. Since
there is no official ground truth available for this dataset, we
compute it with EV-FlowNet which has shown a high level
of accuracy for event-based optic flow estimation [13]. We
use the same weights and parameters as in all the previous
analyses (see Table 4) but chose a stride of s = 1 in all
network layers to increase the resolution for illustrative
purposes.

Figure 26 depicts the time history of the parameters
vth, τmax, S, and Aprea during one sequence of the ODA
dataset. It can be seen that the update rules drive the
voltage threshold of the SS-Conv layer down while driving
the threshold in the MS-Conv layer up. Furthermore, the
maximum synaptic delay is reduced when compared with
the non-adapted value. Figure 27 and Figure 28 show the
effect of these changes on the network output at several
different times within the sequence. Most of the presented
examples correspond to the end of the sequence when the
drone approaches the truss structure depicted in the back
of the right image in Figure 4. This is the case since at this



31

0 2000 4000 6000 8000

Time [ms]

0.2

0.4

0.6

0.8

v t
h
[-
]

SS-Conv

Unadapted

Adapted

0 2000 4000 6000 8000

Time [ms]

0.2

0.4

0.6

0.8

v t
h
[-
]

MS-Conv

Unadapted

Adapted

0 2000 4000 6000 8000

Time [ms]

50

100

150

200

τ m
a
x
[m

s]

MS-Conv

Unadapted

Adapted

0 2000 4000 6000 8000

Time [ms]

0

10

20

30

S
[-
]

Unadapted

Adapted

0 2000 4000 6000 8000

Time [ms]

0

10

20

30

S
[-
]

Unadapted

Adapted

0 2000 4000 6000 8000

Time [ms]

3

6

9

12

A
p
re

a
[-
]

Unadapted

Adapted

Fig. 26: History of the adapted and newly introduced parameters during one sequence of the ODA dataset.

point the density of input events reduces due to the lower
contrast in the image. Consequently, the effect of the update
rules can best be observed at this time. While the MS-Conv
threshold is larger for the adapted sequences, the reduction
of the threshold in the SS-Conv layer allows the network
to capture features which it has previously missed. In fact,
some features are even better captured than in the ground
truth computed with EV-FlowNet. Reversely, towards the
end of the sequence, the increase in the voltage threshold
leads to a reduction in erroneous output spikes, as can be
seen in the bottom image of Figure 27.

In section 4 it was shown that a maximum synaptic
delay which is too large for the temporal dynamics of the
input leads to a stretched out ’broken up’ appearance of
the edges in the output. This phenomenon can be observed
in the non-adapted MS-Conv output images in Figure 28.
Furthermore, the number of active delays shows very wide
’edges’ which can also be attributed to a value of τmax

which is too large (see section 7). Both of these effects can
no longer be observed in the images corresponding to the
adapted output, implying that the IP update rules have
successfully driven the maximum synaptic delay to a more
suitable value.

9.3 Quantitative Results

Given the provided ground truth, a meaningful quantita-
tive evaluation of the proposed update rules is a highly
challenging task. However, to lay the foundation for future
research, this section highlights the exact problems that arise
and shows possible solutions that were investigated.

The quantitative analysis has identified that the pro-
posed voltage threshold update rule performs especially
well for sparse input data when compared to the unadapted
model. However, for sparse input data EV-FlowNet pro-
vides close-to-zero optic flow estimates [13] which means

that this strong point cannot be evaluated in a quantitative
manner. While this limitation can be attributed to the choice
of ground truth data, there are other issues which are inher-
ent to the properties of the SNN analyzed in this research.

First of all, our SNN does not provide numerical optic
flow estimates. Instead, motion direction is encoded in the
identity of the spiking output maps. As explained in subsec-
tion 3.3 the optic flow vectors corresponding to the output
maps were approximated using the variant of the EdgeFlow
histogram matching method presented in [23]. However,
unlike most available ground truth data, this method does
not encode optic flow as pixel-wise displacements. Conse-
quently, a correction factor, cf , was applied mapping our
optic flow estimates to pixel-wise displacements. Assum-
ing a constant ratio between the pixel displacement and
the computed optic flow magnitude, we use the following
correction factor:

cf =
Npx · dtEV

ŌF · τmax
(21)

where Npx represents the manually determined pixel dis-
placement for one specific map, ŌF , the corresponding
computed optic flow magnitude and dtEV the time step
used for the evaluation with EV-FlowNet. For convenience,
the pixel-wise displacement was determined for the third
map, which primarily contains vertical motion. Visual in-
spection of Figure 6 gives Npx ≈ 1 px.

Another difficulty lies in the different time steps applied.
Most existing ground truth data for event-based optic flow
estimation provide estimates in frequencies which corre-
spond to frame rates in conventional cameras. However, the
network proposed in this work utilizes a much smaller time
step of dt = 1 ms. Employing a larger time step would
require the use of a different set of parameters and it would
not be clear if the results could be translated back in a
meaningful way. Buffering the output spikes on the other



32

A
da
pt
ed

U
na
da
pt
ed

EV-FlowNetInput SS-Conv NAD MS-Conv

(a) t = 5963 ms

A
da
pt
ed

U
na
da
pt
ed

EV-FlowNetInput SS-Conv NAD MS-Conv

(b) t = 6355 ms

A
da
pt
ed

U
na
da
pt
ed

EV-FlowNetSS-Conv NAD MS-ConvInput

(c) t = 8070 ms

Fig. 27: SNN output employing the proposed intrinsic plasticity update rules at different times during one sequence of
the ODA dataset. The first column shows the input to the network, the second one the SS-Conv output, the third one the
number of active delays NAD within the folded presynaptic trace of the MS-Conv layer (brighter pixels represent larger
values), the fourth column the MS-Conv output and the fith column the output obtained with EV-FlowNet.



33

A
da
pt
ed

U
na
da
pt
ed

EV-FlowNetInput SS-Conv NAD MS-Conv

(a) t = 922 ms

A
da
pt
ed

U
na
da
pt
ed

EV-FlowNetInput SS-Conv MS-ConvNAD

(b) t = 4923 ms

Fig. 28: SNN output employing the proposed intrinsic plasticity update rules at different times during one sequence of
the ODA dataset. The first column shows the input to the network, the second one the SS-Conv output, the third one the
number of active delays NAD within the folded presynaptic trace of the MS-Conv layer (brighter pixels represent larger
values), the fourth column the MS-Conv output and the fith column the output obtained with EV-FlowNet.

hand, results in output features which are much thicker
when compared to typical ground truth data which makes
a pixel-wise comparison challenging.

In addition, existing networks for event-based optic flow
estimation utilize some sort of back-propagation, which
ensures that the output represents the input data in a pixel-
wise manner. However, the SNN in this work only utilizes
feed-forward information processing and several delays are
introduced within the network architecture. This means that
the output at any time t does not exactly represent the input
at the same time. However, quantifying the exact shift is
not straight-forward since the output is not only shifted in
time but also depends on the history of the input due to
the multisynaptic delays. In fact, as shown in section 4 an
unsuitable choice of τmax can ’stretch out’ the output and
result in output spikes in retinotopic locations in which the
input features have already passed.

Taking into account all of the above challenges, we do

not believe that a quantitative pixel-by-pixel analysis can be
performed in a meaningful way with the available ground
truth. However, to illustrate some of the above issues, here-
after we present some examples of attempted comparisons.
Figure 30 illustrates the average optic flow magnitude dur-
ing one ODA sequence computed with EV-FlowNet and our
network. On first sight, it can be seen that the magnitudes of
the optic flow estimates are limited to a narrow range if the
proposed update rules are not employed. While the magni-
tudes computed with the adapted maximum synaptic delay
appear to show some bias which can probably be attributed
to imperfection in the correction factor, they seem to follow
the general trend of the ground truth up to t ≈ 2000 ms.
After that, the two lines dramatically diverge. The results
from EV-FlowNet imply that the optic flow approaches zero
from that time on. However, visual inspection of the input
sequence shows that this is not the case and that the input
merely becomes more sparse at this point in time. This



34

Input Difference MS-Conv Output

Fig. 29: Illustration of pixel-wise correspondences between the input and output image. The left and right image illustrate
an example input and MS-Conv output, respectively. In the center image pixels that are active in the input, but not active
in the output image are indicated in white.

0 2000 4000 6000 8000

Time [ms]

0

2

4

6

O
pt

ic
flo

w
m

ag
ni

tu
de

[p
x] Adapted

Unadapted
EVFN adapted
EVFN unadapted

Fig. 30: Average optic flow magnitude during one ODA
sequence computed with our network and EV-FlowNet. For
comparison, only pixels for which estimates are available
in our network are taken into account. EVFN adapted
and EVFN unadapted represent the estimates provided by
EV-FlowNet averaged over pixels which are active in the
adapted and unadapted model, respectively. Discontinuities
in the graphs correspond to times at which no estimates are
available.

implies that the low estimates can be attributed to EV-
FlowNets tendency to output zero-flows for sparse input
data. The same observation can be made towards the end
of the sequence. As a result, the unadapted model would
perform better in a quantitative comparison. However, this
stands in contrast to the qualitative results, which show a
clear improvement when using the proposed update rules.
It is however noteworthy that the adapted model appears
to always produce higher optic flow magnitude estimates
when EV-FlowNets estimates approach zero. While this
could imply that the proposed update rules struggles with
sparse input data, no clear conclusions can be made due
to the lack of reliable ground truth for the corresponding
segments.

Similarly, Figure 29 illustrates the difficulty of perform-
ing pixel-wise comparisons. To quantify the performance of
the voltage threshold, we would like to compute what frac-

tion of the neurons that are active in the input image are also
active in the output. However, due to the changes in feature
thickness and slight shift in time, the computed difference is
much larger than anticipated. The bottom part of the pillar
e.g. is clearly captured in the output image. However, since
it is slightly shifted to the top, it is indicated as missing
in the difference picture. This effect also makes pixel-wise
comparisons of the optic flow value non-meaningful.

It could be attempted to overcome this issue by trying
to identify the shift between the images or by performing a
comparison which is not conducted in a pixel-wise manner.
Furthermore, the performance of the update rules could
be evaluated by computing global motion estimates, which
are scalar values and would thus be easier to compare.
However, the exact implementation of such an approach is
beyond the scope of this paper.

10 CONCLUSION

In this paper we have presented a detailed analysis of the
neuron parameters of the SNN for optic flow estimation
presented in [23]. Based on this analysis, we have proposed
novel update rules which adapt the voltage threshold and
the maximum synaptic delay during inference. This reduces
the amount of coupling between parameters, and makes
the network more robust to changes in the input dynamics.
Consequently, the proposed update rules ease the process
of tuning the network and allow applying an existing set of
weights to a larger range of operating environments. While
quantitative results have shown a high level of robustness
for the adaptation of the voltage threshold, the adaptation of
the maximum synaptic delay is coupled to the presynaptic
time constant and does not work well for inputs containing
high spatial frequencies. However, both of these limitations
are caused by the fact that the width of the presynaptic trace
edge is approximated by averaging the number of active
delays. For future research it might thus be interesting to
investigate different means of approximating this width.
Furthermore, developing measures for a quantitative eval-
uation of the proposed update rules could provide deeper
insights into their exact effects on the network performance.
Finally, the use of life-long learning for the synaptic weights
could be investigated to achieve even higher levels of ro-
bustness.



35

REFERENCES

[1] R. Arnold, H. Yamaguchi, and T. Tanaka, “Search and rescue with
autonomous flying robots through behavior-based cooperative
intelligence,” Journal of International Humanitarian Action, vol. 3,
Dec. 2018. [Online]. Available: https://doi.org/10.1186/s41018-0
18-0045-4

[2] M. Shafiee, Z. Zhou, L. Mei, F. Dinmohammadi, J. Karama, and
D. Flynn, “Unmanned aerial drones for inspection of offshore
wind turbines: A mission-critical failure analysis,” Robotics, vol. 10,
p. 26, Feb. 2021.

[3] N. Hallermann and G. Morgenthal, “Visual inspection strategies
for large bridges using unmanned aerial vehicles (uav),” in IAB-
MAS 2014, Shanghai, Jul. 2014.

[4] M. P. Christiansen, M. Laursen, R. Jørgensen, S. Skovsen, and
R. Gislum, “Designing and testing a UAV mapping system for
agricultural field surveying,” Sensors, vol. 17, p. 2703, Nov. 2017.

[5] B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi, and G. C. H. E.
de Croon, “Sniffy bug: A fully autonomous swarm of gas-seeking
nano quadcopters in cluttered environments,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 9099–9106.

[6] M. V. Srinivasan, “Honeybees as a model for the study of visually
guided flight, navigation, and biologically inspired robotics,”
Physiological Reviews, vol. 91, no. 2, pp. 413–460, 2011, pMID:
21527730. [Online]. Available: https://doi.org/10.1152/physrev.
00005.2010

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 db 15
µs latency asynchronous temporal contrast vision sensor,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[8] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB
dynamic range frame-free PWM image sensor with lossless pixel-
level video compression and time-domain CDS,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 1, pp. 259–275, Jan. 2011.

[9] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240
× 180 130 db 3 µs latency global shutter spatiotemporal vision
sensor,” IEEE Journal of Solid-State Circuits, vol. 49, pp. 2333–2341,
2014.

[10] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srini-
vasan, “Asynchronous frameless event-based optical flow,” Neural
networks : the official journal of the International Neural Network
Society, vol. 27, pp. 32–7, Nov. 2011.

[11] R. Benosman, C. Clercq, X. Lagorce, S. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 25, no. 2, pp. 407–417, Feb. 2014.

[12] B. Hordijk, K. Scheper, and G. Croon, “Vertical landing for mi-
cro air vehicles using event-based optical flow,” Journal of Field
Robotics, vol. 35, pp. 69–90, Jan. 2018.

[13] A. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “EV-FlowNet: Self-
supervised optical flow estimation for event-based cameras,” Jun.
2018.

[14] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons:
Opportunities and challenges,” Frontiers in Neuroscience, vol. 12,
p. 774, 2018. [Online]. Available: https://www.frontiersin.org/ar
ticle/10.3389/fnins.2018.00774

[15] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454–2467, Dec. 2013.

[16] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk,
B. Jackson, and D. S. Modha, “Truenorth: Design and tool flow
of a 65 mw 1 million neuron programmable neurosynaptic chip,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 10, pp. 1537–1557, Oct. 2015.

[17] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkatara-
manan, Y. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A
neuromorphic manycore processor with on-chip learning,” IEEE
Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[18] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable
multicore architecture with heterogeneous memory structures
for dynamic neuromorphic asynchronous processors (DYNAPs),”
IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 1,
pp. 106–122, Feb. 2018.

[19] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza,
A. R. Voelker, C. Eliasmith, R. Manohar, and K. Boahen, “Brain-
drop: A mixed-signal neuromorphic architecture with a dynamical
systems-based programming model,” Proceedings of the IEEE, vol.
107, no. 1, pp. 144–164, Jan. 2019.

[20] L. Salt, D. Howard, G. Indiveri, and Y. Sandamirskaya, “Param-
eter optimization and learning in a spiking neural network for
uav obstacle avoidance targeting neuromorphic processors,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 9,
pp. 3305–3318, 2020.

[21] M. B. Milde, O. J. N. Bertrand, H. Ramachandran, M. Egelhaaf, and
E. Chicca, “Spiking Elementary Motion Detector in Neuromorphic
Systems,” Neural Computation, vol. 30, no. 9, pp. 2384–2417, Sep.
2018. [Online]. Available: https://doi.org/10.1162/neco a 01112

[22] G. Haessig, A. Cassidy, R. Alvarez-Icaza, R. Benosman, and G. Or-
chard, “Spiking optical flow for event-based sensors using ibm’s
truenorth neurosynaptic system,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 12, Oct. 2017.

[23] F. Paredes-Vallés, K. Y. W. Scheper, and G. C. H. E. de Croon,
“Unsupervised learning of a hierarchical spiking neural network
for optical flow estimation: From events to global motion percep-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 8, pp. 2051–2064, Mar. 2020.

[24] J. Hagenaars, F. Paredes-Valles, and G. de Croon, “Self-supervised
learning of event-based optical flow with spiking neural
networks,” in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
7167–7179. [Online]. Available: https://proceedings.neurips.cc/p
aper/2021/file/39d4b545fb02556829aab1db805021c3-Paper.pdf

[25] W. Reichardt, “Autocorrelation, a principle for evaluation
of sensory information by the central nervous system,” in
Sensory communication, W. Rosenblith, Ed. Cambridge, MA,
USA: MIT Press, 1961, pp. 303–317. [Online]. Available:
http://hdl.handle.net/11858/00-001M-0000-0013-F2B6-B

[26] A. Borst and M. Egelhaaf, “Temporal modulation of luminance
adapts time constant of fly movement detectors,” Biol. Cybern.,
vol. 56, no. 4, p. 209–215, Jun. 1987. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1007/BF00365215

[27] R. R. de Ruter van Steveninck, W. H. Zaagman, and
H. A. K. Mastebroek, “Adaptation of transient responses
of a movement-sensitive neuron in the visual system of
the blowfly calliphora erythrocephala,” Biol. Cybern., vol. 54,
no. 4–5, p. 223–236, Aug. 1986. [Online]. Available: https:
//doi-org.tudelft.idm.oclc.org/10.1007/BF00318418

[28] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis,
and D. Scaramuzza, “Event-based vision: A survey,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp.
154–180, 2022.

[29] C. Farabet, R. Paz-Vicente, J. Pérez-Carrasco, C. Zamarreño-
Ramos, A. Linares-Barranco, Y. Lecun, E. Culurciello, T. Serrano-
Gotarredona, and B. Linares-Barranco, “Comparison between
frame-constrained fix-pixel-value and frame-free spiking-
dynamic-pixel convnets for visual processing,” Frontiers in
Neuroscience, vol. 6, pp. 1–12, Apr. 2012.

[30] L. A. Camuñas-Mesa, T. Serrano-Gotarredona, and B. Linares-
Barranco, “Event-driven sensing and processing for high-speed
robotic vision,” in 2014 IEEE Biomedical Circuits and Systems Con-
ference (BioCAS) Proceedings, Oct. 2014, pp. 516–519.

[31] A. Hodgkin and A. Huxley, “A quantitative description of
membrane current and its application to conduction and
excitation in nerve,” Bulletin of Mathematical Biology, vol. 52, no. 1,
pp. 25 – 71, 1990. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0092824005800047

[32] C. E. Morris and H. Lecar, “Voltage oscillations in the barnacle
giant muscle fiber.” Biophysical journal, vol. 35 1, pp. 193–213, 1981.

[33] R. FitzHugh, “Impulses and physiological states in theoretical
models of nerve membrane.” Biophysical journal, vol. 1 6, pp. 445–
66, 1961.

[34] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transac-
tions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[35] R. B. Stein, “A theoretical analysis of neuronal variability.” Bio-
physical journal, vol. 5, pp. 173–94, 1965.

[36] W. M. Kistler, W. Gerstner, and J. L. v. Hemmen, “Reduction of the
hodgkin-huxley equations to a single-variable threshold model,”
Neural Computation, vol. 9, no. 5, pp. 1015–1045, 1997.



36

[37] M. Baudry, “Synaptic plasticity and learning and memory: 15
years of progress,” Neurobiology of Learning and Memory, vol. 70,
pp. 113–118, 1998.

[38] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological
models of synaptic plasticity based on spike timing,” Biological
cybernetics, vol. 98, pp. 459–78, Jul. 2008.

[39] D. O. Hebb, The organization of behavior: A neuropsychological theory.
New York: Wiley, Jun. 1949.

[40] A. Vigneron and J. Martinet, “A critical survey of stdp in spiking
neural networks for pattern recognition,” in 2020 International Joint
Conference on Neural Networks (IJCNN), 2020, pp. 1–9.

[41] T. Iakymchuk, A. Rosado, J. Guerrero-Martı́nez, M. Bataller-
Mompeán, and J. V. Frances-Villora, “Simplified spiking neural
network architecture and STDP learning algorithm applied
to image classification,” EURASIP Journal on Image and Video
Processing, vol. 2015, no. 4, Dec. 2015. [Online]. Available:
https://doi.org/10.1186/s13640-015-0059-4

[42] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe,
and T. Masquelier, “Bio-inspired digit recognition using
reward-modulated spike-timing-dependent plasticity in deep
convolutional networks,” Pattern Recogn., vol. 94, no. C, p. 87–95,
Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.patcog.2
019.05.015

[43] P. Panda, J. Allred, S. Ramanathan, and K. Roy, “Asp: Learning
to forget with adaptive synaptic plasticity in spiking neural net-
works,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. PP, Mar. 2017.

[44] J. Allred and K. Roy, “Controlled forgetting: Targeted stimulation
and dopaminergic plasticity modulation for unsupervised lifelong
learning in spiking neural networks,” Frontiers in Neuroscience,
vol. 14, Jan. 2020.

[45] R. V. W. Putra and M. Shafique, “Spikedyn: A framework for
energy-efficient spiking neural networks with continual and un-
supervised learning capabilities in dynamic environments,” in
2021 58th ACM/IEEE Design Automation Conference (DAC), 2021,
pp. 1057–1062.

[46] H. Mostafa, “Supervised learning based on temporal coding in
spiking neural networks,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 7, pp. 3227–3235, Jul. 2018.

[47] J. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neu-
ral networks using backpropagation,” Frontiers in Neuroscience,
vol. 10, Aug. 2016.

[48] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error
reassignment in time,” in Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/p
aper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf

[49] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy,
“Enabling spike-based backpropagation for training deep neural
network architectures,” Frontiers in Neuroscience, vol. 14, 2020.
[Online]. Available: https://www.frontiersin.org/article/10.338
9/fnins.2020.00119

[50] Z. Wang, Y. Zhang, H. Shi, L. Cao, C. Yan, and G. Xu, “Recurrent
spiking neural network with dynamic presynaptic currents
based on backpropagation,” International Journal of Intelligent
Systems, vol. 37, no. 3, pp. 2242–2265, 2022. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22772

[51] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.
[Online]. Available: https://proceedings.neurips.cc/paper/2016/
file/d8330f857a17c53d217014ee776bfd50-Paper.pdf

[52] M. Kim and P. Smaragdis, “Bitwise neural networks,” in Proceed-
ings of the 31st International Conference on Machine Learning (ICML),
Workshop on Resource-Efficient Machine Learning, Lille, France, Jul.
2015.

[53] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: Imagenet classification using binary convolutional neural
networks,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer
International Publishing, 2016, pp. 525–542.

[54] J. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, S. Chen, and B. Linares-Barranco, “Mapping from
frame-driven to frame-free event-driven vision systems by low-
rate rate-coding and coincidence processing. application to feed

forward convnets,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 35, pp. 2706 – 2719, Nov. 2013.

[55] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and
D. S. Modha, “Backpropagation for energy-efficient neuromorphic
computing,” in Advances in Neural Information Processing Systems,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
Eds., vol. 28. Curran Associates, Inc., 2015. [Online]. Available:
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37f
eedfdeaab192ead4ac0e-Paper.pdf

[56] D. Zambrano, R. Nusselder, H. S. Scholte, and S. M. Bohté,
“Efficient computation in adaptive artificial spiking neural
networks,” CoRR, vol. abs/1710.04838, 2017. [Online]. Available:
http://arxiv.org/abs/1710.04838

[57] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-
C. Liu, “Conversion of continuous-valued deep networks
to efficient event-driven networks for image classification,”
Frontiers in Neuroscience, vol. 11, 2017. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2017.00682

[58] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN), Jul. 2015, pp. 1–8.

[59] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers
in Neuroscience, vol. 13, Feb. 2018.

[60] R. Florian, “A reinforcement learning algorithm for spiking neural
networks,” in Seventh International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC’05), 2005,
p. 8.

[61] Z. Bing, I. Baumann, Z. Jiang, K. Huang, C. Cai, and
A. Knoll, “Supervised learning in snn via reward-modulated
spike-timing-dependent plasticity for a target reaching vehicle,”
Frontiers in Neurorobotics, vol. 13, 2019. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnbot.2019.00018

[62] T. Stewart, A. Kleinhans, A. Mundy, and J. Conradt, “Serendipi-
tous offline learning in a neuromorphic robot,” Frontiers in Neuro-
robotics, vol. 10, Feb. 2016.

