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Abstract

Quantum optimal control is a rapidly growing field with diverse methods and applications [1]. In
this work, the possibility of using quantum optimal control techniques to co-optimize the energetic
cost and the process fidelity of a quantum unitary gate is investigated. The theoretical definition and
quantization of quantum unitary gates, as well as the relationship between the process fidelity and
the energetic cost of a quantum unitary gate are explored. Two different quantum optimal control
methods to co-optimize both fidelity and energetic cost, i.e., the Gradient Ascent Pulse Engineering
method [2] and model-free Deep Reinforcement Learning [3] are investigated. The performance of
both quantum optimal control techniques in the presence of noise is probed. We find that the energetic
cost of a quantum unitary gate can be quantized by integrating the control pulses and norm of the
corresponding Hamiltonian operators over the total time duration of the unitary, and for single qubit
gates by calculating the arc length of the quantum unitary gate on the Bloch sphere [4]. A Pareto
optimal front between the process fidelity and the energetic cost of a quantum gate is identified, where
a lower energetic cost yields an inherently lower process fidelity. A python package called "EUQOC”
(Energy Efficient Universal Quantum Optimal Control) has been created to implement energy optimal
quantum gate synthesis, both with the Energy Optimal Gradient Ascent Pulse Engineering (EO-GRAPE)
method and by model-free Deep Reinforcement Learning. It is found that the EO-GRAPE method
performs better than the reinforcement learning methods, for all noise settings and neural network
sizes. For future work, the optimization problem could be translated to the frequency domain to
increase the computational efficiency. Furthermore, the relationship between information and energy
can be investigated by looking at the complexity of the pulse or the decomposition of the quantum
unitary gate.
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Introduction

If you think you understand quantum mechanics, you don’t understand quantum mechanics.
- Richard Feynman

1.1. Quantum Computing

In 1982, Richard Feynman introduced the notion of using quantum phenomena for simulating physics
on computers [5]. This notion, currently known as Quantum Computing, has seen rapid development in
both theoretical and practical aspects since then, and is currently widely researched by both academia
and industry. Over the years, theorists have developed new quantum algorithms, with widespread
applications, from breaking RSA encryption, to simulating natural phenomena on a quantum dynami-
cal level. At the same time, experimentalists have constructed small-scale quantum computers using
various technologies, ranging from superconducting circuits, to trapped ions, and electron spins. While
the progress since 1982 has been immense, there are still a multitude of challenges facing quantum
computing today. Possibly one of the biggest problems quantum researchers are facing, is decoher-
ence: the loss of quantum coherence due to interactions with the environment. There are various
approaches being actively investigated to mitigating decoherence, but can be roughly separated into
three categories: Quantum Error Correction, Quantum Error Mitigation and using novel qubit modal-
ities and materials. The first focuses on developing new algorithms and error correction schemes to
identify and correct errors. The latter focuses on improving the performance of the computer by ei-
ther improving hardware, software or both. Quantum Optimal Control focuses on methods to design
and implement electromagnetic field configurations that can effectively steer quantum processes at the
atomic or molecular scale in the best way possible. In this work we will be using methods from Quantum
Optimal Control theory, to improve the performance and energy efficiency of quantum computers.

In the remaining part of this chapter, we will be discussing the relevant quantum mechanics and
guantum information theory necessary for understanding both the intricacies and relevance of Quan-
tum Optimal Control. We will first look at the utility and value of quantum computing, followed by some
specific examples and use cases of quantum computing. Next, we will cover basic quantum information
theory such as superposition, entanglement, teleportation and other applications of quantum comput-
ing. Afterwards, we will cover the challenges that quantum hardware is currently facing. Next, we
will delve deep into quantum computer operation and control, as well as a motivation of this research.
Finally, the research question and sub questions of this thesis are presented. In chapter 2, we will
discuss Quantum Optimal Control theory. First we will cover the types of- and specific algorithms used
in quantum optimal control. Next, we will dive into optimal gate synthesis, and cover direct, indirect,
gradient-based and gradient-free methods. Finally, we will give an overview of the different resources
of a quantum computer, and how we aim to build a new set of algorithms that is able to optimize
these resources. In chapter 3, we will cover Energy Optimized Quantum Gate Synthesis, and the new
methods and algorithms designed in order to achieve this. In chapter 4, we will cover the results of the
algorithms and benchmark them against each other on several aspects and a universal set of gates.
In the final chapter 5, we will discuss our results and give a conclusion of the thesis accompanied by
some recommendations of future research.



1. Introduction

1.1.1, The Promise of Quantum Computation

By using special features of quantum mechanics to our advantage in computing, a whole new range
of opportunities, algorithms, and applications arise. From algorithms poised to break RSA encryption
[6], to simulating the quantum dynamics of molecules to find new medicine or catalysts [7].

Essentially, researchers are looking for certain problems where there’s an exponential speedup by quan-
tum algorithms compared to classical counterparts. In Quantum Complexity Theory, these problems
are part of the "Bounded-Error Quantum Polynomial Time” class of decision problems, which are solv-
able by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances
[8], see figure 1.1 below.

PSPACE

NP-Complete

Efficiently solved
by quantum computers

NP
7 BQP
/ . -

Complexity

Efficiently solved
by classical computers

Figure 1.1: Overview and complexity of decision problem classes, including the Bounded-Error Quantum Polynomial Time (BQP)
class [9].

Although current quantum hardware is not advanced enough for most valuable applications, there
have been some very promising theoretical algorithms proposed and currently still being invented
[10], such as Shor’s algorithm, Grover’s search algorithm, and Variational Quantum Algorithms utilizing
a combination of both quantum and classical computing. In figure 2.4, an overview of the currently
known applications is given [11]. As one can see, applications range across multiple different problem
types and industries, hence the excitement from the industry and business perspective [11].
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Figure 1.2: Overview of applications in Quantum Computing [11]
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1.1.2. Quantum Information

In quantum information, the fundamental unit of computation is called the qubit (Quantum Bit), ana-
logue to the bit in classical computing. In Quantum Mechanics however, the states of a quantum
system are represented by state vectors, living in the complex separable Hilbert Space [8]. In reality, a
qubit is engineered to be any physical two-level quantum system, for example, the spin of an electron
(up- or down spin) and the polarization of a single photon (left- or right-hand circular polarized). In
theory, we can describe a state |0) and |1) as:

10) = (é) 1) = ((1’) (1.1)

Since qubits are represented as state vectors, they can be in a so-called superposition of states, which
is one of the fundamental quantum mechanical phenomena that is being leveraged by quantum com-
puting. We can thus define a single qubit |) as [8]:

lp) =a|0)+B|1) where |a|®+|8|°=1 and aB€EC (1.2)

When qubits are measured, they return a classical bit, thus “collapsing” the quantum superposition,
and projecting its state on either the |0) or the |1) state, with probability |a|* and |B]|?, respectively.

Single qubit states can be visualized on the so-called Bloch-Sphere (see figure 1.3), if we define « and
B as follows in spherical-coordinates:

a=coss, f= e sin = (1.3)

and thus,

(1.4)

Figure 1.3: Bloch-Sphere representation of single qubit states

The states described above are all so-called “pure states”. However, in the presence of decoherence or
noise, one can put the qubit in a so-called "mixed state”. A mixed state is a statistical combination of
different pure states, essentially shrinking the radius of the Bloch Sphere vector [8]. To describe mixed
states, we use the so-called density matrix formalism:

Poo  Po1
— 1.5
p (,010 P11) (1-5)

and in the case of a pure state |):

p=|¢><¢|=(f§)(a* ﬁ*)=('“' “ﬁ) (1.6)
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The state space of qubits grows by a factor of 2V¢, where N, is the number of qubits. For instance, if
we have two qubits, we can represent their combined state as:

[Ye) = [¥a) ® [Yp) = asap|00) + ayfp|01) + faap|10) + B485|11) (1.7)

The state above is called a separable state [8], however, not all states are separable. If a state is
inseparable, it is by definition an quantum entangled state. Consider for instance the state below:

1
[Yc) = 7
There is no possible way to separate this combined state in |y4) and |z), and therefore we can say

that this combined state |y ) is an entangled state [8]. The measure of entanglement between states
is given by the so-called concurrence, defined as:

(1004 ® [1)p — 1)4 ® |0)5) (1.8)

() = V2(1 = Tr(p?)) (1.9)
where,
Tr(p) = ) put - (1.10)

1.2. Quantum Computer Operation and Control

In order to perform actual quantum algorithms, we need to be able to coherently control and manipulate
delicate quantum states. In this section, we will first cover the theory needed in order to understand
guantum dynamics and control. Thereafter, we will delve into physical methods used to control quantum
states. Finally, we will discuss the up- and downsides of current quantum control methods.

1.2.1. Quantum Logic Gates and Operations

In order to manipulate quantum states, one can apply so-called Quantum Logic Gates, which are
represented by (2" x 2™) Unitary Matrices [8]:

vtu=uut =1 (1.11)

Quantum Logic Gates are applied to quantum states by basic matrix multiplication, and map the quan-
tum state onto a new quantum state [8]:

Ulp1) = [2) (1.12)

Upp Upr|[a Ugo@ + U10f
= 1.13
(U10 u11) ([”) (uma + Uuﬁ) ( )
The most well known single qubit quantum logic gates are the: Pauli-X (o), Pauli-Y (oy), Pauli-Z (o),

Hadamard (H), Phase (S), T-Gate (7t/8). For example, the Pauli-X gate can be used to flip the state of
a qubit, and the Hadamard gate can be used to put a qubit in a maximum superposition:

1
0x[0) = [1), HIO) ﬁ(|0>+|1>) (1.14)
We can also perform 2-qubit gates, which act on 2 qubits simultaneously. Important 2-qubit gates are
the: Controlled-Not (CNOT, CX) Gate, Controlled-Z (CZ) Gate, SWAP Gate. For instance, the CNOT
gate flips the target qubit conditionally on the state of the control qubit. If the control qubit is in the
|0) state, it will do nothing to the target qubit state, however, if the control qubit is in the |1) state, it
will flip the state of the target qubit, i.e.:
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CNOT|10) = = |11) (1.15)

S = O
S © O
_ o o

0
1
0

o O O
o O O

0 1 0/\0/ \1

Next to quantum logic gates, we can also perform quantum measurements of a certain observable.
For instance, if we want to measure the expected value of a certain observable M of a pure quantum
state |y), this is given by [8]:

(M) = (M |yp) (1.16)

This is the inner product of the complex conjugate of our state (3| with the observable M acting on
our state M|y). Oftentimes in Quantum Computing however, we measure in the computational basis,
which is represented by the Pauli-Z (o,) operator as observable [8], which is given by:

8, = (é _01) (1.17)

The probability that a measurement will yield a given result is given by the so-called Born Rule. This
rule states that the probability of measuring a certain quantum state is given by the absolute squared
of the probability amplitude of a certain quantum state. For instance, if we have the following quantum
state |¢):

) = > pil) (1.18)

Then, the probability of measuring the state |4;), is given by:

P(14:)) = {Al)I? = |pil? (1.19)

Quantum states in combination with quantum logic gates and measurements, allow us to construct
quantum algorithms, oftentimes represented by so-called Quantum Circuits (see figure 1.4 below).

