

Delft University of Technology

Removing Redundant Statements in Amplified Test Cases

Oosterbroek, W.; Brandt, C.E.; Zaidman, A.E.

DOI
10.1109/SCAM52516.2021.00037
Publication date
2021
Document Version
Final published version
Published in
2021 IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM)

Citation (APA)
Oosterbroek, W., Brandt, C. E., & Zaidman, A. E. (2021). Removing Redundant Statements in Amplified
Test Cases. In 2021 IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM) (pp. 242-246). (Proceedings - IEEE 21st International Working Conference on Source Code
Analysis and Manipulation, SCAM 2021). IEEE. https://doi.org/10.1109/SCAM52516.2021.00037
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCAM52516.2021.00037
https://doi.org/10.1109/SCAM52516.2021.00037

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Removing Redundant Statements in Amplified Test
Cases

Wessel Oosterbroek
Delft University of Technology
w.oosterbroek@student.tudelft.nl

Carolin Brandt
Delft University of Technology

c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology

a.e.zaidman@tudelft.nl

Abstract—Test amplification generates new tests by modifying
existing, manually written tests. Up until now, this process
preserves statements that were relevant for the original test case
but are no longer needed for the behavior of the new test case.
These unnecessary statements impact the readability of the tests
in question. As a part of the effort to make amplified test cases
more readable, we investigate dynamic slicing, taint analysis and
static analysis as approaches to remove redundant statements.
We design and evaluate a static analysis approach that we
implemented as part of the test amplification tool DSpot. Our
empirical evaluation on 274 amplified test cases shows that the
implemented approach works well: while being rudimentary, it is
able to remove a significant portion of the redundant statements
in the amplified test cases. While the removal of the statements
themselves is fast, verifying that the tests still work as intended
through mutation testing is still resource-intensive.

I. INTRODUCTION

An important aspect of software development is verifying

that the created software works as intended. One of the

ways to do this is through developer testing, an approach

where developers write tests that check parts of the code they

engineered [1]. Manually creating and maintaining test suites

can take a lot of time and effort [2]. One option to reduce

the time it takes to create these test suites is to automatically

generate tests, reducing the time developers spend on writing

tests. A tool designed to help accomplish this task is DSpot [3]:

it amplifies test cases by taking an existing test and returning a

set of new test cases that improve overall coverage [4]. While

the designers of DSpot envision a world where the tool can

generate pull requests with test cases ready for developers

to merge [5], the amplified test cases prove cumbersome to

use: use of vague identifiers, the inclusion of no longer used

statements, and assertions that are generally weak. As such, all

generated tests have to be thoroughly checked and refactored

before a developer can benefit from them [6].

In this paper, we aim to combat redundant statements in

amplified test cases. These statements are left over from the

existing test case used for amplification, but are not necessary

for the behavior of the new test cases. Overall, we investigate:

Main RQ: How can redundant statements be detected and
removed from amplified test cases created by DSpot?

This research was partially funded by the Dutch science foundation NWO
through the Vici “TestShift” grant (No. VI.C.182.032)

To answer this research question we raise two sub-questions:

RQ1: What redundant statements does DSpot include in
the amplified test cases it generates?

As a first step to identify and find suitable solutions for

deleting redundant statements, we conduct an analysis of

several test cases created by DSpot in Section II.

With our understanding of how redundant statements are

introduced in the amplified test cases, we set out to investigate

techniques to detect and remove these redundant statements.

In particular, we look into slicing, taint analysis, and static

analysis. For each of them, we discuss their advantages and

drawbacks, as well the feasibility of implementing them into

DSpot. Finally, we settle on a lightweight static analysis

approach, and investigate Section III:

RQ2: How does the implemented solution perform, i.e., how
many of the redundant statements are removed?

In a small-scale study on a variety of projects and tests,

we analyze our solution and compare it to the default DSpot

implementation. In Section IV we will analyze the results of

the conducted study, highlighting that the main concerns for

our proposed approach are accuracy and run-time.

