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Derivation and Analysis of the Primal-Dual Method
of Multipliers Based on Monotone Operator Theory

Thomas Sherson, Richard Heusdens, and W. Bastiaan Kleijn

Abstract—In this paper we present a novel derivation of an ex-
isting algorithm for distributed optimization termed the primal-
dual method of multipliers. In contrast to its initial derivation,
monotone operator theory is used to connect PDMM with other
first-order methods such as Douglas-Rachford splitting and the
alternating direction method of multipliers thus providing insight
into its operation. In particular, we show how PDMM combines a
lifted dual form in conjunction with Peaceman-Rachford splitting
to facilitate distributed optimization in undirected networks. We
additionally demonstrate sufficient conditions for primal conver-
gence for strongly convex differentiable functions and strengthen
this result for strongly convex functions with Lipschitz continuous
gradients by introducing a primal geometric convergence bound.

Index Terms—Primal-Dual method of multipliers (PDMM),
distributed optimization, monotone operator.

I. INTRODUCTION

The world around us is evolving through the use of large
scale networking. From the way we communicate via social
media [1], to the revolution of utilities and services via
the paradigm of the “Internet of Things” [2], networking
is reshaping the way we operate as a society. Echoing this
trend, the last three decades has seen a significant rise in the
deployment of large scale sensor networks for a wide range of
applications [3]–[5]. Such applications include environmental
monitoring [6], [7], power grid management [8]–[10], as well
being used as part of home health care systems [11], [12].

Where centralized network topologies were once the port
of call for handling data processing of sensor networks, in-
creasingly on-node computational capabilities of such systems
are being exploited to parallelize or even fully distribute data
processing and computation. In contrast to their centralized
counterparts such distributed networks have a number of dis-
tinct advantages including robustness to node failure, scalabil-
ity with network size and localized transmission requirements.

Unfortunately, these distributed networks are also often
characterized by limited connectivity. This limited accessibil-
ity between nodes implicitly restricts data availability making
classical signal processing operations impractical or infeasible
to perform. Therefore, the desire to decentralize computation
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requires the design of novel signal processing approaches
specifically tailored to the task of in-network computation.

Within the literature, a number of methods for performing
distributed signal processing have been proposed including
distributed consensus [13]–[15], belief propagation/message
passing approaches [16]–[18], graph signal processing over
networks [19]–[21] and more. An additional method of partic-
ular interest to this work, is to approach the task of signal pro-
cessing via its inherent connection with convex optimization.
In particular, over the last two decades, it has been shown that
many classical signal processing problems can be recast in an
equivalent convex form [22]. By defining methods to perform
distributed optimization we can therefore facilitate distributed
signal processing in turn.

Recently, a new algorithm for distributed optimization called
the primal dual method of multipliers (PDMM) was proposed
[23]. In [23], it was shown that PDMM exhibited guaranteed
average convergence, which in some examples were faster than
competing methods such as the alternating direction method
of multipliers (ADMM) [24]. However, there are a number of
open questions surrounding the approach. In particular, prior
to this work, it was unclear how PDMM was connected with
similar methods within the literature.

To clarify the link between PDMM and existing works, we
present a novel viewpoint of the algorithm through the lens
of monotone operator theory. By demonstrating how PDMM
can be derived from this perspective, we link its operation
with classic operator splitting algorithms. The major strength
of this observation is the fact that we can leverage results from
monotone operator theory to better understand the operation
of PDMM. In particular we use this insight to demonstrate
new and stronger convergence results for different classes of
problems than those that currently exist within the literature.

A. Related Work

The work in this paper builds upon the extensive history
within the field of convex optimization in the areas of parallel
and decentralized processing. In the 1970’s, Rockafellar’s
work in network optimization [25] and the relation between
convex optimization and monotone operator theory [26]–
[28] helped establish a foundation for the field. Importantly,
Rockafellar showed how linearly constrained separable convex
programs can be solved in parallel via Lagrangian duality.

In the field of parallel and distributed computation, further
development was undertaken by Bertsekas and Tsitsiklis [29]–
[31] throughout the 1980’s, where again separability was used
as a mechanism to design a range of new algorithms. Similarly,
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Eckstein [32], [33] adopted an approach more reflective of
Rockafellar, utilizing monotone operator theory and operator
splitting to develop new distributed algorithms.

In recent years, there has been a renewed surge of interest
in networked signal processing [34]–[36] due to the continued
expansion of networked systems. This period has also seen
the development of novel distributed optimization approaches
for both convex and potentially non-convex problems. In the
convex case, the works of [37], [38], echoing advances in three
term operator splitting such as Vu-Condat splitting [39], [40],
provide general frameworks for distributed convex optimiza-
tion. Including classical approaches, such as ADMM, as spe-
cial cases, these algorithms leverage primal-dual schemes and
functional separability to create distributed implementations.

The work in [41], [42] focuses on the more general problem
of potentially non-convex optimization. In particular, by at
each iteration approximating both objective and constraints
with specific strongly convex and smooth surrogates, the
proposed methods have provable guarantees on convergence
to local minima. Furthermore, in contrast to other methods,
the proposed approach need not explicitly require functional
separability, only the separability of the surrogates used. This
allows for the optimization of problems typically outside of
the scope of distributed algorithms.

B. Main Contribution

The main contributions of this paper are two-fold. Firstly
we provide a novel derivation for PDMM from the perspective
of monotone operator theory. In particular, we show how
PDMM can be derived by combining a particular dual lifted
problem with Peaceman-Rachford (PR) splitting. In contrast
to its original derivation, this approach links PDMM with
other classical first order methods from the literature including
forward-backward splitting, Douglas-Rachford (DR) splitting
and ADMM (see [43] for a recent overview).

The monotone operator perspective is also used to demon-
strate a range of new convergence results for PDMM. We show
how PDMM is guaranteed to converge to a primal optimal
solution for strongly convex, differentiable objective functions.
This result is strengthened for strongly convex functions with
Lipschitz continuous gradients where a geometric convergence
bound is demonstrated by linking the worst-case convergence
of PDMM with that of a generalized alternating method of
projections algorithm. Notably, while such results exist for
PR splitting applied to dual domain optimization problems
[44], they require an additional full row rank1 assumption to
ensure strong monotonicity which cannot be guaranteed in the
case of PDMM. Furthermore, while a geometric convergence
proof exists for distributed ADMM [45], currently there is
no such result for PDMM. In this way the proposed work
also strengthens the performance guarantees for PDMM, an
important point for practical distributed optimization.

1Row rank refers to the dimension of the span of the row space of a matrix.
Row rank deficient matrices have more rows than their row rank. The notions
of column rank and column rank deficiency are defined equivalently.

C. Organization of the Paper

The remainder of this paper is organized as follows.
Sec. II introduces appropriate nomenclature to support the
manuscript. Sec. III introduces a monotone operator derivation
of PDMM based on a specific dual lifting approach. Sec. IV
demonstrates the guaranteed primal convergence of PDMM for
strongly convex and differentiable functions. This is strength-
ened in Sec. V where we demonstrate primal geometric
convergence for strongly convex functions with Lipschitz
continuous gradients. Finally, Sec. VI includes simulation
results to reinforce and verify the underlying claims of the
document and the final conclusions are drawn in Sec. VII

II. NOMENCLATURE

In this work we denote by R the set of real numbers,
by RN the set of real column vectors of length N and by
RM×N the set of M by N real matrices. Let X ,Y ⊆ RN .
A set valued operator T : X → Y is defined by its graph,
gra (T) = {(x,y) ∈ X × Y | y ∈ T (x)}. Similarly, the
notion of an inverse of an operator T−1 is defined via its
graph so that gra

(
T−1

)
= {(y,x) ∈ Y × X | y ∈ T (x)}.