[63] I. Krauhausen, D. A. Koutsouras, A. Melianas, S. T. Keene,
K. Lieberth, H. Ledanseur, R. Sheelamanthula, A. Giovannitti,
F. Torricelli, I. Mcculloch, P. W. M. Blom, A. Salleo, Y. van de
Burgt, and P. Gkoupidenis, “Organic neuromorphic electronics
for sensorimotor integration and learning in robotics,” Science
Advances, vol. 7, no. 50, p. eabl5068, 2021. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.abl5068

[64] A. Lazar, G. Pipa, and J. Triesch, “Fading memory and time
series prediction in recurrent networks with different forms of
plasticity,” Neural Networks, vol. 20, no. 3, pp. 312–322, 2007, echo
State Networks and Liquid State Machines. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S089360800
7000469

[65] X. Li, W. Wang, F. Xue, and Y. Song, “Computational modeling of
spiking neural network with learning rules from stdp and intrinsic
plasticity,” Physica A: Statistical Mechanics and its Applications, vol.
491, pp. 716–728, 2018. [Online]. Available: https://www.scienc
edirect.com/science/article/pii/S0378437117307896

[66] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of
spiking neurons,” in Proceedings of the 32nd International Conference
on Neural Information Processing Systems, ser. NIPS’18. Red Hook,
NY, USA: Curran Associates Inc., 2018, p. 795–805.

[67] R. Baddeley, L. Abbott, M. Booth, F. Sengpiel, T. Freeman, E. Wake-
man, and E. Rolls, “Responses of neurons in primary and inferior
temporal visual cortices to natural scenes,” Proceedings. Biological
sciences / The Royal Society, vol. 264, pp. 1775–83, Jan. 1998.

[68] C. Li and Y. Li, “A spike-based model of neuronal intrinsic
plasticity,” IEEE Transactions on Autonomous Mental Development,
vol. 5, no. 1, pp. 62–73, 2013.

[69] W. Zhang and P. Li, “Information-theoretic intrinsic plasticity
for online unsupervised learning in spiking neural networks,”
Frontiers in Neuroscience, vol. 13, 2019. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2019.00031

[70] A. Zhang, Y. Gao, Y. Niu, X. Li, and Q. Chen, “Intrinsic plastic-
ity for online unsupervised learning based on soft-reset spiking
neuron model,” IEEE Transactions on Cognitive and Developmental
Systems, pp. 1–1, 2020.

[71] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings of



37

the 7th International Joint Conference on Artificial Intelligence - Volume
2, ser. IJCAI’81. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1981, p. 674–679.

[72] B. Rueckauer and T. Delbruck, “Evaluation of event-based
algorithms for optical flow with ground-truth from inertial
measurement sensor,” Frontiers in Neuroscience, vol. 10, p. 176,
2016. [Online]. Available: https://www.frontiersin.org/article/10
.3389/fnins.2016.00176

[73] M. T. Aung, R. Teo, and G. Orchard, “Event-based plane-fitting
optical flow for dynamic vision sensors in fpga,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2018,
pp. 1–5.

[74] T. Brosch, S. Tschechne, and H. Neumann, “On event-based
optical flow detection,” Frontiers in neuroscience, vol. 9, p. 137,
Apr. 2015. [Online]. Available: https://www.frontiersin.org/articl
e/10.3389/fnins.2015.00137

[75] S. Tschechne, R. Sailer, and H. Neumann, “Bio-inspired optic
flow from event-based neuromorphic sensor input,” in Artificial
Neural Networks in Pattern Recognition, N. El Gayar, F. Schwenker,
and C. Suen, Eds. Cham, Switzerland: Springer International
Publishing, 2014, pp. 171–182.

[76] F. Barranco, C. Fermuller, and Y. Aloimonos, “Bio-inspired motion
estimation with event-driven sensors,” in Advances in Computa-
tional Intelligence, I. Rojas, G. Joya, and A. Catala, Eds. Cham,
Switzerland: Springer International Publishing, Jun. 2015, pp. 309–
321.

[77] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature
tracking with probabilistic data association,” in 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017, pp.
4465–4470.

[78] G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast
maximization framework for event cameras, with applications to
motion, depth, and optical flow estimation,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
3867–3876.

[79] A. Mitrokhin, C. Fermuller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in
2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, Oct. 2018. [Online]. Available:
https://doi.org/10.1109%2Firos.2018.8593805

[80] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised
event-based learning of optical flow, depth, and egomotion,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 989–997.

[81] C. Ye, A. Mitrokhin, C. Fermüller, J. A. Yorke, and Y. Aloimonos,
“Unsupervised learning of dense optical flow, depth and ego-
motion with event-based sensors,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 5831–
5838.

[82] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis, “The multivehicle stereo event camera dataset: An
event camera dataset for 3d perception,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 3, pp. 2032–2039, 2018.

[83] F. Paredes-Vallés and G. C. H. E. de Croon, “Back to event
basics: Self-supervised learning of image reconstruction for event
cameras via photometric constancy,” in 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 3445–
3454.

[84] Z. Li, J. Shen, and R. Liu, “A lightweight network to learn optical
flow from event data,” in 2020 25th International Conference on
Pattern Recognition (ICPR), 2021, pp. 1–7.

[85] C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and K. Roy,
“Spike-FlowNet: Event-based optical flow estimation with energy-
efficient hybrid neural networks,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham,
Switzerland: Springer International Publishing, 2020, pp. 366–382.

[86] C. Lee, A. K. Kosta, and K. Roy, “Fusion-FlowNet: energy-efficient
optical flow estimation using sensor fusion and deep fused
spiking-analog network architectures,” 2021. [Online]. Available:
https://arxiv.org/abs/2103.10592

[87] M. Giulioni, X. Lagorce, F. Galluppi, and R. Benosman, “Event-
based computation of motion flow on a neuromorphic analog
neural platform,” Frontiers in Neuroscience, vol. 10, Feb. 2016.

[88] C. Richter, F. Röhrbein, and J. Conradt, “Bio-inspired optic flow
detection using neuromorphic hardware,” Sep. 2014. [Online].
Available: https://mediatum.ub.tum.de/doc/1281617/789727.pd
f

[89] L. Salt, G. Indiveri, and Y. Sandamirskaya, “Obstacle avoidance
with lgmd neuron: Towards a neuromorphic uav implementa-
tion,” in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), May 2017, pp. 1–4.

[90] C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. E. Mahony, and
D. Scaramuzza, “Fast image reconstruction with an event camera,”
in 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), 2020, pp. 156–163.

[91] C. Pehle and J. E. Pedersen, “Norse - A deep learning
library for spiking neural networks,” Jan. 2021, documentation:
https://norse.ai/docs/. [Online]. Available: https://doi.org/10.5
281/zenodo.4422025

[92] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.
Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-sty
le-high-performance-deep-learning-library.pdf

[93] R. Dinaux, N. Wessendorp, J. Dupeyroux, and G. C. H. E. d. Croon,
“Faith: Fast iterative half-plane focus of expansion estimation
using optic flow,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 7627–7634, 2021.

[94] K. McGuire, G. de Croon, C. de Wagter, B. Remes, K. Tuyls, and
H. Kappen, “Local histogram matching for efficient optical flow
computation applied to velocity estimation on pocket drones,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 3255–3260.



38

APPENDIX

This Appendix provides supplementary material to the
analysis performed in section 7 investigating the presynap-
tic trace of an artificial event sequence of a horizontal bar
moving vertically through space. In particular, the history
of the number of active delays NAD within the presynaptic
trace was investigated. Figure 31 and Figure 32 present NAD

as a function of time and pixel distance, respectively. Unlike
Figure 16, they present the full presynaptic trace histories
for all six investigated parameter combinations. Please refer
to section 7 for additional information.



39

t(5,6)ma t
(2,4,6)
dt

(1,3,5)
dt(3,4)mat(1,2)ma

0 5 10 15 20 25 30 35 40

1
2
3
4
5

N
A
D

[-
]

1: vp = 2 px/ms, τmax = 5 ms

3: vp = 2 px/ms, τmax = 10 ms

5: vp = 2 px/ms, τmax = 15 ms

2: vp = 1 px/ms, τmax = 5 ms

4: vp = 1 px/ms, τmax = 10 ms

6: vp = 1 px/ms, τmax = 15 ms

t(1)ma t
(1)
d

0 5 10 15 20 25 30 35 40

1

2

3

4

5D
el
ay

[m
s]

vp = 2 px/ms, τmax = 5 ms

t(2)ma t
(2)
d

0 5 10 15 20 25 30 35 40

1

2

3

4

5D
el
ay

[m
s]

vp = 1 px/ms, τmax = 5 ms

t(3)ma t
(3)
d

0 5 10 15 20 25 30 35 40

2

4

6

8

10D
el
ay

[m
s]

vp = 2 px/ms, τmax = 10 ms

t(4)ma t
(4)
d

0 5 10 15 20 25 30 35 40

2

4

6

8

10D
el
ay

[m
s]

vp = 1 px/ms, τmax = 10 ms

t(5)ma t
(5)
d

0 5 10 15 20 25 30 35 40

3

6

9

12

15D
el
ay

[m
s]

vp = 2 px/ms, τmax = 15 ms

t(6)ma t
(6)
d

0 5 10 15 20 25 30 35 40

Time [ms]

3

6

9

12

15D
el
ay

[m
s]

vp = 1 px/ms, τmax = 15 ms

Fig. 31: Evolution of the presynaptic trace as a function of time. The number of active delays NAD is shown in the top half
for six different combinations of the pixel velocity vp and the maximum synaptic delay τmax. The bottom part illustrates the
corresponding full presynaptic trace histories. The figures were created with a presynaptic trace windows size of r = 25
px, a bar thickness of thX = 5 px and d = 5 delays. For illustrative purposes, the delays are not spaced within [1, τmax] ms,
but within the range [τmax/m, τmax] ms.



40

d(6)ma d(5)ma d
(1−6)
dd(1,4)ma d(3)mad(2)ma

0 5 10 15 20 25 30 35 40 45 50

1
2
3
4
5

N
A
D

[-
]

1: vp = 2 px/ms, τmax = 5 ms

3: vp = 2 px/ms, τmax = 10 ms

5: vp = 2 px/ms, τmax = 15 ms

2: vp = 1 px/ms, τmax = 5 ms

4: vp = 1 px/ms, τmax = 10 ms

6: vp = 1 px/ms, τmax = 15 ms

d(1)ma d
(1)
d

0 5 10 15 20 25 30 35 40 45 50

1
2
3
4
5D

el
ay

[m
s]

vp = 2 px/ms, τmax = 5 ms

d(2)ma d
(2)
d

0 5 10 15 20 25 30 35 40 45 50

1
2
3
4
5D

el
ay

[m
s]

vp = 1 px/ms, τmax = 5 ms

d(3)ma d
(3)
d

0 5 10 15 20 25 30 35 40 45 50

2
4
6
8

10D
el
ay

[m
s]

vp = 2 px/ms, τmax = 10 ms

d(4)ma d
(4)
d

0 5 10 15 20 25 30 35 40 45 50

2
4
6
8

10D
el
ay

[m
s]

vp = 1 px/ms, τmax = 10 ms

d(5)ma d
(5)
d

0 5 10 15 20 25 30 35 40 45 50

3
6
9

12
15D

el
ay

[m
s]

vp = 2 px/ms, τmax = 15 ms

d(6)ma d
(6)
d

0 5 10 15 20 25 30 35 40 45 50

Distance [px]

3
6
9

12
15D

el
ay

[m
s]

vp = 1 px/ms, τmax = 15 ms

Fig. 32: Evolution of the presynaptic trace as a function of pixel distance. The number of active delays NAD is shown in
the top half for six different combinations of the pixel velocity vp and the maximum synaptic delay τmax. The bottom part
illustrates the corresponding full presynaptic trace histories. The figures were created with a presynaptic trace windows
size of r = 25 px, a bar thickness of thX = 5 px and d = 5 delays. For illustrative purposes, the delays are not spaced
within [1, τmax] ms, but within the range [τmax/m, τmax] ms.



II
Literature Study

47





2
Foundations of Optic Flow

Optic flow (OF) contains rich information about the ego-motion1 of an observer and the 3D structure of their
surroundings. Insects are known to heavily rely on this information when performing navigational tasks such
as centering and wall-following, landing, or obstacle avoidance (OA). As this research aims to draw inspiration
from insects to perform more robust OF estimation and ultimately OA onboard MAVs, the foundations of OF
are presented in this chapter. First, in section 2.1 the concept of OF is explained in more detail. Subsequently,
a mathematical description is provided in section 2.2 and the so-called OF-observables, are introduced in
section 2.3. Finally, in section 2.4 commonly used OF estimation methods are presented and it is explained
why they are not suitable for the use onboard MAVs.

2.1. Optic Flow Definition
Gibson (1979) proposed the idea that perception is a direct process that does not require transforming or
supplementing the data received from the eye. Instead, he suggests that the eye perceives a complex pattern
of light, the optical array, which constantly changes as we move. Consequently, perception and movement are
intertwined and the changes in the optical array contain information about the environment which enables
us to perceive depth directly without the help of other visual cues. The quantity describing these changes is
called optic flow (OF). It is defined as the set of vectors quantifying the motion of texture elements projected
from the 3D surroundings onto the 2D retinal image of an observer. This is shown in Figure 2.1 (retrieved from
(Gibson, 1979)) depicting a pilot’s visual field during landing. The arrows represent the OF-vectors showing
the displacement of image features in the 2D plane with the movement of the observer.

Figure 2.1: Illustration of optic flow in the visual field of a pilot during landing. Retrieved from Gibson (1979).

1Ego-motion refers to any spatial displacement of an observer within their environment.

49



50 2. Foundations of Optic Flow

2.2. Pinhole Camera Model
Longuet-Higgins and Prazdny (1980) proposed a mathematical model for the relationship between an ob-
server’s ego-motion and the corresponding induced OF on the retina. Their formulation models the pro-
jection of the 3D environment onto the retina using a pinhole camera model. This implies that the camera
aperture 2 is represented as a single point and that the retina is modeled as a flat surface. It should be noted
that this model cannot be applied to cameras with a wide field of view due to the introduced distortions. A
visualization of the pinhole model can be seen in Figure 2.2 (retrieved from (Longuet-Higgins and Prazdny,
1980)). The origin O of the outer coordinate system OXYZ coincides with the location of a monocular ob-
server’s eye in a static environment. U, V, and W and A, B, and C represent the velocity and the rotation of the
observer along and about the X, Y, and Z axes, respectively. The point P represents the location of a texture
element in the visual field, while its projection onto the retinal plane p0x y is denoted by p. The principal
point p0 = (0,0, f ) is the intersection between the optical axis OZ and the retinal plane. The focal length f is
set to f = 1 in order to simplify the derivation.

Using these definitions, the velocity components, Ẋ , Ẏ , and Ż of P in the moving frame OXYZ induced by
the observer’s ego-motion can be computed by adding the contributions of the translational and rotational
components of the movement. Doing this results in the expression shown in Equation 2.1.

Figure 2.2: Illustration of the pinhole camera model. Retrieved from Longuet-Higgins and Prazdny (1980).


Ẋ =−U −B Z +C Y

Ẏ =−V −C X + AZ

Ż =−W − AY +B X

(2.1)

OF can now be defined as the velocity (u, v) of the projected point p in the retinal plane as shown in Equa-
tion 2.2. Introducing the normalized image coordinates illustrated in Equation 2.3 and substituting Equa-
tion 2.1 and Equation 2.3 into Equation 2.2 an expression for the retinal velocity of the texture element can
be obtained. The result of this is depicted in Equation 2.4, where it can be seen that the retinal velocities are
comprised of a translational (uT and vT ) and a rotational (uR and vR ) component. These components are
written out in Equation 2.5.

(u, v) = (ẋ, ẏ) (2.2)

(x, y) = (X /Z ,Y /Z ) (2.3)u = Ẋ /Z −X Ż /Z 2 = (−U /Z −B +C y)−x(−W /Z − Ay +B x) = uT +uR

v = Ẏ /Z −Y Ż /Z 2 = (−V /Z −C x + A)− y(−W /Z − Ay +B x) = vT + vR (2.4)

2Aperture is the opening through which light travels to enter a camera.



2.3. Optic Flow Observables 51

uT = (−U +xW )/Z , vT = (−V + yW )/Z ,

uR =−B +C y + Ax y −B x2, vR =−C x + A+ Ay2 −B x y
(2.5)

2.3. Optic Flow Observables
While it was explained that OF is a powerful tool to obtain information about an observer’s ego-motion, it
is not clear yet how this information can be retrieved from the formulation presented in section 2.2. The
assumption of a static environment ensures that the ego-motion states (A,B ,C ,U ,W, Z ) are constant for all
world points. However, this is not the case for the depth Z which can vary for different image locations.
This means that attempting to solve a system of equations comprised of several OF-vectors for the ego-
motion states, is a challenging and computationally expensive task which makes it unsuitable for the use
onbard MAVs. However, by applying some simplifying assumptions, a new set of parameters, also called OF-
observables can be derived. They describe quantities concerning the ego-motion of the observer and the
structural properties of the environment. As these observables are widely used in the field of insect-inspired
OA, their derivation and the required assumptions are presented in the remainder of this section.

2.3.1. Derotation
In section 2.2 it was established that OF comprises a translational and a rotational part. Considering once
again Equation 2.5 it can be seen that the translational part does not depend on the observer’s rotation A,
B, C while the rotational component is independent of Z. Consequently, only the translational part is useful
when trying to obtain depth information about objects in the environment. It is in fact common practice to
correct the perceived OF onboard MAVs by removing the rotational component. This is often done with the
help of light-weight inertial measurement units (IMU’s) (e.g. (Beyeler et al., 2009; Zingg et al., 2010)). Other
approaches separate the OF components physically by stabilizing the camera (e.g. (Meyer et al., 2016)) to
counteract rotations or by employing a saccadic flight strategy (e.g. (Zufferey and Floreano, 2005; Bertrand
et al., 2015)) which will be explained in more detail in chapter 3.

2.3.2. Orthogonal Flat Surface Assumption
Even after employing derotation to the OF vectors, extracting information about the observer’s ego-motion
from the OF formulation in Equation 2.5 is not a straightforward task. This is the case since every OF vector
still introduces an additional unknown to the system of equations due to the varying values of Z. In order to
circumvent this issue several authors assume orthogonal flat surfaces in the visual field (e.g. (Bertrand et al.,
2015; Croon et al., 2013)). This way every additional OF vector provides more information about the ego-
motion parameters without introducing additional unknowns. While the parameters U, V, and W can not be
disentangled from the depth Z, the normalized quantities U/Z, V/Z, and W/Z, from now on denoted as νx ,
νy , and νz , can be estimated at a point i using Equation 2.6.uT

i =−(U /Z )+xi (W /Z ) =−νxi +xiνzi

vT
i =−(V /Z )+ yi (W /Z ) =−νyi + yiνzi

(2.6)

2.3.3. Focus of Expansion
The Focus of Expansion (FoE) is the projection of the observer’s motion direction onto the 2D retinal plane.
The points x0 and y0 as defined in Equation 2.7 represent the x- and y-components of the FoE, respectively.
Following the derivation in Longuet-Higgins and Prazdny (1980), Equation 2.5 can be rewritten by substi-
tuting x0 and y0. This yields the expression in Equation 2.8. By further dividing the vertical and horizontal
components of the OF, as shown in Equation 2.9, it can be seen why the FoE is of interest in the context of
OA. Looking at Equation 2.9 it becomes apparent that the translational flow follows straight lines which all
converge at the point (x0, y0). This implies that the FoE is the point in which the vector describing the ob-
server’s motion direction intersects the image plane and that it is thus the vanishing point of the image. The
vanishing point describes the only part within the image where the OF is zero regardless of the distance to
the corresponding world point. This means that only little information is available about the 3D structure
of the environment in this direction. This represents a problem for collision avoidance since it means that
frontal obstacles are difficult to detect. In chapter 5 several approaches aiming to deal with this issue will be
presented.



52 2. Foundations of Optic Flow

x0 =U /W, y0 =V /W (2.7)

uT = (x −x0)νz , vT = (y − y0)νz (2.8)

vT /uT = (y − y0)/(x −x0) (2.9)

2.3.4. Time-to-Contact
The Time-to-Contact (TTC) provides an estimate for an agent’s time until collision with an obstacle and rep-
resents the basis for many collision avoidance implementations. While no absolute distances can be retrieved
from OF without additional information about the observer’s velocity (see subsection 2.3.2), the ratio of the
distance to an obstacle and the forward velocity is readily available. In Equation 2.10 it is shown that the
TTC can be computed for every retinal position (x,y) if the FoE (x0, y0) and the translational OF components
(uT , vT ) are known.

T T C = Z /W = 1/νz = (x −x0)/uT = (y − y0)/vT (2.10)

2.3.5. Divergence
The divergence of a vector field is commonly described in terms of the partial spatial derivatives of the field
vectors. Employing this definition to OF vectors, the flow divergence at the position (x, y) within the retinal
image can be defined according to Equation 2.11. Assuming orthogonal flat surfaces in the visual field and
derotated OF, this expression can be simplified by substituting Equation 2.6 yielding the relationship shown in
Equation 2.12. It can be seen that there is a direct relationship between the flow divergence, the normalized
ego-motion along the axis of movement, and the TTC. It should be noted that OF divergence is frequently
simply defined as D = νz rather than D = 2νz in the scientific literature (e.g. (Croon et al., 2013; Xiao et al.,
2021)).

D(x, y) = ∂u

∂x
(x, y)+ ∂v

∂y
(x, y) (2.11)

D = 2νz = 2

τ
(2.12)

2.4. Frame-Based Optic Flow Estimation
In order to estimate OF as defined in section 2.1 some sort of visual sensor is required which can capture
the pixel velocity of features in the visual field. The most commonly used sensors for this task are frame-
based cameras. They provide a stream of consecutive images containing information about brightness (and
color) at every pixel as opposed to event-based cameras which will be introduced in section 4.1. However,
unfortunately, frame-based cameras show undesirable qualities when it comes to OF estimation onboard au-
tonomous MAVs. The purpose of this section is to highlight these issues to illustrate why there is a need for
alternative means of OF estimation.

The earliest attempts of estimating OF with the help of frame-based cameras were proposed by Horn and
Schunck (1981) and Lucas and Kanade (1981) and represented the foundation for a multitude of different
approaches. These approaches included gradient-based methods which estimate the pixel velocities from
spatial and temporal derivatives of the image brightness (e.g. (Weber and Malik, 1992; Oron et al., 2014; Faisal
and Barron, 2007; Menze et al., 2015)), correlation-based methods in which OF is computed as the displace-
ment of specific features in the image within two consecutive frames (e.g.(Camus, 1995b; Wills and Belongie,
2004)) and frequency-based methods which utilize velocity tuned filters in the Fourier domain (e.g. (Adelson
and Bergen, 1985; Heeger, 1988; Gautama and Van Hulle, 2002)). Furthermore, insect-inspired methods exist
which aim to mimic motion detection in insects (see chapter 3). In recent years more and more approaches
have been proposed which make use of neural networks to estimate OF (e.g. (Ilg et al., 2017; Zhao et al., 2017;
Xiang et al., 2018)). In these approaches, pairs of subsequent frames and some sort of ground truth are com-
monly fed into the network which then updates its weights to minimize the error (Tu et al., 2019).



2.4. Frame-Based Optic Flow Estimation 53

While neural networks have shown impressive results for OF estimation, there are still issues that are inher-
ent to frame-based approaches in general. Since there is a large selection of extensive reviews papers about
frame-based OF estimation (e.g. (Barron et al., 1994; Tu et al., 2019; Zhai et al., 2021)), this work does not dive
deeper into the various individual methods. Instead, the two most influential ones, namely the approaches
presented by Lucas and Kanade (1981) and Horn and Schunck (1981), are presented in more detail in sub-
section 2.4.2 and subsection 2.4.1, respectively in order to illustrate the issues of frame-based methods in the
context of OA on-board MAVs in subsection 2.4.3.

2.4.1. Lucas-Kanade
In (Lucas and Kanade, 1981) OF is retrieved by providing an estimate for the disparity between two frames of
a motion sequence obtained with a frame-based camera. If F(x) and G(x) describe the pixel values at each
location x ∈ Rn of the two images, disparity can be defined as the vector h that minimizes a certain difference
equation of the two functions. An example of such a difference equation is given in Equation 2.13 and a one-
dimensional visual representation of the disparity vector h is depicted in Figure 2.3 (retrieved from (Lucas and
Kanade, 1981)). The value of F(x) at x + h can be estimated using the Taylor expansion shown in Equation 2.14.

E = ∑
x∈R

[F (x+h)−G(x)]2 (2.13)

F (x+h) ≈ F (x)+h
∂

∂x
F (x) (2.14)

Figure 2.3: Disparity h between the one-dimensional brightness functions F(x) and G(x) of a sequence of two images. Retrieved from
Lucas and Kanade (1981).