0) —H A
0) £

Figure 1.4: Example quantum circuit using two qubits, a Hadamard gate, and a measurement in the computational basis.

In figure 1.4 we can see a very basic Quantum Circuit. We read quantum circuits from left to right
(think about time increasing from left to right). On the left hand side, we can see two lines representing
our two qubits both in the |0) state. Afterwards, we can see a Hadamard (H) gate being applied on
the first qubit, followed by a Controlled-Not (CNOT) gate with the first qubit as control and the second
qubit as target. Finally we perform a measurement of the first qubit in the computational (o, basis).

1.2.2, Hamiltonian Engineering and Pulse Control

Quantum logic gates are constructed by carefully tuning the Hamiltonian of a quantum system over
time. Quantum Systems evolve over time according to the Time-Dependent-Schrédinger-Equation
(TDSE) [8]:

i 1p(0)) = Alp(e)) (1.20)

Where A represents the Hamiltonian of our quantum system. A general solution for this equation is
given by:
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iAt/h

l(t)) = e e(to)) = U(t)[%(to)) (1.21)

Where:

U(t) = et/ (1.22)

As we can seeg, if we want to perform a specific Unitary (such as a Hadamard or CNOT), we have to
apply a certain Hamiltonian on our system. Applying a specific Hamiltonian to our system to achieve a
certain Unitary is accomplished through carefully applying certain pulses to our system.

We oftentimes make a distinction between the so-called “Drift” Hamiltonian, and “Control” Hamilto-
nian. The Drift Hamiltonian is the Hamiltonian of the actual qubit(s), usually consisting of an individual
term for the eigen-energy and eigen-states of the qubits, as well as a coupling term between different
qubits. The Control Hamiltonian describes the external control fields that can be applied to the qubits.

Let's consider a very simple case of a single qubit without any interaction terms. We can describe the
qubit by the following Hamiltonian Hp:

Hp = hw,d, (1.23)

This qubit with precess about the Z-axis with frequency w,. We will also introduce a control Hamiltonian
described by:

HC = hwlé'x (1.24)

If the control field is applied in the £y-plane, and rotates around the z-axis with frequency w,r, we can
rewrite our total Hamiltonian as [12]:

H = hwo6, + hw,(cos wrftdy + sin wstdy) (1.25)

The control fields or time-dependent function of the control Hamiltonian operators are referred to as
the "control pulses” that one can apply to our quantum system. A control pulse usually has three main
parameters: the control field amplitude a;, the control field frequency w;, and the control field phase
¢;. We can thus write the control field as a function of these three parameters acting on the control
Hamiltonian operators (4;):

He= ) fla,ou¢)d, where, aou; = f(t) (1.26)
i
Adjusting these three parameters over time is thus the definition of pulse control.

1.2.3. Pros and cons of Pulse Control

The use of electromagnetic pulses for the control of qubits has certain up- and downsides associated
to it. First, we will dive into some of the pros of using electromagnetic pulses such as flexibility, preci-
sion, and fine-grained manipulation of qubits. Thereafter, we will discuss some cons associated to using
electromagnetic pulses, such as sensitivity to noise, calibration requirements, and hardware limitations.

First, the benefits of using electromagnetic pulses as qubit controls are discussed [13]. Electromag-
netic pulses offer a very high degree of flexibility. As we have seen in previous subsection, we can vary
various parameters of the control pulse to implement very specific operations and sequences on qubit
states. Furthermore, this flexibility in control over the parameters also makes it possible to achieve
very high-fidelity quantum operations. This is crucial to realizing fault tolerance and quantum error
correction protocols. This prevision is also what enables us to manipulate and control individual qubits
without interaction with the rest of the system. All of this can be done with very high speeds. A
quantum operation using electromagnetic pulses can be performed within nanoseconds, well within
the decoherence time of qubits [14]. This high speed operation also allows for exploring quantum
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dynamics on very short timescales, which is essential for several quantum simulation algorithms.

There are also various downsides to using electromagnetic pulses as qubit control, that are often
inherent to the nature and physics of the system [15]. First and foremost, electromagnetic pulses
are very susceptible to noise, such as electromagnetic interference or fluctuations in the experimental
setup. Noise in the electromagnetic pulse will eventually lead to decoherence and therefore errors in
the quantum operation [15]. Additionally, in order to accurately implement control pulses, we often
need to extensively calibrate parameters such as amplitude, frequency and phase, in order to ensure
reliable qubit manipulation. Calibration can obviously be very resource intensive and time consuming,
definitely with system sizes increasing. Control pulses need to be generated by classical hardware, such
as arbitrary waveform generators (AWG). This classical hardware has limitations in terms of bandwidth,
power, and frequency, which limits our range of parameters that we can apply to the qubits [15]. In
addition to the limitations of classical hardware, this often also introduces noise due to imperfections
and room temperature thermodynamic noise. Finally, electromagnetic pulses are not very adaptable
to changing environments. During calibration, the control parameters for the control pulses are fixed,
while in reality, the qubits are constantly changing and being affected by external noise sources. Small
deviations from the calibrated parameters can lead to significant errors and performance degradation
during qubit operations.

1.3. State-of-the-art Hardware and Challenges

The gquantum-mechanical phenomena that qubits inherently exhibit are unfortunately also the reason
why qubits are very hard to coherently control and use. Current efforts in building qubits, quantum
processors, and full stack quantum computers all suffer from the same hardware limitations, noise
sources, and decoherence processes. In this subsection, we will give a brief overview of the current
state-of-the-art in quantum hardware. First, we will cover the concepts of the Noisy Intermediate-Scale
Quantum (NISQ) era, as well as the notion of Fault Tolerance. Afterwards we will discuss the various
sources of noise in quantum hardware, address the scalability issues and cover some of the recent
advancements made in addressing these challenges.

1.3.1. Noisy Intermediate Scale Quantum versus Fault Tolerance

There are several important performance indicators of quantum hardware, which include, but are not
limited to: the number of (physical) qubits, the decoherence time, the single- and 2-qubit error rates,
the gate speed, and the qubit connectivity or architecture [16]. The decoherence time of a qubit is
the measure of how long a qubit can keep its quantum information: i.e., how long it can stay in a
certain quantum state without losing it's coherence to interactions with the environment [8]. Current
efforts in building quantum systems are focused on having the highest number of qubits and lowest
possible limiting error rates. Optimizing both, i.e., a high number of qubits with a low limiting error
rate, is a very challenging and demanding task [16]. However, doing both is a requirement in order
to build quantum computers capable of solving actual valuable problems. If the qubit limiting error
rate is below the so-called quantum-error-correction (QEC) threshold, the logical error rate of qubits
decreases if you increase the size of the system [17]. This is a requirement for reaching so-called "Fault
Tolerant Quantum Computing”, in which the quantum computer is completely protected from errors
by QEC. Most well-known algorithms, such as Shor’s algorithm for factoring prime-numbers, lie within
the FTQC regime. However, people do still believe that there is an interesting region for quantum
computers without error-correction, called the “Noisy Intermediate Quantum” (NISQ) regime. As the
name already says, these are in general "Noisy” devices, i.e., with significantly low decoherence times
and "Intermediate-Scale”, i.e., from hundreds to several thousands of physical qubits [18].

While some research institutes and companies focus on getting below the error correction threshold
and then purely focus on increasing the number of qubits, some research institutes and companies are
focusing on decreasing the limiting error rate even more at first so we can enter this NISQ era [18]. In
figure 1.5 we can see a schematic depiction of the NISQ regime and the FTQC regime as a function of
the number of qubits and the limiting error rate. As we can see, the lower the limiting error-rate, the
less number of qubits you need to reach fault-tolerance. This is because we need a smaller amount of
physical qubits to make one logical qubit if the error rates are smaller.
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Error correction threshold

Limiting error rate

103

NISQ FTQC

104

100 10! 102 103 104 105 108 107 108

Number of Qubits

Figure 1.5: Schematic overview of NISQ and FTQC in the context of limiting error rate (either decoherence time or 2-qubit
error-rate), and number of (physical) qubits. Red indicates the NISQ era, cyan the FTQC era, and the yellow cross indicates the
current state-of-the-art. [19]

As one can see from the shape of the NISQ region in figure 1.5, the more number of qubits there are
on a quantum processing unit, the lower limiting error rate we need in order to be in the NISQ region,
where applications in the next few years will be explored. If the limiting error rate is too big compared
to the amount of qubits, without quantum error correction, one cannot perform any useful calculations
anymore, thus leaving the NISQ region [19]. Only when a certain amount of qubits is reached below
the error correction threshold, one can reach the fault tolerance regime.

1.3.2. Challenges in Quantum Hardware

In this subsection, we will cover the various sources of noise in quantum hardware and address the
scalability issues related to increasing the number of qubits while maintaining low error rates. We will
also cover some of the advancements made in addressing these challenges such as error correction
codes, and quantum error correction techniques. While we have come a long way since the theoretical
description of a quantum computer, we are still far away from having a fault tolerant quantum computing
machine. The most prominent challenge that all qubit types are facing is decoherence and noise [15].
Decoherence arises from uncontrolled interactions with the environment the qubits are in. This can
originate from noise in our classical control electronics like electromagnetic fluctuations or magnetic
field gradients, but also from interactions with two-level systems inside the bulk material [15]. The
decoherence and noise is directly correlated to the quality of the materials and fabrication techniques
that are used. Current research has shown the importance of well-defined interfaces and material purity
on qubit coherence time. Another challenge that quantum hardware is facing is the scalability issue
[15]. In order to run useful computations we need a large number of qubits. Scaling up this number
of qubits without increasing cross-talk and increasing the error rates poses a significant challenge. In
addition, achieving long-range connectivity between qubits via qubit interconnects or electro-optical
modulators is a very big challenge. Unwanted interactions between qubits are known as cross talk.
This cross talk can lead to unwanted interactions and correlations between qubits, causing errors in
the computation. To address the decoherence issue, there is many ongoing research currently being
done. The first possible solution could be developing materials and interfaces with reduced loss [20].
Additionally, people are exploring methods such as dynamic decoupling, where qubits are decoupled
from dephasing effects from the environment by continuously flipping the qubit’s state. These methods
are all intended to increase the decoherence time of the qubits, and therefore lower, or mitigate the
noise. Opposing the error mitigation strategy, there is also lots of research being done on so-called
quantum error correction (QEC), that focuses on developing error correction schemes that are able
to detect and correct when errors happen [17]. To address the scalability challenge, researchers
are focusing on developing scalable qubit architectures and inter qubit connectivity methods [21].
Additionally, people are also interested in using multiplexed control and readout schemes to reduce the
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number of control lines needed to address and manipulate the qubits. Techniques to overcome the
cross-talk challenges include improving the shielding and isolation methods of the qubits, as well as
using custom control sequences to minimize unwanted interactions with other qubits [15].

1.4. Research Question

In this section, we will cover the research question of this work. We will first dive into an overview of
the current methods and research that has been done in the field of Quantum Optimal Control. We will
highlight different methods, techniques and cover their strengths and limitations in terms of scalability,
convergence speed, and applicability to various quantum systems. Next, we will cover the relevance
of energy efficiency in quantum computations and why energy efficient control of qubits is relevant.
Finally we will discuss how and what optimal control methods we intend to investigate, and provide an
outline of the subsequent chapters.