JT,ρ = (I + ρT)
−1 denotes the resolvent of an operator

while RT,ρ = 2JT,ρ − I denotes the reflected resolvent
(Cayley operator). The fixed-point set of T is denoted by
fix (T) = {x ∈ X | T (x) = x}. If T is a linear operator then
ran(T) and ker(T) denote its range and kernel respectively.

III. A DERIVATION OF THE PRIMAL-DUAL METHOD OF
MULTIPLIERS BASED ON MONOTONE OPERATOR THEORY

In this section we reintroduce a recently proposed algorithm
for distributed optimization termed the Primal-Dual method
of multipliers (PDMM) [23]. Unlike earlier efforts within the
literature [23], [24], here we demonstrate how PDMM can be
derived from the perspective of monotone operator theory. In
particular we show how PDMM can be derived by applying
PR splitting to a certain lifted dual problem. Additionally, we
highlight a previously unknown connection between PDMM
and a distributed ADMM variant.

A. Problem Statement: Node Based Distributed Optimization

Consider an undirected network consisting of N nodes
with which we want to perform convex optimization in a
distributed manner. The associated graphical model of such
a network is given by G(V,E) where V = {1, ..., N}
denotes the set of nodes and E denotes the set of undirected
edges so that (i, j) ∈ E if nodes i and j share a physical
connection. Note that these are simple graphs as they do not
contain self loops or repeated edges. We will assume that
G forms a single connected component and will denote by
N (i) = {j ∈ V | (i, j) ∈ E} the set of neighbors of node i,
i.e. those nodes j so that i and j can communicate directly.
An example of such a network is given in Figure 1.

As previously mentioned, we are interested in using this
network to perform distributed convex optimization. In this
way, assume that each node i is equipped with a function fi ∈
Γ0

(
RMi

)
parameterized by a local variable xi ∈ RMi . Here
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Fig. 1. The communication graph G of a seven node network. Numbered
circles denote nodes and while the arrows denote the undirected edges. The
neighborhood of node five is given by the set N (5) = {3, 6, 7}.

Γ0 denotes the family of closed, convex and proper (CCP)
functions. Under this model, consider solving the following
optimization problem in a distributed manner:

min
xi ∀ i∈V

∑
i∈V

fi(xi)

s.t Ai|jxi + Aj|ixj = bi,j ∀ (i, j) ∈ E.
(1)

The matrices Ai|j ∈ RMi,j×Mi while the vectors bi,j ∈
RMi,j . The identifier i|j denotes a directed edge while i, j
denotes an undirected edge. Furthermore, let MV =

∑
i∈V

Mi

and ME =
∑

(i,j)∈E
Mi,j . We will also assume that (1) is

feasible. In such distributed convex optimization problems
the terms Ai|j and bi,j impose affine constraints between
neighboring nodes.

The prototype problem in (1) includes, as a subset, the
family of distributed consensus problems that minimize the
sum of the local cost functions under network wide consensus
constraints. The algorithm presented in this paper can therefore
be used for this purpose.

B. Exploiting Separability Via Lagrangian Duality

Given the prototype problem in (1), the design of our
distributed solver aims to address the coupling between the set
of primal variables xi due to the linear constraints. Echoing
classic approaches in the literature, we can overcome this
point via Lagrangian duality. In particular, the Lagrange dual
problem of (1) is given by

min
ν

∑
i∈V

f∗i
 ∑
j∈N (i)

AT
i|jνi,j

− ∑
j∈N (i)

bi,j
2

T

νi,j

 , (2)

where each νi,j ∈ RMi,j denotes the dual vector variable
associated with the constraint at edge (i, j) and f∗i is the
Fenchel conjugate of fi. By inspection, the resulting problem
is still separable over the set of nodes but unfortunately each
νi,j in (2) is utilized in two conjugate functions, f∗i and f∗j ,
resulting in a coupling between neighboring nodes.

To decouple the objective terms, we can lift the dimension
of the dual problem by introducing copies of each νi,j at
nodes i and j. The pairs of additional directed edge variables
are denoted by λi|j ,λj|i ∀(i, j) ∈ E and are associated
with nodes i and j respectively. To ensure equivalence of the
problems, these variables are constrained so that at optimality

λi|j = λj|i. The resulting problem is referred to as the
extended dual of Eq (1) and is given by

min
λ

∑
i∈V

f∗i
 ∑
j∈N (i)

AT
i|jλi|j

− ∑
j∈N (i)

bi,j
2

T

λi|j


s.t. λi|j = λj|i ∀i ∈ V, j ∈ N (i). (3)

The proposed lifting is appealing from the perspective of al-
ternating minimization techniques as it partitions the resulting
problem into two sections: a fully node separable objective
function and a set of edge based constraints.

C. Simplification of Notation

To assist in the derivation of our algorithm, we firstly
introduce a compact vector notation for Eq. (3). Specifically
we will show that (3) can be rewritten as

min
λ

f∗(CTλ)− dTλ

s.t (I−P)λ = 0.
(4)

1) Dual Vector Notation: Firstly we introduce the dual
variable λ as the stacked vector of the set of λi|j where the
ordering of this stacking is given by 1|2 < 1|3 < · · · < 1|N <
2|1 < 2|3 < · · · < N |N − 1. In particular, λ is given by

λ =
[
λT1|2, · · · ,λ

T
1|N ,λ

T
2|1, · · · ,λ

T
N |N−1

]T
∈ RME .

2) Compact Objective Notation: Given the definition of
the dual vector λ, we now move to simplifying the objective
function. Firstly, we define the sum of local functions

f : RMV 7→ R, x 7→
∑
i∈V

fi(xi)

where RMV = RM1 × RM2 × ...× RMN .
We can then define a matrix C ∈ RME×MV and vector

d ∈ RME to rewrite our objective using λ and f . In particular,

C =

C1 · · · 0
...

. . .
...

0 · · · CN

 , d =
[
dT1 , · · · ,dTN

]T
,

where the components Ci and di are given by

Ci =
[
AT
i|1, · · · ,A

T
i|i−1,A

T
i|i+1, · · ·

T ,AT
i|N

]T
∀i ∈ V,

di =
1

2

[
bTi,1, · · · ,bTi,i−1,bTi,i+1, · · · ,bTi,N

]T ∀i ∈ V.
The terms Ai|j and bi,j are included in Ci and di respectively
if only if (i, j) ∈ E.

The objective of Eq. (3) can therefore be rewritten as

f∗(CTλ)− dTλ.

3) Compact Constraints Notation: Similar to the objective,
we can define an additional matrix to rewrite the constraint
functions using our vector notation. For this task we intro-
duce the symmetric permutation matrix P ∈ RME×ME that
permutes each pair of variables λi|j and λj|i. This allows the
constraints in (3) to be rewritten as (I−P)λ = 0. The vector
λ is therefore only feasible if it is contained in ker(I−P).
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D. From the Extended Dual Problem to a Nonexpansive
PDMM Operator

Given the node and edge separable nature of the extended
dual, we now move to forming a distributed optimization
solver which takes advantage of this structure. In particular
we aim to construct an operator of the form

S = SE ◦ SN ,

where SN and SE are parallelizable over the nodes and edges
respectively and ◦ is used to denote their composition so
that ∀ (x, z) ∈ gra (S1 ◦ S2) , ∃y | (x,y) ∈ gra (S1) , (y, z) ∈
gra (S2). Furthermore, we would like such operators to be
nonexpansive so that classic iterative solvers can be employed.
The nonexpansiveness of an operator is defined as follows.