II. REDUNDANT STATEMENTS

In the context of this paper, redundant statements are

statements whose removal does not affect the mutation

coverage of a particular test in any way. Important to highlight

is that our definition does not include all statements that

could be considered unnecessary, e.g., statements that could

potentially be combined with other statements for readability

are not considered in this paper.

Instead, our focus is on statements that are part of

the original test case that formed the input to the DSpot

amplification, but that are no longer relevant for the amplified

test case. By removing these statements we intend to improve

the readability of the test cases in question.

Contrary to redundant statements in the context of a normal

program, statements that do not change variables or objects

in a test case might still be interesting. Consider a test for

a function that when given as input an integer returns the

absolute value of that integer. The test might give as input

242

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM52516.2021.00037

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
37

978-1-6654-4897-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 11:00:13 UTC from IEEE Xplore. Restrictions apply.

a positive integer, and then verifies that the function returns

the exact same integer. If that function call was made in the

context of a normal program one could consider calling the

function to be redundant, however in the context of this unit

test it is not as we are verifying the behavior of the function

in question even if the integer itself was not changed.

1 public void booleanAttributesEmptyStringValues2() {
2 Document doc = Jsoup.parse("<div hidden>");
3 Attributes as = doc.body().child(0).attributes();
4 as.get("hidden");
5 Attribute first = as.iterator().next();
6 first.getKey();
7 first.getValue();
8 first.hasDeclaredValue();
9 assertFalse(doc.getAllElements().isEmpty(); }

Listing 1: An amplified test case created with DSpot.

1 public void booleanAttributesEmptyStringValues2() {
2 Document doc = Jsoup.parse("<div hidden>");
3 assertFalse(doc.getAllElements().isEmpty(); }

Listing 2: The test case from Listing 1 without redundant statements.

A. Types of Redundant Statements in Amplified Test Cases

To get a better understanding of the types of redundant

statements created by DSpot, we manually analyzed 30

amplified test cases from the JSoup Project [7], and found

that there are three main types of redundant statements:

a) Declarations of unnecessary variables: The first type

refers to variables that are either not used in any statement or

variables for which all statements, that involve the object, are

not relevant for the test case and are therefore redundant. These

statements and the variables themselves could be removed

from the test case, the first object declared on line 5 in

Listing 1 is an example of an unnecessary variable.

b) Elements from old assertions: By default DSpot

sometimes keeps elements in from assertions that were part of

the original test case. The assertion itself is removed but the

call to a method to retrieve a value within the assert statement

is not. An example can be found in Listing 1, on line 6 the

first.getKey() statement originates from an assertion in

the original test case. These statements are in our observation,

often redundant as they usually do not have any side effects

and are only retrieving a value, i.e., they are often getters.

c) Statements with side effects: Last are redundant

statements that have side effects, but are not relevant, e.g.,

changing the surname of a Person object while the assert

statements are only concerned with the age of the person.

Answer to RQ1: There are three main types of redundant

statements that appear most often in the tests created by

DSpot. Declarations of unnecessary variables, elements

from old assertions and statements with side effects. We

expect that both declarations of unnecessary variables and

elements from old assertions should be straightforward to

detect and remove, while removing statements that have

side effects will be more challenging.

III. DETECTING REDUNDANT STATEMENTS

In this section, we discuss three methods to detect the

redundant statements described in Section II. This section

will give insights into what the possible advantages and

disadvantages of each method are, in addition to explaining

the static analysis approach we contributed to DSpot.

It is important to note that when editing a test case we can

verify that the test still performs as expected, something that

would not be possible for a regular program. After minimizing,

the test case should still compile, run and catch the same

number of mutants as the original test case. Verifying that

the test case still compiles and catches the same mutants

as the original does nevertheless not fully guarantee that it

behaves the same way as the original amplified test. There

might be differences in the way it runs or even catches mutants.