1.4.1. Overview of Current Methods

Future quantum systems are becoming increasingly complex and demanding, and achieving fine-
grained control of qubits has become a big challenge in advancing quantum technologies. The col-
lection of techniques focused on achieving high quality control of quantum systems is often referred to
as "Quantum Optimal Control Theory”, or QOCT. In formal terms, QOCT involves methods to design
and implement electromagnetic field configurations that can effectively steer quantum processes at the
atomic or molecular scale in the best way possible [1].

We can broadly categorize two main method categories in Quantum Optimal Control: open-loop and
closed-loop methods. Open-loop methods rely on using an existing theoretical model of the quantum
system and process in question, and accordingly design optimal control pulses based on that theoretical
model. Contrarily, closed-loop methods don't require an existing theoretical model of the system, and
use experimental feedback loops, with actual measurement data from the quantum system to devise
and refine the control pulses. The obvious pitfall of open-loop methods is that they rely on an accurate
theoretical representation of the quantum system, while in reality there are always more parameters
and factors involved. Closed-loop methods are only dependent on measurement feedback and the
quality of those measurements, and also struggle with the rapid timescales of quantum dynamics.

Previous research has explored both open- and closed-loop methods for Quantum Optimal Control
Theory. This work ranges from pure analytical methods, such as perturbation expansions, to completely
model-free closed-loop methods such as reinforcement learning.[1] provides an extensive overview of
all the work that has been done in the field of Quantum Optimal Control Theory.

Besides open-loop and closed-loop methods, there is another distinction to make between analyti-
cal techniques and numerical techniques. While analytical approaches introduce less uncertainty and
computation effort, they are not scalable to larger quantum systems. When introducing multiple qubit
dynamics and noise models, analytical methods quickly become impossible to solve. Numerical meth-
ods rely on quantizing the problem into time steps, and using either gradient-based or gradient-free
methods to numerically solve the problem at hand. These methods are more scalable to larger sys-
tems and are better capable of handling noise models. One of the most used gradient-based numerical
methods known today in Quantum Optimal Control is the so-called “Gradient Ascent Pulse Engineering”
[2] method, or GRAPE in short.

In recent years, we have also seen growing interest in using Machine Learning techniques to address
Quantum Optimal Control problems, in particular one specific branch of machine learning called re-
inforcement learning (RL). This approach resembles closed loop methods: an agent takes actions to
maximize a final reward. If we represent the actions by control pulses, and final reward by final fidelity,
we can see how closed loop optimal control methods can be modelled in the reinforcement learning
framework. [1].

1.4.2. Relevance of Energy Efficient Quantum Optimal Control

The field of Quantum Thermodynamics has seen a lot of work in recent years, and there is a growing
interest in the possibility of achieving quantum advantage through energy efficiency instead of com-
putational power [22]. While Quantum Thermodynamics is seeing an increase in research, little is still
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known about the energetic cost of a quantum computational process. In [4] they prove an inequality
bounding the change of Shannon information encoded in the logical quantum states by quantifying
the energetic cost of Hamiltonian gate operations. Subsequently, in [23], they show that optimal
control problems ca be solved within the powerful framework on quantum speed limits, and derive
state-independent lower bounds on energetic cost. Recent work in Quantum Optimal Control Theory
has primarily focused on developing control to carry out quantum processes with the highest fidelity
possible. These processes include quantum processes such as state initialization, quantum measure-
ments, and implementing quantum unitary gates. However, in the context of the growing interest
in achieving quantum advantage through energy efficiency [22], it seems crucial to investigate the
energy efficiency of quantum operations, in particular, unitary quantum gates. Additionally, applying
Quantum Optimal Control methods to discover optimal control parameters for energy-efficient quantum
unitary gates, while maintaining or bounding fidelity and speed, is of great importance. The impact of
optimal energy-efficient quantum unitary gates could stimulate implementations on physical quantum
hardware, and provide valuable insights into the energy usage of future quantum computing systems.

1.4.3. Research Question and Overview of Next Chapters

As the relevance of energy efficiency in quantum unitary gates is clear, and as we know that we can
potentially use Quantum Optimal Control techniques to reach this goal, we have identified two main
research question, and some sub questions for this research:

Research Question 1: “What is the energetic cost of implementing a quantum unitary gate, and
what is the relation between fidelity and the energetic cost?”

Sub Question 1.1: “"How can we quantify the energetic cost of implementing a quantum unitary
gate and relate it to the optimal control pulses?”

Sub Question 1.2: “Is there are trade-off between the fidelity and the energetic cost of imple-
menting a quantum unitary gate?”

Research Question 2: “What Quantum Optimal Control strategies can we utilize to investigate and
co-optimize a quantum unitary gate on both fidelity and energetic cost?”

Sub Question 2.1: “"How can we modify a gradient-based open-loop Quantum Optimal Control
method to co-optimize both fidelity and energetic cost?”

Sub Question 2.2: “"How can we use a learning based, model-free, closed-loop method to co-
optimize both fidelity and energetic cost? ”

Sub Question 2.3: "How well do both Quantum Optimal Control techniques perform in the pres-
ence of noise?”

In chapter 2, a brief overview of Quantum Optimal Control theory will be presented. The system levels
of a quantum computer, and in what part of the quantum computing stack we are operating in will
be discussed. Several existing classes and types of algorithms will be presented, narrowing down our
focus on Quantum Unitary Gate synthesis. Subsequently, the difference between direct and indirect
methods, gradient-based and gradient-free methods, and open-loop versus closed-loop methods are
explored. Finally, the different resources of a quantum computation, accompanied by an overview of
the existing software packages and tools that we will use in this research are presented. Chapter 3
covers the methods that are used in this research, and how existing algorithms are modified to devise
energy-efficient universal quantum unitary gates. Both the cost function and the Pareto optimal front
with respect to fidelity, as well as how to implement a quantum simulator and measurement feedback
to train our reinforcement learning agent are presented afterwards. In chapter 4 the results for the
universal set of gates, for all the methods explored in this work are presented and discussed, as well
as the correlation between different ways to describe the energetic cost of quantum unitary gates. In
the final chapter 5, the thesis will be concluded and ideas for future work are proposed.



Quantum Optimal Control

Everything should be as simple as possible, but no simpler
- Albert Einstein

In this chapter, we will cover Quantum Optimal Control. We will first provide an overview of the
Quantum Computing system levels, to create a better understanding of the abstraction levels of a
quantum computer, and where Quantum Optimal Control fits in. Subsequently, we will give an overview
of the different areas and allied topics of Quantum Optimal Control, as well as an overview of the most
well-known algorithms and types of algorithms. Afterwards, we will motivate why we have chosen
the Gradient Ascent Pulse Engineering method, and provide a more in-depth review of this specific
algorithm. After this, we will cover some of the Quantum Computing Resources, which can be used
as inputs to the cost function to be optimized. Finally, we will provide a more concrete overview of
the different tools and methods used in this research, such as the programming language, existing
software packages, and algorithms.

2.1. The Quantum Computing Stack

In order to successfully run algorithms on qubits, we need to build several essential layers of both
hardware and software. The combination of these layers of hardware and software, is often referred
to as the Quantum Computing Stack [24].

Applications

Algorithms

Framework

Control Plane
Q
Quantum Plane

Figure 2.1: Overview of the different layers of Hardware and Software required for Quantum Computing. [25]
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In figure 2.1, we can see the various hardware and software layers in the Quantum Computing Stack.
The top layer can be regarded as the actual application of the quantum algorithm that one wants to
run. Next, we have the algorithm layer, that represents the actual quantum circuit that one needs to
run for the specific application. The framework layer can be regarded as a classical compiler. It is able
to do quantum gate decomposition (i.e., decomposing gates into the native gate set of a specific type of
guantum computer), circuit design, and mapping. Next we have the Architecture layer, or the Quantum
Instruction Set Architecture, or QISA in short. The Architecture defines what physical instructions are
possible in a specific quantum computer, such as measurement, initialization, and also quantum uni-
tary gates. The next layer is the control logic layer, where the pulse calibration, optimization and also
decoding happens. The actual electromagnetic pulses are then addressed to specific qubits through
the control plane to mitigate heat and cross talk. Finally the signals arrive at the quantum plane, where
the actual qubits reside. The qubits can be based on different technologies, such as superconducting
qubits or spin qubits (quantum dots).

As we can see from the figure, the pulses are generated in the Control Logic Layer. However, the actual
optimization of a certain pulse to achieve a certain gate with highest precision possible is happening in
the compiler stage [24]. In figure 2.2, we can see a more detailed depiction of the quantum compiler
stage, where the pulse optimization is highlighted in red.

Application

OpenQASM Circuits

Logical OpenQASM Circuits

Basis Gate Translation
Physical Qubit Mapping

Circuit Optimization

External Function

Program (Real Time) Compilation

Timing Resolution

Compiler

Control Flow Optimization

Pulse Optimization

Quantum Program

Physical OpenQASM
Circuit

Machine Target Code Generation

Target Controller Binaries

| Quantum Processor

Local Controller 1 Local Controller 2 Local Controller 3

Figure 2.2: Schematic overview of the quantum programming paradigm and quantum compiler layer.
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2.2, Overview of Existing Algorithms

There exist many different methods and algorithms to achieve quantum optimal control. In this section,
we will give a brief overview of the different classifications we can make between all existing methods,
and give an overview of the most well-known algorithms. For a schematic representation of all the
methods we will discuss below, please refer to table 2.1.

The first classification that we can make is the difference between analytical and numerical methods
[26]. As the name already suggests, the analytical methods use mathematical theory and representa-
tions of the quantum system to analytically solve for the optimal pulse. On the other hand, numerical
methods leverage the power of discretization and linearization to allow the use of numerical methods
and algorithms. The most well known analytical methods are discussed first.

The first example of an analytical method for quantum optimal control, is the so-called Pontryagin’s
Maximum Principle [27]. It states that any optimal control together with the optimal state trajectory
is a 2-point boundary value problem with a maximum condition of the control Hamiltonian. Using
this description, one can use a time-varying Lagrangian description and multiplier vector to solve the
problem. Another method to analytically devise optimal control pulses is through generalization of
adiabatic evolutions. An example of this is the so-called “Derivative Removal by Adiabatic Gates”
method, or DRAG in short. If the system is more complex, such as multiple qubits, interactions, or
noise systems, we often need to make a perturbative expansion to solve it analytically [28]. Finally, we
can use SU(2) Lie Algebra to devise rules on when a quantum system is fully reachable, or controllable
[29].

Table 2.1: Overview of some existing methods of Quantum Optimal Control (non exhaustive), including their category based on
analytical, numerical, closed loop, open loop, gradient based, and gradient free methods.

QOC Method Analytical Numerical Closed Loop Open Loop Gradient Based Gradient Free

Pontryagin’s maximum principle X
DRAG

Perturbative expansion

SU(2) Lie Algebra
Reinforcement learning
Q-Learning

msMS-DE

Sampling based learning control
s-GRAPE

b-GRAPE

Krotov

GOAT

GRAPE

CRAB

GA

DE

X
X

X X X X
X X X X

X

X X X X X X

X X X

XXX XXX XXXXXX

X X X X X X
X X X

For the numerical methods, we have a few more classifications we can make. The first one being,
open-loop and closed-loop methods. Open-loop methods use a model of the system to devise optimal
pulses that are in return directly applied to the system, and give a certain output. Closed-loop methods
on the other hand use feedback of the system to adjust the pulses accordingly. Let us first discuss
some of the most well-known closed loop methods.