Definition III.1. Nonexpansive Operators: An operator T :
X → Y is nonexpansive if

‖u− v‖ ≤ ‖x− y‖ (x,u) , (y,v) ∈ gra (T) ,

We can construct such an S by making use of the relation-
ship between monotone operators and the subdifferentials of
convex functions. In particular, an operator is monotone if it
satisfies the following definition.

Definition III.2. Monotone Operators: An operator T : X →
Y is monotone iff

〈u− v,x− y〉 ≥ 0 ∀ (x,u) , (y,v) ∈ gra (T) ,

Furthermore, T is maximal monotone iff

@ a monotone T̃ : X → Y | gra(T) ⊂ gra(T̃).

With these definitions in mind, consider the equivalent
unconstrained form of (4) given by

min
λ

f∗(CTλ)− dTλ + ιker(I−P) (λ) , (5)

where ιker(I−P) is an indicator function defined as

ιker(I−P)(y) =

{
0 (I−P)y = 0

+∞ otherwise.

As ker(I − P) is a closed subspace, it follows from
[46, Example 1.25] that ιker(I−P) ∈ Γ0. Furthermore, as
f ∈ Γ0, using [46, Theorem 13.32, Prop. 13.11], it follows
that f∗

(
CT
)
∈ Γ0 as well. Due to our feasibility assumption

of (1), the relative interiors of the domains of f∗
(
CT
)

and
ιker(I−P) share a common point. From [46, Theorem 16.3], it
follows that λ∗ is a minimizer of (5) if and only if

0 ∈ C∂f∗
(
CTλ∗

)
− d + ∂ιker(I−P) (λ∗) . (6)

Note that the operators T1 = C∂f∗
(
CT
)
− d and T2 =

∂ιker(I−P) are by design separable over the set of nodes and
edges respectively. Furthermore, C∂f∗

(
CT
)

and ∂ιker(I−P)

are the subdifferentials of CCP functions and thus are maximal
monotone. A zero-point of (6) can therefore be found via a
range of operator splitting methods (see [32] for an overview).

In this particular instance, we will use PR splitting to
construct a nonexpansive PDMM operator by rephrasing the
zero-point condition in (6) as a more familiar fixed-point

condition. This equivalent condition, as demonstrated in [47]
(Section 7.3), is given by

RT2,ρ ◦RT1,ρ (z) = z, λ = JT1,ρ (z) ,

where RTi,ρ and JTi,ρ are the reflected resolvent and re-
solvent operators of Ti respectively. Here, the introduced z
variables will be referred to as an auxiliary variables.

We define the PDMM operator as

TP,ρ = RT2,ρ ◦RT1,ρ,

which will be used repeatedly throughout this work. Impor-
tantly given the nature of the operators considered, TP,ρ is
nonexpansive. Specifically, as both T1 and T2 are maximal
monotone operators, JT1,ρ and JT2,ρ are both firmly non-
expansive. By [46, Proposition 4.2], it follows that RT1,ρ

and RT2,ρ are nonexpansive. The nonexpansiveness of TP,ρ

allows us to utilize fixed-point iterative methods to solve (3)
and ultimately (1) in a distributed manner.

E. On the Link with the Primal Dual Method of Multipliers

We now demonstrate how PDMM, as defined in [23], can
be linked with classical monotone operator splitting theory.
For this purpose we will consider the fixed-point iteration of
TP,ρ given by

z(k+1) = TP,ρ

(
z(k)

)
= RT2,ρ ◦RT1,ρ

(
z(k)

)
. (7)

To aid in the aforementioned relationship, the evaluation of
the reflected resolvent operators RT1,ρ and RT2,ρ are outlined
in the following Lemmas.

Lemma III.1. y(k+1) = RT1,ρ

(
z(k)

)
can be computed as

x(k+1) =arg min
x

(
f(x)−

〈
CT z(k),x

〉
+
ρ

2
||Cx− d||2

)
λ(k+1) =z(k) − ρ

(
Cx(k+1) − d

)
y(k+1) =2λ(k+1) − z(k)

A proof of this result can be found in Appendix A. Note
that the block diagonal structure of C and the separability of f
allow this reflected resolvent to be computed in parallel across
the nodes.

Lemma III.2. z(k+1) = RT2,ρ

(
y(k+1)

)
can be computed as

z(k+1) = Py(k+1).

The proof for this result is included in Appendix B. The
resulting permutation operation is equivalent to an exchange of
auxiliary variables between neighboring nodes and is therefore
distributable over the underlying network.

Utilizing Lemmas III.1 and III.2 it follows that

TP,ρ = P ◦RT1,ρ, (8)

and thus that (7) is equivalent to

z(k+1) = P
(
z(k) − 2ρ

(
Cx(k+1) − d

))
. (9)

By noting that z(k+1) = P
(
λ(k+1) − ρ

(
Cx(k+1) − d

))
, the

dependence on y(k+1) and z(k+1) can be removed, reducing
the scheme to that given in Algorithm 1.
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Algorithm 1 Simplified PDMM

1: Initialise: λ(0) ∈ RME , x(0) ∈ RMV

2: for k=0,..., do
3: x(k+1) = argmin

x

(
f(x)−

〈
CTPλ(k),x

〉
+

ρ
2 ||Cx + PCx(k) − 2d||2

)
4: λ(k+1) = Pλ(k) − ρ

(
Cx(k+1) + PCx(k) − 2d

)
5: end for

This algorithm is identical to a particular instance of PDMM
proposed in [23]. Thus, PDMM is equivalent to the fixed-point
iteration of the PR splitting of the extended dual problem,
linking the approach with a plethora of existing algorithms
within the literature [34], [38], [48], [49].

The connection with PR splitting motivates why PDMM
may converge faster than ADMM for some problems, as
demonstrated in [23]. In particular, [44, Remark 4] notes that
PR splitting provides the fastest bound on convergence even
though it may not converge for general problems. Specifically,
the strong convexity and Lipschitz continuity of the averaging
problem considered in [23] supports this link.

The distributed nature of PDMM can be more easily visu-
alized in Algorithm 2 where we have utilized the definitions
of C and d. Here the notation Nodej ← Nodei(•) indicates
the transmission of data from node i to node j.

Algorithm 2 Distributed PDMM

1: Initialise: z(0) ∈ RME

2: for k=0,..., do
3: for all i ∈ V do . Primal Update

4: x
(k+1)
i = arg minxi

(
fi(xi) +∑

j∈N (i)

(
−
〈
AT
i|jz

(k)
i|j ,xi

〉
+ ρ

2 ||Ai|jxi −
bi,j

2 ||
2
))

5: for all j ∈ N (i) do . Dual Update
6: y

(k+1)
i|j = z

(k)
i|j − 2ρ

(
Ai|jx

(k+1)
i − bi,j

2

)
7: end for
8: end for
9: for all i ∈ V, j ∈ N (i) do . Transmit Variables

10: Nodej ← Nodei(y
(k+1)
i|j )

11: end for
12: for all i ∈ V, j ∈ N (i) do . Auxiliary Update
13: z

(k+1)
i|j = y

(k+1)
j|i

14: end for
15: end for

Each iteration of the algorithm only requires one-way
transmission of the auxiliary z variables between neighboring
nodes. Thus, no direct collaboration is required between
nodes during the computation of each iteration leading to an
appealing mode of operation for use in practical networks.

F. On the Link with the Distributed Alternating Direction
Method of Multipliers

Using the proposed monotone interpretation of PDMM we
can also link its behavior with ADMM. While in [23] it

was suggested that these two methods were fundamentally
different due to their contrasting derivations, in the following
we demonstrate how they are more closely related than first
thought. Interestingly, this link is masked via the change of
variables typically used in the updating scheme for ADMM
and PDMM (see [34, Sec. 3] and [23, Sec. 4] respectively for
such representations). For this purpose we re-derive an ADMM
variant from the perspective of monotone operator theory.