However, DSpot uses PIT mutation testing to select amplified

test cases, meaning that if the minimized test still catches the

same mutants, they are seen as equally valuable by DSpot.

A. Dynamic Slicers

Slicing is a technique to simplify programs, removing

parts of a program that have no effect on the statements or

variables we are interested in [8]. It has been researched quite

extensively and finds main use-cases in debugging, program

analysis and re-engineering, and allows ignoring parts of the

program that are of no interest [8].

There is a difference between static slicing, with no

assumptions about the input a program will receive, and

dynamic slicing, in which only one execution path of the

program and a specific set of input variables is considered.

The result of a dynamic slicer solely concerns the execution

of the program, which results in dynamic slices often being

much smaller [8].

To our knowledge there is no prior work about removing

redundant statements from test cases using program slicing.

AlAbwaini et al. talk about removing redundant code using

program slicing in the context of a normal program [9]. Their

approach consists of using program analysis techniques to

find the effective variables, i.e., the variables that influence

the outcome of a program, followed by running a slicer on

each of these variables looking at which parts of the code

affected them. Combining these slices allows for the removal

of redundant code from the program. However, this becomes

more difficult on larger programs because it becomes harder

to find the effective variables [9].

As a test case defines the execution path and input values to

the program, we have the opportunity to use a dynamic slicer.

A dynamic slicer should be able to identify most statements

that do not affect the assert statements in a test case. However,

there are no dynamic Java slicers available that support Java

1.8 or above, which is necessary for integration into DSpot

and compatibility with modern Java programs. JavaSlicer

only supports JDK versions up to 1.7 [10]. An interesting

slicer, which was made public too late to be considered in

this project, is Slicer4J [11], [12]. Slicer4J is based on a

dynamic Android slicer called Mandoline and supports modern

243

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 11:00:13 UTC from IEEE Xplore. Restrictions apply.

Java applications, which makes it an interesting candidate for

potential integration into DSpot.

B. Dynamic Taint Analysis

The goal of dynamic taint analysis is to find out which

computations are affected by tainted sources such as user-

input [13]. It has a wide variety of use cases and can even be

used in test generation [13]. Taint analysis could also be an

option to detect redundant statements, by marking all inputs of

a test case and seeing which ones affect the assert statements.

Bell and Kaiser describe this use case as a method to detect

brittle assertions in their paper about Phosphor, a dynamic taint

analysis tool for Java [14]. To the best of our knowledge this

is the only dynamic taint analysis tool for Java that supports

general use cases as well as default JVMs [14]. However, while

this is useful to detect redundant input variables and objects, it

does not tell much about statements that have side-effects, as

we are only looking at which input variables affect the assert

statements, but not at how other statements, that use input

variables, affect the assert statements.

C. Static Code Analysis

Another option is to use static analysis to look at a test case

and try to infer which statements are redundant and which

are not. For example, all declarations of variables directly

or indirectly used by the assert statement are guaranteed to

be needed for the test to still compile and thus can not be

redundant. On the other hand, variables that do not get used

at all, even not indirectly, by the assert statements are likely to

be redundant. An advantage of this approach is that it is fast,

taking almost no time to remove the redundant statements.

To detect redundant statements from amplified test cases,

we investigate dynamic slicers, taint analysis and static

analysis. While this selection is non-exhaustive, it should

give an idea of options to detect redundant statements.

D. Algorithm

Our contribution to DSpot consists of a static analysis

algorithm that tries to remove as many of the redundant

statements as possible. The actual implementation uses some

parts from the PitMutantMinimizer by Danglot found in

DSpot [3], which tries to remove assertions that do not

improve the mutation score of an amplified test.