The first, and possibly the most popular method, is a sub-class of Machine Learning, called Reinforce-
ment Learning. In Reinforcement Learning, a so-called ‘Agent’ is allowed to take certain ‘Actions’, and
apply it to the ‘Environment’. The environment then outputs a certain 'State’, accompanied by a certain
‘Reward’, based on the action that it took. In quantum optimal control, the ‘Action’ is the control pulse,
the ‘Environment’ is the quantum system, and the state is the output state of the quantum system
after applying that specific control pulse [3]. For a schematic overview please refer to figure 2.3.
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Figure 2.3: Schematic overview of the basic workings of a Reinforcement Learning agent [30]

In the case of a model-free reinforcement learning algorithm, this policy can either be updated by the
use of a Neural Network, or by a method called Q-Learning [31]. If we need to increase the robust-
ness in the feedback loop, we could potentially use the Hessian matrix information combined with the
closed loop learning based algorithm, called the msMS-DE algorithm [26]. We can also use samples of
a quantum system for training purposes, and then evaluate the performance with a test and evaluation
phase. This is called sampling based learning control, or SLC in short [32]. Finally, we have hybrid
methods that use the gradient-based GRAPE algorithm in combination with reinforcement learning or
other machine learning methods, such as s-GRAPE or b-GRAPE [26].

If we look at open loop methods, we can make a distinction between gradient-based, and gradient-free
methods. Gradient-based methods rely on calculation local gradients to in return move towards a local
optimum, while gradient free methods usually use some form of stochastic search algorithms to reach
an optimum [26]. Let us first look at gradient-based methods.

The first method we will discuss is the so-called Krotov method [33]. This method utilizes Lagrange mul-
tipliers based on the process fidelity to find optimal pulses for gate synthesis and state-to-state transfer.
If representing the control pulse in an analytical form is preferred, we may use the so-called Gradient
Optimization of Analytical Controls, or GOAT method [34]. This method uses an educated guess of
the shape of the pulse (e.g., Gaussian), to form a coupled system of equations, which can then be
solved numerically by forward integration methods, such as the Runge-Kutta method [34]. Potentially
the most well-known and widely used method is the so-called Gradient Ascent Pulse Engineering, or
GRAPE method [2]. This method uses the discretization of the control operators to iteratively solve for
the optimal control pulse. In section 2.3, we will cover the GRAPE algorithm in more detail.

The first gradient free method we will discuss is the Chopped Random Basis Optimization, or CRAB
method [35]. This method leverages the fact that optimal solutions could reside in a low dimensional
subspace of the total search space. The control sequences are represented as a linear addition of
basis functions. Another gradient free method is based on an evolutionary process, called the Genetic
Algorithm, or GA algorithm [36]. This method utilizes a set of initial random guesses, and then evolves
these methods based on a fitness function. A variation of this method is the so-called Differential
Evolution, or DE method [37].

In this thesis, we want to use both an open-loop and a closed-loop method to assess whether it is
possible to devise energy efficient optimal control pulses. To this end, we have chosen the Gradient
Ascent Pulse Engineering method as the open-loop method, and Deep Reinforcement Learning as the
closed loop method. The motivation of this choice will be discussed in the dedicated sections of both
methods.
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2,2.1, Allied topics

There exist many applications and use cases for quantum optimal control. In figure 2.4, we can see an
overview of the most well-known applications, ranging from hardware tailored quantum optimal control,
to algorithms and circuit compilation. In this section, we will give a brief overview of all applications
and use cases. In chapter 2.2.2 we will motivate why quantum gate synthesis was chosen as a focus
area.

Superconducting qubits

NV centers

Hardware tailored

Trapped atoms (ions and molecules)
Spin qubits

Max cut

Grover

VQA

QAOA

Quantum speed limit

Quantum algorithms

Energy efficiency

QOCT Applications Quantum thermodynamics

Shortcut to adiabicity
Quantum heat engines
Quantum unitary gates
Quantum dynamic operations Quantum speed limit
Quantum channel optimization

Entangled states
State preparation and

Squeezed states
measurement

Qubit reset and measurement

Gate sequence optimization
Compilation and circuits
Trajectory learning

Figure 2.4: Schematic overview of some existing applications of Quantum Optimal Control (non exhaustive)

The first use-case category is Hardware tailored quantum optimal control. These are applications of
various quantum optimal control methods, adjusted and specified for a certain qubit technology. A
well-known method for superconducting qubits is the DRAG pulse for weakly coupled and harmonic
transmon qubits [38]. NV centers are well suited for a wide range of quantum technologies, such
as computing, communication, but also sensing. We have seen optimal controlled quantum sensing
protocols for NV centers in diamond [39]. Next to superconducting qubits, trapped ions are one of the
most mature technologies to date, but suffer from scalability and gate speed issues. Regarding optimal
control, we have seen the application of QOC for improving the dissipative preparation of entangled
states [40]. Finally, we have so-called spin-qubits, which use the 2-level systems created by electron
spins in magnetic fields. For spin-qubits, we have seen quantum optimal control being used for state
preparation [41].

The second application category we will cover is quantum algorithms. Here, quantum optimal control
techniques are used to optimize the algorithms at a very fine granularity. There are overlapping and
similar ideas being used mostly in variational quantum algorithms compared to closed loop optimal
control methods. Firstly, QOCT has been used for landscape analysis in the well known optimization
problem MaxCut [42]. Secondly, the well known Grover search algorithm can actually be transformed
into a optimal control problem, and solved through the analytical method called the Pontryagin’s Max-
imum Principle [43]. Furthermore, quantum optimal control techniques can be used to run variational
algorithms, such as VQA [44] and QAOA [45].
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The third use-case category is Quantum thermodynamics. Firstly, we can use quantum optimal control
methods to find theoretical frameworks for both the quantum speed limit, and energy efficiency [46]
[4]. Secondly, work has been done on shortcuts to adiabicity and using quantum control to optimize
the operation cycle of quantum heat engines [47] [48].

The next big category is quantum dynamic operations. The first example of this is perhaps the most
well known and well studied application of quantum optimal control theory, namely quantum unitary
gates. A typical problem in quantum optimal control is to devise pulses that perform a certain quantum
unitary gate with the highest precision possible, based on the quantum system at hand [49]. Finding
quantum unitary gates at the quantum speed limit is also an application of this [46]. Finally, we have
seen the optimization of quantum channels, where quantum information is encoded in a pulse shape
of a single photonic qubit, and the readout and driving pulses are devised by quantum optimal control
techniques [50].

The fifth category of quantum optimal control is state preparation and measurement, a very important
component of any quantum computation. To achieve high fidelity quantum circuits, we need to be able
to prepare qubits in certain states, and read out their state with high fidelity. We have seen quantum
optimal control being used for the generation and preparation of both entangled states [51], as well as
optical squeezed states [52]. Finally, an important and popular use case of quantum optimal control
is the resetting and measurement of qubits with the highest possible fidelity [53].

The sixth category is quantum compilation and circuits. Quantum optimal control has been used
to optimize gate sequences [54], as well as trajectory learning, to relate the parameter values of a
quantum circuit, to the control space, which will give rise to a continuous class of gates.

2.2.2, Gate Synthesis

In this work, we will focus on what the energetic cost is of a quantum unitary gate, and what the
trade-off between fidelity and energetic cost is in a quantum unitary gate. We will also look at what
guantum optimal control strategies we can utilize to co-optimize a quantum unitary gate on both fidelity
and energetic cost. This in essence is a quantum gate synthesis problem.

In a quantum gate synthesis problem, you are given a target unitary operator U;, corresponding to
the quantum gate that you want to achieve. The goal of the quantum gate synthesis problem is then
to find a control sequence @, that, after a certain time T, implements a unitary gate U(T), with the
highest gate fidelity possible. The gate fidelity here is defined as:

(UrU(T))|?
(Ur|Ur)
Where (Ur|U(T)) represents the overlap between two operators, and is defined as the trace between
the product of the complex conjugate of Uy and U(T):

Fo (Up U(T)) = ‘ 2.1)

(Ur|U(T)) = Tr(UFU(T)) (2.2)

As we can see, the control sequence that we obtain will be independent of the initial state |}, and
thus implement a quantum unitary gate.
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2.3. Gradient Ascent Pulse Engineering

In this section we will in detail introduce the Gradient Ascent Pulse Engineering (GRAPE) algorithm for
quantum unitary gate synthesis [2]. Before we discuss the actual derivation and workings of the algo-
rithm, we first need to introduce how we will define our quantum system, and what variables we will
use. We will define and refer to the total time T, discretized into N equal steps of duration At = T/N.

During each time step j, the control amplitudes u; are constant, i.e., during the j”l time step, the
amplitude of the k™ control Hamiltonian is given by ()

1 j ;
—-> - :

0 At f 3

Figure 2.5: Example control parameter uy(t), consisting of N time steps of duration At = T/N. The vertical arrows indicate the
gradient, which represents how the amplitude at each time step should by modified in the next iteration in order to maximize
the performance function @ [2]

The total Hamiltonian of our closed quantum system consists of a constant drift Hamiltonian H;, and a
sum of control Hamiltonians H,, with amplitude u; (t). We can thus write our total system Hamiltonian
as:

H = Hy + Z we () H, (2.3)
k=1

The dynamics of a state |i(t)), represented as a vector in a Hilbert space evolves according to the
time-dependent Schrédinger equation

a
th= [Y(t)) = H(¢t) [i(¢)) (2.4)
Or the Liouville-von Neumann equation if we define the density matrix p(t) = |(t)) (y(t)|

.0
thozp(t) = [F(¢), p(t)] (2.5)
The time-evolution of a quantum state during a time step j is then given by the Unitary operator:

Uj = exp{—iAt (Hd + Zuk(])Hk)} (26)

k=1
And the total Unitary after time T is given by:

N N m
Ut=T) = Huj - nexp{—iAt(Hd + Z uk(j)Hk)} 2.7)
j J

j=0 j=0 k=1
To understand the GRAPE algorithm, we also need to introduce the concept of the so-called forward,
and backward propagators.
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For a specific time slice, the forward and backward propagators are the rest of the unitary after and
before this time slice respectively, such that the total unitary is constructed from their composition.

The forward propagator X; is therefore given by:

X =U;..Uy (2.8)
Accordingly, the backward propagator P; can be defined as:

P, = U,y UL (2.9)

We then need to define our so-called performance function, that we will need to maximize. In quantum
unitary gate synthesis, we can define this performance function as the overlap between the target
unitary Ur and the final unitary after time T:

@ = (Ur|U(T))|? (2.10)

The basic idea of the GRAPE algorithm, is to continuously update the control parameters u; according
to the gradient of the performance function ® with respect to the control parameters w,. This will be
repeated for a certain amount of iterations, or GRAPE-iterations, given by N;.

We can mathematically define this update rule as follows, using an arbitrary step size € [2]:

wel]) > ) + € 5 @2.11)

Now that we have defined our performance function and updating rule, we can define the actual GRAPE
algorithm [2]:

Algorithm 1 Gradient Ascent Pulse Engineering

1. Guess initial u (j)
while g < N; do
2. Calculate X;, vj < N
3. Calculate P;, vj < N
4. Evaluate 0®/du,(j) and update m x N control amplitudes wu; (j) according to equation 2.11
5.g=g+1
end while

The starting initial guess of the GRAPE algorithm can be zero, random, or an educated guess, which
might lead to faster convergence.