To begin, consider the prototype ADMM problem given by

min
x,y

f(x) + g(y)

s.t. Ax + By = c.
(10)

We can recast (1), in the form of (10) by introducing the
additional variables yi|j ,yj|i ∈ RMi,j ∀(i, j) ∈ E so that

min
x

∑
i∈V

fi(xi)

s.t

Ai|jxi −
bi,j

2 = yi|j

Aj|ixj −
bi,j

2 = yj|i

yi|j + yj|i = 0

 ∀(i, j) ∈ E.
(11)

Defining the stacked vector y ∈ RME and adopting the
matrices C, P and d as per Sec. III-C, (11) can be more
simply written as

min
x

f(x) + ιker(I+P) (y)

s.t Cx− d = y.
(12)

Here, the indicator function is used to capture the final set of
equality constraints in (11). It follows that (12) is exactly in
the form of (10) so that ADMM can be applied.

The ADMM algorithm is equivalent to applying Douglas
Rachford (DR) splitting [50] to the dual of (12), given by

min
λi ∀ i∈V

f∗
(
CTλ

)
− dTλ + ι∗ker(I+P) (λ) , (13)

where λ, as in the case of PDMM, denotes the stacked vector
of dual variables associated with the directed edges.

Comparing (13) and (6), we can note that the apparent
difference in the dual problems is due to the use of ιker(I−P),
in the case of PDMM, or ι∗ker(I+P) in the case of ADMM. In
actual fact these two functions are equal which stems from the
definition of the Fenchel conjugate of an indicator function,

ι∗ker(I+P) (λ) = sup
y

(
〈y,λ〉 − ιker(I+P) (y)

)
=

{
0 λ ∈ ran (I + P)

∞ otherwise.

As ran (I + P) = ker (I−P), it follows that ι∗ker(I+P) =
ιker(I−P). The problems in (5) and (13) are therefore identical.

As DR splitting is equivalent to a half averaged form of
PR splitting [46], the operator form of ADMM is therefore
given by TA,ρ = 1

2 (I + TP,ρ). In this manner, despite their
differences in earlier derivations, ADMM and PDMM are
fundamentally linked. Within the literature, PDMM could
therefore also be referred to as a particular instance of gener-
alised [51] or relaxed ADMM [44].
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IV. GENERAL CONVERGENCE RESULTS FOR PDMM

Having linked PDMM with PR splitting, we now move to
demonstrate convergence results for the algorithm. In particu-
lar we demonstrate a proof of convergence for PDMM for
strongly convex and differentiable functions. This proof is
required due to the fact that the strong monotonicity of either
T1 or T2, usually required to guarantee convergence of PR
splitting, cannot be guaranteed for PDMM due to the row
rank deficiency of the matrix C. We also highlight the use of
operator averaging to guarantee convergence for all f ∈ Γ0

and demonstrate its necessity with an analytic example where
PDMM fails to converge.

A. Convergence of the Primal Error (‖x(k)−x∗‖2) of PDMM

The first result we demonstrate is that of the primal conver-
gence of PDMM. In particular, we show that the sequence of
primal iterates

(
x(k)

)
k∈N converges to an optimal state, i.e.,

∃x∗ ∈ X∗ | ‖x(k) − x∗‖2 → 0. (14)

where X∗ denotes the set of primal optimizers of (1) and
• → • denotes convergence. The term ‖x(k) − x∗‖2 will be
referred to as the primal error from here on.

Many of the arguments used in this section make use of the
notions of the kernel and range space of non-square matrices.
These properties are defined below.

Definition IV.1. Range Space and Kernel Space: Given a
matrix A, the range space of A is denoted by ran (A) where

∀y ∈ ran (A) ,∃u | Au = y.

Similarly, the kernel space of A is denoted by ker (A) where

∀y ∈ ker (A) ,Ay = 0.

For any matrix, the subspaces ran (A) and ker
(
AT
)

are
orthogonal and, furthermore, their direct sum ran (A) +
ker
(
AT
)

spans the entire space.

To demonstrate that (14) holds, we can make use of the
relationship between the primal x and auxiliary z variables of
PDMM. In particular, we will demonstrate that both the primal
and auxiliary variables converge by ultimately showing that

∃z∗ ∈ fix (TP,ρ) | ‖z(k) − z∗‖2 → 0,

which we will refer to as auxiliary convergence.

B. Primal Independence of a Non-Decreasing Subspace

To prove auxiliary convergence, other approaches in the lit-
erature often leverage additional operational properties such as
strict nonexpansiveness. Unfortunately, in the case of PDMM,
TP,ρ is at best nonexpansive due to the presence of a non-
decreasing component. Fortunately, this particular component
does not influence the computation of the primary variables
and ultimately can be ignored.

To demonstrate that PDMM is at best nonexpansive, con-
sider the equation for two successive updates given by

z(k+2) =TP,ρ ◦TP,ρ

(
z(k)

)
=TP,ρ

(
P
(
z(k) − 2ρ

(
Cx(k+1) − d

)))
=z(k) − 2ρ

(
PCx(k+2) + Cx(k+1) − 2d

)
,

(15)

where the second and third lines use the PDMM update in
(9). From our feasibility assumption of (1), ∃x∗ | PCx∗ +
Cx∗ = 2d so that d ∈ ran (PC) + ran (C). Therefore, every
two PDMM updates only affect the auxiliary variables in the
subspace ran (PC) + ran (C). By considering the projection
of each iterate onto the orthogonal subspace of ran (PC) +
ran (C), which is given by ker

(
CT
)
∩ker

(
CTP

)
, it follows

that, for all even k,

Π
ker(CT )∩ker(CTP)

(
z(k+2)

)
= Π

ker(CT )∩ker(CTP)

(
z(k)

)
= Π

ker(CT )∩ker(CTP)

(
z(0)

)
,

where Π
A

denotes the orthogonal projection onto A.

Every even-numbered auxiliary iterate z(k) contains a non-
decreasing component determined by our initial choice of
z(0). Fortunately, from Lemma III.1 it is clear that each
x(k) is independent of Π

ker(CT )

(
z(k) + ρd

)
. As ker

(
CT
)
∩

ker
(
CTP

)
⊆ ker

(
CT
)
, any signal in the non-decreasing

subspace of TP,ρ ◦ TP,ρ will not play a role in the primal
updates. For proving primal convergence, we will therefore
consider the projected auxiliary error

‖ Π
ran(C)+ran(PC)

(
z(k) − z∗

)
‖2. (16)

Such a projection can be easily computed for even iterates
due to the structure noted in (15) by defining the vector

z� = z∗ + Π
ker(CT )∩ker(CTP)

(
z(0)

)
. (17)

From the nonexpansiveness of PDMM, the projected auxiliary
error satisfies

‖z(k+2) − z�‖ ≤ ‖z(k) − z�‖.

The sequence
(
z(2k)

)
k∈N is therefore Fejér monotone with

respect to z� and thus the sequence
(
‖z(2k) − z�‖

)
k∈N con-

verges [46, Proposition 5.4]. To prove projected auxiliary
convergence, all that remains is to show that

lim
k→∞

(
z(2k) − z�

)
= 0. (18)

C. Optimality of Auxiliary Limit Points

We will now demonstrate that (18) holds in the specific case
of strongly convex and differentiable functions, in turn allow-
ing us to prove primal convergence. While the differentiability
of a function is straightforward, the notion of strong convexity
is defined below.
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Definition IV.2. Strong Convexity: A function f is µ-strongly
convex with µ > 0 iff ∀θ ∈ [0, 1],x,y ∈ dom (f),

f (θx + (1− θ)y) ≤θf (x) + (1− θ)f (y)

− µθ(1− θ)‖x− y‖2

Additionally, if f is µ-strongly convex, ∂f is µ-strongly
monotone.