Substituting Equation 2.14 into Equation 2.13, an expression for h can be found which minimizes the differ-
ence between the pixel values F (x+h) and G(x) according to ∂

∂h E = 0:

h =
∑

x

(
∂F

∂x

)T

[G(x)−F (x)]

∑
x

(
∂F

∂x

)T (
∂F

∂x

)−1

(2.15)

After a first estimate of h is obtained, the function F(x) is shifted by the corresponding value and the procedure
is repeated until the approximations of the disparity converges. In order to improve the convergence of the
algorithm Lucas and Kanade (1981) assumed the brightness to be constant over a small window of pixels to
smoothen the image.

2.4.2. Horn-Schunk
The method presented by Horn and Schunck (1981) relies on the assumption that the illumination of the
scene is constant. This implies that changes in brightness at specific image locations only occur due to mo-
tion. Consequently, if the brightness at the image location (x, y) at time t is denoted by E(x,y,t), Equation 2.16
holds.



54 2. Foundations of Optic Flow

dE

d t
= 0 (2.16)

By applying the chain rule for differentiation and introducing the variables u = d x
d t , v = d y

d t ,Ex = ∂E
∂x and Ey =

∂E
∂y the expression in Equation 2.17 can be obtained. However, this one equation is not sufficient to obtain
estimates for the two unknown OF components u and v . This problem is also commonly referred to as the
aperture problem.

ϵb = Ex u +Ey v +Et = 0 (2.17)

Horn and Schunck (1981) approached this problem by assuming that neighboring points move at similar
velocities. In particular, they introduced a smoothness constraint ϵc whose minimization penalizes changes
of the velocities u and v with x and y . The OF components can then be determined by finding the values u
and v that globally minimize Equation 2.18, where α represents a weighting factor that accounts for noise in
the image.

ϵ2
c =

∂u

∂x

2

+ ∂u

∂y

2

+ ∂v

∂x

2

+ ∂v

∂x

2

Ï
(α2ϵ2

c +ϵ2
b)d xd y

(2.18)

2.4.3. Limitations
Frame-based cameras provide brightness information about all pixels at every time step. While this rich
source of information can be favorable for some applications that do not necessarily require instantaneous
results such as object recognition or image segmentation, it poses a problem for real-time applications with
limited computational resources available.

The reason for that becomes clear when considering the two methods for OF computation presented in the
previous section. To arrive at an estimate both techniques need to perform computations on every single
pixel. However, for OA only dynamic parts of the visual scene are of importance. This means that every time
step redundant calculations are performed on static parts of the visual scene increasing the computational
load and consequently the power consumption. At the same time, the fixed frame rate limits the accuracy
of the OF estimates at highly dynamic part of the visual scene. Furthermore, these approaches rely on the
fact that the brightness in the visual field does not change which makes them less robust to rapid changes in
the environment. Looking once again at Equation 2.15 it can be seen that frame-based OF estimation relies
on comparing the properties (in this case the pixel-wise difference in brightness) of two subsequent frames.
However, fast-moving texture elements can travel large distances within a short period of time which means
that information about their movement in between two frames is lost.

This phenomenon is also called motion blur and is illustrated on the right side of Figure 2.4 (retrieved from
Chen (2017)). It depicts a fast-moving scene captured by a grayscale frame-based camera. It can be seen that
the slow sampling (compared to the dynamics of the visual scene) of frame-based cameras leads to blurred
edges in the image. This represents a problem for MAVs which often operate at high velocities and need to be
able to react quickly to obstacles in real-time.

While other, more efficient methods exist (e.g. (Hu et al., 2016; Krähenbühl and Koltun, 2012)), they still per-
form computations on the entire image to identify relevant regions containing fast movements. Furthermore,
these methods also rely on comparing brightness values in two subsequent images and are thus also affected
by the problems described in this section. With OF being one of the most commonly used methods for insect-
inspired OA it consequently makes sense to consider alternative techniques for OF estimation.

Inspired by biological systems more and more engineering applications have been proposed in recent years
which utilize asynchronous processing (e.g. (Schoepe et al., 2019; Milde et al., 2017)). This means that data is
transmitted in a continuous stream rather than following an external clock which can prevent the processing
of redundant data. An example of such an application are event-based cameras which will be introduced in



2.4. Frame-Based Optic Flow Estimation 55

Figure 2.4: Fast moving scene captured with an event-based camera (left side) and with a grayscale frame-based camera (right side).
Retrieved from Chen (2017).

section 4.1. Instead of considering the brightness of every pixel at every time step, they only provide informa-
tion about pixels at which the brightness has changed. This helps to tackle some of the issues introduced in
this section. On the left-hand side of Figure 2.4 e.g. the same scene as on the right side of the figure was cap-
tured but this time using an event-based camera. It can be seen that no more motion blurring occurs and that
the edges are clearly defined despite the fast motion. In the remainder of this work, additional alternatives
to frame-based OF estimation will be explored. This will be done by considering the asynchronous working
principle of motion detection in insects and by introducing existing methods to translate these principles to
engineering applications.





3
Motion Detection and Obstacle Avoidance

in Flying Insects

In the previous section it was shown that a number of problems arise when trying to use frame-based ap-
proaches for OF estimation onboard MAVs. Flying insects on the other hand successfully use OF to avoid
obstacles in unpredictable surroundings at high velocities while also having very limited computational re-
sources available (about one million for honeybees e.g. (Srinivasan, 2011)). For this reason, many researchers
have turned towards flying insects for inspiration. Milde et al. (2018) e.g. proposed a spiking elementary
motion detector (EMD) (see subsection 3.3.2) which unlike conventional EMDs mimics the asynchronous,
spike-like nature of OF computation in flying insects. Reversely, creating and implementing models explain-
ing insect behavior can shed light on the biological processes involved. This research aims to draw inspiration
from insects by considering how they sense their environment and process the obtained information in order
to compute OF and perform OA. The first step towards achieving this goal is to illustrate how flying insects
perform these tasks. This will be done in this chapter.

In Figure 3.1 (adapted from Graham and Philippides (2014)) a schematic overview of a typical insect visual
pathway is depicted. It consists of three major regions, namely the eye, the optic lobe comprising the lamina,
medulla, lobula and lobula plate, and the central brain. In the remainder of this chapter, it is explained how
OF is extracted along each region of the visual pathway. Since these computations are carried out on a neural
basis, first the general architecture and working principle of a generic neuron are explained in section 3.1.
Subsequently, the first region of the visual pathway, namely the compound eye is presented in section 3.2. In
section 3.3 it is explained how motion information is extracted in the optic lobe. Finally, in section 3.4 it is
shown how OF is used to perform OA in the central brain.

Figure 3.1: The insect visual pathway. Adapted from Graham and Philippides (2014).

57



58 3. Motion Detection and Obstacle Avoidance in Flying Insects

3.1. The Generic Neuron
Neurons represent the building blocks of the nervous system and are able to communicate information
quickly through a network of cells. They do this by generating electrical signals which are also called action
potentials. While there are many different kinds of neurons that vary in their exact function and architecture,
they all share the same underlying principles. This leads to the definition of a ’generic neuron’ whose ba-
sic architecture and working principle will be explained in this section based on the elaborations in (Brown,
2001).

Generally speaking, a generic neuron fulfills three functions. These include receiving information or signals,
integrating arriving signals, and communicating information to subsequent cells. The left side of Figure 3.2
(adapted from Wei et al. (2019)) provides a schematic view of a generic neuron. It consists of a cell body, the
soma, which spreads out into several smaller branches, the dendrites, and the axon which connects the soma
to the synapses at the output terminal. The dendrites are connected to preceding or presynaptic neurons and
receive incoming information which can either be excitatory or inhibitory. The difference in electric poten-
tial between the soma and its surroundings is called the membrane potential. It increases with the arrival of
excitatory signals and decreases for inhibitory signals. This process is called depolarization. In the absence
of input spikes, the membrane potential returns to its resting state which is also referred to as repolarization.
The electric input is integrated in the soma and if the membrane potential exceeds a certain threshold, the
neuron spikes. Subsequently, its action potential is conducted down the axon to the synapses at the output
terminals where it is transmitted to postsynaptic cells. Right after spiking the neuron enters a refractory pe-
riod during which incoming spikes have no effect on its membrane potential. This ensures that individual
spikes can be clearly separated in time.

The process of spike generation is summarized on the right side of Figure 3.2. The upper image depicts the
depolarization of the membrane potential after an input stimulus and the subsequent return to the resting
state. Furthermore, the membrane potentials of two signals failing to drive the action potential to the voltage
threshold are indicated. The lower image provides an example for strong and weak input stimuli and the cor-
responding outputs of the cell.

Figure 3.2: Illustration of: (a) the anatomy of a generic neuron, (b) the action potential and (c) input spikes and output for strong and
weak stimuli. Adapted from Wei et al. (2019)



3.2. The Compound Eye 59

The strength of a synaptic connection between two neurons, i.e. to what extend an input spike from the
presynaptic neuron increases the postsynaptic neuron’s membrane potential, is called efficacy. It can be
modified by a mechanism called synaptic plasticity (Baudry, 1998). Hebb (1949) postulated that the efficacy
of a synapse increases if the presynaptic cell persistently activates a nearby postsynaptic cell, an idea that
is commonly summarized as “neurons that fire together, wire together”. Since spiking neurons only have a
limited range of responses available, there is another mechanism called intrinsic plasticity (IP) which can
adjust the neuron’s response to the stimuli statistics in the environment. However, rather than changing
the synaptic strength, the intrinsic parameters of the neuron itself (such as e.g. the voltage threshold) are
modified to keep the average activity of individual neurons within a desired range (Lazar et al., 2007). In
chapter 4 several engineering applications aiming to mimic these kinds of neural plasticity will be presented.

3.2. The Compound Eye
In order to sense their environment, most flying insects make use of compound eyes such as the one of the
Drosophila fruit fly depicted in Figure 3.3 1. It consists of around 800 elongated cells arranged in a regular,
hexagonal pattern. These cells are called ommatidia and they have a length of around 100 µm. Furthermore,
each ommatidium is covered by a separate cornea which gives the compound eye its facet-like appearance
(Song et al., 2009). In the upper left corner of Figure 3.1 a cross-section of the compound eye depicting the
elongated ommatidia can be seen.

Each ommatidium covers a specific solid angle of the surroundings which enables it to provide information
about the illumination of the corresponding region (Zhu, 2013). In Drosophilas the interommatidial angle is
around 4.6 deg with a total visual field of almost 180 deg. In comparison, the human’s fovea covering around
2 deg of the visual field contains about 60,000 cones. This leads to a spatial resolution of approximately 0.01
deg. This means that the fruit fly’s visual acuity is roughly 500 times worse than that of a human being (Borst,
2009). Moreover, each ommatidium can be considered as a pixel in the visual field of the fly, resulting in a
total resolution of only 800 pixels (Nériec and Desplan, 2016).

A detailed illustration of a single ommatidium is shown in Figure 3.4 (retrieved from Wolff and Ready (1993)).
There are eight different kinds of photoreceptors present in each ommatidium which are referred to as R1 -
R8. The outer receptors (R1 - R6) are arranged in a circle around the inner R7 and R8 photoreceptors which are
stacked on top of each other. Similarly to the ommatidia themselves, the photoreceptors are also elongated
cells and their plasma membranes consist of two parts, namely the photo-sensitive (rhabdomere) and the
photo-insensitive (basal) membranes. The corneal lens and the pseudocone focus the light energy onto the
rhabdomere. The rhabdomere then transforms the perceived light into current and the basal membrane
converts this current into a voltage-response which is subsequently mapped onto the optic lobe for further
processing (Mishra and Knust, 2013).

Figure 3.3: The Drosophila compound eye 1

1Retrieved from https://neurophilosophy.wordpress.com/2006/10/02/loss-of-spam-de-evolves-the-fruit-flys-compound-eye/



60 3. Motion Detection and Obstacle Avoidance in Flying Insects

Figure 3.4: Detailed view of a single Ommatidium. Retrieved from Wolff and Ready (1993).

3.3. Mechanisms for Motion Detection in Flying Insects
The computation of OF is performed in the optic lobe which makes up for more than 60 % of the brain’s neu-
rons. As can be seen in Figure 3.1 it comprises four neuropils, namely the lamina, medulla, lobula, and lobula
plate. The photoreceptors project retinotopically onto the optic lobe meaning that each photoreceptor trans-
mits signals to one column of neurons that correspond to the same position in the two-dimensional visual
array.

In this section, the mechanisms involved in obtaining motion information from the visual input in flying
insects are explained. First, saccadic flight strategies are introduced in subsection 3.3.1. Subsequently, in
subsection 3.3.2 and subsection 3.3.3 the two most-frequently researched motion detectors in flying insects
are explained, namely the Elementary Motion Detector (EMD) and the Lobula Giant Movement Detector
(LGMD).

3.3.1. Saccadic Flight Strategy
In section 2.2 it was shown that only the translational component of OF contains depth information about
the environment and that it thus needs to be separated from the rotational part to use it for navigational
purposes. While it is possible to perform this task computationally, many insects extract the translational
component through behavioral action (Egelhaaf et al., 2012). In particular, they apply a saccadic flight strat-
egy which consists of alternating phases of straight (almost) purely translational flight, the intersaccades,
and flight including fast rotations, the saccades. Insects change between these two modes at a frequency of
up to 10 Hz with the translational phases making up for more than 80% of the overall flight time (Egelhaaf
et al., 2012). This way insects can retrieve depth information from the translational flow during intersaccades
which is not ’contaminated’ with rotational OF. The obtained ego-motion information can then be used to
determine the parameters for the next saccade during which the flight direction is changed in order to e.g.
avoid obstacles. This strategy reduces the computational load on the insect’s brain and thus enables them to
perform computationally more efficient obstacle avoidance.



3.3. Mechanisms for Motion Detection in Flying Insects 61

While not directly involved in the computation of OF, it is still noteworthy that there are other behavioral
actions utilized by insects to obtain depth estimates. Locusts, mantids, and dragonflies for example carry out
lateral body and head movements before jumping since the resulting displacement of their eyes allows them
to obtain a depth estimate of their surroundings (Collett, 1978; Krahl and Poteser, 1997; Olberg, 1981).

3.3.2. The Elementary Motion Detector
Neurons in the lobula plate of flying insects have been found to respond selectively to motion in the four
cardinal directions. This selectiveness has been attributed to temporal and spatial cross-correlation between
different parts of the visual input. The elementary motion detector (EMD) is a model that was created to
explain how the motion direction of an agent is obtained from the activity of its photoreceptors using the
minimum number of computations (Frye, 2015). In this section, the neural implementation of the EMD
in flying insects as proposed by current research is shown using once again the Drosophilia as an example.
Furthermore, computational models of the EMD are presented keeping in mind that the final goal is to draw
inspiration for applications onboard MAVs.

Neural Implementation While a rather complete map of the neurons in the optic lobe has already been
available for a long time, it was not clear how exactly they contribute to the determination of the motion
direction. Only recently with the development of sophisticated neurogenetic methods for the Drosophila, it
has become clear which role the various neurons take on in the extraction of OF. Borst et al. (2019) provide an
extensive description of the neural implementation of the EMD in the Drosophilia in the optic lobe. Some of
the key points are summarized hereafter.

Figure 3.5 (retrieved from (Borst et al., 2019)) depicts an overview of the neurons involved in elementary mo-
tion detection. Information about the brightness of the surroundings is provided by the photoreceptors R1-6
and split into two parallel motion circuits corresponding to luminance increments (ON) and decrements
(OFF). In the lamina so-called L2 and L4 neurons and L1 and L5 neurons are specialized to detect OFF- and
ON-increments, respectively. The L3 neuron is connected to both the OFF and the ON circuit. Each neuron
column in the medulla comprises more than 60 different cell types which can be clustered into a number of
different groups (for more detailed information about these groups, please refer to (Borst et al., 2019)). Anal-
ysis of the neurons in the medulla showed that they can be categorized into two classes, namely temporal
low-pass filters and temporal band-pass filters. The neurons in the medulla synapse onto the T4 and the
T5 cells which are the first motion-sensitive neurons along the visual pathway. Per channel there exist four
subtypes for both T-neurons that are tuned to the cardinal directions (up, down, left, right). The direction to
which the neurons are sensitive is called their preferred side while the opposite direction is referred to as their
null side. The dendrites of the T4 and T5 cells span several columns in their respective direction of motion,
unlike their presynaptic neurons whose dendrites are restricted to one column. This means that T4 and T5
cells sample inputs from neighboring points in space with their multi-columnar dendrite input. Their pre-
ferred and null sides are connected to cells in the medulla which represent low-pass filters while the neurons
synaptic in the center show band-pass characteristics. This way direction enhancement on the preferred side
is achieved. The four subtypes of the T4 and the T5 cells finally map onto the four layers in the lobula plate
which correspond to the four cardinal directions. In addition to exciting the layers corresponding to their
own preferred direction, the T4 and T5 cells also inhibit the layers corresponding to the opposite directions.
This is indicated by the purple arrows in Figure 3.5. In the lobula plate, the well-known lobula plate tangential
cells are located which integrate the excitatory and inhibitory signals of the elementary motion-sensing T4
and T5 neurons over a large part of the visual field. This finally leads to motion selectivity for neurons in the
lobula plate.

In several experiments investigating the dynamic response properties of fly motion detectors (Borst and Egel-
haaf, 1987; de Ruter van Steveninck et al., 1986), neurons in the lobula plate have been found to show adap-
tation. This means that their steady-state response to sustained motion decreases over time as illustrated in
Figure 3.6 (retrieved from Clifford et al. (1997)). It depicts the normalized response of neurons in the fly lobula
plate to sustained motion at two different temporal frequencies. This adaptation leads to a decrease in sensi-
tivity to sustained motion while increasing the sensitivity towards changes in image velocity. Consequently,
it is believed to help insects in keeping the neuron activity within a feasible operating range.



62 3. Motion Detection and Obstacle Avoidance in Flying Insects

Figure 3.5: Neural implementation of the EMD in the Drosophila. Retrieved from Borst et al. (2019).

Figure 3.6: Neuronal response in the fly lobula plate to sustained motion at two temporal frequencies (solid line: 2.4 Hz, dashed line:
19.2 Hz). Retrieved from Clifford et al. (1997).

Computational Model A computational model of the EMD was first established by Reichardt and Rosen-
blith (1961). It is illustrated on the left side of Figure 3.7 and consists of two spatially separated photore-
ceptors that are activated by changes in illumination. A time delay is applied to the signals using a low pass
filter (LP) and they are subsequently multiplied (M) with the non-delayed version of the other signal. By
computing the difference between the two signals, the movement direction of a brightness element can be
determined. Combining multiple EMDs oriented in different directions yields an estimate for the motion
direction of edges in the visual field. The resulting OF field does however not only depend on the velocity of
the motion stimuli but also on its textural properties (Schwegmann et al., 2014). This implies, that an array of
EMDs is not able to distinguish between a pattern of narrow stripes moving at low velocity and a pattern of
wide stripes moving at a faster velocity (Frye, 2015).



3.3. Mechanisms for Motion Detection in Flying Insects 63

As explained in the previous section, the visual input has been shown to be split into ON and OFF channels
in the Drosophila. Joesch et al. (2010); Eichner et al. (2011) investigated two models that account for this divi-
sion of the visual input. The first one is the "4-Quadrant-Detector" (Figure 3.7B) which consists of four EMDs
applied in parallel accounting for all four possible combinations of input signals (ON-ON, ON-OFF, OFF-ON,
and OFF-OFF). The second model, comprises only two EMDs, namely an ON-ON and an OFF-OFF detector
(Figure 3.7C). Experiments and the distinct nature of neurons postsynaptic to the visual input suggest that
the existence of the second model only comprising two detectors is more likely (Eichner et al., 2011). This is
consistent with the neural implementation of the EMD which was presented above.

Figure 3.7: Illustration of A: the classical Reichhardt detector, B: a Reichhardt detector with four combinations of ON/OFF channels and
C: a Reichhard detecor with two combinations of ON/OFF channels. Retrieved from Eichner et al. (2011)

While the proposed EMDs can accurately model most of the characteristics observed in insect motion de-
tection, they do not account for the adaptation of the neurons in the lobula plate. In order to include this
mechanism several authors suggested the use of an adaptive delay within the detector (Clifford et al., 1997;
Clifford and Langley, 1996; Sarikaya and Ogmen, 1994). An example of such a modified EMD is shown in
Figure 3.8 (retrieved from Clifford and Langley (1996)), where ∆x, ∆t , and R represent the spatial distance
between two cells, the applied time delay, and the output of the detector, respectively.

Figure 3.8: Schematic illustration of an EMD with adaptive delays. Retrieved from Clifford and Langley (1996)



64 3. Motion Detection and Obstacle Avoidance in Flying Insects

For increasing values of the output R, the time delay is decreased such that the EMD becomes more sensitive
to faster motion while decreasing its sensitivity for the current velocity. A leakage term ensures that the delay
returns to its unadapted resting value in the absence of stimuli. This is illustrated in Equation 3.1 where the
time delay is represented as τ for ease of notation. The variable η represents the adaptation gain and µ a
parameter controlling the amount of leakage.

dτ(t )

d t
=−ητ(t )|R(t )|+µ(τ0 −τ(t )) (3.1)

In order to provide a better understanding of the relationship between the neural implementation and the
computational models of motion detection, a mapping of the traditional EMD onto the various layers of the
optic lobe is provided in Figure 3.9 (retrieved from (Tuthill et al., 2013)). The high-pass and low-pass filters
are represented by τhp and τl p , respectively. It should be noted that this representation does not include the
features of the modified EMDs such as e.g. ON and OFF channels or adaptive delays. It does however nicely
illustrate which steps of the elementary motion detection are performed in which part of the optic lobe.

Figure 3.9: Mapping of the traditional Reichhardt detector onto the optic lobe. Retrieved from Tuthill et al. (2013)

3.3.3. The Lobula Giant Movement Detector
In addition to the EMD, there is another commonly researched form of motion detection in flying insects
which involves the Lobula Giant Movement Detector (LGMD). The LGMD neuron can be found in the lobula
of the locust. Rather than responding to cardinal motion directions at a fixed distance like the EMD, it has
been found to react to looming stimuli. Using the same approach as in the previous section, first, the neural
implementation of the LGMD is presented followed by a computational model aiming to mimic the LGMD’s
characteristic traits.

Neural Implementation The spiking response of the LGMD is a consequence of a critical race between
neurons that are excited due to illumination changes in the visual field and delayed inhibition resulting from
the same changes in illumination (Rind, 2002). In particular, an increase in the edge velocity of objects within
the visual field and an increase in the total amount of visible edge have been found to be responsible for the
reaction of the LGMD to looming objects (Rind and Bramwell, 1996). The preprocessing of the visual input is
believed to take place in the medulla since this is the first layer in the optic lobe in which small-field neurons
react specifically to movement instead of random changes in illumination (James and Osorio, 1996; Osorio,
1991). While the exact neural circuits resulting in the spiking response of the LGMD to looming stimuli are not
fully understood, several computational implementations exist which are able to mimic the characteristics of
this neuron.



3.3. Mechanisms for Motion Detection in Flying Insects 65

Computational Model A computational model involving the LGMD neuron was first developed by Rind
and Bramwell (1996). The model was realized using a neural network consisting of three layers with 250 units
each. The first layer comprises photoreceptors or P-units, the second one excitatory (E) and inhibitory (I)
units, and the third one summing (S) units. In addition, there is a single feed-forward inhibition cell and
one final layer consisting of only one LGMD neuron. The architecture of this model is depicted in Figure 5.1
(retrieved from Rind and Bramwell (1996)).

Figure 3.10: Computational model of a neural network involving the LGMD neuron. Retrieved from Rind and Bramwell (1996).

Incoming images are mapped onto the hexagonally arranged P-units such that each unit covers a small area
of the view. The P-units in the first layer respond to changes in illumination with brief excitations as can be
seen at the bottom of Figure 3.10. Their output is then passed to the excitatory E-cells and the inhibitory I-
cells in the second layer and the single feed-forward inhibitory F-cell. While the E-units directly forward the
signal to the corresponding summing S-units in the same retinotopic position in the third layer, inhibition is
forwarded laterally to two rings of S-units surrounding the position of the transmitting I-unit (see Figure 3.10,
the greyscale of the units represent the distance from the central photoreceptor). Furthermore, no delay is
applied to excitatory signals but inhibition is delayed by 1 - 4 ms. The output of the S-cells depends on the
total sum of the excitation and inhibition received. They spike once a certain threshold has been reached.
The excitation of the I-, E-, and S-units is followed by a refractory phase during which they cannot be acti-
vated and the excitement decreases exponentially as indicated at the bottom of Figure 3.10. Finally, in the
fourth layer, the input to the LGMD is computed as the difference between the total excitation of the S-cells
and the inhibition of the F-cell. Again, if the excitation of the LGMD neuron reaches a certain threshold, it
spikes which can be interpreted as the detection of a looming object.