To evaluate the gradient, we have to derive the derivative of the performance function with respect to
the control parameters u;(j). We can rewrite our performance function in terms of the forward and
backward propagator as:

® = (Up|Uy ..Uy )(Uy ... Uy |Ur) = (Pj|X;)(X;|P}) (2.12)
By using perturbation theory [2] to the first order in duy(j), we arrive at:

v
ou ()
By using the definition of the gradient, the forward and backward operator, and by updating the control

parameters according to equation 2.11, we can arrive at global maxima of the performance function
for a specific set of control parameters u; (j).

—(P;|X;)(iAtH X |P;) — (P;|iAtH X )(X;|P;) = —2Re {(P;|iAtH X;)(X;|P;)} (2.13)
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2.4. Overview of Quantum Computing Resources

In this section, we will briefly review the various resources of a quantum computation, that could
potentially be optimized by quantum optimal control techniques. The three main resources of a quan-
tum computation are: fidelity, energy and time. In the next three subsections, we will introduce how
we mathematically and theoretically define these three resources, and how they affect a quantum
computation.

2.4.1. Fidelity

Fidelity is a widely used term that applies to many things in quantum computing. In essence it refers to
the accuracy of a certain quantum operation or algorithm. Examples include: initialization fidelity, single
qubit gate fidelity, 2 qubit gate fidelity, unitary gate fidelity, read-out fidelity, entanglement fidelity and
algorithm fidelity. In this research, we will focus on the unitary gate fidelity, to measure the overlap
between the target unitary gate, and the final unitary gate after pulse optimization. The unitary gate
fidelity between the target unitary U; and the final unitary U(T) after a certain time T, is given by [8]:

F(Ur,U(T)) =

Tr(Utu(T)) ‘2 (2.14)

Tr(UlUy)
As we can see, if Ur and U(T) are identical, the Fidelity will by 1, or 100 %. If U(T) is completely

orthogonal to Uy, the Fidelity will be 0, or 0%. The goal of any unitary gate synthesis quantum optimal
control method is thus to maximize this Fidelity as much as possible (as close to one).

2.4.2. Energy
The energy of a quantum state is defined as the expectation value of the Hamiltonian:

(E) = (ylAly) (2.15)
However, the energetic cost of an actual unitary operation is harder to define. In [4], they define the
energetic cost as the time integrated norm of the Hamiltonian, over the total duration of the unitary
gate:

E[U] = L’dﬂm(t)” (2.16)

Short way around

Long way around

Figure 2.6: Visual interpretation of an energy efficient quantum unitary gate. The two paths both accomplish the same rotation,
but one path length is much longer than the other. [4]
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In the case of single qubit quantum unitary gates, we can visually interpret it on the Bloch Sphere. The
most energy-efficient way to implement a single unitary gate, is given by the geodesic between the
two quantum states on the Bloch sphere, i.e., the shorter the path length between the two states, the
lower the energetic cost of the quantum unitary gate. In figure 2.6, we can see a visual interpretation
of this by the short and long path length between two quantum states on the Bloch sphere. The blue
unitary gate in this case has a lower energetic cost than the unitary gate that implements the red path.

In this research, we will investigate both equation 2.16, as well as the path length representation,
for computing the energetic cost of quantum unitary gate. Although one cannot visualize multi-qubit
Unitary gates on the Bloch sphere, similar geometric arguments hold here as well.

2.4.3. Time

The final resource of a quantum computation is Time. In our case, we are specifically interested in the
time it takes to implement a quantum unitary gate. This will be closely related to the energetic cost
of the quantum unitary gate, and as we choose a fixed time T for all quantum unitary gates, we leave
the Time resources out of scope for this research.

Nevertheless, there is an actual theoretical lower bound on the minimal time a quantum unitary gate
will take, which is the so-called “Quantum Speed Limit”, or QSL in short. The QSL has been bounded
by two inequalities: the Mandelstamm-Tamm inequality, and the Margolus-Levitin inequality. The
Mandelstamm-Tam inequality states that the minimal time to reach an orthogonal state is given by [4]:

T3> z% (2.17)

Where AE is the standard deviation in the energy of the initial quantum state. The Margolus-Levitin
inequality states that the independent bound on the time it takes to reach an orthogonal state is given
by:

hr
2 —_—
2((E) - Eo)
Here, (E) is the expectation value of the energy, defined by equation 2.15, and E, is the so-called
ground state energy, or the lowest energetic state possible of the quantum state.

T

(2.18)

Since the two bounds can be tight, we usually write the quantum speed limit as the maximum of either
bound:

hm hm }

TQSLEmaX{ZAE’z((E)—EO) (2.19)
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2.5. Overview of existing tools and methods

Several quantum technology python libraries and packages have dedicated classes and functionalities
for and related to quantum optimal control. In this section, we will give a brief overview of some of
these existing tools, and will elaborate on what platform we will use during this research.

When selecting what python library to use and build on, we have a couple criteria in mind. Firstly, it has
to be hardware agnostic, as we are not focusing on any specific qubit type, but are rather interested
in @ more general approach. Secondly, the python library should ideally include a quantum simulator
class, as we need to have measurement feedback for the closed loop method. Thirdly, it should be
easily modifiable, and completely open-source. And lastly, it should ideally not specialize on any specific
algorithm, use case, or method.

From our initial exploration, we have identified 6 python libraries that either focus completely on quan-
tum optimal control, or have quantum optimal control features. These libraries include: Xanadu Pen-
nylane [55], Q-CTRL Boulder Opal [56], Krotov [57], QuOCS [58], IBM Qiskit [59], and QuTip [60]. In
figure 2.7, we provide an overview of these packages, including how they score on the four selecting
criteria.

Yes No

QuTip Quantum Dynamics High
Qiskit Superconducting qubits Yes Yes Low
QuOcCs Numerical Algorithms No Mo High
Krotov Krotow algorithm No No High
Q-CTRL Boulder Opal Large & complex systems No No Low
Pennylane Rydberg atoms No Yes Low

Figure 2.7: Overview of existing python libraries for quantum optimal control, including selected criteria

As one can see from the results of the survey, QuTip [60] scores highest, and therefore we chose to
use this package as inspiration of the research. QuTip uses native classes, functions, and other objects
that are not very maodifiable and integratable with other packages, we therefore chose to re-create our
own classes and functions only using NumPy [61] and SciPy [62]. This allows us to make every ad-
justment possible and have full control over input, output, and inner workings of all functions, classes,
and algorithms. For the quantum simulator, the QuTip Processor module is used, which acts as an
emulator of a quantum device. This quantum simulator module was used because of its ability to send
discrete pulse level signals to individual qubits, for arbitrary control Hamiltonian operators, which is a
hard requirement for this research.

For the closed-loop Reinforcement Learning method that we will explore, we will use Google’s Keras
and TensorFlow framework [63], which is an end-to-end platform for Machine Learning in Python.

Now that an overview of the existing Quantum Optimal Control techniques and applications is given,
and a motivation on why certain techniques and applications were chosen, we can dive into Energy
Optimal Quantum Gate Synthesis. In the next chapter, the adjustments and additions to the existing
GRAPE algorithm will be provided, as well as some theory on reinforcement learning. Afterwards, the
implementation of this theory in python will be discussed.






Energy Optimal Quantum Gate
Synthesis

The task is not to see what has never been seen before,
but to think what has never been thought before
- Erwin Schrédinger

In this chapter, we will introduce the new additions and adjustments that we have made to the Gradi-
ent Ascent Pulse Engineering method, as well as using deep reinforcement learning to devise energy
optimized control pulses for quantum gate synthesis. We will first cover the theoretical framework by
introducing the cost function that we need to optimize, followed by the derivation and expression for
the gradient needed to implement the GRAPE algorithm. Finally we will also cover some theoretical
concepts of reinforcement learning. After introducing the theoretical framework, we will cover the im-
plementation of these concepts in python by introducing the python package that we have created for
this work. We will first give an overview of the code architecture and classes, followed by deep dives
into the three main classes of the code, called the Quantum Environment Class, the EO-GRAPE Class,
and the QRLA Class.

3.1. Theoretical Framework

In this section we will introduce the theoretical framework and mathematical definitions for energy
optimized quantum gate synthesis. Before we address the cost function, we first need to introduce
some variables, parameters, and definitions.

Firstly, we will refer to control pulses as the set of control parameters that define the amplitude of a
control Hamiltonian H,, at each time step j. A certain control parameter u;(j) is therefore the value
of control Hamiltonian H; for the j”l time step. For the theoretical framework, we will assume that
the control pulses u; (t) can be any function of amplitude a,(t), angular frequency w,(t), and phase

br(t):

a(t)

U (t) = f| wk(t) (3.1)
b (t)

Potentially due to hardware restrictions, one can often not choose any value for the control pulses.

Therefore, we will refer to A as the set of control pulses that are physically allowed, or in other words

admissible:

A = {1 (t)|admissible protocols} (3.2)
Put differently, a control pulse is admissible if and only if u,(t) € A.

23



24 3. Energy Optimal Quantum Gate Synthesis

We will refer to a cost function ® as the function that has to be minimized in the optimization problem.
The cost function in our case is a so-called multi objective cost function, and therefore is a weighted
linear addition of independent cost functions ¢;:

® = zwl-qbi (3.3)

The goal of the optimization problem is thus to find a set of control pulses u,(t) € A that minimize the
cost function ®.

3.1.1. Cost function

As stated in equation 3.3, in this research we have chosen to define our cost function as a weighted
linear addition of two independent performance metrics, since there are no specific initial arguments
to be made as of why this would not be a weighted linear addition. This allows us to take into account
both performance metrics, and easily tune the weights to give priority to either fidelity or energetic
cost. In our research, the cost function is a weighted linear addition of both the inverse process fidelity,
and the energetic cost of a quantum unitary gate:

b = Wf¢f + We e (34)
We have defined the process fidelity between a target unitary U; and the final unitary after time U(T)
as:

Tr(utu(m|?

Tr(UiUr)
As the cost function should be minimized, we have defined ¢ as the inverse of the process fidelity:

F(Ur,U(T)) = (3.5)

¢r =1-F(Ur,U(T)) (3.6)
According to [4], we can define the energetic cost of a certain quantum unitary gate as:

T
o = | aela] (3.7)
Where we can define the total system Hamiltonian H as:

m
H = Hy + Z we(£)Hy (3.8)
k=1
As the time is discretized into N equidistant time steps 6t, we can rewrite the Hamiltonian as:

H= ) 8t|Hy+ u(j)H) (3.9)
Z, (d kzzlk k

By combining equation 3.7 with equation 3.9, we get the following expression for the energetic cost of
a quantum unitary gate:

clu(T)] = Z& H, +Zuk(j)Hk (3.10)
j=0 k=1

As the control parameters u,(j) € [—1,+1], we arrive at the following expression for the normalized
energetic cost of a quantum unitary gate, which is equivalent to the performance metric ¢.:

. _ Yoo 8t ||Ha + Tkzs we G)Hiel| _
) == v ar - % G40
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The normalization constant will be referred to as:

m
=T|Hg+ ) Hy (3.12)
The total cost function in this research is the weighted linear addition of ¢, and ¢., given by:
Tr(utum | 1% o
d=wpll-|— L )+w€ — ) St||Hg+ Y ux(j)He (3.13)
( Tr(UfUr) Ne Z kz

3.1.2. Gradient

In order for the cost function to be used in the GRAPE algorithm, the gradient of the cost function with
respect to the control pulses u; (j) has to be derived.