Definition IV.3. Strongly Monotone: An operator T : X → Y
is µ-strongly monotone with µ > 0, if

〈u− v,x− y〉 ≥ µ‖x− y‖2 ∀ (x,u) , (y,v) ∈ gra (T) .

To verify that (18) holds under the aforementioned assump-
tions, we make use of the following Lemma relating to the
limit points of the primal and dual variables.

Lemma IV.1. If f is differentiable and µ-strongly convex then

lim
k→∞

x(k) =x∗,

lim
k→∞

Π
ran(C)

(
λ(k)

)
= Π

ran(C)
(λ∗) .

The proof for this Lemma can be found in Appendix C.
Using Lemma IV.1, and rearranging the dual update equa-

tion in Lemma III.1, it follows that

lim
k→∞

Π
ran(C)

(
z(k)

)
= lim
k→∞

Π
ran(C)

(
λ(k+1)

+ρ
(
Cx(k+1) − d

))
= Π

ran(C)
(λ∗ + ρ (Cx∗ − d))

= Π
ran(C)

(z∗) .

(19)

From (19), if also follows that

0 = lim
k→∞

Π
ran(C)

(
z(k+1) − z∗

)
= lim
k→∞

Π
ran(C)

P
(
z(k) − z∗ − 2ρC

(
x(k+1) − x∗

))
= lim
k→∞

P Π
ran(C)

P
(
z(k) − z∗

)
= lim
k→∞

Π
ran(PC)

(
z(k) − z∗

)
,

(20)

where the second line uses Eq. (9), the third line uses that
lim
k→∞

x(k+1) = x∗ and that P is full rank, while the last

line exploits that P = P−1 such that P Π
ran(C)

P = Π
ran(PC)

.

Combining (19) and (20), finally demonstrates that, under the
restrictions of strong convexity and differentiability of f , that

lim
k→∞

Π
ran(C)+ran(PC)

(
z(2k) − z∗

)
= lim
k→∞

(
z(2k) − z�

)
= 0.

Primal convergence follows from Lemma III.1, by noting,

x(k+1) =
(
∇f + ρCTC

)−1
CT

(
z(k) + ρd

)
x∗ =

(
∇f + ρCTC

)−1
CT (z∗ + ρd) .

(21)

The equality in this case follows from the fact that ∇f is µ-
strongly monotone such that

(
∇f + ρCTC

)−1
is Lipschitz

continuous and thus single-valued. Substituting (21) into the
primal error, it follows that

‖x(k+1) − x∗‖2 =‖
(
∇f + ρCTC

)−1
CT

(
z(k) + ρd

)
−
(
∇f + ρCTC

)−1
CT (z∗ + ρd) ‖2

≤ 1

µ2
‖CT

(
z(k) − z∗

)
‖2 (22)

≤σ
2
max (C)

µ2
‖z(k) − z�‖2,

where, σmax denotes the largest singular value of a matrix.
The primal error ‖x(k+1)−x∗‖2 is therefore upper bounded

by the projected auxiliary error and thus converges.

D. Averaged PDMM Convergence
As with other operator splitting methods, PDMM can be

combined with an averaging stage to guarantee convergence
∀f ∈ Γ0, even those which do not satisfy the strong convexity
or differentiability assumptions introduced in Sec. IV-C. The
general form of the averaged PDMM operator is given by

TP,ρ,α = (1− α)I + αTP,ρ,

where the scalar α ∈ (0, 1). In the particular case that α = 1
2 ,

averaged PDMM is equivalent to ADMM, as was previously
noted in Sec. III-F. In this case, by [46, Proposition 4.4], the
operator TP,ρ,α is firmly nonexpansive.

The fixed-point iteration of TP,ρ,α is therefore given by

z(k+1) = (1− α)z(k) + αTP,ρz
(k).

This is referred to as the α-Krasnosel’skiı̆-Mann iteration [46]
of the operator TP,ρ which is a well documented method
of guaranteeing convergence for nonexpansive operators. No-
tably, recursively applying [46, Eq. 5.16], it follows that
the fixed-point residual (TP,ρ − I)

(
z(k)

)
converges at an

asymptotic rate of O
(
1
k

)
and thus z(k) converges to a point

in fix (TP,ρ) for finite dimensional problems.

E. Lack of Convergence of PDMM for f ∈ Γ0

Without the use of averaging, the convergence results
demonstrated so far require f to be both strongly convex and
differentiable. While such a result is well known in the case of
PR splitting, it is not noted in the existing analysis of PDMM
within the literature [23].

In the following, we reinforce the importance of this result
by demonstrating a problem instance were PDMM does not
converge despite f ∈ Γ0. For this purpose we consider solving
the following problem over two nodes.

min
x1,x2

|x1 − 1|+ |x2 + 1|

s.t. x1 − x2 = 0.
(23)

The objective in (23) is neither differentiable nor strongly
convex. From Lemmas III.1 and III.2, the primal and auxiliary
updates for PDMM are given respectively by

x
(t+1)
1 =argmin

x

(
|x− 1| − z(t)1|2x+

ρ

2
‖x‖2

)
,

x
(t+1)
2 =argmin

x

(
|x+ 1|+ z

(t)
2|1x+

ρ

2
‖x‖2

)
,

z
(t+1)
1|2 =z

(t)
2|1 + 2ρx

(t+1)
2 , z

(t+1)
2|1 = z

(t)
1|2 − 2ρx

(t+1)
1 ,

(24)
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By setting z
(0)
1|2 = z

(0)
2|1 = 0 and ρ = 1 it follows from

(24) that after the first iteration x(1)1 = −x(1)2 = 1 and z(1)1|2 =

z
(1)
2|1 = 2. Note that x1 6= x2 such that x is not primal feasible.

For the second iteration x
(2)
1 = −x(2)2 = −1 and z

(2)
1|2 =

z
(2)
2|1 = 0. Again, x1 6= x2 and furthermore the auxiliary

variables are back to their original configuration. The auxiliary
variables of PDMM are therefore stuck in a limit cycle and
can never converge for this problem. The primal variables also
exhibit a limit cycle in this case. As such, f ∈ Γ0 is not a
sufficient condition for the convergence of PDMM without the
use of operator averaging.

V. GEOMETRIC CONVERGENCE AND DISTRIBUTED
PARAMETER SELECTION

While PR splitting is well known to converge geometrically
under the assumption of strong monotonicity and Lipschitz
continuity, such conditions cannot be guaranteed in the case
of PDMM due to the row rank deficiency of C. However, by
assuming that f is strongly convex and has a Lipschitz contin-
uous gradient, we can demonstrate a geometrically contracting
upper bound for the primal error of PDMM despite this fact.

A. A Primal Geometric Convergence Bound for Strongly Con-
vex and Smooth Functions

In the following we demonstrate that for strongly convex
functions with Lipschitz continuous gradients, the primal vari-
ables of PDMM converge at a geometric rate. More formally
we show that ∃ ε ≥ 0, γ ∈ [0, 1) so that

∀k ∈ N, ‖x(k) − x∗‖2 ≤ γkε.

As in the case of Section IV-A, this is achieved by firstly
forming a geometric bound for the projected auxiliary error

‖ Π
ran(C)+ran(PC)

(
z(k) − z∗

)
‖2 = ‖z(k) − z�‖2,

before linking back to the primal variables.
The process of bounding the projected auxiliary error is

broken down into two stages. Firstly, in Sections V-B and
V-C we demonstrate how, for strongly convex functions with
Lipschitz continuous gradients, PDMM is contractive over
a subspace. In Sections V-D and V-E we then show how
a geometric convergence bound can be found by linking
PDMM with a generalized form of the alternating method of
projections allowing us to derive the aforementioned γ and ε.