The detection of looming objects can be seen as a race between the excitatory and inhibitory signals. When an
object is approaching, the number of spikes from the E-neurons is increasing exponentially since the edges in
the visual field are expanding. However, due to the delay applied to the signal transmitted by the I-neurons,
it still shows the smaller magnitude from several ms before. Consequently, the excitatory signal is stronger
such that the LGMD neuron is triggered. Conversely, the excitatory units will lose the race when an object is
receding since the edges in the visual field will then retract. When an object is translating, the number of ex-
cited E-units stays approximately constant meaning that the delayed inhibitory signal is of similar magnitude
as the excitatory one. This way the sum of the two signals cancels out and the LGMD neuron is not triggered.
These mechanisms ensure that the LGMD-neuron does indeed only spike for looming stimuli.



66 3. Motion Detection and Obstacle Avoidance in Flying Insects

3.4. Obstacle Avoidance in Flying Insects
The final step along the visual pathway of flying insects is the conversion of the computed OF into motor
commands. While this research focuses on possible ways to improve OF computation, the ultimate goal is
to use the obtained OF in order to perform OA onboard MAVs. Consequently, this section provides a brief
overview of collision avoidance approaches in flying insects.

The LGMD neuron is postsynaptically connected to the descending contralateral movement detector (DCMD).
This neuron is linked to leg and flight motor- and interneurons which are involved in escaping maneuvers
of the locust (Rind, 2002). Since the LGMD neuron triggers a one-to-one spike response in the descending
contralateral movement detector (DCMD) (Rind, 1984), the excitation of the LGMD neuron due ta a loom-
ing stimulus triggers a direct escape response in the locus. Unfortunately, the neural translation into motor
commands is not as straightforward for the EMD. It is known that the information about elementary motion
direction computed in the lobula plate is subsequently projected onto the ventrolateral neuropils (VLNP) in
the central brain for further processing. However, the exact neural processes translating the optical flow into
motor avoidance commands are unknown (Nériec and Desplan, 2016). Based on behavioral observations in
insects, several models have been suggested aiming to explain how flying insects utilize OF to avoid obstacles.
The most commonly researched ones are presented in the remainder of this section.

Many OF-based strategies do not directly consider the avoidance of obstacles but are more closely related
to navigational tasks. It has for example been observed that bees tend to stay centered when flying through
tunnels. Experiments suggest that they do this by keeping the OF perceived in the left and right parts of the
visual field equal. Furthermore, it was shown that they slow down when the tunnel becomes more narrow
and speed up when it becomes wider. This indicates that they keep the bilateral OF constant. It was also
shown that bees land at a constant approach angle implying that they keep the magnitude of the OF constant
(Serres and Ruffier, 2017). While these observations can be used to avoid collisions when performing tasks
such as wall following or keeping a predefined distance to the ground, the aim of this research is to provide
an OA method that can be applied to the operation in complex environments. Consequently, these OF tech-
niques are not further considered and special attention will be drawn to OA methods that can deal with a
larger variety of obstacles.

In (Tammero and Dickinson, 2002) experiments were performed to investigate insect’s avoidance reactions
to certain stimuli. These included expanding squares presented at varying azimuth angles and expansion
rates. In order to measure the response of the flies, they were tethered and their wing-stroke amplitude and
frequency were recorded. Furthermore, the position of their legs was optically tracked to detect stereotypical
landing responses. The results of this experiment were then analyzed in light of four existing models for OA
in insects in order to check their plausibility. The first model was the "TTC model" in which the fly triggers
an OA response if the TTC (see subsection 2.3.4) falls below a certain threshold (e.g. (Wagner, 1982)). In the
second model, the "temporal contrast model", avoidance reactions are set off if darkening occurs in the field
of view (e.g. (Trimarchi and Schneiderman, 2009; Holmqvist and Srinivasan, 2004)). The third model sug-
gests that a fly might generate a response if the image covering its field of view subtends a certain width or
area (e.g. (Wittekind, 1998; Wicklein and Strausfeld, 2000)). In the fourth and final model image motion is
integrated over space and time and an obstacle avoidance reaction is triggered when the integrals exceed a
certain threshold. This is referred to as the "integration model" (e.g. (Borst, 1990)).

The results of the experiments showed that flies generate the strongest collision avoidance reaction in re-
sponse to image expansion in the lateral parts of the visual field, whereas expansions in the frontal regions
trigger landing responses (extensions of legs). Furthermore, it was found that the latency of the collision
avoidance reaction remains more or less constant for varying expansion velocities while the latency for land-
ing maneuvers changes with the rate of image expansion. Finally, it was revealed that by opening the feedback
loop of the experiment, i.e. by eliminating the effect of the fly’s response on the visual stimulus, the amplitude
of the avoidance response increased. This implies that the collision avoidance response does indeed rely on
visual feedback. These results show that the TTC model appears to be an unlikely candidate since the latency
of the avoidance reaction did not vary with the expansion rate which should be the case if flies did indeed
utilize the TTC to trigger avoidance responses. While the latency for the landing responses did vary with the
expansion rate, for other species of flies it was shown to also depend on image contrast and size, which is
inconsistent with the TTC model (Eckert and Hamdorf, 1980). The constant latency of avoidance reactions



3.4. Obstacle Avoidance in Flying Insects 67

also makes it unlikely that avoidance responses are triggered by an absolute stimulus size as suggested by
the stimulus size model. Finally, large changes in temporal contrast induced by a sudden increase of the
size of the square did not trigger any avoidance or landing responses in the flies indicating that the temporal
contract model is also an unlikely candidate. Consequently, the integration model appeared to be the most
promising one to explain how motion direction information is translated into motor commands.

Based on these findings, Tammero and Dickinson (2002) suggested an adapted integration model for OA. This
model is depicted in Figure 3.11 (retrieved from Tammero and Dickinson (2002)). It can be seen that informa-
tion about the image expansion is obtained from an array of EMDs as described in subsection 3.3.2. In order
to ensure independent initiation of the two behaviors (landing and avoidance maneuvers), the expansion has
to be calculated over at least three separate regions, namely the lateral left, the lateral right, and the frontal
part of the field of view. The expansion signals are then integrated and when reaching a certain threshold they
trigger a saccade and a landing response for the lateral and central part of the visual field, respectively. In or-
der to prevent weak motion stimuli from triggering an avoidance response, the temporal integration must be
"leaky" meaning that it decreases over time when no further inputs are received. Finally, the outputs of the
lateral expansion detectors inhibit each other in order to prevent sudden changes in flight direction.

Figure 3.11: Illustration of the computational model explaining avoidance and landing reactions in the fly based on optic flow input.
Retrieved from Tammero and Dickinson (2002).





4
Towards a Neuromorphic Approach for

Optic Flow Estimation

In the previous section it was shown how insects perform OF estimation and OA despite their limited com-
putational resources. It was established that they employ neural asynchronous computations for both per-
ception and processing unlike conventional means of OF estimation which rely on synchronous algorithmic
approaches. Furthermore, it was found that insect eyes have a very low resolution and acuity and show adap-
tation which cannot be observed in conventional methods for OF estimation. However, it still has to be es-
tablished how these low-power, lightweight solutions can be translated into engineering applications. In this
chapter recent technological advances which have the potential to close this gap will be presented

Since most biological systems share many of the desirable properties which can be found in insects, this
chapter does not only focus on insect-inspired approaches but more generally speaking on so-called neuro-
morphic systems. The term neuromorphic was first introduced by Mead (1990) and describes artificial neu-
ral systems and design principles reminiscent of those in biological nervous systems (Indiveri et al., 2011).
In section 4.1, section 4.2 and section 4.3 three neuromorphic technologies which are promising for the use
of insect-inspired OF estimation and OA will be introduced. Furthermore, existing OF estimation methods
utilizing these technological advancements will be explained in the respective sections.

4.1. Event Cameras
In recent years event cameras such as the Dynamic Vision Sensor (DVS) (Lichtsteiner et al., 2008) have been
developed which mimic the working principle of biological retinas. Rather than sampling the visual scene at
a fixed frame rate like conventional cameras, they asynchronously generate events in response to changes in
the perceived brightness. This makes their working principle similar to vision in flying insects. Their output
consists of an event stream that contains information about changes in the image intensity at a specific time
and pixel. An example of this is shown in Figure 4.1 (retrieved from Barranco et al. (2014)) where the output of
an event camera in response to a moving hand can be seen. The left side illustrates the output events buffered
over a specific time window and the right side depicts the spatial locations of the events as a function of time.
This section introduces the basic working principle of event cameras and their advantages over frame-based
cameras. It furthermore provides an overview of the sensors currently available on the market and introduces
existing methods for event-based OF estimation.

4.1.1. Working Principle
Event cameras generate an output whenever the logarithmic local change in brightness exceeds a predefined
threshold. The changes in image intensity are measured with respect to a reference log-illumination saved
during the last event at the concerned pixel. This information is communicated in form of an event stream
containing the location (x, y), the time stamp t , and the polarity p of the event. The polarity contains informa-
tion about the sign of the illumination change with ON- and OFF-events indicating increases and decreases
in the log-intensity, respectively (Gallego et al., 2019).

69



70 4. Towards a Neuromorphic Approach for Optic Flow Estimation

Figure 4.1: Illustration of event camera output in response to a moving hand. The left image shows the output events buffered over a
time window of 250 ms. ON- and OFF-events are represented as light and dark gray-values. In the right image the corresponding

spatiotemporal representation is depicted. Retrieved from Barranco et al. (2014).

The basic working principle of a DVS pixel is depicted in Figure 4.2 (retrieved from Lichtsteiner et al. (2008)).
The upper image provides an example of the voltage output Vp, representing the log-illumination at a specific
pixel, and the lower image shows the corresponding change in voltage Vdiff. It can be seen that the change in
voltage is reset whenever it reaches the specified threshold. This leads to the generation of an output event
and updates the reference voltage level illustrated as ’reconstruction’ in the upper image.

Figure 4.2: Illustration of the working principle of an event camera pixel. Retrieved from Lichtsteiner et al. (2008)

4.1.2. Available Event Cameras
The most commonly used event-cameras in scientific literature are the "DVS128" (Lichtsteiner et al., 2008),
the Active-pixel Vision Sensor (DAVIS) (Brandli et al., 2014), and the Asynchronous Time-based Image Sen-
sor (ATIS) (Posch et al., 2011). The DVS128 was the first commercially available event camera and could be
purchased at iniLabs. However, this camera did not provide any information about absolute brightness lev-
els which are often used as ground truth in machine learning applications. Furthermore, it makes use of a
rather small pixel array. The DAVIS and ATIS both showed improvements with respect to these shortcomings.
They offer increased resolutions of 240x180 and 304x240 pixels, respectively, and provide a grayscale image
in addition to the event-based representation of the visual field. Moreover, the DAVIS240 also supplies IMU
measurements. The specifications of these three event cameras are shown in Table 4.1 (adapted from Gallego
et al. (2019)).



4.1. Event Cameras 71

Active research is still being performed in the development of more advanced event cameras. Li et al. (2015);
Moeys et al. (2017); Marcireau et al. (2018) e.g. propose event cameras that also respond to different colors by
employing integrated color filter arrays (CFA) or color-splitter prisms. Furthermore, iniLabs is currently de-
veloping the Embedded Dynamic Vision Sensor (eDVS) and the Miniature Embedded Dynamic Vision Sensor
(meDVS) in an effort to miniaturize event-based cameras. Their significantly reduced size and weight make
them promising for the use onboard MAVs.

Table 4.1: Specifications of the DVS128, DAVIS240 and ATIS. Adapted from Gallego et al. (2019)

DVS128 DAVIS240 ATIS

Supplier iniVation iniVation Prophese
Reference Lichtsteiner et al. (2008) Brandli et al. (2014) Posch et al. (2011)
Year 2008 2014 2011
Resolution [pixels] 128x128 240x180 304x240
Latency [µs] 12 @ 1 klux 12 @ 1 klux 3
Dynamic range [dB]1 120 120 143
Contrast sensitivity [%] 17 11 13
Power consumption [mW] 23 5-14 50-175
Pixel size [µm2] 40x40 18.5x18.5 30x30
Grayscale output No yes yes
Max. bandwidth [Meps]2 1 12 -
Interface USB 2 USB 2 -
IMU output no yes no

4.1.3. Advantages Over Frame-Based Cameras
Since the pixels in event-cameras operate asynchronously and only transmit information when changes in
the corresponding part of the visual scene are occurring, the amount of transmitted data is highly reduced.
Moreover, similarly to insects, event cameras typically have a lower resolution than frame-based cameras
which further reduces the amount of data to be processed. This in return leads to a lower power consump-
tion when compared to frame-based cameras (Posch et al., 2014). Furthermore, the sampling of the visual
scene is adjusted to the scene dynamics and not driven by an external clock. This means that dynamic parts
in the field of view are sampled at higher rates resulting in a high temporal resolution. The asynchronous
operation of event-based cameras leads to a low latency since detected events can be communicated straight
away without having to wait for the global exposure time of the frame. Finally, event cameras show a very
high dynamic range of more than 120 dB as opposed to the roughly 60dB typically found in frame-based
cameras. This is due to the logarithmic scale used by the photoreceptors and the fact that the pixels work
independently (Gallego et al., 2019). Finally, the event-based nature of the output already contains informa-
tion about the spatio-temporal dynamics of the scene which can be useful during the computation of OF. It
can be concluded that event cameras possess many of the desired properties observed in the visual system of
insects and that they are thus promising for the use in insect-inspired OA.

4.1.4. Event-Based Optic Flow Estimation
Since event-based cameras encode information about the spatiotemporal dynamics of the visual field at a
high temporal resolution, they have recently gained a lot of attention in the field of OF estimation. However,
as shown in subsection 4.1.1 their output varies greatly from that of frame-based cameras. This means that
novel approaches are required to compute OF estimates from event-based input data. Based on the extensive
review provided in (Gallego et al., 2019), this section presents existing methods to perform this task.

Gradient-Based Methods Gradient-based methods compute OF based on information about the spatio-
temporal changes of pixel brightness and are mainly based on existing frame-based techniques. Benosman
et al. (2011) e.g. adapted the well known gradient-based Horn-Schunk method (Horn and Schunck, 1981) in
order to extract OF from an event-based camera. While the required temporal and spatial derivatives of the

1Dynamic range refers to the ratio of the brightest and darkest colors a camera can picture in a single image.
2Million events per second



72 4. Towards a Neuromorphic Approach for Optic Flow Estimation

pixel intensities are not directly available due to the lack of gray levels, they were approximated by comparing
the activity levels of two adjacent active pixels. In particular, they were computed according to Equation 4.1
and Equation 4.2, where e(x, y, t ) represents an event at time t and pixel location (x.y). The OF was then
retrieved by assuming a constant pixel brightness over a window of pixels as proposed in (Lucas and Kanade,
1981) resulting in an additional constraint. This made it possible to solve for the OF. However, Brosch et al.
(2015) showed that gradient-based methods suffer from the small number of events available per pixel and
that they are consequently quite noisy and unstable.

∂e(x,y,t )
∂x ∼

t∑
t−∆t

e(x, y, t )−
t∑

t−∆t
e(x −1, y, t )

∂e(x,y,t )
∂y ∼

t∑
t−∆t

e(x, y, t )−
t∑

t−∆t
e(x, y −1, t )

(4.1)

∂e(x, y, t )

∂t
∼

t1∑
t−∆t

e(x, y, t )−
t∑

t−∆t
e(x, y, t )

t − t1
, with t1 < t (4.2)

Plane-Fitting By plotting the time of events as a function of their pixel locations, a spatiotemporal surface
can be obtained which displays the movement of image features in time. The gray surface in Figure 4.3 (re-
trieved from Aung et al. (2018)) e.g. illustrates the event representation of a bar moving in the x-y plane.
Benosman et al. (2014) showed that the normal to this surface is the OF component perpendicular to the
moving edge. This means that the normal OF can be obtained if the gradient of the surface is known. By only
considering events within a small spatiotemporal box, Benosman et al. (2014) approximated the velocity at
which events are propagating as constant resulting in a planar spatiotemporal surface. Using a least square
algorithm they then estimated the surface and its gradients from the events within the box. The plane-fitting
algorithm is illustrated in Figure 4.3 where the blue dots represent the measurements by the event camera
and the red dots predictions performed by the plane-fitting method.

Figure 4.3: Illustration of the plane-fitting algorithm. Retrieved from Aung et al. (2018).

A problem with this method is that the normal OF is defined as the inverse of the plane gradients which leads
to singularities for very small gradient values. This issue was addressed in (Brosch et al., 2015) by introducing
a new expression for the OF and the surface normal. To improve the accuracy of the suggested approach
Rueckauer and Delbruck (2016) presented an iterative method which was then implemented on an FPGA by
Aung et al. (2018). In (Barranco et al., 2014) the method was adapted to also cope with more gradual intensity
gradients. Hordijk et al. (2018) added efficiency improvements to the method proposed in (Benosman et al.,
2014) by reducing the number of parameters of the fitted plane and assuming that incoming events coincide
with the estimated plane. Furthermore, they introduced a "time-stamp based clustering of the event cloud"
(Hordijk et al., 2018) which deals with the problems arising when using a fixed value for the time window ∆t.



4.2. Spiking Neural Networks 73

Direction-Selective Filters Direction-selective filters mimic the working principle of the frame-based fre-
quency methods introduced in section 5.1. In particular, they apply a set of spatiotemporal filters to achieve
selectivity to specific motion directions and speeds (Gallego et al., 2019). It can be differentiated between ap-
proaches in which these filters are handcrafted (e.g. (Orchard et al., 2013; Tschechne et al., 2014; Brosch et al.,
2015)) and approaches in which the filters are learned from event data (e.g. (Paredes-Valles et al., 2020)).
Orchard et al. (2013) extracted motion patterns by employing synaptic connections with delays and using
neurons as coincidence detectors (Gallego et al., 2019). Tschechne et al. (2014) on the other hand proposed
directional selectivity in motion selective neurons as a result of a combination of two spatial and two tempo-
ral filters whose parameters were tuned based on experimental results. This approach was further developed
in (Brosch et al., 2015) where the filter outputs were integrated over larger areas of the visual field and fed back
to perform response normalization. While these filter-based approaches have proven to provide accurate OF
estimates, it should be noted that the resolution of their estimates is limited by the number of available filters.

4.2. Spiking Neural Networks
In section 3.4 it was shown that insects rely on neural computation to perform visual navigation. This stands
in contrast to the algorithmic frame-based methods for OF computation presented in chapter 2. While
this section also introduced frame-based methods which utilize artificial neural networks (ANN), these ap-
proaches do not accurately represent the working principles of neural networks in living creatures. All com-
putations within the layers of ANNs are synchronized and have to be completed before the final output is
provided. Furthermore, they have non-linear but continuous states, meaning that the advantages of event
cameras such as their high temporal resolution cannot be fully utilized. In the majority of biological systems,
however, spike-like data representations can be found in which information is communicated in discrete
spikes which are often triggered by specific events (Pfeiffer and Pfeil, 2018).

In recent years attempts have been made to resolve this discrepancy by introducing spiking neural networks
(SNN) which aim to mimic real neural structures more closely. This was done by implementing artificial
neurons using mathematical models to describe the voltage output or the probability of spikes over time. This
section provides an introduction to SNNs by describing their basic working principle and the most commonly
used neuron models. Furthermore, models for synaptic and intrinsic plasticity are provided.

4.2.1. Working Principle
SNNs operate asynchronously and in a parallel fashion. This means that neurons work independently and
immediately transmit occurring spikes to postsynaptic neurons without having to wait for the entire input
sequence to end. This way important information can be quickly passed through multiple layers of the net-
work resulting in an initial estimate of the output as soon as the first input spikes have arrived. Consequently,
the processing of information boils down to the timing of the spikes and the "Identity of the synapses used"
(Pfeiffer and Pfeil, 2018). More specifically, timing refers to the firing frequencies, the relative timing between
pre- and postsynaptic spikes, and specific firing patterns. The identity of the synapses describes which neu-
rons are connected, whether excitatory or inhibitory synapses are used, and their synaptic strengths. This is
also referred to as pseudo-simultaneous information processing (Farabet et al., 2012; Camuñas-Mesa et al.,
2014). This kind of processing is very efficient since computations only have to be performed in the active
parts of the network.

In Figure 4.4 (retrieved from (Pfeiffer and Pfeil, 2018)) a comparison between a conventional deep neural
network (DNN) and a deep SNN is performed. In figure A an example of an ANN with two hidden layers is
provided. Figures B and C show the computational output for the several layers as a function of time with
a time step of ∆T for the conventional DNN. The different grey values represent the activation values of the
various neurons (figure C shows binarized activations). Figure D depicts the propagation of information in
a deep SNN with the same architecture. The membrane potential of the neuron marked in green is shown
in figure E as a function of time. Finally, the test accuracies of the DNN and the SNN are indicated in Figure
F in blue and red, respectively. It can be seen that the DNN only provides outputs after all layers have been
processed while the SNN supplies an output almost instantly at an only slightly lower accuracy. These prop-
erties make SNN highly attractive for the handling of DVS data since they can fully utilize the asynchronous,
event-based, low-power, and low-latency operation of these sensors.



74 4. Towards a Neuromorphic Approach for Optic Flow Estimation

Figure 4.4: Comparison between working principle of deep ANN and SNN. More details can be found in the text. Retrieved from Pfeiffer
and Pfeil (2018)

4.2.2. Spiking Neuron Models
Utilizing SNNs requires a mathematical description of the general neuron dynamics presented in section 3.1.
For this purpose, a lot of different formulations have been suggested with varying levels of abstraction. These
models perform a trade-off between the level of biological plausibility, i.e. how closely they can match the
neural dynamics in real living beings, and the required computational complexity. In this section first, a
general overview of existing neuron models is provided and subsequently, models which are of particular
interest for this research are explained in more detail.

Overview of Existing Neuron Models Generally speaking, it can be differentiated between population and
single neuron models. Population models utilize the fact that neurons are grouped into populations of units
with similar characteristics in large areas of the brain. The neuron dynamics are then modeled as the mean
activity of the neural population which is also called the population activity. Knight (1972); Brunel (2000); Eg-
gert and van Hemmen (2001) e.g. computed the population activity by counting the number of spikes within
a specified small time window and subsequently dividing it by the population size and the time window (Ger-
stner and Kistler, 2002).

Single neuron models on the other hand mimic the dynamics of individual neurons. Here it can be differ-
entiated between conductance-based models that aim to model the actual electrophysiological processes of
neurons and phenomenological models which simply aim to match the output of real neurons. The Hodgkin-
Huxley Model (Hodgkin and Huxley, 1990) is considered one of the most realistic conductance-based models.
It consists of a set of differential equations representing the neuron dynamics as electric circuits comprising
capacitors and resistors. While this model is not commonly used in engineering applications due to its high
complexity it has served as an inspiration for more efficient, practical approaches. The Morris-Lecar Model
(Morris and Lecar, 1981) and FitzHugh-Nagumo Model (FitzHugh, 1961) e.g. simplified the Hodgkin-Huxley
Model to two dimensions while still showing high levels of biological plausibility. The Spike-Response-Model
(SRM) (Kistler et al., 1997), (Leaky) Integrate-and-Fire Model (LIF)(Stein, 1965), and Izhikevich Model (Izhike-
vich, 2003) represent examples of phenomenological models which show even lower computational cost
which does however come at the price of lower biological feasibility. Since this research is not aiming to
precisely model the working principle of neurons but to find an efficient means of OF estimation and OA,
the phenomenological models are explained in more detail in the following sections. It should be noted that
other more elaborate neuron models exist which include adaptive properties. These models will be presented
in subsection 4.2.4.



4.2. Spiking Neural Networks 75

Spike-Response-Model The Spike-Response-Model (SRM) was first suggested by Kistler et al. (1997) and
characterizes the state of a neuron i by the membrane potential vi . The value of this variable depends on
the spiking history of the presynaptic neurons j which are connected to neuron i with synaptic weights ωi j .
Assuming that neuron i has fired its last spike at time t̂i , the evolution of vi after firing can be expressed as:

vi (t ) = η(t − t̂i )+∑
j
ωi j

∑
f
ϵi j

(
t − t̂i , t − t ( f )

j

)
+

∫ ∞

0
κ

(
t − t̂i , s

)
I ext (t − s)d s

(4.3)

If there are no input spikes, this value coincides with the resting value vrest = 0. If the membrane potential
reaches the spiking threshold vth an output spike is triggered and the neuron enters into a refractory period.
The function η defines the evolution of the membrane potential after the firing threshold has been reached,

the kernel ϵ represents the time course of vi upon receiving a presynaptic spike where t ( f )
j is the firing time

of the respective presynaptic neurons, and κ describes how the membrane potential varies when an external
driving current I ext is received (Gerstner and Kistler, 2002).