The gradient of @ with respect to u(j) can be written as:

D Gloxs e
- ; 3.14
du() " ) e ou () (319
From chapter 2.3, we know that the first part reduces to the following expression:
0y .
) " —2Re {(P;|iAtH X;)(X;|P;)} (3.15)

The partial derivative of the energetic cost part of the cost function ¢, with respect to the control
parameters u,(j) thus remains to be evaluated. The energetic cost part of the cost function can be
written as:

T

be = 2.0t

=0

Using the identity ||A|| = /Tr (4*4), the expression above can be expanded as follows:

T m
be = N_Z Tr (Hde + Zuk (HiHy + HiHg) Z Z wie (J)wer G)HE Hk') (3.17)

j=0 k=1 k=1p'=

m
Hg + Z g (J)Hy

k=1

(3.16)

To compute the gradient, the expression can be separated into two parts:

f (g () = 7> Zj-o 6tV/g (w () (3.18)
(we(j)) = Tr (o) '

The gradient can then be expressed in terms of f(g(ux(j))) and g(ux(j)):

be = f (9 (w(4))) = {

dp. _of 0g
du(j) 09 ow(j) (3.19)

The first derivative is given by:

f 1% 1
o St——— 3.20
Z g (u(j)) (3:20)

The second derivative is given by:



26 3. Energy Optimal Quantum Gate Synthesis

99 — =Tr (Z HjHy + H,’:Hd) +Tr (Z Z Hy Hyr (w () + wr (j)) (3.21)
k=1

oui () )

The total gradient of ¢, with respect to u(j) can thus be written as:

dde 25 Tr (Xke1 HiHy + HeHa) + Tr (Zgeq Zr—1 He Hy (uie(G) + wr (j)))
" Ne L") e (HyHa + Sy ) (i Hy + HE Ha) + s S5 e ()ugr G)H; Hyr)
(3.22)

Combining equation 3.15 with equation 3.22, gives us the total gradient of @ with respect to the control
parameters u (j):

20 2w, Re {(P;|iAtH X;){(X;|P;)}

) Tr{S HaHiHHHa ) T (S S Wiy ()4 () (3.23)

Lyl 5t
_ j=0
We Ne = 2\/Tr(H§Hd+Z’,§‘=1uk(j)(H;Hk+H,de)+2}c"=1 0wk (g (j)H;:Hkr)
The expression given by equation 3.23 will be used as the gradient to update the parameters in the
GRAPE algorithm, which will be explained in the next subsection.

3.1.3. EO-GRAPE Algorithm

In this subsection, the adjustments and additions to the Gradient Ascent Pulse Engineering algorithm
will be introduced. This updated algorithm is referred to as the Energy Optimized Gradient Ascent
Pulse Engineering algorithm, or EO-GRAPE. At it's core, EO-GRAPE works the same as the original
GRAPE algorithm, explained in section 2.3. With the EO-GRAPE algorithm however, a novel updating
rule and gradient is used:

. a¢f d¢e
e, % 3.24
uk(])_’efauk(]) € oue(j) ( )
where,
0P o Re {(P;|idtHX;)(X;|P;)} (3.25)
ow(j) Ry e
and,
0pe _ _&i& Tr (Shey HaHi + Hp Ha) + Tr (Shey Sy He i (wi () + wer (7))
owe(j) — Ne ™o e (HiHg + iy we () (Hg Hic + HEHa) + ies Sy e (e G)HE Hy)
(3.26)

As one can see, the expression above is quite complex and requires one to subdivide it into pieces in
order to implement it in an algorithm. The code to evaluate the expression contains three for-loops
that first loops over all time steps, followed by a loop over k, and subsequently k. For each iteration,
the numerator is calculated first, followed by the denominator. Afterwards, they are divided, and the
trace and square root are taken. Finally, the expression is normalized by the normalization factor N,
and added to the total cost function. This is done for each control Hamiltonian H, and time step j. In
figure 3.1, a schematic drawing of the EO-GRAPE algorithm is given. On the left hand side, the input
parameters of the EO-GRAPE algorithm are displayed, including the static (or drift) Hamiltonian Hy,
the time-dependent control Hamiltonian Hy, the target quantum unitary gate Uy, and optionally initial
values of the control parameters u,. On the right hand side, the different steps of the algorithm are
given. The first step is the dynamic evolution, followed by calculating the cost function. Afterwards,
the gradient specified in equation 3.23 is evaluated, and the control parameters are updated according
to equation 3.24. After a certain threshold is met, or a number of iterations has been achieved, the
algorithm will stop and output the final control parameters.
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Figure 3.1: Schematic of the EO-GRAPE algorithm, including the parameters of the Quantum System, as well as the different
steps in the EO-GRAPE algorithm.

The EO-GRAPE algorithm can thus be formulated as algorithm 2, displayed below.

Algorithm 2 Energy Optimized Gradient Ascent Pulse Engineering

1. Guess initial uy (j)

while g < N; do

Calculate X;, vj < N

Calculate Pj, Vj < N

Evaluate d¢f/du(j)

Evaluate d¢,. /du (j)

Update m x N control amplitudes wu; () according to equation 3.24
.g=g+1

end while

NouiAwN

3.1.4. Reinforcement Learning

In this subsection, the theoretical framework of the reinforcement learning algorithms we have used
in this work will be explained. In section 2.2, a more introductory overview of basic reinforcement
learning concepts is provided. In this research, two different reinforcement learning agents are uti-
lized. Reinforcement Learning Agent 1, or RLA-1 in short, interacts with the quantum environment,
and is responsible for actually devising the pulses. Reinforcement Learning Agent 2, or RLA-2 in short,
is responsible for approximating pulses generated by the EO-GRAPE algorithm, potentially to be used
as a initial policy of RLA-1. RLA-1 will be introduced first, followed by RLA-2.

Both Reinforcement Learning agents use the so-called TensorFlow REINFORCE algorithm [63]. First,
the agent observes the state that the environment returns, and takes an action based on the policy. The
agent sends it's action to the environment and receives a reward based on it's action. The actions and
rewards are continuously being observed and registered in the replay buffer. After a certain amount of
actions, the policy is updated. How the policy is updated is based on the use of a Deep Feed Forward
Neural Network. In figure 3.2, an overview of the different components and steps in the REINFORCE
algorithm is shown [64].
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Figure 3.2: Schematic drawing of the basic workings of the TensorFlow REINFORCE agent [64]

With RLA-1, the environment is a quantum simulator from QuTip, called the QuTip Processor class
[60]. The environment has several input parameters, such as: the number of qubits Ng, the Drift
Hamiltonian H,, the control Hamiltonians H,, and the decoherence times of each qubits T; and Ts.
The agent is allowed to take an action, which in this case are the actual control pulses u(j), with
shape (len(Hy ) xlen(t)). The output of the environment is called the “state”, which in this case is the
output density matrix p,,: of the quantum system after applying the action. The agent makes a next
decision based on the state and the reward, which in our case is defined as:

Trra-1 = WrF(p1, pout) + we(1 — C[U(T)]) (3.27)
As one can see, the reward is again a linear weighted addition of both the fidelity between the target

output density matrix p; and the output density matrix after applying the action p,,:, and the inverse
of the normalized energetic cost of implementing a certain Unitary after time T, C[U(T)].

The agent takes decisions based on it's policy function (A, S;), which is constantly being updated by
a neural network. With RLA-1, a Deep Feed Forward Neural Network with 1 input layer, 3 to 5 hidden
layers, and 1 output layer is utilized. In figure 3.3, one can see a schematic of a Deep Feed Forward
Neural Network, where we can see the input layer, the hidden layers, and the output layers.

Hidden layers

Input layer Output layer

X b4
X3 Ya
xn yn

Figure 3.3: Schematic illustration of a Deep Feed Forward Neural Network

The goal of RLA-2 is to mimic the pulses generated by the EO-GRAPE algorithm, by minimizing the dis-
tance between the control pulses of the RL agent, and the control pulses generated by the EO-GRAPE
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algorithm. The Environment the agent is interacting with is a custom class called the "GRAPEApproxi-
mation” class, that takes in a set of control pulses, and outputs the theoretical Unitary. The environment
has input parameters such as the number of qubits N, the Drift Hamiltonian Hy, the control Hamilto-
nians H;, the number of time steps N;, the total time T, and the number of EO-GRAPE iterations N;.
The agent is allowed to take an action, which again are the actual control pulses uy(j), with shape
(len(Hy) x len(t)). The state that the environment returns to the agent is the theoretical unitary that
the control pulses will implement, based on unitary evolution U(u,(j)). The agent will learn based
on the reward that the environment returns, which in the case of RLA-2, is the distance between the
target pulse generated by the EO-GRAPE algorithm, and the action that the agent takes:

(3.28)

T
EO-GRAPE , . RLA-2, .\|2
TRLA-2 = ~ |uk () — (1)'
j=0

For RLA-2, again a Deep Feed Forward Neural Network is utilized, with 1 input layer, 3 hidden layers,
and 1 output layer, as shown in figure 3.3.

3.2. Code Architecture

In this section, the code architecture, classes, dependencies, and parameters will be discussed. First,
an overview of the different classes and functions is provided. Afterwards, each class is discussed
in detail, including smaller details like input and output parameters, individual functions, data types,
and performance. The software is publicly available as a GitHub repository via the following link:
https://github.com/QML-Group/EO-QCtrl.

3.2.1. Overview

To investigate our two main research questions, a comprehensive python package was created, called
"Energy Efficient Universal Quantum Optimal Control”, or "EUQOC" in short. EUQOC contains four main
classes, with each having a different objective and dependencies. In this sub-section, we will introduce
the four classes and their main functionalities, as well as how they work together to solve energy
optimal quantum gate synthesis problems.
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Figure 3.4: A schematic overview of the different classes and how they are co-dependent on each other. The red icons indicate
quantum simulators, the blue icons indicate input and output variables of the algorithms or simulators, and the green icons
indicate an algorithm.

In figure 3.4, a schematic overview of the four classes working together on a quantum optimal control
problem is provided for reference. There are two main quantum environment classes, and two main
reinforcement learning classes.
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The first quantum environment class is called QuantumEnvironment, which creates an instance of
a QuTip processor [60]. As input parameters it takes in the number of qubits N, the Drift Hamiltonian
H,, the control Hamiltonians Hy, the decoherence time(s) of the qubit(s) T; and T,, the target quantum
unitary gate Ur, the weights associated to fidelity and energy wy and w,, the number of time steps
N;, the total gate duration T, and the number of EO-GRAPE iterations N;. It contains functions to run
custom pulses on the simulator, or to run the EO-GRAPE algorithm to calculate optimal control pulses
based on the input parameters. It also contains many plotting functions to visualize the control pulses
and results of the simulation.