Our algorithm to delete redundant statements consists of

three separate steps, which all take the original amplified

test case as input. In each step, the algorithm tries

to delete statements from the test case while becoming

more conservative in which statements are deleted in each

subsequent step. After each step, the resulting test case is

syntactically compared to the original amplified test case, if

there is no difference between the two, the algorithm returns

the original test case. If there is a difference, PIT [15] will be

used to verify that the test case still catches the same mutants

as before. In the case that it does, the algorithm returns the

minimized test case, if it does not, the algorithm continues

Fig. 1: Overview of our approach described in Section III-D

with the next step. If all steps fail the algorithm will return

the original amplified test.

Figure 1 presents a flow chart of this process. The individual

steps consist of the following:

• Step one: Delete all statements, except for the assertions

and statements that are needed to compile.

• Step two: Remove all statements that do not interact

with the assert statements, where an interaction refers to

the statements containing variables that are needed by

the assert statements directly or indirectly. Additionally,

remove loops and variables that only interact with the

assert statements when they are declared. The rationale

behind this comes from the fact that a lot of the

unnecessary variables use needed variables when being

declared, e.g., a string is set equal to the name of

an object. Listing 3 shows an example on line 4. The

String name is declared using the doc object that is

relevant for the test case, however the string name itself

is not. The same logic applies to loops, which we will

only consider if relevant objects are used inside the body

of said loop, thus the for loop on line 5 in Listing 3

is removed.

• Step three: Remove all the statements that do not directly

or indirectly interact with variables used in the assert

statements.

1 public void exampleTest() {
2 Document doc = Jsoup.parse(in, "UTF-8");
3 Elements templates = doc.body().getElementsByTag(

"template");
4 String name = doc.nodeName();
5 for (Element template : templates) {
6 boolean equals = name.equals(""); }
7 assertFalse(templates.equals(null)); }

Listing 3: An example test containing a for loop and object that only
interacts when the assert statement when they are declared.

An example of this process is shown in Listings 4

through 7. Listing 4 presents an amplified test case, which

was slightly modified for the purposes of this explanation.

In step one, all variables and statements that are not

needed for compilation are removed, the resulting test

case is shown in Listing 5. However this test case fails

as we removed the a2.setValue(characters) and

a2.setKey("three") statements which were needed for

the assertions to pass. Listing 6 shows the result of step

two, this test case still fails due to the String key =
a2.setKey("three") statement being removed, as it falls

under a variable that only interacts with assertions when

declared. Listing 7 shows the final passing test case after

244

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 11:00:13 UTC from IEEE Xplore. Restrictions apply.

step three, only removing the statement Attribute a1
= new Attribute("one", ""), this test case compiles

and covers the same mutants as the original.

1 public void hasValue2() {
2 String characters = "#{>%";
3 Attribute a1 = new Attribute("one", "");
4 Attribute a2 = new Attribute("two", null);
5 String key = a2.setKey("three");
6 a2.setValue(characters);
7 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 4: A (modified) amplified test case created with DSpot.

1 public void hasValue2() {
2 Attribute a2 = new Attribute("two", null);
3 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 5: The result after applying step one on the amplified test.

1 public void hasValue2() {
2 String characters = "#{>%";
3 Attribute a2 = new Attribute("two", null);
4 a2.setValue(characters);
5 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 6: The result after applying step two on the amplified test.

1 public void hasValue2() {
2 String characters = "#{>%";
3 Attribute a2 = new Attribute("two", null);
4 String key = a2.setKey("three");
5 a2.setValue(characters);
6 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 7: The result after applying step three on the amplified test.

This minimizer was implemented into the DSpot prettifier

module, which does not allow for easy removal of elements

that were in the assert statements of the original test case

without modifying its structure to a larger extent than adding

a new minimizer. To remove these statements it is necessary

to either provide the original test case using a parameter or

to edit the amplification process of DSpot itself to no longer

include these statements. Moreover, we are using DSpot to run

PIT, meaning that the exact same parameters are used as when

amplifying using mutation testing.

Our solution consists of a lightweight static analysis

algorithm, which has the advantage of being straightforward

to implement compared to dynamic slicing and taint

analysis. We expect that it should be able to remove a

significant number of redundant statements. We verify the

removal through mutation analysis.