(Leaky) Integrate-and-Fire Model Stein (1965) proposed the Leaky Integrate-and-Fire model (LIF) which
consists of a parallel combination of a leaky resistor (R) and a capacitor (C). The input from presynaptic
neurons is modeled as a current source I(t) charging the capacitor which produces a potential v(t). Once the
potential reaches a predefined threshold vth, the capacitor discharges and returns to its resting potential vrest.
This process corresponds to a neuron producing an output spike. Defining the time constant of the neuron
membrane as λ= R ·C , the change in membrane potential can be expressed as:

λ
d v(t )

d t
= vrest − v(t )+RI (t ) (4.4)

Right after emitting a spike, the neuron enters a refractory period during which incoming currents no longer
affect the membrane potential of the neuron. The LIF-model can be further simplified by neglecting the leaky
term in Equation 4.4. In that case the membrane voltage is only influenced by the incoming current which
simplifies the neuron dynamics to the differential shown in Equation 4.5. This model is often referred to as
the Non-leaky Integrate-and-Fire or simply as the Integrate-and-Fire (IF) model.

C
d v(t )

d t
= I (t ) (4.5)

Izhikevich model In an effort to combine the biological plausibility of the Hodgkin-Huxley model with the
computational efficiency of the LIF model, Izhikevich (2003) proposed the system of ordinary differential
equations (ODE) shown in Equation 4.6. Here, v represents the membrane potential and u a membrane re-
covery variable. The parameters a, b, c, and d are all dimensionless and control the exact dynamics of the
neuron. In particular, a determines the time scale of the recovery variable u(t ) while b controls the sensitiv-
ity of u(t ) to the sub-threshold fluctuations of the membrane potential. The reset values of the membrane
potential v(t ) and the recovery variable u(t ), are described by the parameters c and d , respectively. The
model was obtained from Hodkin-Huxley-type neuron models using bifurcation methodologies (Izhikevich
and Moehlis, 2008).

d v(t )

d t
= 0.04v2(t )+5v(t )+140−u(t )+ I (t )

du(t )

d t
= a(bv(t )−u(t ))

(4.6)

4.2.3. Synaptic Plasticity
In section 3.1 the concept of synaptic plasticity was introduced. It represents the basis for learning and mem-
ory in biological neural networks and is defined as the ability to change the strengths of the synaptic connec-
tion, between pre- and postsynaptic neurons. Generally speaking, it can be differentiated between unsuper-
vised, supervised, and reinforcement learning. Hereafter, an overview of these approaches is given.



76 4. Towards a Neuromorphic Approach for Optic Flow Estimation

Unsupervised Learning In unsupervised learning, no ground truth is available and there is no notion of
specific adaptations being ’good’ or ’bad’ (Morrison et al., 2008). Consequently, changes in synaptic efficacy
merely emerge locally from the spatiotemporal patterns of the neural input. Hebb’s postulate of "neurons
that fire together, wire together" as introduced in section 3.1 has inspired a variety of unsupervised learning
approaches, the most common one being Spike-Timing-Dependent Plasticity (STDP) (e.g. (Gerstner et al.,
1996; Kempter et al., 1999)).

The underlying idea of this approach is illustrated in Figure 4.5 (retrieved from Madadi Asl et al. (2018)). The
change in synaptic strength between two neurons increases or decreases based on the relative timing ∆t be-
tween their output spikes. If ∆t < 0, i.e. the post-synaptic neuron fires first, the synaptic connection is weak-
ened while it is increased if the post-synaptic neuron fires after the presynaptic spike occurs. These processes
are also called long-term depression (LTP) and long-term potentiation (LTP), respectively. Furthermore, the
magnitude of this change increases exponentially for decreasing values of the absolute time difference.

Figure 4.5: Illustration asymmetric STDP learning window. Retrieved from Madadi Asl et al. (2018).

Morrison et al. (2008) provided the general mathematical formulation for STDP shown in Equation 4.7. Here,
∆w , τ, and F (w) represent the changes in the synaptic strength, the time constant, and the dependence of
the update on the current weight of the synapse, respectively. The superscripts + and − refer to the LTP and
LTD, respectively. The time difference ∆t = t j − ti is defined as the temporal difference between the time of
the postsynaptic spike t j and of the presynaptic spike ti .

∆w+ = F+(w) ·exp
(−|∆t |

τ+

)
, if ∆t > 0

∆w− =−F−(w) ·exp
(−|∆t |

τ−

)
, if ∆t ≤ 0

(4.7)

A simple example for the dependence of the update on the current weight of the synapse is given in Equa-
tion 4.8 (?), where wmax represents the maximum value of the weights and a+/−, some scaling constants. This
approach ensures that the weights do not exceed the previously specified maximum value wmax .

F+(w) = (wmax −w)a+, F−(w) = w a− (4.8)



4.2. Spiking Neural Networks 77

While traditional STDP formulations have already shown great success in computer vision applications such
as image classification (e.g. (Iakymchuk et al., 2015; Mozafari et al., 2019)), most of them still utilize static
training approaches. This means they do no longer update their weights to adapt to new input statistics once
the training phase has finished. As a consequence, current applications are mainly bound to a specific set
of operating environments. In an effort to overcome this issue, several authors have proposed STDP rules
that utilize controlled forgetting (Panda et al., 2018; Allred and Roy, 2020; Putra and Shafique, 2021). This
means that the weights retain life-long plasticity without the risk of catastrophic forgetting3. This is achieved
by introducing a leaky term in the formulation of the traditional STDP-formulation. Considering that MAVs
typically operate in a wide range of operating conditions these approaches are especially promising for the
use of navigational tasks on-board MAVs.

Supervised Learning During supervised learning the output of the network is compared to a previously es-
tablished ground truth and the synaptic weights are modified to minimize the difference between the actual
and the desired output. While a wide range of supervised training methods exists for ANNs, the discontinuous
nature of spiking neuron models makes the translation of commonly used approaches, such as backpropaga-
tion, to SNNs difficult (Mostafa, 2018). In recent years four main strategies have emerged for the supervised
training of SNNs (Pfeiffer and Pfeil, 2018). A brief review of these methods is provided hereafter.

The first approach does not train SNNs in the stricter sense but simply binarizes activations of ANNs for
efficient inference (Hubara et al., 2016; Kim and Smaragdis, 2016; Rastegari et al., 2016). While binarized net-
works resemble the spike-like nature of SNNs, they maintain synchronous layer-by-layer information pro-
cessing. However, binarization still leads to a more energy-efficient computation on neuromorphic systems
due to the sparse activations. There are two major approaches to training these kinds of networks consisting
of deterministic and stochastic methods. Deterministic methods commonly make use of so-called straight-
through estimators (Bengio et al., 2013) in order to estimate non-differentiable activation functions during
backpropagation (Courbariaux et al., 2015). In stochastic methods neuron activations and synaptic weights
are often modeled using probability distributions which is also referred to as expectation backpropagation
(Soudry et al., 2014). Networks with binary activations usually perform worse than conventional ANN which
can be compensated for by increasing the size of the network. Furthermore, it usually takes longer to train
binarized ANN due to the increased complexity of the training methods.

In the second common approach the problem of gradient descent in SNN is avoided altogether. This is done
by first performing the training on a conventional ANN and subsequently converting it into an SNN. In (Pérez-
Carrasco et al., 2013) a first methodical approach to perform this mapping was presented which consists of a
conversion from activations of analog neurons to the firing rate of spiking neurons. Furthermore, the weights
of the neurons are translated into SNN parameters such as leak rates and refractory time. Alternatively, the
Neural Engineering Framework (Eliasmith and Anderson, 2004), can be used to convert ANNs into SNNs.
The SNNs obtained this way show similar performances as their underlying conventional neural networks
in benchmark tests (Diehl et al., 2015; Sengupta et al., 2018). However, one drawback is the fact that ANN
activations can take on both positive and negative values while firing rates in SNNs can only be positive. A
possible solution for this issue was proposed by (Pérez-Carrasco et al., 2013) stating that each ANN neuron
can be represented by two spiking neurons with each one executing either positive or negative activations
exclusively. Doing this does however contribute to another problem introduced by the conversion of activa-
tions into spikes, namely the large number of spikes required to represent the dynamics of the network. While
spike operations are computationally cheap, SNNs are especially appreciated for their sparse representations
meaning that the large number of spikes characteristic of this approach is an undesirable property.

Esser et al. (2015) introduced the term constrain-then-train for methods that account for constraints aris-
ing from the characteristics of spiking neurons or the hardware on which the network will be implemented,
during training. Similarly to the method presented above, this approach converts the SNNs in question into
ANNs for training purposes. However, constrain-then-train approaches train the network for one specific set
of spiking neuron model parameters. While this enables them to achieve higher levels of accuracy when com-
pared to converted models without constraints, they have to be retrained for different choices of parameters.

3Catastrophic forgetting refers to the tendency of artificial neural networks to forget previously learned patterns when confronted
with new input for learning.



78 4. Towards a Neuromorphic Approach for Optic Flow Estimation

In the fourth and final approach training is directly performed on the SNN on the level of spikes. Conse-
quently, these learning techniques are not constrained to mean rate codes but can incorporate the spatiotem-
poral patterns in spikes during training. These methods are not aiming to mimic learning as it occurs in bi-
ological systems but mostly rely on some sort of backpropagation variant to perform training. One possible
way to deal with the discontinuities of SNN is to perform stochastic gradient descent on real-valued mem-
brane potentials. The discontinuities introduced by the firing of a spike can then be coped with by applying
low-pass filtering (Lee et al., 2016). While this direct approach reduces the number of spikes needed to rep-
resent the system, it comes at the cost of larger training times. There are various options for the nature of
the target signal. While there are methods that require the output to match the temporal pattern of a specific
spike train for a certain input (Bohté et al., 2002), for most models it is enough if a target label is provided.
This label can then be represented by having the correct output neuron fire first (e.g. Mostafa (2018)), the
highest number of times, or the largest total number of times (e.g. (Lee et al., 2016)).

Reinforcement Learning In reinforcement learning (RL) no explicit ground truth is needed for the training
of the network. Instead, some sort of evaluation function is employed which judges the quality of the output
by assigning a score to it. Different kinds of RL differ in how they use the score in order to update the net-
work parameters. A popular approach for RL in SNNs is the use of evolutionary algorithms (EA) in which the
performance of different sets of network parameters is evaluated. The most successful ones are then selected
and recombined to produce ’offspring’. This process is repeated until a suitable set of network parameters is
found. Using this approach Belatreche et al. (2003) e.g. were able to successfully update both synaptic effi-
cacies and delays in an SNN. By manually evaluating the behavior of a mobile robot utilizing an SNN Stewart
et al. (2016) were able to make it avoid a frontal mirror. However, EAs still show very large computational
costs (or require manual supervision as in Stewart et al. (2016)) which makes it difficult to apply them to large
SNNs.

4.2.4. Intrinsic Plasticity
In section 3.1 it was explained that neurons have been observed to change their intrinsic properties such as
the voltage threshold in addition to adjusting their synaptic weights. This concept is also called intrinsic plas-
ticity (IP) and is useful in keeping the neuron dynamics within a desired operating range.

Lazar et al. (2007) proposed a voltage threshold update rule which is designed to make neurons spike an av-
erage k out of N times. Similarly, Li et al. (2018) presented an update rule for the neuron’s excitability in the
Izhikevich model. This update rule is aiming to adjust the output firing activity to match a specific goal. While
these approaches do successfully limit the operating range of the neurons in question, they do not optimize
the output distribution to maximize the information content. Baddeley et al. (1998) showed that the output
response of neurons in the visual cortical follows an approximately exponential distribution. Furthermore,
they argued that this exponential distribution yields maximal neural information transmission or in other
words maximal information entropy4.

One of the first attempts to achieve an exponential output spikes distribution was shown in Stemmler and
Koch (1999). Using the Hodgkin-Huxley neuron model, an update rule for the conductance was proposed
which aimed to maximize the overlap between the stimulus and firing rate entropy. Triesch (2005) matched
the output spike distribution of Sigmoid neurons to an exponential distribution by using the Kullback Leibler
(KL) divergence. This approach served as an inspiration for several spike-based applications. Li and Li (2013)
e.g. applied the proposed method to LIF-neurons by simply substituting LIF-parameters into the suggested
formulation. Zhang and Li (2019); Zhang et al. (2020) on the other hand derived an update rule for LIF-neuron
parameters from scratch. To deal with the discontinuous nature of spiking neurons Zhang and Li (2019)
assumed a constant input firing rate which allowed them to derive a continuous formulation for the output
firing rate. This could then be matched to an exponential distribution using the KL-divergence. Zhang et al.
(2020) tackled the issue of discontinuity by introducing a soft-reset spiking neuron which resets the neuron
membrane potential in a mathematically continuous manner after spikes occur. This allowed them to match
the membrane potential to an exponential distribution using once again the KL divergence.

4Information entropy describes the average level of information or uncertainty contained in a random variable’s possible outcomes.



4.2. Spiking Neural Networks 79

While these models showed improvements in accuracy of up to 17% in classification tasks (Zhang and Li,
2019), they all implement IP only in the neurons of hidden layers within the network while utilizing standard
neuron dynamics in the output layers. It is thus not clear if the same improvements could be achieved in
networks without hidden layers.

4.2.5. Spike-Based Optic Flow Estimation
Since SNNs allow to fully utilize the sparse output of event cameras they are promising for insect-inspired
OF estimation and OA. However, SNNs are still in their infancy and as of now, they are not many spike-based
approaches to OF estimation. The few that exist can be divided into methods that simulate SNNs on con-
ventional synchronous processors and those that are implemented on real neuromorphic hardware (see sec-
tion 4.3). In this section approaches using simulated SNNs are presented while the latter ones are introduced
in section 4.3.

In (Orchard et al., 2013) a first attempt was presented to compute OF with the help of an SNN using events
created by an ATIS. The proposed network consists of an array of LIF neurons which each cover an area of
5x5 pixels in the visual field. All connections had the same weights but varying delays are applied, such that
the neural connections act as spatiotemporal filters. This is illustrated in Figure 4.6 (retrieved from Orchard
et al. (2013)). For each pixel location 128 different filters were defined, one for each of 8 different speeds and
orientations and for the 2 polarities. Furthermore, a second layer of neurons with a larger receptive field was
implemented to overcome issues related to the aperture problem. While the network was able to provide
accurate OF estimates, it required a very large number of neurons which makes it unsuitable for the use on-
board MAVs.

Figure 4.6: Illustration of spatio-temporal filters for optic flow estimation. Retrieved from Orchard et al. (2013).

Paredes-Valles et al. (2020) also proposed an approach that utilizes spatiotemporal filters with delays. How-
ever, rather than manually defining the filters, they were learned from a set of event-based video sequences
using a novel STDP learning rule. This rule naturally constrains the values of the weights to be in a range
between zero and one. A hierarchical network architecture was proposed consisting of five layers, in which
the input is downsampled, features are extracted and pooled, and sparse local and global OF estimates are
provided. For this purpose, a modified LIF neuron was proposed which decreases the current of neurons
based on their spiking history. This work is especially promising since it utilizes a biologically plausible un-
supervised learning rule and mimics some of the adaptive properties of neurons that have been introduced
in subsection 3.3.2. However, despite using an adaptive formulation for the LIF neuron, this approach still
requires the use of different parameters for varying operating environments. Furthermore, this approach did
not utilize life-long learning which means that the weights can no longer change once they have converged.
This makes it difficult to employ it on MAVs which typically operate in a wide range of environments.



80 4. Towards a Neuromorphic Approach for Optic Flow Estimation

4.3. Neuromorphic Processors
In neuromorphic processors neural networks are directly implemented on hardware enabling asynchronous
and parallel processing similar to the neural computations performed in biological brains. When using con-
ventional synchronous architectures to implement event-driven vision systems, the events need to be con-
verted to frames first, such that advantages gained by the asynchronous nature of event cameras are compro-
mised. Furthermore, their asynchronous working principle makes neuromorphic processors more power-
efficient. These properties make them highly desirable for insect-inspired OF estimation and OA. This section
provides a brief introduction to neuromorphic processors. The explanation of their exact working principle
is beyond the scope of this research. However, commercially available processors are introduced in subsec-
tion 4.3.1 and approaches utilizing neuromorphic processors for OF estimation are shown in subsection 4.3.2.

4.3.1. Available Neuromorphic Processors
In Table 6.1 an overview of currently available neuromorphic processors is depicted (adapted from Gallego
et al. (2019)). It can be differentiated between analog, digital, or mixed analog/digital processors depending
on the method used to implement the neuron model. In analog implementations the desired behavior is
achieved by utilizing inherent properties of electronic devices while digital processors use Boolean logic-
based gates to achieve this (Schuman et al., 2017). In mixed analog/ digital systems a combination of the two
approaches is used. Furthermore, the various processors differ in the number of neurons available per chip
and in whether or not they support on-chip learning.

Table 4.2: Overview of currently available neuromorphic processors. Adapted from Gallego et al. (2019).

SpiNNaker TrueNorth Loihi DYNAP Braindrop

Supplier U. Manchester IBM Intel aiCTX Stanford U.
Reference Furber et al. (2013) Akopyan et al. (2015) Davies et al. (2018) Moradi et al. (2018) Neckar et al. (2019)
Year 2011 2014 2018 2017 2018
Neuron model Software Digital Digital Analog Analog
Neurons/chip 4k 1024k 131k 1k 4k
On-chip learning Yes No Yes No No

4.3.2. Optic Flow Estimation with Neuromorphic Processors
To the best of the author’s knowledge all existing methods for OF estimation utilizing end-to-end spiking pro-
cessing make use of some sort of elementary motion detector. Richter et al. (2014) e.g. implemented the
classical Reichardt detector (Reichardt and Rosenblith, 1961) on the SpiNNaker platform (Furber et al., 2013).
Similarly, a motion detector based on the direction-selective ganglion cells in the rabbit’s retina was imple-
mented on a custom Very-Large-Scale-Integration (VLSI) chip in (Giulioni et al., 2016) and on the TrueNorth
chip (Akopyan et al., 2015) in (Haessig et al., 2018). Finally, Milde et al. (2018) proposed the spiking EMD
(sEMD) which encodes the time for an object to move across an observer’s retina into a burst of spikes. For
this purpose, they used the adaptive exponential LIF neuron circuit presented in (Indiveri et al., 2006) utiliz-
ing an STDP rule to update the synaptic efficacies. However, since the model was implemented on a custom
chip only comprising 8 circuits it was tested in simulation.

To the best of this author’s knowledge, only few works have attempted to implement the LGMD neuron onto
neuromorphic hardware. One of these attempts was presented in (Salt et al., 2017) where the traditional
LGMD model was implemented on the mixed-signal analog-digital neuromorphic device presented in (Indi-
veri et al., 2015). This was done by introducing two additional layers, the IP and the IS layer which helped to
reduce the overall number of neurons required (see subsection 5.2.2). Salt et al. (2020) further built on this
approach by proposing differential evolution and Bayesian optimization techniques to ease the search for
suitable parameters.

While all of these methods were able to successfully create motion selectivity in the respective SNNs, they are
still subject to the general limitations of EMD/LGMD models introduced in subsection 3.3.2. These mainly in-
clude sensitivity to changes in lighting and structural properties of the visual field. While these are accounted
for in real biological systems by adaptation, this is not/only partially the case in the proposed approaches.
This means that they would require some sort of gain-scheduling in order to increase their robustness and be
useful for real-world applications involving MAVs.



5
Insect-Inspired Obstacle Avoidance

The previous chapter has provided an extensive discussion on insect-inspired/neuromorphic means of OF
estimation. However, while the ultimate goal of this research is to use the improved means of OF estimation to
perform OA on-board MAVs, it has not been established yet how OF can actually be used to perform collision
avoidance. For this purpose, an overview of existing insect-inspired/neuromorphic approaches is presented
in this chapter. In section 5.1 and section 5.2 frame-based and event-based/neuromorphic approaches are
presented, respectively.

5.1. Frame-Based Obstacle Avoidance
Since the vast majority of neuromorphic OA methods are translated from frame-based approaches, an overview
of the latter ones is presented in this section. This shall allow drawing inspiration for future work in this
field. It can be distinguished between algorithmic and neural approaches which will be presented in subsec-
tion 5.1.1 and subsection 5.1.2, respectively.

5.1.1. Algorithmic
Algorithmic approaches to OA utilize some sort of prior knowledge to translate the OF input into collision
avoidance commands. In fact, many methods mimic the OA techniques observed in flying insects as ex-
plained in section 3.4. They do this by utilizing OF observables (see section 2.3) to determine an avoidance
direction. In the remainder of this section, the most influential algorithmic OA methods using frame-based
cameras will be presented.

Time-to-Contact Inspired by the working principle of OA in insects, many collision avoidance models uti-
lize the time-to-contact (TTC) presented in section 3.4. An early attempt of this was shown in (Camus, 1995a),
where the TTC was used to detect a chair positioned in front of a mobile robot. This was done with the help
of Equation 2.10, meaning that the FoE had to be computed in addition to the OF. Assuming forward trans-
lation and only a single object in the field of view (FoV), this was done by computing the intersection of all
OF vectors. While this approach was able to successfully predict the TTC, it relied on several assumptions
including a constant velocity, only one visible obstacle in the FoV, and unidirectional motion. Since these as-
sumptions are most likely not fulfilled for OA on autonomous MAVs, this approach cannot directly be applied.

To overcome the assumption of a single obstacle in the FoV several authors (e.g. (Low and Wyeth, 2012;
Souhila and Achour, 2007)) also performed velocity measurements which allowed them to create a depth
map from the TTC which could then be used to avoid obstacles. However, this method requires the agent to
be equipped with a velocity sensor which might not be possible for autonomous MAVs with strict weight and
power limitations.

Nearness Maps To circumvent the issue of requiring a velocity sensor to create depth maps, the concept
of relative nearness has been utilized by several authors. Assuming a spherical eye Bertrand et al. (2015)
e.g. derived the expression for the relative nearness shown in Equation 5.1 where µ and v represent the

81



82 5. Insect-Inspired Obstacle Avoidance

nearness to an obstacle and the velocity of the agent, respectively and the variables φ and ϵ the azimuth and
the elevation within a spherical coordinate system, respectively.

(vµ(ϵ,φ))2 = OF(ϵ,φ)2
φ̂
+ OF(ϵ,φ)2

ϵ̂

sin2(ϵ)
(5.1)

The translational OF was separated from the rotational OF by copying insect’s saccadic flight strategy (see
subsection 3.3.1) and singularities at the FoE (see subsection 2.3.3) were avoided by slightly changing the
flight direction after each saccade. This way the agent could obtain several similar relative nearness maps
but with slightly differently positioned FOEs. By integrating the obtained nearness maps, a map with no sin-
gularities was obtained.

To determine the obstacle avoidance direction from the relative nearness map, the Center-Of-Mass Average
Nearness Vector (COMANV) was computed. It points in the average direction of close-by obstacles and is
obtained by averaging the nearness vectors along the elevation and subsequently taking the vector sum of
the averaged nearness maps. The opposite direction is then used to avoid collisions. This is illustrated in
Figure 5.1 (retrieved from (Bertrand et al., 2015)) where the first image depicts the top view of two cylindrical
objects and an agent performing the saccadic flight strategy. The second and third images depict the OF
field and the time-integrated OF field obtained by averaging the data from several saccades, respectively. The
resulting nearness map is shown in the fourth image. In images 5 and 6, the result of integrating the nearness
vectors along the elevation and the resulting COMANV are shown, respectively.

  

Figure 5.1: Illustration of collision avoidance method proposed in (Bertrand et al., 2015). Details can be found in the text. Retrieved
from Bertrand et al. (2015).

Simulation results showed that this method could successfully avoid obstacles using geometrically computed
OF and computed with EMDs. However, these tests restricted the movement of the agent to a 2D plane which
is undesirable for applications involving MAVs.

The model presented above was also implemented on a walking hexapod robot in (Meyer et al., 2016). To
counteract rotations introduced by the walking motion, the head of the robot was kept stable such that the
recorded images only included translational motion. The OF was obtained using EMDs and the model was
tested in two different simulation environments. The first one included a set of pillars in a virtual box and
the second one the reconstruction of a natural environment including trees. The robot was able to avoid all
obstacles in both simulations.



5.1. Frame-Based Obstacle Avoidance 83

Divergence To obtain an estimate for the collision avoidance direction the OF divergence is also commonly
considered since it does not require the computation of a nearness map. Zufferey and Floreano (2005) e.g.
presented an attempt to use OF for OA on a very light-weight indoor aircraft (30 g). Due to the strict weight
limitations, only two 1D cameras using 28 pixels each were used to determine the OF. All computations were
performed on-board using a microchip.