B. Contractive Nature of PDMM Over a Subspace

Proving that the projected auxiliary error of PDMM con-
verges geometrically relies on strong monotonicity and the
additional notion of Lipschitz continuity. This is defined as
follows.

Definition V.1. Lipschitz Continuous: An operator T : X →
Y is L-Lipschitz if

‖u− v‖ ≤ L‖x− y‖ ∀ (x,u) , (y,v) ∈ gra (T) .

If L = 1, T is nonexpansive while if L < 1 it is contractive.

Given this notion, we demonstrate the contractive na-
ture of the PDMM operator over ran (C) by showing that
C∇f∗(CT •) is strongly monotone and Lipschitz continuous
over this subspace. This is summarized in Lemma V.1.

Lemma V.1. If f is µ-strongly convex and ∇f is β-Lipschitz
continuous then C∇f∗(CT •) is

(i) σ2
max(C)
µ -Lipschitz continuous

(ii)
σ2
min 6=0(C)

β -strongly monotone ∀z ∈ ran (C),
where σmin 6=0 denotes the smallest non-zero singular value.

The proof of this lemma can be found in Appendix D.
Lemma V.1 reflects a similar approach in [44] for general PR
splitting problems. Note that the result demonstrated therein
does not hold in this context due to the row-rank deficiency
of C. Specifically, [44, Assumption 2] is violated.

As C∇f∗(CT •) is both strongly monotone and Lipschitz
continuous over ran (C), from [44], RT1,ρ is contractive ∀z ∈
ran (C) with an upper bound on this contraction given by

δ = max

ρσ2
max(C)
µ − 1

ρ
σ2
max(C)
µ + 1

,
1− ρσ

2
min 6=0(C)

β

1 + ρ
σ2
min 6=0(C)

β

 ∈ [0, 1).

By the same arguments, the operator P ◦ RT1,ρ ◦ P is δ
contractive over ran (PC). Using the definition of the PDMM
operator (8), the two-step PDMM updates given in (15), can
equivalently be written as

z(k+2) = (P ◦RT1,ρ ◦P) ◦RT1,ρ

(
z(k)

)
.

Every two PDMM iterations is therefore the composition of
the operators RT1,ρ and P ◦ RT1,ρ ◦ P with each being δ-
contractive over ran (C) and ran (PC) respectively.

C. Inequalities due to the Contraction of PDMM
The contractive nature of RT1,ρ and P ◦RT1,ρ ◦ P leads

to two important inequalities. In this case we will assume that
k is even and that z� is defined as per (17).

Beginning with the operator RT1,ρ, consider the updates
y� = RT1,ρ (z�) and y(k+1) = RT1,ρ

(
z(k)

)
. Using Lemma

III.1, it follows that

y(k+1) − y� =2λ(k+1) − z(k) − (2λ� − z�)

=z(k) − z� − 2ρC
(
x(k+1) − x∗

)
,

so that the projection onto ker(CT ) satisfies

Π
ker(CT )

(
y(k+1) − y�

)
= Π

ker(CT )

(
z(k) − z�

)
.

Combining with the δ-contractive nature of RT1,ρ over
ran (C), it follows that,

‖y(k+1) − y�‖2 ≤ δ2‖ Π
ran(C)

(
z(k) − z�

)
‖2

+‖ Π
ker(CT )

(
z(k) − z�

)
‖2.

For the operator P◦RT1,ρ ◦P, as z� = P◦RT1,ρ ◦P (y�)
by the results of Section IV-B and z(k+2) = P ◦ RT1,ρ ◦
P
(
y(k+1)

)
, it can be similarly shown that

Π
ker(CTP)

(
z(k+2) − z�

)
= Π

ker(CTP)

(
y(k+1) − y�

)
,
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and furthermore that

‖z(k+2) − z�‖2 ≤ δ2‖ Π
ran(PC)

(
y(k+1) − y�

)
‖2

+‖ Π
ker(CTP)

(
y(k+1) − y�

)
‖2.

While the contractive nature of RT1,ρ and P ◦RT1,ρ ◦ P
suggests the geometric convergence of PDMM, it is unclear
what this convergence rate may be. In the following, this will
be addressed by deriving a geometric error bound for two-
step PDMM by connecting it with the method of alternating
projections.

D. A Geometric Rate Bound for PDMM Interpreted as an
Optimization Problem

Using the results of Section V-C we now demonstrate that
∃γ so that the projected auxiliary error satisfies

‖z(k+2) − z�‖2 ≤ γ2‖z(k) − z�‖2, (25)

where γ2 can be computed via a non-convex optimization
problem. Specifically, it is the maximum objective value of

max
y,z,ẑ

‖ẑ− z�‖2 (26a)

s.t. y = RT1,ρ (z) (26b)
ẑ = P ◦RT1,ρ ◦P (y) (26c)

‖z− z�‖2 ≤ 1. (26d)

Here, (26a) captures the worst case improvement in the
distance between the two-step iterates (ẑ) and the projected
fixed point (z�). Due to (26d), the maximum of this objective
exactly determines the worst case convergence rate. The vector
z corresponds to the initial auxiliary variable, y and ẑ are
generated via the one and two step PDMM updates imposed
by (26b) and (26c), and (26d) defines the feasible set of z. In
a similar manner to (17), z� = z∗ + Π

ker(CT )∩ker(CTP)
(z) so

that z− z� ∈ ran (PC) + ran (C).
Using the properties of RT1,ρ and P◦RT1,ρ ◦P from Sec.

V-C, the optimum of (26) can be equivalently computed via

max
y,z

‖
(
δ Π
ran(PC)

+ Π
ker(CTP)

)
(y − y�) ‖2

s.t. ‖ Π
ran(C)

(y − y�) ‖2 ≤ δ2‖ Π
ran(C)

(z− z�) ‖2 (27a)

Π
ker(CT )

(y − y�) = Π
ker(CT )

(z− z�) (27b)

‖z− z�‖2 ≤ 1, (27c)

where y� = RT1,ρ (z�) and in the objective we have ex-
ploited the orthogonality of ran (PC) and ker

(
CTP

)
. The

constraints of (27) increase the feasible sets of y and ẑ while
including the true updates due to RT1,ρ as special cases.

The constraints (27a), (27b) and (27c) collectively define the
feasible set of the vectors y−y�. We can further simplify (27)
by considering the form of this feasible set. In particular, as
(27c) denotes a sphere, the constraints (27a) and (27b) restrict
the vectors y − y� to lie in an ellipsoid given by

y − y� ∈
{(

δ Π
ran(C)

+ Π
ker(CT )

)
u | ‖u‖ ≤ 1

}
.

By defining the additional variable u = z− z�, the optimiza-
tion problem in (26) is therefore equivalent to

max
u

‖
(
δ Π
ran(PC)

+ Π
ker(CTP)

)(
δ Π
ran(C)

+ Π
ker(CT )

)
u‖2

s.t. ‖u‖2 ≤ 1,u ∈ ran (PC) + ran (C) , (28)

where the additional domain constraint stems from the defini-
tion of z�. In the following we demonstrate how (28) exhibits
an analytic expression for γ, ultimately allowing us to form
our primal convergence rate bound.

E. Relationship with the Method Alternating of Projections
To compute the contraction factor γ in (25), we can exploit

the relationship between (28) and the method of alternating
projections. Optimal rate bounds for generalizations of the
classic alternating projections algorithm has been an area of
recent attention in the literature with two notable papers on
the subject being [52] and [53]. Our analysis below follows
in the spirit of these methods.