IV. EMPIRICAL EVALUATION

In this section, we will answer research question RQ2 by

evaluating the performance of the implemented algorithm,

described in Section III-D. To that end we performed a

qualitative as well as a quantitative study. In the qualitative

study we focus on what statements get removed or not

by manually inspecting 46 minimized test cases. In the

quantitative study we investigate the overall performance

by measuring the difference in statements before and after

minimization. We created 274 amplified tests, which originate

from and improve the coverage of 15 test classes from the

JSoup, Stream-Lib and Twilio-Java projects [7], [16], [17].

Three of these classes containing 46 tests, from the JSoup

project, were manually checked for redundant statements

before and after running the minimizer.

To reproduce the results discussed in this paper we have

created a replication package [18].

A. Qualitative Analysis

We analyzed 46 test cases and found that our approach is

able to remove 28% (32 out of 113) of all redundant statements

in these tests. Note that these test cases still include elements

from old assertions (see Section II-A), as 65 out of the 81 not-

removed statements were of this type, we expect removing

those statements would significantly increase the number of

statements removed. Listing 8 shows a test case where lines 5-

7, which are all elements from old assertions, are redundant as

they only retrieve values and have no side-effects. Manually

analyzing the minimized test cases shows that there are quite a

few test cases in which only a few of the redundant statements

get removed, while others are minimized as much as possible.

This is caused by the algorithm removing all but necessary

statements in step one, meaning that if this first minimization

step succeeds the test case is likely to be fully minimized.

All redundant statements of the type unnecessary variable

were removed, however they represent a small part of all

removed redundant statements. While the majority of removed

statements consist of the other two types, described in Section

II, their removal is not guaranteed and depends on the test

structure and usage of declared variables.

1 public void html5() {
2 Attributes a = new Attributes();
3 a.put("Tot", "a&p");
4 a.put("Hello", "There");
5 a.size();
6 a.hasKey("Tot");
7 a.hasKey("Hello");
8 assertEquals(-758045610, a.hashCode(); }

Listing 8: Minimized test case with elements from old assertions.

B. Quantitative Analysis

Figure 2 shows the results of minimizing 274 amplified

tests from 4 projects, showing a reduction in the number

of statements in each test case after minimizing. In these

results the assert statements themselves are included, thus

making the minimum number of statements in each test one.

An interesting observation that can be made when looking

at Figure 2 is that by far the largest number of statements

is removed in step one, in step two a couple statements

are removed, while in step three almost no statements are

removed. Step three removing few statements is the result of

those statements already being removed in either steps one

or two. There were a few test cases where the first two steps

failed and there were statements that could be removed in step

three. While it did not result in any statements being removed

in the test cases selected for this study, one might see slightly

different results when minimizing other test cases.

245

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 11:00:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Box plots showing the number of statements in 274 tests
before and after minimizing with each step.

C. Run-time

An important thing to note is that removing these redundant

statements takes a significant amount of time due to the

mutation coverage that has to be determined after changing

a test using PIT. While the median number of PIT runs

is two and the average lower than two per test, the time

spent on calculating mutation coverage accounts for the

overwhelming majority of the time spent on minimizing these

test cases. Removing the statements themselves only takes a

few milliseconds, while it can take up to five minutes to run

our complete approach, including the mutation analysis.

Answer to RQ2: Our results show that the implemented

approach works well: while being rudimentary it is able to

remove a significant portion of the redundant statements in

the amplified test cases. Unnecessary variables are always

removed, while the removal of statements with side-effects

and elements of old assertions depends on the structure

of the test case. A problem with removing redundant

statements is that using mutation coverage to verify that

the tests still work takes a significant amount of time.