The second quantum environment class is called GRAPEApproximation, which has the sole purpose
of interacting with RLA-2, to approximate and learn pulses calculated by the EO-GRAPE algorithm. As
input parameters, it takes in the number of qubits N, the Drift Hamiltonian H,, the control Hamiltoni-
ans Hy, the target unitary U;, the number of time steps N;, the total gate duration T, and the nhumber
of EO-GRAPE iterations N;. It contains functions to perform dynamic time evolution of control pulses
to calculate the theoretical final quantum unitary gate it implements.

The first reinforcement learning agent class is called QuantumRLAgent, which contains the code to
create an instance of RLA-1. As input values, it needs a Training and Evaluation environment, which are
QuantumEnvironment instances, the weights associated to fidelity and energy wy and w,, and other
reinforcement learning hyper-parameters such as the Neural Network Layers and size, the number of
training iterations, the learning rate, etc. When called, the class creates a reinforcement learning agent
instance, with options to run training, plot training results, or save and load weight and policy settings.

The second reinforcement learning agent class is called GRAPEQRLAgent, which contains the code to
create an instance of RLA-2. As input values, it also needs a Training and Evaluation environment, which
are GRAPEApproximation instances, and other reinforcement learning related hyper-parameters such
as the number of training iterations, the learning rate, etc. The agent trains on EO-GRAPE generated
pulses, and tries to minimize the distance between the EO-GRAPE generated pulse and the action the
agent takes. The policy of the agent is then used to map onto RLA-1. The class includes functions to
run the training session, to plot training results, and most importantly to save and load the weights of
the neurons or policy.

3.2.2. Quantum Environment Class

The Quantum Environment Class is used to create custom instances of a QuTip processor, as well
as run the EO-GRAPE algorithm on and plot results. Next to this, the Quantum Environment Class
can be used to interact with the Quantum Reinforcement Learning Agent to train and evaluate results
on. The Quantum Environment Class therefore serves as the basis for any Energy Optimal Quantum
Gate Synthesis experiment. The Quantum Environment Class takes in several attributes, or initial
parameters. An overview of the attributes of the Quantum Environment Class is given in table 3.1.

Table 3.1: Overview of the attributes of the Quantum Environment Class, including name and the description of the attributes.

Attribute name Description

ng Number of qubits

h_drift Drift Hamiltonian

h_control Control Hamiltonian operators
t1 Relaxation time

t2 Decoherence time

u_target Target quantum unitary gate
timesteps Number of time steps

pulse_duration Total time duration of the pulse

grape_iterations  Number of EQ-GRAPE iterations

w_f Weight associated to fidelity in the cost function

w_e Weight associated to energetic cost in the cost function
sweep_noise Static noise or dynamically increasing noise
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The Quantum Environment Class also contains a variety of methods, or functions. Some methods are
only intended for interacting with the Quantum Reinforcement Learning Agent, such as the _reset and
_step methods. Next to this, there exist some methods to calculate fidelity (rewards) and energetic
cost (rewards), as well as running the EO-GRAPE algorithm on the attributes specified in calling the
class. Finally, there exist many methods for visualizing and plotting results of the experiments, ranging
from plotting the gradient as a function of iterations, to plotting the unitary trajectory on the surface of
the Bloch sphere. A complete overview of the methods contained in the Quantum Environment Class is
given in table 3.2. For the actual code implementing all of the methods described in table 3.2, please
refer to the Appendix .

Table 3.2: Overview of the methods of the Quantum Environment Class. Including the method name, description, and what the
method returns.

Method name Description Returns
create_environment Creates instance of QuTip Processor with given attributes QuTip processor instance
_reset Resets the quantum system to the initial state ts.restart instance

_step Updates the environment according to the given action ts.transition instance
run_pulses Run custom set of pulses on environment and return result Output density matrix
calculate_fidelity_reward Calculates and returns the fidelity reward of a set of control pulses Output density matrix, fidelity reward
calculate_energetic_cost Calculates and returns the energetic cost reward of a set of control pulses Energetic cost
run_grape_optimization Runs EO-GRAPE algorithm based on given attributes and returns control pulses  Final control pulses
get_total_arc_length Calculates the total arc length of the quantum unitary gate on the Bloch Sphere  Arc length
plot_grape_pulses Plots the pulses generated by the EO-GRAPE algorithm none

plot_rl_pulses Plots the pulses generated by a Reinforcement Learning agent none

plot_tomography Plots the quantum state tomography of a quantum unitary none

plot_du Plots the gradient as a function of EO-GRAPE iterations none

plot_cost_function Plots the cost function as a function of EO-GRAPE iterations none
plot_bloch_sphere_trajectory  Plots the trajectory of the quantum unitary gate on the Bloch sphere none

3.2.3. EO-GRAPE Approximation Class

The EO-GRAPE Approximation Class is a quantum environment type class intended to interact with the
EO-GRAPE Quantum Reinforcement Learning Class, to learn EO-GRAPE pulses and transfer the policy
onto the Neural Network of the Quantum Reinforcement Learning Class. The class mainly contains
methods for interacting with a reinforcement learning agent, as well as the EO-GRAPE algorithm, and
some plotting functions. In table 3.3, an overview of the attributes of the EO-GRAPE Approximation
class is provided.

Table 3.3: Overview of the attributes in the EO-GRAPE Approximation class, including the attribute name and description of each
attribute.

Attribute name Description

n_q The number of qubits

h_drift The Drift Hamiltonian

h_control The Control Hamiltonian operators

u_target The target quantum unitary gate

w_f The weight associated to the fidelity part of the cost function

w_e The weight associated to the energetic cost part of the cost function
timesteps The number of time steps

pulse_duration The total time duration of the control pulse
grape_iterations  The number of EO-GRAPE iterations

The EO-GRAPE Approximation Class contains several methods to interact with a TensorFlow reinforce-
ment learning agent, as well as the EO-GRAPE algorithm to calculate the target/training pulse to ap-
proximate. Finally, it contains methods to calculate the square difference between the action and the
target pulse as specified by equation 3.28, and methods to perform time evolution of a set of control
pulses, given by method find_sq_diff and calc_unitary_and_reward, respectively. An overview of the
methods in the EO-GRAPE Approximation class is provided in table 3.4.
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Table 3.4: Overview of the methods of the EO-GRAPE Approximation Class. Including the method name, description and what
the method returns

Method name Description Returns

_reset Resets the quantum environment to the initial state ts.restart instance
_step Updates the environment according the action ts.transition instance
run_grape_optimization ~ Runs the EO-GRAPE algorithm and returns the final control parameters Final control pulses
calculate_energetic_cost  Calculates the energetic cost of the action Energetic cost
calc_unitary_and_reward Performs time evolution of the control pulses and returns the reward Reward

find_sq_diff Calculates the square difference between the action and the target pulse  Square difference
plot_grape_pulses Plots the control pulses none

3.2.4. Quantum Reinforcement Learning Class

The Quantum Reinforcement Learning Class uses the TensorFlow REINFORCE [63] Reinforcement
Learning Agent Framework to interact with a Quantum Environment Class and learn energy optimal
guantum gate synthesis. The class requires a training environment and an evaluation environment for
training and evaluation purposes. The two environments should be Quantum Environments as specified
in section 3.2.2, which contains all the attributes that define the quantum system parameters. Next to
the two environments, the Quantum Reinforcement Learning class has several hyper parameter options
such as the number of training iterations, the neural network layer sizes, the learning rate, and the
replay buffer capacity. Finally, one can provide some optional settings such as an initial policy, whether
to increase the noise level during training, and whether to have a low or high noise environment. An
overview of the attributes are provided in table 3.5

Table 3.5: Overview of the attributes in the Quantum Reinforcement Learning class, including the attribute name and description
of each attribute.

Attribute name Description

TrainEnvironment An instance of a Quantum Environment for training purposes
EvaluationEnvironment ~ An instance of a Quantum Environment for evaluation purposes
num_iterations The number of training loop iterations

fc_layer_params The number of nodes per hidden neural network layer
learning_rate The learning rate of the reinforcement learning agent
replay_buffer_capacity —The size of the replay buffer of the reinforcement learning agent
policy Optional: the initial policy of the reinforcement learning agent
sweep_noise Optional: whether or not to increase the noise level during training
noise_level Optional: low or high noise level

The Quantum Reinforcement Learning class contains several methods. Two methods called
create_network_agent and run_training have the purpose of creating an instance of a TensorFlow
REINFORCE agent [63], and running the training cycle of the agent on the given Quantum Environment.
Next to these methods, there are several plotting functions to visualize the training and evaluation cycle
of the agent. Finally, we have two methods to either save the trained weights of the neural network,
or visualize the neural network, called save_weights and show_summary, respectively. A full overview
of the methods contained in the Quantum Reinforcement Learning class is provided in table 3.6.

Table 3.6: Overview of the methods of the Quantum Reinforcement Learning class. Including the method name, description and
what the method returns.

Method name Description Returns
create_network_agent Creates an instance of a TensorFlow REINFORCE agent TensorFlow REINFORCE agent
run_training Runs the training loop of the reinforcement learning agent none

get_final_pulse Returns the final pulse of the reinforcement learning agent Control pulses
get_highest_fidelity_pulse Returns the highest fidelity pulse of the reinforcement learning agent Control pulses

save_weights Saves the weights of the nodes in the neural network Neural network weights
show_summary Prints a summary of the neural network after training none
plot_fidelity_return_per_episode Plots the fidelity and return of the agent during training none

plot_fidelity_energy_reward_per_iteration Plots the fidelity and energetic cost reward per iteration during training loop none
plot_final_pulse Plots the final pulse given by the reinforcement learning agent none
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3.2.5. EO-GRAPE Quantum Reinforcement Learning Class

The EO-GRAPE Quantum Reinforcement Learning class contains attributes and methods to create an
instance of a TensorFlow REINFORCE agent that interacts with EO-GRAPE Approximation Classes, as
described in section 3.2.3. The sole purpose of the agent is to approximate the control pulses generated
by the EO-GRAPE algorithm. The class takes in a training environment and an evaluation environment,
as well as some hyper-parameters for the reinforcement learning agent. In table 3.7, a complete
overview of the attributes in the EO-GRAPE Approximation Class is provided.

Table 3.7: Overview of the attributes in the EO-GRAPE Quantum Reinforcement Learning class, including the attribute name and
description of each attribute.

Attribute name Description

TrainEnvironment An instance of an EO-GRAPE Approximation Environment for training purposes
EvaluationEnvironment  An instance of an EO-GRAPE Approximation Environment for evaluation purposes
num_iterations The number of training loop iterations

fc_layer_params The number of nodes per hidden neural network layer

learning_rate The learning rate of the reinforcement learning agent

replay_buffer_capacity = The size of the replay buffer of the reinforcement learning agent

policy Optional: the initial policy of the reinforcement learning agent

The class mainly contains functions to create the reinforcement learning agent and neural network,
and to run the training loop on the EO-GRAPE Approximation environment. Similar to the Quantum
Reinforcement Learning class, the class also contains functions to save the weights of the trained neural
network, as well as some plotting functionalities to visualize the performance of the agent during the
training loop. A complete overview of the methods contained in the EO-GRAPE Quantum Reinforcement
Learning class is shown in table 3.8.