Consider the particular operator from Eq. (28),

G =

(
δ Π
ran(PC)

+ Π
ker(CTP)

)(
δ Π
ran(C)

+ Π
ker(CT )

)
.

Given the domain constraint also from (28), it follows that
γ corresponds to the largest singular value of the matrix

Π
ran(C)+ran(PC)

GTG Π
ran(C)+ran(PC)

. We can therefore com-

pute γ by taking advantage of the structure of G. In particular,
from [53], there exists an orthonormal matrix D such that

Π
ran(PC)

=D


C2 CS 0 0

CS S2 0 0
0 0 I 0
0 0 0 0

DH , Π
ran(C)

=D


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

DH ,

where C and S denote diagonal matrices of the cosines and
sines of the principal angles between ran(C) and ran(PC),
respectively. It follow that for the considered operator

G =D


δ2+δ(1−δ)S2 −(1−δ)CS 0 0

−δ(1−δ)CS (1− δ)C2 + δ 0 0
0 0 δI 0
0 0 0 I

DH .

Note that the bottom right identity matrix corresponds to those
vectors that lie outside our feasible set.

Given the structure of G and the diagonal nature of C and
S, it follows that γ is either given by δ or by σmax of any of
the two by two submatrices

Gi =

[
δ2 + δ(1− δ)S2i −(1− δ)CiSi
−δ(1− δ)CiSi δ + (1− δ)C2i

]
,

where Si = sin(θi), Ci = cos(θi) and θi ∈ (0, π2 ] is the ith
principal angle. The singular values of such a submatrix can
be computed via the following lemma.

Lemma V.2. The singular values of Gi are given by

σ (Gi)=

√√√√δ2+(1−δ2)Ci

(
(1−δ2)Ci

2
±
√

(1−δ2)2C2i
4

+δ2

)
.
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The proof for this lemma can be found in Appendix E. As
the singular values are a nondecreasing function of Ci and thus
a nonincreasing function of θi, it follows that

γ = max{δ, {σmax (Gi) ∀i}} = σmax (GF ) . (29)

Here GF refers to the submatrix associated with the smallest
non-zero principal angle θF , which is referred to as the
Friedrichs angle. Therefore, given δ and CF = cos(θF ),

γ=

√√√√δ2+(1−δ2)CF

(
(1−δ2)CF

2
+

√
(1−δ2)2C2F

4
+δ2

)
.

F. From an Auxiliary Error Bound to a Geometric Primal
Convergence Bound

Using (29), our primal convergence bound can finally be
constructed. For two-step PDMM we already know that

‖z(k+2) − z�‖2 ≤ γ2‖z(k) − z�‖2.

By recursively applying this result, it follows that, for even k,

‖z(k+1) −TP,ρ (z�) ‖2 ≤γk‖z1 −TP,ρ (z�) ‖2

≤γk‖z0 − z�‖2,
so that the projected auxiliary error of PDMM satisfies

‖z(k+2) − z�‖2 ≤γk+2 ‖z0 − z�‖2

γ
. (30)

By applying (22) to (30), the final primal bound is given by

‖x(k+1) − x∗‖2 ≤σ
2
max (C)

µ2
‖z(k) − z�‖2 (31)

≤γk+2σ
2
max (C)

µ2γ
‖z(0) − z�‖2

The primal error ‖x(k+2) − x∗‖2 is therefore upper bounded
by a geometrically contracting sequence and thus converges
at a geometric rate. To the best of the authors knowledge, this
is the fastest rate for PDMM proven within the literature.

VI. NUMERICAL EXPERIMENTS

In this section, we verify the analytical results of Sec. IV
and V with numerical experiments. These results are broken
down into two subsections: the convergence of PDMM for
strongly convex and differentiable functions and the geometric
convergence of PDMM for strongly convex functions with
Lipschitz continuous gradients.

A. PDMM for Strongly Convex and Differentiable Functions
The first set of simulations validate the sufficiency of strong

convexity and differentiability to guarantee primal conver-
gence, as introduced in Sec. IV. For these simulations, as
testing all such functions would be computationally infeasible,
we instead considered the family of m-th power of m-norms
for m ∈ {3, 4, 5, · · · } combined with an additive squared Eu-
clidean norm term to enforce strong convexity. The prototype
problem for these simulations is given by

min
x

∑
i∈V

(
‖xi − ai‖mm + µ‖xi − ai‖2

)
s.t. xi − xj = 0 ∀(i, j) ∈ E,

where ai are local observation vectors, µ controls the strong
convexity parameter and, for simplicity, edge based consensus
constraints were chosen.

An N = 10 node undirected Erdős-Rényi network [54] was
considered for these simulations. Such networks are randomly
generated graphs where ∀ i, j ∈ V \ i, there is equal
probability that (i, j) ∈ E. This probability determines the
density of the connectivity in the network and in this case was
set to log(N)

N . The resulting network had 12 undirected edges
and was verified as forming a single connected component
as per the assumptions in Sec. III. Additionally, a randomly
generated initial z(0) was also used for all problem instances.
Finally the strong convexity parameter was set to µ = 10−3.

For m = 3, · · · 10, 150 iterations of PDMM were performed
and the resulting primal error computed. The squared Eu-
clidean distance between the primal iterates and the primal
optimal set was used as an error measure. Figure 2 demon-
strates the convergence of this error with respect to iteration
count. For each m the step sizes ρ were empirically selected to
optimize convergence rate. Note that the finite precision stems
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Convergence of Distributed m-Norms
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m=4
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Fig. 2. The primal convergence of different m-normm consensus problem
for a 10 node Erdős-Rényi network.

from the use of MATLABs fminunc function.
Figure 3 further demonstrates that the choice of ρ does not

effect the guarantee of convergence which in this instance
was modeled via the number of iterations required to reach
an auxiliary precision of 1e−5. This measure was chosen as
the auxiliary error is monotonically decreasing with iteration
count. In contrast the primal error need not satisfy this point,
as can be observed in Figure 2. Note that while there is a clear
variation in the rate of convergence for different choices of ρ,
the guarantee of convergence of the algorithms are unaffected.

B. Geometric Convergence of PDMM for Strongly Convex and
Smooth Functions

The final simulations verify the geometric bound from
Sec. V by comparing the convergence of multiple problem
instances to (31). Specifically, 104 random quadratic optimi-
sation problems were generated, each of the form

min
x

∑
i∈V

(
1

2
xTi Qixi − qTi xi

)
s.t. xi − xj = 0 ∀(i, j) ∈ E.
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Fig. 3. A comparison to the required iterations for ‖z(k) − z�‖2 ≤ 1e−5

for various step sizes (ρ). The step size is plotted on a log scale to better
demonstrate the convergence characteristics of the different problems.

For each problem, the local variables were configured so that
xi ∈ R3 ∀i ∈ V and the resulting objective was paired
with a random 10 node Erdős-Rényi network. The connection
probability of each network was set to log(N)

N and the networks
were verified as forming single connected components.

For each problem instance, the matrices Qi � 0 were
generated in such a way that a constant convergence rate bound
was achieved. In this case the contraction factor of this rate
bound was specified as γ = 0.9. Furthermore, the initial vector
z(0) was generated randomly and for each the associated z�

was computed as per Eq. (17). This randomization procedure
was implemented so that σ2

max(C)
µ2γ ‖z(0) − z�‖2 = 1 for all

instances.
For each problem instance, a total of 120 iterations of

PDMM, were performed and the auxiliary errors, ‖z(k)−z�‖2
for k even and ‖z(k)−TP,ρ (z�) ‖2 for k odd, were computed.
The distribution of the resulting data is demonstrated in Figure
4 which highlights the spread of the convergence curves across
all problem instances.