To determine an avoidance direction, the OF divergence was estimated as the difference between the signed
OF on the right and the left side of the FoE. Since the side with the higher OF magnitude is generally located
closer to the detected obstacle, a maneuver pointing towards the opposite direction was triggered if a certain
OF divergence threshold had been reached. This is illustrated in Figure 5.2 (retrieved from Zufferey and Flo-
reano (2005)), where the indoor aircraft is shown in the left column approaching a wall frontally (first row)
and at an angle of 30 deg (second row). The second column shows the respective OF fields and the third col-
umn the divergence as a function of the distance to the wall. The FoV of the 1D-cameras is illustrated by the
rectangle ABCD.

Figure 5.2: Optical flow as seen by a 120 deg FoV 2D camera when approaching a wall. The first column shows the 30 g indoor aircraft
when approaching a wall frontally (first row) and when approaching at an angle of 30 deg (second row). In the second column, the OF

fields for the corresponding cases are shown. Column three depicts the OF divergences for the two different cases. Retrieved from
Zufferey and Floreano (2005).

While this approach utilizes a very lightweight flying robot, it was tested in a very favorable environment
consisting of an empty flight arena constrained by clearly structured curtains. Consequently, no judgments
about the robustness of this method can be made.

The OF divergence approach was extended to three dimensions in Beyeler et al. (2009) by introducing the po-
lar coordinates θ andψ in the visual field as illustrated in Figure 5.3 (retrieved from Beyeler et al. (2009)). The
FoV was then divided into equal sections along a circle of a specific polar angle θ̂ resulting in a constant inter-
azimuth angle ψ̂. This is shown on the right side of Figure 5.4 (retrieved from Beyeler et al. (2009)). The polar
angle for the section definition was set to θ̂ = 45 deg considering that obstacles located at high elevations are
non-dangerous and that there is little OF information available at the FoE at θ = 0 deg (see subsection 2.3.3).
This is illustrated on the left side of Figure 5.4.

The approach was implemented on a flying wing equipped with several optic mouse sensors that each were
able to determine a single OF estimation. By assuming a constant aircraft velocity and that the vision direc-
tion was aligned with the body axis of the flying wing a control law was established. This control law directly
determined the control signals for pitch and roll by summing the OF estimates at each section scaled by suit-
able weights. This way the flying wing always steered away from the direction with the largest OF magnitude.



84 5. Insect-Inspired Obstacle Avoidance

Figure 5.3: Definition of the polar angle θ and the azimuth angle ψ. Retrieved from Beyeler et al. (2009).

Figure 5.4: Illustration of chosen polar angle θ̂ (left) and division of the FoV (right). Retrieved from Beyeler et al. (2009).

The model was tested in both simulation and a real-world environment. It was found that the flying was
indeed able to avoid obstacles most of the time. However, several instances were observed in which the wing
crashed into obstacles symmetrically positioned in front of it. The reason for this was that the OF on the left
and the right side of the (FoV) canceled each other out leading to an overall small magnitude for the control
inputs. Furthermore, only small OF vectors were present at the FoE making it hard to avoid small frontal
obstacles whose edges do not extend to other sections of the FoV.

Other Approaches As shown in the previous section many OF-based approaches suffer from the lack of in-
formation at the FoE. As a consequence, several authors have proposed insect-inspired OA methods which
do not (purely) rely on OF. These are presented hereafter.

Mori and Scherer (2013) tackled this problem by employing a relative size detector that can predict collisions
utilizing the fact that approaching obstacles appear to become bigger in the visual field. In order to do this,
SURF features (Bay et al., 2008) were used, which are useful because they are relatively fast to compute and
invariant to large-scale changes. This way, detected features in two subsequent frames could be matched
to determine whether the area around the key point had increased and the drone was approaching an ob-
stacle. The algorithm used a reactive guidance law, meaning that the drone simply flew sideways when an
obstacle was detected and then continued to fly towards its goal. The proposed method was implemented
on a Parrot AR Drone and was tested in an obstacle course resembling a forest. It was found that it avoided
97% of all obstacles successfully. While this method was able to avoid frontal obstacles that are difficult to de-
tect with OF, the obstacles needed to have sufficient texture such that the SURF key points could be extracted.

Another method trying to overcome the difficulty of avoiding frontal obstacles was developed by Croon et al.
(2011). It introduced a new visual cue, the appearance variation, which describes the variation in texture that
can be found in a single image. The algorithm was based on two fundamental ideas. The first idea was that
the size of an object increases in an image as the camera gets closer to it while other objects move out of
view. The second idea was that the detailed texture of objects ahead becomes more and more visible upon



5.1. Frame-Based Obstacle Avoidance 85

approach. Furthermore, it was assumed that the appearance variation is decreased more by the first effect
than it is increased by the second one, leading to an overall reduction in appearance variation. During ex-
periments, it was found that this assumption does not hold for highly textured obstacles. However, for highly
textured surfaces OF-based methods perform well, implying that the two methods complement each other.
In fact, it was found that a combination of both methods performed better than each one individually.

In (Klaptocz et al., 2010) it was taken into account that even insects are not always able to detect and avoid
obstacles on time and sometimes do crash into objects. Consequently, a flying robot was designed that can
recover from collisions autonomously without the intervention of a human being. The designed MAV is a hy-
brid utilizing both a wing and propellers to achieve efficient flight while still being able to hover. Robustness
to collisions was achieved by reinforcing the perimeter of the wing with a carbon rod and applying a pro-
tective ring around the propellers as illustrated in Figure 5.5. To ensure autonomous self-recovery, a passive
system was applied which returns the aircraft to a favorable position after a crash. This was achieved with the
geometry and the right positioning of the center of gravity (CoG) as shown in Figure 5.6.

Figure 5.5: Design of a MAV robust to collisions. Retrieved from
Klaptocz et al. (2010).

Figure 5.6: Illustration of passive recentering mechanism.
Retrieved from Klaptocz et al. (2010).

Flight tests were performed which showed that light contact with walls did not always make the aircraft crash.
Instead, it could fly along the wall with its front tip touching the surface. This is a behavior that can also be
observed in insects looking for an exit after flying into a windowpane. Furthermore, the MAV always settled
for one of the stable positions after falling to the ground and was in most cases able to subsequently take
off again. While this approach is of course not suitable for environments with human beings present where
a collision could cause injury, it is a promising backup for applications in cluttered environments with no
humans present in case the primary means of collision avoidance is not able to detect an obstacle.

5.1.2. Neural
While the algorithmic approaches introduced in the previous section already represent a step towards insect-
inspired obstacle avoidance, insect behavior can be mimicked more accurately when making use of neural
architectures. In these architectures, computations are performed by a set of interconnected artificial neu-
rons resembling the neural networks that can be found in living beings. These approaches will be presented
in this section. It will be differentiated between models aiming to copy the working principle of specific neu-
rons present in insects and those imitating the general neural architecture.

Specific Neuron Models Due to the simple conversion of the LGMD neuron’s output to motor commands as
explained in section 3.4 it has been a popular foundation for OA approaches (e.g. (Hu et al., 2017; Blanchard
et al., 2000; Cizek et al., 2017)). In these models, simple OA reactions, such as a turn to the left, were triggered
when the LGMD model detected an obstacle. While all of these models still showed the desired behavior of
outputting a larger number of spikes when approaching an obstacle, some obstacles could not be avoided
after rotations had been performed. Furthermore, the network’s parameters had to be tuned according to
the robot’s velocity. Consequently, some sort of gain scheduling would be required to use these approaches
on-board MAVs



86 5. Insect-Inspired Obstacle Avoidance

In previous implementations of the LGMD-model very simple avoidance strategies were applied that did not
take into account the direction from which an obstacle is approaching. Inspired by research on escape di-
rection control in cockroaches, Yue and Rind (2009) made use of two LGMD neurons, corresponding to the
left and the right eye of the locust, to determine an OA direction. This direction was then either defined as
the opposite direction of the neuron spiking more frequently or the scaled difference of the spiking activ-
ity of the two neurons. The model was tested on a Khepera mobile robot for which the computations were
performed in real-time on a PC connected with a cable. It was found that the system was able to avoid ap-
proaching obstacles of different colors, shapes, and materials. However, occasionally an escape was triggered
by translating rather than looming motion which had previously been shown to be prevented by lateral and
feed-forward inhibition.

The determination of the OA direction was even further refined in (He et al., 2020) where a deep neural net-
work was used in order to map the LGMD neuron’s response onto a collision-avoidance direction. Since
this approach showed higher robustness and used a lightweight implementation, it represents a promising
approach for OA on-board MAVs.

Generic Neural Networks As opposed to the approaches presented above, hereafter methods are intro-
duced which do not aim to model specific neurons in the insect-brain but utilize generic architectures in
which the synaptic efficacies emerge during training. In (Low and Wyeth, 2007) e.g. a neural network was
introduced that learns OA techniques from the structural properties of OF. The neural network was trained
by correlating OF fields obtained from the robot’s camera with heading directions computed with the help
of a laser range finder. A three-layer feed-forward fully interconnected neural network was used to train the
robot. Using the method presented in (Bouguet et al., 2001) the OF was computed and subsequently, the OF
magnitude and direction were used as input to the neural network. The second layer of the neural network
consisted of 8 hidden neurons and the third and final layer comprised 31 neurons with each one represent-
ing a heading direction in the range from -15 to 15 deg/s. The network structure is illustrated in Figure 5.7
(retrieved from Low and Wyeth (2007)). The weights of the neural network were determined using an R-Prop
training algorithm. After training it, the presented neural network was tested in an office environment and it
was found that 79.6% of the chosen heading velocities were within a 5 deg/s interval from the ones suggested
by the laser range finder. Furthermore, some frontal obstacles were not avoided.

Figure 5.7: Architecture of SNN presented in (Low and Wyeth, 2007). Retrieved from Low and Wyeth (2007)

Considering that fast-moving vehicles need to detect obstacles from larger distances for safe operation, Mancini
et al. (2016) implemented a convolutional neural network (CNN) that can detect obstacles at a large range and
very high frequencies by creating a depth map of the surroundings. They achieved this by trading some depth
accuracy for increased computational speed. In particular, they used a Fully Convolutional Network (FCN)



5.1. Frame-Based Obstacle Avoidance 87

which does not make use of a fully connected layer and thus reduces the number of parameters that need
to be determined. This in return increases the training speed and allows the network to operate at very high
frame rates. Two possible network input options were presented. The first one consisted of only RGB images
and the second of both RGB images and the corresponding OF fields. The OF was computed offline using
the method presented in (Brox et al., 2004). The network was structured in an encoder-decoder architecture
as shown in Figure 5.8 (retrieved from Mancini et al. (2016)). The proposed network was tested on the KITTI
data set (Geiger et al., 2012). It was found that it performed better when using both the RGB image and OF
as input. Furthermore, when tested on the KITTI data set it showed similar performance as state-of-the-art
models. However, it showed a comparatively weak performance for close-range estimations meaning that
it should be used in conjunction with a model that performs well for short-range obstacle detection. Fur-
thermore, the proposed model has not yet been implemented in an obstacle avoidance control loop and no
control strategy has been suggested.

Figure 5.8: Architecture of the CNN presented in (Mancini et al., 2016). Retrieved from Mancini et al. (2016)

This gap was closed by Ponce et al. (2018) who also utilized a CNN to create a depth estimate for OA. However,
rather than outputting an entire depth map, the network provided only one distance estimate for the entire
image. Furthermore, the CNN only consisted of the input, a convolutional layer, a fully connected layer,
and the output layer as shown in Figure 5.9 (retrieved from Ponce et al. (2018)). The ground truth data was
collected in the simulation robot-environment V-REP (Rohmer et al., 2013), where a Pioneer robot equipped
with a camera was moving straight until the distance measured with an ultrasonic sensor dropped below
0.2 m. For obstacle avoidance, a simple fuzzy controller was implemented on a differential wheeled robot
which mapped the distance estimates to the velocities for the left and the right wheel. In particular, large
and medium distances were mapped to a clockwise (CW) rotation of both wheels, while small distances were
mapped to a CW rotation of only the right wheel. It was found that the CNN performed significantly better
when using OF as input and was able to estimate distances with high accuracy. Furthermore, it was able to
successfully avoid obstacles. However, since the CNN only output one distance estimate at a time, the model
was not able to cope with more than one obstacle in the FoV. In addition, a very simple testing environment
was chosen which showed very little clutter and clear textures.

Figure 5.9: Architecture of the CNN presented in (Ponce et al., 2018). Retrieved from Ponce et al. (2018)



88 5. Insect-Inspired Obstacle Avoidance

5.2. Event-Based Obstacle Avoidance
Similarly to event-based OF estimation, event-based OA is still in its infancy, and accordingly the number of
proposed methods is limited. For this reason, a detailed overview of the existing methods is provided in this
section. Following the same approach as in the previous section, first algorithmic methods are illustrated in
subsection 5.2.1 and subsequently, models that utilize neural architectures are introduced in subsection 5.2.2.

5.2.1. Algorithmic
As explained in subsection 5.1.1 algorithmic approaches utilize some sort of prior knowledge to determine an
OA direction from the OF. To the best of this author’s knowledge, all event-based model-based methods are
direct translations from existing frame-based approaches. As will be shown hereafter these include models
utilizing the TTC and nearness maps.

Time-to-Contact Inspired by algorithms that have been realized with conventional cameras, Clady et al.
(2014) implemented an event-based model that utilizes the TTC to perform OA. To obtain the OF, they used
the plane-fitting method presented in (Benosman et al., 2014). Since this method only provides the normal
OF, Clady et al. (2014) derived an expression for the TTC that merely depends on the FoE and the spatial
gradient of the events. They did this by realizing that the FoE is located in the "negative semi-plane defined by
the normal motion flow vector" (Clady et al., 2014). This is illustrated on the left side of Figure 5.10 (retrieved
from Clady et al. (2014)) where several OF vectors and their corresponding negative semi-planes are depicted.
The gray area indicates the region of the expected location of the FoE. This was translated into a probability
map as shown on the left side of Figure 5.10.

Figure 5.10: Demonstration of the determination of the FoE. Retrieved from Clady et al. (2014).

In order to detect obstacles, the FoV was divided into four regions of interest (ROI). If the TTC dropped below
a certain threshold in any of the ROI an OA reaction steering away from this region was triggered. It was found
that the TTC algorithm performed as well as a laser range finder but operated at a much higher frequency.
However, this method also showed some drawbacks. First of all, it assumed a constant velocity for the robot
which is not necessarily true. Furthermore, the obstacles were assumed to be located on the ground which
especially for MAV applications is not always the case. Finally, it was reported that pitch motions could result
in unstable estimations of the FoE location. Taking into account that many MAVs are equipped with pro-
pellers and pitch to accelerate, this is an unfavorable property.

Some of these issues were addressed in (Colonnier et al., 2018) where a similar method was used to perform
OA. The proposed model was implemented on a quadrotor and the OF was determined using the algorithm
described in (Aung et al., 2018). To determine the FoE, the method in (Clady et al., 2014) was used but the
algorithm was only applied to selected ROIs. For each ROI, a Kalman filter was applied to obtain an overall
TTC estimate from the noisy individual measurements. This made the algorithm more robust against small
pitch movements occurring during flight. To compute the OA direction, the frame was divided into a left,
middle, and right region for which the respective TTC averages were computed such that the drone could
fly towards the region with the largest TTC. This model showed improvements when compared to (Clady
et al., 2014) as it could handle the pitch movements naturally occurring during the flight of a quadcopter.
Furthermore, it did not assume that obstacles are located on the ground. However, it was only validated in a
2D scenario and also assumed a constant flight velocity.



5.2. Event-Based Obstacle Avoidance 89

Dinaux et al. (2021) aimed to further increase the computational efficiency of the negative semi-half plane
approach with their proposed FAst ITerative Half- plane method (FAITH). This method did not consider all
OF vectors for the FoE estimate but instead, the estimate was initialized with two randomly selected vec-
tors. Subsequently, the FoE area resulting from iteratively choosing a third random vector was computed.
The algorithm was stopped once the updated area was no longer smaller than the previous one. Using this
method an obstacle avoidance maneuver was triggered if the computed FoE was located within the highest
priority obstacle region determined based on clustered TTC estimates. The proposed method was tested in
both simulation and onboard a MAV where it was programmed to fly straight-forward at a constant speed
encountering a pillar roughly halfway through the sequence. It was found that the MAV could successfully
avoid 80% of all obstacles (Dinaux et al., 2021) which makes it promising for the use on MAVs with limited
computational resources.

Nearness Maps Inspired by Bertrand et al. (2015), another algorithm that utilizes relative nearness esti-
mates was implemented in (Milde et al., 2015). However, the OF was retrieved using the event-based method
proposed in (Benosman et al., 2014). Similarly to the algorithm presented by Bertrand et al. (2015), the rela-
tive nearness was obtained by computing the retinotopic norm of the OF. In order to retrieve an OA direction
from the relative nearness estimates, each pixel was mapped onto a virtual angle ranging from −π at the very
left of the pixel array to π at the very right of the array. By taking the vector sum of the relative nearness es-
timates computed within a certain time window, the vector pointing towards close objects was determined.
The obstacle avoidance direction was then defined as pointing in the opposite direction. It was shown that
the algorithm originally proposed by Bertrand et al. (2015) also works when the OF is determined using an
event-based camera despite the much more sparse information provided. However, the approach was eval-
uated offline in an open-loop meaning that it cannot be guaranteed that it will also work in real-time in a
closed-loop system. Furthermore, a robotic platform rather than a MAV was used, restricting the problem to
a 2D plane.

5.2.2. Neural
In order to fully utilize the asynchronous nature of event-based cameras and close the gap to truly bio-
inspired OA, several authors have proposed neural networks to perform collision avoidance. Similarly to the
frame-based approaches, these can once again be divided into methods aiming to mimic specific neurons
and those simply utilizing general neural architectures.

Specific Neuron Models In subsection 5.1.2 several methods that make use of the LGMD model to detect
obstacles have been presented. However, all of these methods used conventional frame-based data as in-
put meaning that they did not take full advantage of the spiking nature of the LGMD. In (Salt et al., 2017) a
spiking implementation of the LGMD and DCMD neurons was presented. While this approach was based on
the same neuron model, additional constraints arose from the fact that a neuromorphic processor was used.
Consequently, the original LGMD model had to be adjusted to adhere to these constraints. This was done
by introducing two additional layers, the IP and the IS layer which helped to reduce the overall number of
neurons required. The architecture of the adjusted neural network is shown on the left side of Figure 5.11 (re-
trieved from (Salt et al., 2017)). The black and the red lines represent excitatory and inhibitory connections,
respectively and the solid and the dashed lines correspond to fast and slow connections, respectively.

Similarly to the method in (Yue and Rind, 2009), the determination of the OA direction was achieved by split-
ting the FoV and assigning one LGMD neuron to each section. However, Salt et al. (2017) used four (top,
bottom, left, right), rather than two (left, right) sections. To determine the escape direction, the four LGMD
neurons were linked through excitatory connections to their DGMD counterparts (left to right, right to left,
etc.) and through inhibitory connections to their corresponding DGMD neurons. This is illustrated on the
left side of Figure 5.11 where solid lines represent excitatory connections and dashed lines inhibitory connec-
tions. The proposed model showed increased performance when compared to previous LGMD implementa-
tions except for cases with particularly sparse inputs (at e.g. very low velocities). Furthermore, it was shown
that the spiking behavior of the four DCMD neurons did indeed lead to the desired escape headings. Since
the parameters of the proposed model were very sensitive to the operating environment, Salt et al. (2020)
further improved it by utilizing a self-adaptive LIF neuron model and differential evolution. It was found that
this approach was indeed able to autonomously find suitable parameters, which makes it very promising for
adaptive OA.



90 5. Insect-Inspired Obstacle Avoidance

Figure 5.11: Illustration of network presented in (Salt et al., 2017). a) Overview of the neural architecture. b) Illustration of the control
law. Retrieved from Salt et al. (2017).

Generic Neural Networks In this section, neural networks for OA with generic neural architectures are
presented. Unlike frame-based camera output, event-based data already holds rich information about the
spatio-temporal dynamics of the scene. For this reason, the majority of event-based neural networks for OA
omit the OF extraction step and directly feed the output of the event camera into the neural networks.

Milde et al. (2017) e.g. proposed an SNN comprising seven populations of neurons, including two speed pop-
ulations (speed and excitatory speed), two obstacle populations (left, right), two turn populations (left, right),
and a gyro population. This is depicted in Figure 5.12 (retrieved from Milde et al. (2017)), where the numbers
represent the weights of neural connections. The speed (sp) population receives constant input from the ex-
citatory speed (exc) population driving the robot forward. The obstacle populations (OL and OR) consist of
32 obstacle neurons divided equally over the left and the right FoV of the image, respectively. The 128 x 128
pixels of the DVS are partitioned into 32 vertical columns, and events occurring within those sections trigger
the corresponding neurons in the left (OL) or right (OR) OA populations. After a specified number of events
have arrived, the obstacle neurons spike and emit an excitatory signal to the connected turn population (DR
and DL) of the opposite direction (e.g. left to right) and an inhibitory signal to the turn population of the
same direction (e.g. left to left). Finally, the number of spikes is counted, and by multiplying the firing rates
of the turn populations with a scaling factor, velocity commands for the left and right wheels of the robot are
obtained.

It was found that the robot was indeed able to avoid obstacles and that it showed variable speeds and turn-
ing rates depending on the location of the obstacle. At low speeds, some obstacles were not avoided due to
the lack of generated events. Furthermore, some objects of lighter colors could not be detected since their
contrast was too low to be spotted by the DVS. However, this method was once again restricted to a 2D-
environment meaning that it is not clear how it would perform on a flying platform.

Inspired by birds as e.g. the female budgerigar Schoepe et al. (2019) developed a mobile agent that can avoid
obstacles while following a sound source. For this purpose, an embedded Dynamic Vision Sensor (eDVS)
(Lichtsteiner et al., 2008) and a Neuropmorhic Auditory Sensor (NAS) (Jiménez-Fernández et al., 2017) were
used as sensory input. The neural architecture consisted of four groups of neural populations, including an
optical flow encoder (OFE), a sound source direction (SSD), a lateral sound transmitter (LST), and a decision-
making winner take all (DMWTA) population. The output maps of the OFE and the SSD networks were ar-
ranged topographically and projected onto the DMWTA population. The OFE population comprised 32 x 32
LIF neurons which downsampled and filtered the raw eDVS data to reduce noise and 32 x 32 sEMD (Haes-



5.2. Event-Based Obstacle Avoidance 91

Figure 5.12: Overview of the neural architecture presented in (Milde et al., 2017). Retrieved from Milde et al. (2017).

sig et al., 2018) which provided topographically arranged relative distance information in form of OF. The
DMWTA also contained 32 LIF neurons and followed a "winner take all" policy. To prevent the agent from
colliding with an obstacle while following the sound source, the OFE population strongly inhibited the cor-
responding neurons in the DMWTA population such that a neuron that corresponds to the direction of the
sound does not win if an obstacle is located in the same direction. In the SSD population the direction from
which the sound is coming is determined by correlating the left and the right side of the auditory input. Sub-
sequently, the corresponding neuron in the LST population is excited which in return excites its two neigh-
boring neurons in the same layer. This process is repeated until a neuron corresponding to zero optical flow
is found. At the same position the DMWTA population releases a spike and inhibits all other decision-making
neurons. This way, the winning heading direction always turns out to be at the position as close as possible
to the sound source while still showing zero OF. This architecture is illustrated in Figure 5.13 (retrieved from
Schoepe et al. (2019)). During experiments it was found that the headings determined by the neural network
did indeed point towards the sound source but away from obstacles. This model is useful in the sense that it
enables the integration of navigation with OA. While this comprised following a sound source, in this case, it
could also be adjusted to follow another kind of signal.

The methods for OA presented so far showed very simple behavior with the agents usually just moving to-
wards the direction containing the fewest obstacles. In (Stewart et al., 2016) a model that allows for more
complex behavior was presented and tested on a wheeled robot. The method relied on both explicit pro-
gramming and autonomous learning to achieve collision avoidance. Inspired by living creatures who are
born with a set of reflexive behaviors and then learn more complex behaviors during their lifetime, the idea
was to implement a set of automatic behaviors using explicit programming and then let the agent learn more
complex behaviors autonomously. The basic set of skills included going forward when no obstacle is in sight,
backing up when being too close to an obstacle, and avoiding left or right when approaching one. To achieve
this, a neural network consisting of five layers was proposed. The first layer takes the sensor measurements
as an input and is connected through sensory neurons to the action strength layer. This layer consists of four
neurons each representing one of the basic actions (moving forward, stopping, turning left, turning right).
Through a layer of action neurons, this layer is finally connected to two output neurons representing the ve-
locity of the left and right wheels of the robot. The neural architecture of this model is shown in Figure 5.14
(retrieved from (Stewart et al., 2016)).