D. Threats to Validity

1) External validity: The variety of projects and tests

selected to evaluate our minimizer on is limited. For one they

are all open source projects, with most tests coming from the

JSoup project. While we do not expect major differences in

the number of removed statements for other projects given that

they are likely to have a similar style of unit tests. Moreover,

we suspect that the performance of our approach will suffer

with more complicated tests. Since step one of the removal

process relies on removing all statements in a test case, except

for those that are needed to compile, this step might work less

well on longer and more complicated test cases. We expect the

types of redundant statements to be closely linked to the test

amplification of DSpot, which is to our knowledge the only

tool for Java JUnit test amplification. Future replications of our

study are needed to reinforce our findings and to determine

whether they generalize to other test amplification approaches.

2) Internal validity: We use mutation analysis to establish

that the redundant statement reduction keeps the behavior of

the minimized test cases. While we have run PIT with all

mutation operators enabled, it might still be that equivalent

mutants disturb our behavior checking process. Future work

should investigate this further.

V. CONCLUSION & FUTURE WORK

In this paper, we looked at redundant statements in amplified

test cases created by DSpot, as well as possible options for

removing them from these test cases. While taint analysis

or a (dynamic) slicer would be powerful, we opted for a

more lightweight approach using static analysis of the test

case. In a 3-step process we remove redundant statements

from amplified test cases while maintaining their mutation

score. Running the minimizer significantly reduced the average

number of statements in the analyzed amplified test cases. We

hypothesize that this makes them easier to understand.

Further research could focus on implementing a more

fine-grained approach to remove redundant statements, such

as the discussed slicers or taint analysis. Alternatively, a more

fine-grained static analysis approach could be considered.

Another consideration is the run-time of these algorithms, if

one verifies the run-time of approaches using mutation testing

one will always suffer heavy performance impact.

REFERENCES

[1] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Pearson
Education, 2007.

[2] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[3] “Dspot,” https://github.com/STAMP-project/dspot, 2021.
[4] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and

B. Baudry, “A snowballing literature study on test amplification,” J.
Syst. Softw., vol. 157, 2019.

[5] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: a study with ten mature open-source
projects,” Empirical Software Engineering, vol. 24, no. 4, pp. 2603–
2635, 2019.

[6] C. Brandt and A. Zaidman, “Developer-centric test amplification: The
interplay between automatic generation and human exploration.”

[7] “Jsoup,” https://github.com/jhy/jsoup, 2021.
[8] M. Harman and R. Hierons, “An overview of program slicing,” software

focus, vol. 2, no. 3, pp. 85–92, 2001.
[9] N. AlAbwaini, A. Aldaaje, T. Jaber, M. Abdallah, and A. Tamimi,

“Using program slicing to detect the dead code,” in Int’l Conf on
Computer Science and Information Technology. IEEE, 2018, pp. 230–
233.

[10] “Javaslicer,” https://github.com/backes/javaslicer, 2016.
[11] K. Ahmed, M. Lis, and J. Rubin, “Mandoline: Dynamic slicing of

android applications with trace-based alias analysis,” in Proc. Int’l Conf
on Software Testing, Verification and Validation (ICST). IEEE, 2021,
pp. 105–115.

[12] “Slicer4j,” https://github.com/resess/Mandoline, 2021.
[13] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in IEEE Symposium on Security and
Privacy, 2010, pp. 317–331.

[14] J. Bell and G. Kaiser, “Dynamic taint tracking for java with phosphor,”
in Proc. Int’l Symposium on Software Testing and Analysis (ISSTA).
ACM, 2015, pp. 409–413.

[15] “Pit,” https://pitest.org.
[16] “stream-lib,” https://github.com/addthis/stream-lib, 2019.
[17] “twilio-java,” https://github.com/twilio/twilio-java, 2021.
[18] W. Oosterbroek, C. Brandt, and A. Zaidman, “Replication package for

“removing redundant statements in amplified test cases”,” https://doi.
org/10.6084/m9.figshare.14910486, 2021.

246

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 11:00:13 UTC from IEEE Xplore. Restrictions apply.