20 40 60 80 100 120

10
-20

10
-10

10
0

Geometric Convergence Bound of PDMM

Bound 100% 75% 50% 25% 0%

Fig. 4. Convergence of simulated PDMM problem instances. From top to
bottom, the solid green line denotes the convergence rate bound while the
remaining 5 lines denote the 100%, 75%, 50%, 25% and 0% quantiles
respectively.

As expected, (30) provides a strict upper bound for all
problem instances, with the smoothness of the curves stem-
ming from the linear nature of the PDMM update equations.
Furthermore, the rate of the worst case sequence (100%
quantile) does not exceed that of the bound. Interestingly,
while (30) holds for the worst case functions, most problem
instances exhibit far faster convergence. This suggests that, for
more restrictive problem classes, stronger bounds may exist.

VII. CONCLUSIONS

In this paper we have presented a novel derivation of
the node-based distributed algorithm termed the primal-dual
method of multipliers (PDMM). Unlike existing efforts within
the literature, monotone operator theory was used for this
purpose, providing both a succinct derivation for PDMM while
highlighting the relationship between it and other existing
first order methods such as PR splitting and ADMM. Using
this derivation, primal convergence was demonstrated for
strongly convex, differentiable functions and, in the case of
strongly convex functions with Lipschitz continuous gradients,
a geometric primal convergence bound was presented. This is
despite the loss of a full row-rank assumption required by
existing approaches and is a first for PDMM. In conclusion,
the demonstrated results unify PDMM with existing solvers
in the literature while providing new insight into its operation
and convergence characteristics.

APPENDIX

A. Proof of Lemma III.1

As RT1,ρ = 2JT1,ρ−I, we begin by defining a method for
computing the update λ(k+1) = JT1,ρ

(
z(k)

)
. Firstly, by the

definition of the resolvent,

λ(k+1) = (I + ρT1)
−1
(
z(k)

)
λ(k+1) ∈ z(k) − ρT1

(
λ(k+1)

)
.

From the definition of the operator T1, it follows that

λ(k+1) ∈ z(k) − ρ
(
C∂f∗

(
CTλ(k+1)

)
− d

)
.

Let x ∈ ∂f∗
(
CTλ

)
. For f ∈ Γ0, it follows from Proposition

16.10 [46], that x ∈ ∂f∗
(
CTλ

)
⇐⇒ ∂f (x) 3 CTλ so that

λ(k+1) = z(k) − ρ
(
Cx(k+1) − d

)
CTλ(k+1) ∈ ∂f

(
x(k+1)

)
.

(32)

Thus, x(k+1) can be computed as

x(k+1) =arg min
x

(
f(x)−

〈
CT z(k),x

〉
+
ρ

2
||Cx− d||2

)
Combining (32) with the fact that y(k+1) =
(2JT1,ρ − I)

(
z(k)

)
completes the proof. �
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B. Proof of Lemma III.2

As RT2,ρ = 2JT2,ρ − I, we again begin by defining a
method for computing the update JT2,ρ

(
y(k+1)

)
,

From [48, Eq. 1.3], the resolvent of ιker(I−P), is given by

JT2,ρ

(
y(k+1)

)
= Π

ker(I−P)
y(k+1).

It follows that the reflected resolvent can be computed as

z(k+1) =

(
2 Π
ker(I−P)

− I

)
y(k+1) = Py(k+1),

completing the proof. �

C. Proof of Lemma IV.1

Reconsider the auxiliary PDMM updates given in Eq. (9).
Substituting (9) into (16), it follows that

‖z(k+1) − z∗‖2 =‖P
(
z(k) − z∗ − 2ρC

(
x(k+1) − x∗

))
‖2

=‖z(k) − z∗ − 2ρC
(
x(k+1) − x∗

)
‖2

= ‖z(k) − z∗‖2−4ρ
〈
λ(k+1) − λ∗,C

(
x(k+1) − x∗

)〉
≤‖z(k) − z∗‖2, (33)

where the penultimate line uses the dual update in Lemma
III.1 and the final line uses the nonexpansiveness of TP,ρ.

As CTλ = ∇f (x) (32), by Definition IV.3 it follows that,

〈λ1 − λ2,C (x1 − x2)〉 ≥ µ‖x1 − x2‖2

∀x1 6= x2, Π
ran(C)

(λ1) 6= Π
ran(C)

(λ2) . (34)

Recursively applying (33) and by using (34), it follows that

lim
k→∞

4ρ

k∑
i=1

µ‖x(i) − x∗‖2 ≤ ‖z(0) − z∗‖2− lim
k→∞

‖z(k) − z∗‖2

so that
(
‖x(k)−x∗‖2

)
k∈N is finitely summable. If(

‖x(k) − x∗‖2
)
k∈N is non-zero infinitely often then

lim
k→∞

‖x(k) − x∗‖2 = 0 and thus lim
k→∞

x(k) = x∗.

To demonstrate this point note that if ∃k | x(k+2) =
x(k+1) = x∗ then by the two-step PDMM update given in
(15), z(k+2) = z(k). Thus, ∀M ≥ 1 the same primal updates
will be computed so that x(k+M) = x(k+M−1) = x∗.

Any z(k) which produces two successive primal optimal
updates therefore guarantees primal convergence. Thus, given
our assumptions on f , any sequence which does not guarantee
primal convergence in finite iterations has to be non-zero
infinitely often so that lim

k→∞
x(k) = x∗. As∇f is single-valued,

it also follows that lim
k→∞

Π
ran(C)

(
λ(k)

)
= Π

ran(C)
(λ∗). �

D. Proof of Lemma V.1

Under the assumption that f ∈ Γ0 is µ-strongly convex and
∇f is β-Lipschitz, from Theorem 18.15 [46], f∗ is both 1

β -
strongly convex and 1

µ -smooth. It follows that ∇f∗ is both 1
β

strongly monotone and 1
µ Lipschitz continuous.

In the case of (i), due to the Lipschitz continuity of ∇f∗

||C
(
∇f∗(CT z1)−∇f∗(CT z2)

)
||

≤ σmax (C) ||∇f∗(CT z1)−∇f∗(CT z2)||

≤ σmax (C)

µ
||CT (z1 − z2) ||

≤ σ2
max (C)

µ
||z1 − z2||,

Therefore, C∇f∗(CT •) is σmax(C)2

µ -Lipschitz continuous. In
the case of (ii), due to the strong monotonicity of ∇f∗〈
C
(
∇f∗(CTz1)−∇f∗(CTz2)

)
,z1−z2

〉
≥ ||C

T (z1−z2) ||2

β
.

For all z1, z2 ∈ ran(C) it follows that

||CT (z1 − z2) ||2

β
≥
σ2
min6=0 (C) ||z1 − z2||2

β
,

completing the proof. �

E. Proof of Lemma V.2

Consider the two by two matrix

Gi =

[
δ2 + δ(1− δ)S2i −(1− δ)CiSi
−δ(1− δ)CiSi δ + (1− δ)C2i

]
The squared singular values of this matrix are given by the
eigenvalues of the matrix

GTi Gi =

[
δ4 + δ2(1− δ2)S2i −δ(1− δ2)CiSi
−δ(1− δ2)CiSi δ2 + (1− δ2)C2i

]
(35)

The eigenvalues of (35) can be computed via its trace and
determinant. With some manipulation, these are given by

tr
(
GTi Gi

)
=2δ2 + (1− δ2)2C2i , det

(
GTi Gi

)
= δ4

It follows that the squared singular values of Gi are given by

σ2 (Gi) =
tr
(
GTi Gi

)
2

±

√
tr
(
GTi Gi

)2
4

− det
(
GTi Gi

)
= δ2 + (1− δ2)Ci

(
(1− δ2)Ci

2
±
√

(1− δ2)2C2i
4

+ δ2

)
completing the proof. �
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