92 5. Insect-Inspired Obstacle Avoidance

Figure 5.13: Overview of neural architecture presented in (Schoepe et al., 2019). Retrieved from Schoepe et al. (2019).

Figure 5.14: Illustration of the network architecture presented in (Stewart et al., 2016). Retrieved from Stewart et al. (2016).

After training the network to perform the basic skills, the robot was able to explore its surroundings au-
tonomously and all input data, as well as internal states, were recorded during that phase. If the robots
performed a desirable action by chance, the corresponding data was saved and used to update the weights to
ensure similar behavior in the future. Using this model the network was indeed able to learn complex behav-
ior such as avoiding a frontal mirror. However, the supervised training was performed by manually observing
the robot. It would thus be difficult to generalize this approach to more extensive training.



6
Synthesis and Conclusion

In the previous chapters a literature study about insect-inspired optic flow (OF) estimation and obstacle
avoidance (OA) was presented. This was done in light of the ever-increasing use of autonomous Micro Aerial
Vehicles (MAVs) which have very strict weight and power limitations and typically operate in complex and
cluttered environments. Insects were used as a source of inspiration since they are known to utilize OF to
perform complex navigational tasks despite their limited neural resources. However, existing methods for
insect-inspired OF estimation are often fragile and require different sets of parameters for varying environ-
ments. Consequently, this literature review has aimed to investigate how to make OF estimation more robust
and how to then use OF to perform insect-inspired OA on-board MAVs. The purpose of this chapter is to
synthesize the literature presented in this report to conclude these two questions.

6.1. Robust Event-Based Optic Flow Estimation
The first step towards identifying more robust event-based means of OF estimation was to understand the
shortcoming of traditional frame-based methods in the context of insect-inspired OA on-board MAVs. For
this purpose, a brief overview of frame-based OF estimation methods was provided and their drawbacks were
illustrated by explaining the two most influential approaches (Lucas and Kanade, 1981; Horn and Schunck,
1981). It was found that frame-based methods perform redundant computations since they have to consider
the brightness values of all pixels. Furthermore, it was argued that the synchronous frame-based nature of
these approaches leads to motion blur and high latencies. Finally, the majority of frame-based methods as-
sume a constant brightness of the environment which limits the flexibility of these approaches.

To overcome some of these shortcomings, it was subsequently explained how insects perform motion de-
tection. It was established that all computations in the insect brain are performed on a neural basis which
allows for low-latency asynchronous processing. Following the elaborations in (Nériec and Desplan, 2016)
it was shown that most insects perceive their environment with the help of compound eyes which have a
very low resolution and visual acuity and also function in an asynchronous manner. The obtained bright-
ness information is then converted into ego-motion information with the help of motion detectors such as
the elementary motion detector (EMD) and the Lobula Giant Movement Detector (LGMD). Several computa-
tional models for the EMD were presented (Reichardt and Rosenblith, 1961; Joesch et al., 2010; Eichner et al.,
2011) utilizing different combinations of ON and OFF events. Based on the neural implementation of the
EMD described in (Borst et al., 2019), it was argued that the model presented in (Eichner et al., 2011) is the
most biologically plausible. However, it was also shown that none of these models accounted for the neu-
ral adaptations observed in the lobula plate (Borst and Egelhaaf, 1987; de Ruter van Steveninck et al., 1986).
Consequently several computational models which do account for this were presented afterwards (Clifford
et al., 1997; Clifford and Langley, 1996; Sarikaya and Ogmen, 1994).
When comparing conventional frame-based methods for OF estimation to motion detection in insects, it was
found that the main discrepancies lie in the fact that insects employ neural asynchronous computation while
frame-based methods rely on synchronous algorithmic approaches. Furthermore, it was established that the
insect eye shows a lower resolution and visual acuity than typical frame-based cameras. Finally, the adapta-
tion to changes in the environment cannot be found in frame-based approaches.

93



94 6. Synthesis and Conclusion

The next step was to investigate which technological advancements have already been made to address these
discrepancies. On a more general level event-based cameras (Lichtsteiner et al., 2008; Brandli et al., 2014;
Posch et al., 2011) were introduced which mimic the asynchronous spike-like nature of visual perception in
living beings. Furthermore, it was shown that spiking neural networks (SNN) in combination with neuromor-
phic processors can imitate the asynchronous processing of information in insects very closely. In order to
analyze to what degree existing engineering applications already address these discrepancies, an overview of
all event-based approaches introduced in this literature review is given in Table 6.1

Table 6.1: Overview of presented event-based methods for optic flow estimation. "Simulation" in the Implementation tab refers to
models in which spiking neurons are simulated on conventional synchronous Von-Neumann architectures.

Input Model Implementation Adaptive Bio-inspired Trained

Benosman et al. (2011) DVS Gradient/ Algorithmic Simulation No No No
Benosman et al. (2014) DVS Plane-fitting/Algorithmic Simulation No No No
Rueckauer and Delbruck (2016) DVS/DAVIS Plane-fitting/Algorithmic Simulation No No No
Aung et al. (2018) ATIS Plane-fitting/Algorithmic FPGA No No No
Barranco et al. (2014) DVS/DAVIS Plane-fitting/Algorithmic Simulation No No No
Hordijk et al. (2018) DVS Plane-fitting/Algorithmic Simulation No No No
Brosch et al. (2015) DVS Direction-selective filters/Algorithmic Simulation No Yes No
Orchard et al. (2013) ATIS Direction-selective filters/SNN Simulation No Yes No
Tschechne et al. (2014) DVS Direction-selective filters/Algorithmic Simulation No Yes No
Paredes-Valles et al. (2020) DVS/DAVIS Direction-selective filters/SNN Simulation Yes Yes Yes
Richter et al. (2014) DVS EMD/SNN SpiNNaker No Yes No
Giulioni et al. (2016) ATIS EMD/SNN Custom VLSI No Yes No
Haessig et al. (2018) ATIS EMD/SNN TrueNorth No Yes No
Milde et al. (2018) DVS EMD/SNN Custom chip/Simulation Yes Yes Yes
Salt et al. (2017) DVS LGMD/SNN VLSI No Yes No
Salt et al. (2020) DVS LGMD/SNN VLSI Yes Yes Yes

Since all of the presented approaches utilize event cameras they all address the issues of motion blur and high
latency arising from the use of frame-based cameras. However, the different methods use models with vary-
ing levels of biological plausibility. All of the presented gradient and plane-fitting methods e.g. do not make
use of SNNs but perform algorithmic computations. This means that they cannot fully benefit from the asyn-
chronous nature of the employed event-based vision sensors. Furthermore, the gradient and plane-fitting
models are not bio-inspired which makes a translation onto a spiking architecture more difficult. While the
direction-selective filters draw direct inspiration from nature, Tschechne et al. (2014); Brosch et al. (2015) still
utilized algorithmic models for their implementation. This means that these approaches were also not able
to benefit from all of the advantages resulting from the use of event-based cameras. Orchard et al. (2013)
and Paredes-Valles et al. (2020) on the other hand realized the direction-selective filters with the help of
SNNs which means that these approaches are highly biologically plausible. However, neither of them im-
plemented the SNNs on neuromorphic hardware but merely simulated the corresponding neuron models
on synchronous architectures. The approaches in (Richter et al., 2014; Giulioni et al., 2016; Haessig et al.,
2018; Milde et al., 2018; Salt et al., 2017; Salt et al., 2020) closed this final gap towards an end-to-end spiking
implementation of OF estimation by employing neuromorphic processors. However, all of these approaches
are implementations of EMD/LGMD models which are known to be particularly sensitive to changes in ego-
motion velocity and patterns in the visual field. While several neuron models for adaptation or intrinsic
plasticity (IP) were introduced (e.g. (Lazar et al., 2007; Li et al., 2018; Zhang et al., 2020; Li and Li, 2013)), only
three of the presented OF estimation methods utilize some sort of adaptive mechanism (Milde et al., 2018;
Paredes-Valles et al., 2020; Salt et al., 2020). These three approaches are also the only ones utilizing synaptic
plasticity. In particular, they all make use of spike-timing-dependent plasticity (STDP) which is a biologically
plausible way of learning. The method in (Salt et al., 2020) is particularly interesting as it uses adaptation to
address the issue of finding suitable parameters. This adaptation is however only applied during training and
can thus not be used to increase the operating range of an existing network.

Since the exact neural processes involved in insect motion detection are not fully understood yet, approaches
utilizing learning are especially interesting as they require little prior knowledge. Furthermore, they might
even shed light on the working principle of motion detection in insects. It can be concluded that the ap-
proaches presented by Milde et al. (2018); Paredes-Valles et al. (2020); Salt et al. (2020) are as of now the most
promising ones for the use of OA on-board MAVs.



6.2. Insect-Inspired Obstacle Avoidance 95

However, there are still some discrepancies that these approaches do not address. While they utilize some
sort of adaptation as observed in insects, the approach in (Paredes-Valles et al., 2020) has so far only been im-
plemented in simulation and not on neuromorphic hardware. Furthermore, it still requires the use of varying
parameters for different operating environments and makes a distinction between a training and an inference
phase. In natural systems, however, there is no such distinction. In fact, life-long learning can be observed
in living beings which means that synapses remain plastic and keep changing throughout a lifetime. Several
models for life-long learning with STDP were presented using forgetting weights (Putra and Shafique, 2021;
Panda et al., 2018; Allred and Roy, 2020). However, to the best of this author’s knowledge, there exist no ap-
proaches to event-based OF estimation which utilize this life-long synaptic plasticity.

It can be concluded that all the building blocks for robust event-based OF estimation already exist but have
not been combined yet. This analysis showed that the approach presented in (Paredes-Valles et al., 2020) ap-
pears to be the most promising one and can be further improved by employing some of the adaptive neuron
models and life-long learning approaches presented in this literature study. Since (Paredes-Valles et al., 2020)
proposed a novel neuron model, an extensive analysis will have to be performed to evaluate how the existing
approaches for adaptation and life-long learning can be translated to this model. Finally, for a robust insect-
inspired end-to-end spiking means of OF estimation, it would also have to be investigated how the approach
could be translated onto neuromorphic hardware.

6.2. Insect-Inspired Obstacle Avoidance
To answer the second research question asking how the obtained OF can be used to perform insect-inspired
OA, once again the individual SRQs proposed in chapter 1 will be addressed and subsequently synthesized to
arrive at an answer to the main question.

The first step was to establish how insects perform this task. It was explained that the output of the Locust
Giant Movement Detector (LGMD) in the locust brain is linked one-to-one to a motor neuron triggering es-
cape responses. It is however still largely unknown how motion estimates from elementary motion detectors
(EMD) are converted to OA motor commands. It was shown that several behavioral models exist proposing
that insects mainly rely on visual cues such as the time-to-contact (TTC), the temporal contrast in the visual
scene, the size of objects in the visual field, and motion integrated over space and time to perform OA. Based
on experiments performed in (Tammero and Dickinson, 2002), it was argued that the integration model ap-
pears to be the most biologically plausible.

Since most event-based OA approaches are directly derived from frame-based methods and since event-
based OA is still in its infancy, both frame-based and event-based methods were considered. An overview
of all presented approaches is shown in Table 6.2. It can be seen that there is a large overlap between the
models of OA in insects and the presented frame-based approaches. Rind and Bramwell (1996); Blanchard
et al. (2000); Yue and Rind (2009) e.g. implemented models of the LGMD-neuron, Camus (1995a); Low and
Wyeth (2012) utilized the TTC, Bertrand et al. (2015); Meyer et al. (2016) made use of nearness maps, Beyeler
et al. (2009); Zufferey and Floreano (2005) computed the divergence by spatially integrating the OF field and
Mori and Scherer (2013) considered the relative size of objects in the visual field. While Croon et al. (2011)
did not directly consider the size of objects, the proposed appearance variation is also directly linked to the
proximity of objects in the visual field. In addition, several approaches were presented in which OA com-
mands are learned in artificial neural networks (ANN) (Low and Wyeth, 2007; Mancini et al., 2016; Ponce
et al., 2018). Again, these approaches are particularly interesting since they require no prior knowledge which
allows compensating for the uncertainty about the neural implementation of OA in insects.



96 6. Synthesis and Conclusion

However, since all of these approaches are frame-based they naturally do not show the asynchronous spike-
based processing of OA in insects. This gap was closed by the event-based OA approaches presented in (Clady
et al., 2014; Colonnier et al., 2018; Dinaux et al., 2021; Milde et al., 2015) which provided spike-based imple-
mentations of the TTC and nearness maps. The sparse output of event cameras has however made it difficult
to translate non-OF-based approaches dealing with frontal obstacles (Mori and Scherer, 2013; Croon et al.,
2011) to event-based applications. Furthermore, the approaches utilizing nearness maps and the TTC do not
make use of SNNs which makes them less biologically plausible. While several SNN-based approaches were
presented (Milde et al., 2017; Schoepe et al., 2019; Stewart et al., 2016) they do not make use of synaptic plas-
ticity, unlike their frame-based counter-parts. Furthermore, they do not use OF as an input as it is believed to
happen in insects. Instead, they directly utilize the output of the event-based vision sensors. It is interesting
to note that all of the proposed SNNs for OA integrate input spikes in space and time which was presented as
the most biologically plausible model for OA in insects (Tammero and Dickinson, 2002).

Based on this synthesis it can once again be concluded that the building blocks for insect-inspired OA already
exist but still need to be put together. In particular, it should be investigated whether spike-based OA still
profits from using OF as an input or if the raw event data already contains sufficient information about the
spatio-temporal dynamics of the scene. Considering that the majority of OA methods struggle with frontal
obstacles it should furthermore be explored whether some of the approaches addressing this issue can be
translated to event-based applications. Finally, taking into account the uncertainty about the exact neural
processes involved in OA in insects it would be interesting to implement an SNN with synaptic plasticity
which can learn OA from OF or raw events using bio-inspired rules such as STDP. Ideally, this could also lead
to behavioral actions such as a saccadic flight strategy to decompose OF and deal with frontal obstacles in a
similar fashion as presented in (Bertrand et al., 2015).

Table 6.2: Overview of presented obstacle avoidance models.

Method Platform 2D/3D

Frame-based Algorithmic TTC (Camus, 1995a) Ground robot 2D
TTC with velocity measurement (Low and Wyeth, 2012) Ground robot in simulation 3D
Divergence (Zufferey and Floreano, 2005) 30g aircraft 2D
Divergence (Beyeler et al., 2009) Flying wing 3D
Frontal: relative size detector (Mori and Scherer, 2013) Parrot AR Drone 3D
Frontal: appearance variation (Croon et al., 2011) DelFly II 3D
Frontal: merged nearness maps (Bertrand et al., 2015) Simulation 3D
Frontal: merged nearness maps (Meyer et al., 2016) Hexapod robot 3D
Crash resilient (Klaptocz et al., 2010) Light flying robot 3D

Neural LGMD: first computer model (Rind and Bramwell, 1996) Simulation 3D
LGMD: implementation on robot (Blanchard et al., 2000) Khepera mobile robot 3D
LGMD: multidirectional (Yue et al., 2009) Khepera mobile robot 3D
ANN: laser ground truth, velocity command output(Low and Wyeth, 2007) Pioneer robot 3D
CNN: artificial images ground truth, depth map output (Mancini et al., 2016) Only provides depth map 3D
CNN: sonar ground truth, single depth output (Ponce et al., 2018) Pioneer robot in simulation (V-REO) 3D

Event-based Algorithmic TTC (Clady et al., 2014) Pioneer 2 robot 2D
TTC with Kalman filter (Colonnier et al., 2018) Parrot Bebop 2 3D
TTC FAITH (Dinaux et al., 2021) MAV 2D
Merged nearness maps (Milde et al., 2015) Pioneer 2-DX robot 3D

Neural LGMD (Salt et al., 2017) Quadrotor UAV 3D
SNN: dividing FOV (Milde et al., 2017) Pushbot mobile robot 3D
SNN: follow sound source (Schoepe et al., 2019) Ground robot 3D
SNN: reinforcement learning (Stewart et al., 2016) PushBot robot 3D



Bibliography

Adelson, E. H. and Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal
of the Optical Society of America. A, Optics and image science, 2 2:284–99.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta, P.,
Nam, G., Taba, B., Beakes, M., Brezzo, B., Kuang, J. B., Manohar, R., Risk, W. P., Jackson, B., and Modha, D. S.
(2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(10):1537–1557.

Allred, J. and Roy, K. (2020). Controlled forgetting: Targeted stimulation and dopaminergic plasticity modu-
lation for unsupervised lifelong learning in spiking neural networks. Frontiers in Neuroscience, 14.

Arnold, R., Yamaguchi, H., and Tanaka, T. (2018). Search and rescue with autonomous flying robots through
behavior-based cooperative intelligence. Journal of International Humanitarian Action, 3.

Aung, M. T., Teo, R., and Orchard, G. (2018). Event-based plane-fitting optical flow for dynamic vision sensors
in fpga. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.

Baddeley, R., Abbott, L., Booth, M., Sengpiel, F., Freeman, T., Wakeman, E., and Rolls, E. (1998). Responses of
neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings. Biological sciences
/ The Royal Society, 264:1775–83.

Barranco, F., Fermüller, C., and Aloimonos, Y. (2014). Contour motion estimation for asynchronous event-
driven cameras. Proceedings of the IEEE, 102:1537–1556.

Barron, J., Fleet, D., and Beauchemin, S. (1994). Performance of optical flow techniques. International Journal
of Computer Vision, 12:43–77.

Baudry, M. (1998). Synaptic plasticity and learning and memory: 15 years of progress. Neurobiology of Learn-
ing and Memory, 70:113–118.

Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Speeded-up robust features (surf). Computer Vision and
Image Understanding, 110(3):346 – 359. Similarity Matching in Computer Vision and Multimedia.

Belatreche, A., Maguire, L. P., McGinnity, M., and Wu, Q. (2003). An evolutionary strategy for supervised
training of biologically plausible neural networks. In Proceedings of the Sixth International Conference on
Computational Intelligence and Natural Computing, pages 1524–1527.

Bengio, Y., Léonard, N., and Courville, A. C. (2013). Estimating or propagating gradients through stochastic
neurons for conditional computation. ArXiv, abs/1308.3432.

Benosman, R., Clercq, C., Lagorce, X., Ieng, S., and Bartolozzi, C. (2014). Event-based visual flow. IEEE Trans-
actions on Neural Networks and Learning Systems, 25(2):407–417.

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C., and Srinivasan, M. (2011). Asynchronous frameless
event-based optical flow. Neural networks : the official journal of the International Neural Network Society,
27:32–7.

Bertrand, O. J. N., Lindemann, J. P., and Egelhaaf, M. (2015). A bio-inspired collision avoidance model based
on spatial information derived from motion detectors leads to common routes. PLOS Computational Biol-
ogy, 11(11):1–28.

Beyeler, A., Zufferey, J.-C., and Floreano, D. (2009). Vision-based control of near-obstacle flight. Autonomous
Robots, 27(3):201–219.

Blanchard, M., Rind, F., and Verschure, P. (2000). Collision avoidance using a model of the locust lgmd neuron.
Robotics and Autonomous Systems, 30:17–38.

97



98 Bibliography

Bohté, S., Kok, J., and Poutré, la, J. (2002). Error-backpropagation in temporally encoded networks of spiking
neurons. Neurocomputing, 1-4:17–37.

Borst, A. (1990). How do flies land? from behavior to neuronal circuits. BioScience, 40(4):292+.

Borst, A. (2009). Drosophila’s view on insect vision. Current biology : CB, 19:R36–47.

Borst, A. and Egelhaaf, M. (1987). Temporal modulation of luminance adapts time constant of fly movement
detectors. Biological Cybernetics, 56(4):209–215.

Borst, A., Haag, J., and Mauss, A. S. (2019). How fly neurons compute the direction of visual motion. Journal
of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 206:109 – 124.

Bouguet, J.-Y. et al. (2001). Pyramidal implementation of the affine lucas kanade feature tracker description
of the algorithm. Intel Corporation, 5(1-10):4.

Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck, T. (2014). A 240 × 180 130 db 3 µs latency global
shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 49:2333–2341.

Brosch, T., Tschechne, S., and Neumann, H. (2015). On event-based optical flow detection. Frontiers in
neuroscience, 9:137.

Brown, S. (2001). General properties of intercellular communication in the nervous system. In Nerve Cells
and Nervous Systems. Springer, London.

Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy optical flow estimation based on a
theory for warping. In Proceedings of the European Conference on Computer Vision (ECCV), volume 3024,
pages 25–36.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
Journal of Computational Neuroscience, 8:183–208.

Camus, T. (1995a). Calculating time-to-contact using real-time quantized optical flow. NIST Intera-
gency/Internal Report (NISTIR).

Camus, T. (1995b). Real-time quantized optical flow. In Proceedings of Conference on Computer Architectures
for Machine Perception, pages 126–131.

Camuñas-Mesa, L. A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2014). Event-driven sensing and
processing for high-speed robotic vision. In 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS)
Proceedings, pages 516–519.

Chen, A., Frangopol, D., Ruan, X., Hallermann, N., and Morgenthal, G. (2014). Visual inspection strategies for
large bridges using unmanned aerial vehicles (uav). In Bridge Maintenance, Safety, Management and Life
Extension, pages 661–667.

Chen, N. F. Y. (2017). Pseudo-labels for supervised learning on event-based data. CoRR, abs/1709.09323.

Christiansen, M. P., Laursen, M., Jørgensen, R., Skovsen, S., and Gislum, R. (2017). Designing and testing a
uav mapping system for agricultural field surveying. Sensors, 17:2703.

Cizek, P., Milicka, P., and Faigl, J. (2017). Neural based obstacle avoidance with cpg controlled hexapod walk-
ing robot. In Proceedings of the International Joint Conference on Neural Networks, volume 2017-May, pages
650–656.

Clady, X., Clercq, C., Ieng, S.-H., Houseini, F., Randazzo, M., Natale, L., Bartolozzi, C., and Benosman, R.
(2014). Asynchronous visual event-based time-to-contact. Frontiers in neuroscience, 8:9.

Clifford, C. W. G., Ibbotson, M. R., and Langley, K. (1997). An adaptive reichardt detector model of motion
adaptation in insects and mammals. Visual neuroscience, 14(4):741–749.

Clifford, C. W. G. and Langley, K. (1996). A model of temporal adaptation in fly motion vision. Vision research,
36(16):2595–2608.



Bibliography 99

Collett, T. (1978). Peering - a locust behaviour pattern for obtaining motion parallax information. The Journal
of Experimental Biology, 76.

Colonnier, F., Vedova, L. D., Teo, R. S. H., and Orchard, G. (2018). Obstacle avoidance using event-based visual
sensor and time-to-contact processing. In Australasian Conference on Robotics and Automation (ACRA),
volume 2018-December, pages 1–10.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training deep neural networks with
binary weights during propagations. In Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 2, NIPS’15, page 3123–3131, Cambridge, MA, USA. MIT Press.

Croon, G., Ho, H. W., De Wagter, C., Van Kampen, E.-J., Remes, B., and Chu, Q. (2013). Optic-flow based slope
estimation for autonomous landing. International Journal of Micro Air Vehicles, 5:287 – 297.

Croon, G., van de Weerdt, E., De Wagter, C., and Remes, B. (2011). The appearance variation cue for obstacle
avoidance. pages 1606 – 1611.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.,
Wild, A., Yang, Y., and Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1):82–99.

de Ruter van Steveninck, R. R., Zaagman, W. H., and Mastebroek, H. A. K. (1986). Adaptation of transient
responses of a movement-sensitive neuron in the visual system of the blowfly calliphora erythrocephala.
Biological Cybernetics, 54(4–5):223–236.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking
deep networks through weight and threshold balancing. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8.

Dinaux, R., Wessendorp, N., Dupeyroux, J., and Croon, G. C. H. E. d. (2021). Faith: Fast iterative half-plane
focus of expansion estimation using optic flow. IEEE Robotics and Automation Letters, 6(4):7627–7634.

Duisterhof, B. P., Li, S., Burgués, J., Reddi, V. J., and de Croon, G. C. H. E. (2021). Sniffy bug: A fully autonomous
swarm of gas-seeking nano quadcopters in cluttered environments.

Eckert, H. E. and Hamdorf, K. (1980). Excitatory and inhibitory response components in the landing response
of the blowfly,calliphora erythrocephala. Journal of comparative physiology, 138:253–264.

Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., and Lindemann, J. (2012). Spatial vision in insects is facilitated
by shaping the dynamics of visual input through behavioral action. front. Frontiers in neural circuits, 6:108.

Eggert, J. and van Hemmen, L. (2001). Modeling neuronal assemblies: Theory and implementation. Neural
computation, 13:1923–74.

Eichner, H., Joesch, M., Schnell, B., Reiff, D., and Borst, A. (2011). Internal structure of the fly elementary
motion detector. Neuron, 70:1155–64.

Eliasmith, C. and Anderson, C. H. (2004). Neural engineering: Computation, representation, and dynamics in
neurobiological systems. MIT press.

Esser, S. K., Appuswamy, R., Merolla, P. A., Arthur, J. V., and Modha, D. S. (2015). Backpropagation for energy-
efficient neuromorphic computing. In Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1, NIPS’15, page 1117–1125, Cambridge, MA, USA. MIT Press.

Faisal, M. and Barron, J. (2007). High accuracy optical flow method based on a theory for warping: Imple-
mentation and qualitative/quantitative evaluation. In Proceedings of the 4th International Conference on
Image Analysis and Recognition, ICIAR’07, page 513–525, Berlin, Heidelberg. Springer-Verlag.

Farabet, C., Paz-Vicente, R., Pérez-Carrasco, J., Zamarreño-Ramos, C., Linares-Barranco, A., Lecun, Y., Cu-
lurciello, E., Serrano-Gotarredona, T., and Linares-Barranco, B. (2012). Comparison between frame-
constrained fix-pixel-value and frame-free spiking-dynamic-pixel convnets for visual processing. Frontiers
in Neuroscience, 6:1–12.



100 Bibliography

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical
journal, 1 6:445–66.

Frye, M. W. (2015). Elementary motion detectors. Current Biology, 25:R215–R217.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., and Brown, A. D. (2013).
Overview of the spinnaker system architecture. IEEE Transactions on Computers, 62(12):2454–2467.

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leutenegger, S., Davison, A., Conradt,
J., Daniilidis, K., et al. (2019). Event-based vision: A survey. arXiv preprint arXiv:1904.08405.

Gautama, T. and Van Hulle, M. (2002). A phase-based approach to the estimation of the optical flow field
using spatial filtering. IEEE Transactions on Neural Networks, 13(5):1127–1136.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3354–3361.

Gerstner, W., Kempter, R., van Hemmen, L., and Wagner, H. (1996). A neuronal learning rule for sub-
millisecond temporal coding. Nature, 383:76–81.

Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cam-
bridge University Press.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Houghton Mifflin.

Giulioni, M., Lagorce, X., Galluppi, F., and Benosman, R. (2016). Event-based computation of motion flow on
a neuromorphic analog neural platform. Frontiers in Neuroscience, 10.

Graham, P. and Philippides, A. (2014). Insect-Inspired Visual Systems and Visually Guided Behavior, pages 1–9.
Springer Netherlands, Dordrecht.

Haessig, G., Cassidy, A. S., Alvarez, R., Benosman, R. B., and Orchard, G. (2018). Spiking optical flow for event-
based sensors using ibm’s truenorth neurosynaptic system. IEEE Transactions on Biomedical Circuits and
Systems, 12:860–870.

He, L., Aouf, N., Whidborne, J. F., and Song, B. (2020). Integrated moment-based lgmd and deep reinforce-
ment learning for uav obstacle avoidance. In 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 7491–7497.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley, New York.

Heeger, D. (1988). Optical flow using spatiotemporal filters. International Journal of Computer Vision,
1(4):279–302.

Hodgkin, A. and Huxley, A. (1990). A quantitative description of membrane current and its application to
conduction and excitation in nerve. Bulletin of Mathematical Biology, 52(1):25 – 71.

Holmqvist, M. H. and Srinivasan, M. V. (2004). A visually evoked escape response of the housefly. Journal of
Comparative Physiology A, 169:451–459.

Hordijk, B., Scheper, K., and Croon, G. (2018). Vertical landing for micro air vehicles using event-based optical
flow. Journal of Field Robotics, 35:69–90.

Horn, B. K. and Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1):185 – 203.

Hu, C., Arvin, F., Xiong, C., and Yue, S. (2017). Bio-inspired embedded vision system for autonomous micro-
robots: The lgmd case. IEEE Transactions on Cognitive and Developmental Systems, 9(3):241–254.

Hu, Y., Song, R., and Li, Y. (2016). Efficient coarse-to-fine patch match for large displacement optical flow. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5704–5712.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Binarized neural networks. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.



Bibliography 101

Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Martínez, J., Bataller-Mompeán, M., and Francés-Víllora, J.
(2015). Simplified spiking neural network architecture and stdp learning algorithm applied to image clas-
sification. Eurasip Journal on Image and Video Processing, 2015(1).

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2017). Flownet 2.0: Evolution of optical
flow estimation with deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Indiveri, G., Chicca, E., and Douglas, R. (2006). A vlsi array of low-power spiking neurons and bistable
synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1):211–221.

Indiveri, G., Corradi, F., and Qiao, N. (2015). Neuromorphic architectures for spiking deep neural networks.
In 2015 IEEE International Electron Devices Meeting (IEDM), pages 4.2.1–4.2.4.

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-
C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F.,
Saïghi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., and Boahen, K. (2011). Neuromorphic silicon
neuron circuits. Frontiers in neuroscience, 5:73.

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6):1569–
1572.

Izhikevich, E. M. and Moehlis, J. (2008). Dynamical systems in neuroscience: The geometry of excitability
and bursting. SIAM review, 50(2):397.

James, A. C. and Osorio, D. (1996). Characterisation of columnar neurons and visual signal processing in the
medulla of the locust optic lobe by system identification techniques. Journal of Comparative Physiology A,
178:183–199.

Jiménez-Fernández, A., Cerezuela-Escudero, E., Miró-Amarante, L., Domínguez-Morales, M. J., de Asís
Gómez-Rodríguez, F., Linares-Barranco, A., and Jiménez-Moreno, G. (2017). A binaural neuromorphic
auditory sensor for fpga: A spike signal processing approach. IEEE Transactions on Neural Networks and
Learning Systems, 28(4):804–818.

Joesch, M., Schnell, B., Varija Raghu, S., Reiff, D., and Borst, A. (2010). On and off pathways in drosophila
motion vision. Nature, 468:300–4.

Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Physical
Review E, 59:4498–4514.

Kim, M. and Smaragdis, P. (2016). Bitwise neural networks. ArXiv, abs/1601.06071.

Kistler, W. M., Gerstner, W., and Hemmen, J. L. v. (1997). Reduction of the hodgkin-huxley equations to a
single-variable threshold model. Neural Computation, 9(5):1015–1045.

Klaptocz, A., Boutinard-Rouelle, G., Briod, A., Zufferey, J., and Floreano, D. (2010). An indoor flying plat-
form with collision robustness and self-recovery. In 2010 IEEE International Conference on Robotics and
Automation, pages 3349–3354.

Knight, B. W. (1972). Dynamics of Encoding in a Population of Neurons . Journal of General Physiology,
59(6):734–766.

Krähenbühl, P. and Koltun, V. (2012). Efficient nonlocal regularization for optical flow. In Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., editors, Computer Vision – ECCV 2012, pages 356–369,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Krahl, K. and Poteser, M. (1997). Motion parallax as a source of distance information in locusts and mantids.
Journal of insect behavior., 10(1):145—163.

Lazar, A., Pipa, G., and Triesch, J. (2007). Fading memory and time series prediction in recurrent networks
with different forms of plasticity. Neural Networks, 20(3):312–322.



102 Bibliography

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural networks using backpropagation.
Frontiers in Neuroscience, 10:508.

Li, C., Brandli, C., Berner, R., Liu, H., Yang, M., Liu, S.-C., and Delbruck, T. (2015). Design of an rgbw color vga
rolling and global shutter dynamic and active-pixel vision sensor. In 2015 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 718–721.

Li, C. and Li, Y. (2013). A spike-based model of neuronal intrinsic plasticity. IEEE Transactions on Autonomous
Mental Development, 5(1):62–73.

Li, X., Wang, W., Xue, F., and Song, Y. (2018). Computational modeling of spiking neural network with learning
rules from stdp and intrinsic plasticity. Physica A: Statistical Mechanics and its Applications, 491:716–728.

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15 µs latency asynchronous temporal
contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2):566–576.

Longuet-Higgins, H. C. and Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings of
the Royal Society of London. Series B. Biological Sciences, 208:385 – 397.

Low, T. and Wyeth, G. (2007). Learning to avoid indoor obstacles from optical flow. In Dunbabin, M. and
Srinivasan, M., editors, Proceedings of the 2007 Australasian Conference on Robotics and Automation:, pages
1–10. Australian Robotics and Automation Association, Australia.

Low, T. and Wyeth, G. (2012). Obstacle detection using optical flow. Proceedings of the 2005 Australasian
Conference on Robotics and Automation, ACRA 2005.

Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an application to stereo
vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’81,
page 674–679, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Madadi Asl, M., Valizadeh, A., and Tass, P. (2018). Propagation Delays Determine the Effects of Synaptic Plas-
ticity on the Structure and Dynamics of Neuronal Networks. PhD thesis.

Mancini, M., Costante, G., Valigi, P., and Ciarfuglia, T. A. (2016). Fast robust monocular depth estimation
for obstacle detection with fully convolutional networks. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4296–4303.

Marcireau, A., Ieng, S.-H., Simon-Chane, C., and Benosman, R. B. (2018). Event-based color segmentation
with a high dynamic range sensor. Frontiers in Neuroscience, 12.

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636.

Menze, M., Heipke, C., and Geiger, A. (2015). Discrete optimization for optical flow. In German Conference on
Pattern Recognition (GCPR), volume 9358, pages 16–28. Springer International Publishing.

Meyer, H., Bertrand, O., Paskarbeit, J., Lindemann, J., Schneider, A., and Egelhaaf, M. (2016). A bio-inspired
model for visual collision avoidance on a hexapod walking robot. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9793:167–178.

Milde, M. B., Bertrand, O. J. N., Benosmanz, R., Egelhaaf, M., and Chicca, E. (2015). Bioinspired event-driven
collision avoidance algorithm based on optic flow. In 2015 International Conference on Event-based Con-
trol, Communication, and Signal Processing (EBCCSP), pages 1–7.

Milde, M. B., Bertrand, O. J. N., Ramachandran, H., Egelhaaf, M., and Chicca, E. (2018). Spiking Elementary
Motion Detector in Neuromorphic Systems. Neural Computation, 30(9):2384–2417.

Milde, M. B., Dietmüller, A., Blum, H., Indiveri, G., and Sandamirskaya, Y. (2017). Obstacle avoidance and
target acquisition in mobile robots equipped with neuromorphic sensory-processing systems. In 2017
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4.

Mishra, M. and Knust, E. (2013). Analysis of the drosophila compound eye with light and electron microscopy.
Methods in molecular biology (Clifton, N.J.), 935:161–182.



Bibliography 103

Moeys, D. P., Li, C., Martel, J. N., Bamford, S., Longinotti, L., Motsnyi, V., San Segundo Bello, D., and Del-
bruck, T. (2017). Color temporal contrast sensitivity in dynamic vision sensors. In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–4.

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore architecture with heteroge-
neous memory structures for dynamic neuromorphic asynchronous processors (dynaps). IEEE Transac-
tions on Biomedical Circuits and Systems, 12(1):106–122.

Mori, T. and Scherer, S. (2013). First results in detecting and avoiding frontal obstacles from a monocular
camera for micro unmanned aerial vehicles. In 2013 IEEE International Conference on Robotics and Au-
tomation, pages 1750–1757.

Morris, C. E. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical journal,
35 1:193–213.

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models of synaptic plasticity based
on spike timing. Biological cybernetics, 98:459–78.

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking neural networks. IEEE Transac-
tions on Neural Networks and Learning Systems, 29(7):3227–3235.

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S., and Masquelier, T. (2019). Bio-inspired digit
recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks.
Pattern Recognition, 94:87–95.

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A. R., Eliasmith, C., Manohar, R., and
Boahen, K. (2019). Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based
programming model. Proceedings of the IEEE, 107(1):144–164.

Nériec, N. and Desplan, C. (2016). Chapter fourteen - from the eye to the brain: Development of the
drosophila visual system. In Wassarman, P. M., editor, Essays on Developmental Biology, Part A, volume
116 of Current Topics in Developmental Biology, pages 247 – 271. Academic Press.

Olberg, R. M. (1981). Object- and self-movement detectors in the ventral nerve cord of the dragonfly. Journal
of comparative physiology, 141:9.

Orchard, G., Benosman, R., Etienne-Cummings, R., and Thakor, N. V. (2013). A spiking neural network archi-
tecture for visual motion estimation. In 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS),
pages 298–301.

Oron, S., Bar-Hille, A., and Avidan, S. (2014). Extended lucas-kanade tracking. In Computer Vision – ECCV
2014, pages 142–156. Springer International Publishing.

Osorio, D. (1991). Mechanisms of early visual processing in the medulla of the locust optic lobe: How self-
inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells. Visual
Neuroscience, 7(4):345–355.

Panda, P., Allred, J. M., Ramanathan, S., and Roy, K. (2018). Asp: Learning to forget with adaptive synaptic
plasticity in spiking neural networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
8:51–64.

Paredes-Vallés, F., Hagenaars, J. J., and de Croon, G. C. (2021). Self-supervised learning of event-based optical
flow with spiking neural networks. In NeurIPS.

Paredes-Valles, F., Scheper, K. Y. W., and de Croon, G. C. H. E. (2020). Unsupervised learning of a hierarchi-
cal spiking neural network for optical flow estimation: From events to global motion perception. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 42(8):2051–2064.

Pfeiffer, M. and Pfeil, T. (2018). Deep learning with spiking neurons: Opportunities and challenges. Frontiers
in Neuroscience, 12:774.

Ponce, H., Brieva, J., and Moya-Albor, E. (2018). Distance estimation using a bio-inspired optical flow strategy
applied to neuro-robotics. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–7.



104 Bibliography

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A qvga 143 db dynamic range frame-free pwm image sen-
sor with lossless pixel-level video compression and time-domain cds. IEEE Journal of Solid-State Circuits,
46(1):259–275.

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014). Retinomorphic event-
based vision sensors: Bioinspired cameras with spiking output. Proceedings of the IEEE, 102(10):1470–1484.

Putra, R. V. W. and Shafique, M. (2021). Spikedyn: A framework for energy-efficient spiking neural networks
with continual and unsupervised learning capabilities in dynamic environments. CoRR, abs/2103.00424.

Pérez-Carrasco, J., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T., Chen, S., and Linares-Barranco, B.
(2013). Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate-coding and
coincidence processing. application to feed forward convnets. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35:2706 – 2719.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: Imagenet classification using binary
convolutional neural networks. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer Vision
– ECCV 2016, pages 525–542, Cham. Springer International Publishing.

Reichardt, W. and Rosenblith, W. A. (1961). Autocorrelation, a principle for evaluation of sensory information
by the central nervous system.

Richter, C., Röhrbein, F., and Conradt, J. (2014). Bio-inspired optic flow detection using neuromorphic hard-
ware. Bernstein Conference 2014.

Rind, F. (1984). A chemical synapse between two motion detecting neurons in the locust brain. The Journal
of experimental biology, 110:143–67.

Rind, F. (2002). Motion detectors in the locust visual system: From biology to robot sensors. Microscopy
research and technique, 56:256–69.

Rind, F. and Bramwell, D. (1996). Neural network based on the input organization of an identified neuron
signaling impending collision. Journal of neurophysiology, 75:967–85.

Rohmer, E., Singh, S. P. N., and Freese, M. (2013). V-rep: A versatile and scalable robot simulation framework.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1321–1326.

Rueckauer, B. and Delbruck, T. (2016). Evaluation of event-based algorithms for optical flow with ground-
truth from inertial measurement sensor. Frontiers in Neuroscience, 10:176.

Salt, L., Howard, D., Indiveri, G., and Sandamirskaya, Y. (2020). Parameter optimization and learning in a
spiking neural network for uav obstacle avoidance targeting neuromorphic processors. IEEE Transactions
on Neural Networks and Learning Systems, 31(9):3305–3318.

Salt, L., Indiveri, G., and Sandamirskaya, Y. (2017). Obstacle avoidance with lgmd neuron: Towards a neu-
romorphic uav implementation. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4.

Sarikaya, M. and Ogmen, H. (1994). Nonlinear and adaptive properties of visual information processing in
the fly nervous system. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics,
volume 1, pages 296–301 vol.1.

Schoepe, T., Gutierrez-Galan, D., Dominguez-Morales, J. P., Jimenez-Fernandez, A., Linares-Barranco, A., and
Chicca, E. (2019). Neuromorphic sensory integration for combining sound source localization and collision
avoidance. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages 1–4.

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S., and Plank, J. S. (2017). A
survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv:1705.06963.

Schwegmann, A., Lindemann, J. P., and Egelhaaf, M. (2014). Depth information in natural environments
derived from optic flow by insect motion detection system: a model analysis. Frontiers in Computational
Neuroscience, 8:83.



Bibliography 105

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2018). Going deeper in spiking neural networks: Vgg and
residual architectures. Frontiers in Neuroscience, 13.

Serres, J. R. and Ruffier, F. (2017). Optic flow-based collision-free strategies: From insects to robots. Arthropod
Structure Development, 46(5):703 – 717. From Insects to Robots.

Shafiee, M., Zhou, Z., Mei, L., Dinmohammadi, F., Karama, J., and Flynn, D. (2021). Unmanned aerial drones
for inspection of offshore wind turbines: A mission-critical failure analysis. Robotics, 10:26.

Song, Z., Coca, D., Billings, S., Postma, M., Hardie, R. C., and Juusola, M. (2009). Biophysical modeling of a
drosophila photoreceptor. In Leung, C. S., Lee, M., and Chan, J. H., editors, Neural Information Processing,
pages 57–71, Berlin, Heidelberg. Springer Berlin Heidelberg.

Soudry, D., Hubara, I., and Meir, R. (2014). Expectation backpropagation: Parameter-free training of multi-
layer neural networks with continuous or discrete weights. In Advances in Neural Information Processing
Systems, volume 2.

Souhila, K. and Achour, K. (2007). Optical flow based robot obstacle avoidance. International Journal of
Advanced Robotic Systems, 4.

Srinivasan, M. V. (2011). Honeybees as a model for the study of visually guided flight, navigation, and biolog-
ically inspired robotics. Physiological Reviews, 91(2):413–460. PMID: 21527730.

Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophysical journal, 5:173–94.

Stemmler, M. and Koch, C. (1999). How voltage-dependent conductances can adapt to maximize the infor-
mation encoded by neuronal firing rate. Nature neuroscience, 2(6):521–527.

Stewart, T., Kleinhans, A., Mundy, A., and Conradt, J. (2016). Serendipitous offline learning in a neuromorphic
robot. Frontiers in Neurorobotics, 10.

Tammero, L. and Dickinson, M. (2002). Collision-avoidance and landing responses are mediated by separate
pathways in the fruit fly, drosophila melanogaster. The Journal of experimental biology, 205:2785–98.

Triesch, J. (2005). A gradient rule for the plasticity of a neuron’s intrinsic excitability. In Proceedings of the
International Conference on Artificial Neural Networks, 2005, pages 65–70. Springer.

Trimarchi, J. and Schneiderman, A. (2009). Initiation of flight in the unrestrained fly, drosophila melanogaster.
Journal of Zoology, 235:211 – 222.

Tschechne, S., Sailer, R., and Neumann, H. (2014). Bio-inspired optic flow from event-based neuromorphic
sensor input. In ANNPR.

Tu, Z., Xie, W., Zhang, D., Poppe, R., Veltkamp, R. C., Li, B., and Yuan, J. (2019). A survey of variational and
cnn-based optical flow techniques. Signal Processing: Image Communication, 72:9–24.

Tuthill, J., Nern, A., Holtz, S., Rubin, G., and Reiser, M. (2013). Contributions of the 12 neuron classes in the
fly lamina to motion vision. Neuron, 79:128–140.

Wagner, H. (1982). Flow-field variables trigger landing in flies. Nature, 297:147–148.

Weber, J. and Malik, J. (1992). Robust computation of optical flow in a multi-scale differential framework.
Technical Report UCB/CSD-92-709, EECS Department, University of California, Berkeley.

Wei, Z., Li, B., Guo, W., Hu, W., and Zhao, C. (2019). Sequential bayesian detection of spike activities from
fluorescence observations. IEEE Transactions on Molecular, Biological and Multi-Scale Communications,
5(1):3–18.

Wicklein, M. and Strausfeld, N. (2000). Organization and significance of neurons that detect change of visual
depth in the hawk moth manduca sexta. Journal of Comparative Neurology, 424:356–376.

Wills, J. and Belongie, S. J. (2004). A feature-based approach for determining dense long range correspon-
dences. In ECCV.



106 Bibliography

Wittekind, W. C. (1998). Short Communication: The Landing Response of Tethered Flying Drosophila is In-
duced at a Critical Object Angle. Journal of Experimental Biology, 135(1):491–493.

Wolff, T. and Ready, D. (1993). Pattern formation in the drosophila retina. The Development of Drosophila
melanogaster, 2:1277–1325.

Xiang, X., Zhai, M., Zhang, R., Qiao, Y., and El Saddik, A. (2018). Deep optical flow supervised learning with
prior assumptions. IEEE Access, 6:43222–43232.

Xiao, F., Zheng, P., Tria, J. d., Kocer, B. B., and Kovac, M. (2021). Optic flow-based reactive collision prevention
for mavs using the fictitious obstacle hypothesis. IEEE Robotics and Automation Letters, 6(2):3144–3151.

Yue, S. and Rind, F. (2009). Near range path navigation using lgmd visual neural networks. Proceedings - 2009
2nd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2009.

Zhai, M., Xiang, X., Lv, N., and Kong, X. (2021). Optical flow and scene flow estimation: A survey. Pattern
Recognition, 114:107861.

Zhang, A., Gao, Y., Niu, Y., Li, X., and Chen, Q. (2020). Intrinsic plasticity for online unsupervised learning
based on soft-reset spiking neuron model. IEEE Transactions on Cognitive and Developmental Systems,
pages 1–1.

Zhang, W. and Li, P. (2019). Information-theoretic intrinsic plasticity for online unsupervised learning in
spiking neural networks. Frontiers in Neuroscience, 13(FEB).

Zhao, S., Li, X., and Bourahla, O. E. F. (2017). Deep optical flow estimation via multi-scale correspondence
structure learning. CoRR, abs/1707.07301.

Zhu, A., Yuan, L., Chaney, K., and Daniilidis, K. (2018). Ev-flownet: Self-supervised optical flow estimation for
event-based cameras.

Zhu, Y. (2013). The drosophila visual system. Cell Adhesion & Migration, 7(4):333–344. PMID: 23880926.

Zingg, S., Scaramuzza, D., Weiss, S., and Siegwart, R. (2010). Mav navigation through indoor corridors using
optical flow. In 2010 IEEE International Conference on Robotics and Automation, pages 3361–3368.

Zufferey, J. . and Floreano, D. (2005). Toward 30-gram autonomous indoor aircraft: Vision-based obstacle
avoidance and altitude control. In Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, pages 2594–2599.


	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation and Research Question
	Structure of this Work

	I Scientific Paper
	II Literature Study
	Foundations of Optic Flow
	Optic Flow Definition
	Pinhole Camera Model
	Optic Flow Observables
	Derotation
	Orthogonal Flat Surface Assumption
	Focus of Expansion
	Time-to-Contact
	Divergence

	Frame-Based Optic Flow Estimation
	Lucas-Kanade
	Horn-Schunk
	Limitations


	Motion Detection and Obstacle Avoidance in Flying Insects
	The Generic Neuron
	The Compound Eye
	Mechanisms for Motion Detection in Flying Insects
	Saccadic Flight Strategy
	The Elementary Motion Detector
	The Lobula Giant Movement Detector

	Obstacle Avoidance in Flying Insects

	Towards a Neuromorphic Approach for Optic Flow Estimation
	Event Cameras
	Working Principle
	Available Event Cameras
	Advantages Over Frame-Based Cameras
	Event-Based Optic Flow Estimation

	Spiking Neural Networks
	Working Principle
	Spiking Neuron Models
	Synaptic Plasticity
	Intrinsic Plasticity
	Spike-Based Optic Flow Estimation

	Neuromorphic Processors
	Available Neuromorphic Processors
	Optic Flow Estimation with Neuromorphic Processors


	Insect-Inspired Obstacle Avoidance
	Frame-Based Obstacle Avoidance
	Algorithmic
	Neural

	Event-Based Obstacle Avoidance
	Algorithmic
	Neural


	Synthesis and Conclusion
	Robust Event-Based Optic Flow Estimation
	Insect-Inspired Obstacle Avoidance

	Bibliography