Table 3.8: Overview of the methods of the EO-GRAPE Quantum Reinforcement Learning class. Including the method name,
description and what the method returns

Method name Description Returns
create_network_agent Creates an instance of a TensorFlow REINFORCE agent TensorFlow REINFORCE agent
run_training Runs the training loop of the reinforcement learning agent none

save_weights Saves the weights of the nodes in the neural network Neural network weights
show_summary Prints a summary of the nodes in the neural network none

get_final_pulse Returns the final pulse of the reinforcement learning agent Control pulses
get_best_pulse Returns the highest reward pulse of the reinforcement learning agent  Control pulses
plot_reward_per _iteration Plots the reward as a function of the training loop iterations none

plot_best_pulse Plots the highest reward pulse of the reinforcement learning agent none

plot_final_pulse Plots the final pulse of the reinforcement learning agent none

In this chapter, the theoretical framework for the EO-GRAPE algorithm and deep reinforcement learning
are introduced. Subsequently, the implementation of these algorithms in python is discussed, where
we introduced the "EUQOC” python package. Using the theoretical framework in combination with
the implementation of this in python, one can run experiments to test the theory and benchmark
the two Quantum Optimal Control methods. In the next section the results of this thesis will be
provided. First the EO-GRAPE performance will be discussed, followed by the reinforcement learning
agent performance. Next, the two methods are compared to each other in the presence of increasing
noise. Finally, the two methods of evaluating the energetic cost of implementing a quantum unitary
gate are correlated.






Results

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t
agree with experiment, it's wrong.
- Richard Feynman

In this chapter, the results of the research are presented. First, the results for the EO-GRAPE algo-
rithm will be displayed, including some example pulses, the algorithm convergence, the learning rate
optimization, and finally the relation or trade-off between energetic cost and fidelity. After this, the
performance of both RL agents will be investigated. Thirdly, the effect of increasing system noise on
both methods is shown, as well as the performance with and without warm start, and with varying
neural network size. Finally, the results regarding the correlation between the energetic cost and the
path length on the Bloch sphere will be presented.

To make the results more readable, we have introduced some abbreviations, which will be introduced
below.

For the target quantum unitary gate, the CNOT, Hadamard, T-gate and R, (7/2) gate have been used,
which are defined as:
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(4.1)
For the drift Hamiltonian Hy,, two main definitions have been used for the single qubit case H; and the
two-qubit case H3, defined as:

h(i)]_ n h(l)]_ ~(

A hwy 4
Hi =26, Hy="526 @I + 2210 @ 6 + ol @ 6 (4.2)

Where w; is the eigen-frequency of qubit i, and J is the coupling strength between qubits.
The total gate time has been fixed to T = 2r, and the relaxation and decoherence time T; and T, are
defined as multiples of the total gate time T. The abbreviation "WS” is used to indicate a "Warm Start”

of the reinforcement learning agent by having an initial policy of RLA-2. Similarly, “WOWS" is used to
indicate "Without Warm Start”, i.e., the reinforcement learning agent starts its policy from scratch.

Different Neural Network sizes are used, that are defined as: Neural Network Size 1 = (200,100, 50,30, 10),
Neural Network Size 2 = (400, 200, 100, 50, 30, 10) and Neural Network Size 3 = (600, 400, 200, 100, 50, 30, 10).
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4.1. EO-GRAPE Performance

In this section, the results of the EO-GRAPE algorithm will be introduced. Some optimal pulse exam-
ples will be shown first, followed by the convergence of the algorithm. After this the learning rate
optimization analysis will be provided. Finally, the trade-off between fidelity and energetic cost will be
shown, by sweeping over the weight parameters and plotting their respective values.

4.1.1, Optimal Pulses

In figure 4.1, one can see an example pulse generated by the EO-GRAPE algorithm where the target
unitary quantum gate is a CNOT gate, using H; and three control operators {o;, 02, 0502}. As one
expects, the target qubit is driven on the frequency of the control qubit to implement a controlled NOT
gate. The dark blue line indicates the final values of the control parameters after N; = 500 iterations,
and the lighter blue lines indicate the previous iteration values, to show how the algorithm updates the
parameters.

Uix
g

Figure 4.1: Example control pulses (blue) generated by the EO- GRAPE algorlthm |mpIement|ng a CNOT gate. The final iteration
is given by the dark blue line. Parameters: Uy = CNOT, Hy = H3, Hy = {0y,02, 0502}, Ty = 0, T, = ®, wr =1, w, =0,
N¢ = 500, Ng = 500

In figure 4.2, the effect of increasing or decreasing the weight associated to fidelity wy and energetic
cost w, is shown. As one can see, the higher the value of w,, the lower the amplitude of the control
pulses are, to decrease the area, and thus decrease the energetic cost, intuitively matching our ex-
pectations. One can also see some interesting other harmonics being introduced when increasing w,
to decrease the energetic cost of the pulses. An overview of the parameters such as Ur, H;, H, and
others is given in the caption of the figure.
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Figure 4.2: (@) Example control pulses generated by the EO-GRAPE algorithm for different weight settings.
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(b) Example

control pulses generated by the EO-GRAPE algorithm for different weight settings. Parameters: Uy = RAND, Hq = H3, Hy =
{0-;: 0'3,0';0’5}, Tl =, T2 = 00, Wf = [1'0'1]I We = [0' 0'9:|l Nt = 500’ Ng =500
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4.1.2. Convergence

In this section, the convergence of the EO-GRAPE algorithm is investigated, by looking at the gradient
and cost function value as a function of EO-GRAPE iteration number. As the gradient is calculated for
each time step and for each control line, for each EO-GRAPE iteration, it is inherently impossible to
visualize. We therefore look at some other values that indicate a convergence of the algorithm.

In figure 4.3, the average value of the gradient of the maximum value over time of each control line
is depicted, for different weight settings wy and w,. As one can see, all lines approach to zero as the
number of EO-GRAPE iterations increases, indicating a good convergence of the algorithm, along with
an indication on how many EO-GRAPE N;; are required for convergence.
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Figure 4.3: (@) and (b) Averaged maximum gradient of all control lines as a function of EO-GRAPE iteration number, for several
different weight settings. Parameters: Ur = RAND, Hq = Hj, Hy = {04,0%,040%}, Ty = 0, T, = 00, wy = [1,0.2], w, = [0,0.8],
N =500, Ny = 200

In figure 4.4, the maximum value of the gradient over all time steps for each control line is shown,
for a fixed set of weights. Again, one can see in both figures that the gradient approach zero as the
number of EO-GRAPE iterations is increased.
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Figure 4.4: (@) Maximum gradient over all time steps for each control operator as a function of EO-GRAPE iteration number,
using wy = 0.5 and w, = 0.5. (b) Maximum gradient over all time steps for each control operator as a function of EO-GRAPE
iteration number, using wy = 0.2 and w, = 0.8. Parameters: Ur = RAND, Hq = Hj, Hy = {0%,0%,0402}, Ty = ©, T, = o,
wy = 0.5,0.2, we = 0.5,0.8, N = 500, Ng = 200,100
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Finally, in figure 4.5, we can see the value of the infidelity (orange), normalized energetic cost (green),
and total value of the cost function (blue), using wy = 0.8, and w, = 0.2. Again, we can see that the
cost function converges to zero as the number of EO-GRAPE iterations is increased. The cost function
cannot actually approach zero, because the highest fidelity pulse will always require some energetic
cost to be implemented. One can already see that there is an indication of a trade-off between fidelity
and energetic cost, which will be explored further in section 4.1.4.
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Figure 4.5: Cost function (blue), infidelity (orange) and normalized energetic cost (green) as a function of EO-GRAPE iteration
number. Parameters: Ur = RAND, Hq = H3, Hy = {0, 04,0402}, Ty = 0, Ty = 0, w = 0.8, W, = 0.2, N = 500, Ny = 200

4.1.3. Learning Rate Optimization

Two important parameters that have a great influence on the eventual convergence and final value of
the cost function are the learning rates of fidelity ¢, the energetic cost €, part in the EO-GRAPE updating
rule. To ensure that the algorithm is performing in the best possible way, one needs to investigate the
influence of these parameters on the final cost function value. Therefore, before investigating the
trade-off between fidelity and energetic cost, and benchmarking the EO-GRAPE algorithm against the
reinforcement learning methods, the learning rates ¢, and e, have been optimized. In figure 4.6 one
can see an example optimization analysis using w, = 0.5 and wy = 0.5. The figure shows the value of
the cost function after N, = 500 EO-GRAPE iterations, as a function of the fidelity learning rate e and
the energy learning rate €,. The analysis has shown an optimal combination of ¢ = 1 and €, = 100,
which we will use as learning rate values for all upcoming experiments.
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Figure 4.6: Value of the cost function after EO-GRAPE optimization for different settings for the energetic cost learning rate e,
and the fidelity learning rate €. Parameters: Ur = RAND, Hq = H3, Hy = {0, 05,0404}, Ty = 0, Ty = 0, Wy = 0.5, W, = 0.5,
N¢ = 500, Ng = 100
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4.1.4. Fidelity and Energetic Cost Trade-off

As stated in the research questions of this thesis, we would like to investigate what the relation is be-
tween the fidelity of a quantum unitary gate, and the energetic cost needed to implement a quantum
unitary gate. If there exists a trade-off between fidelity and energetic cost, we would like to know how
severe it is and what shape it has. In this section the results regarding the trade-off between fidelity
and energetic cost are discussed.

In figure 4.7, the results of this experiment are depicted. The EO-GRAPE algorithm was run for dif-
ferent set of weights wy and w,, and the combination of the value of the fidelity and energetic cost
after optimization is stored. These values have been plotted against each other for different values
of ¢ and e.. Again one can see that the optimal combination of values is ¢, = 1 and €, = 100, like
we concluded from our learning rate optimization analysis. One can clearly see the Pareto front and
trade-off between fidelity and energetic cost, where a reduction in energetic cost, directly leads to
an increase in infidelity, or decrease in fidelity. This result matches with our intuition that to achieve
a lower energetic cost quantum unitary gate, one inherently decreases the area or amplitude of the
control pulses, resulting in a lower process fidelity.

Nevertheless, as one can see on the right hand side of the figures, the two are not completely inversely
proportional to each other. We can therefore still decrease the energetic cost of a quantum unitary gate
by roughly 10 %, while decreasing the fidelity by roughly 1 %. Therefore, if one wants to achieve a
minimum 2-qubit gate fidelity of 99 %, one could decrease the energetic cost of each quantum unitary
gate by 10 %.
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Figure 4.7: (a) Infidelity and energetic cost values for different weight settings and learning rates €., showing the trade-off or
Pareto front between fidelity and energetic cost. (b) Zoomed-in view of the Pareto front between fidelity and energetic cost.
Parameters: Ur = RAND, Hq = H3, Hy = {0x,02,0502}, Ty = ©, T, = ©, wy = [1,0.1], w, = [0,0.9], N; = 500, Ny = 100
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4.2. Reinforcement Learning Performance

In this section the first results of the performance of the reinforcement learning agents are introduced.
Firstly the performance of RLA-1, without initial policy will be discussed, and afterwards the results
with initial policy from RLA-2 will be introduced.

4.2.1. RLA-1 Performance

In figure 4.8, the fidelity (red), energetic cost (green), and total reward (blue) of RLA-1 for different
weight settings are shown, as a function of the training loop iterations (episodes). As one can see
from the figures, the agent is able to learn how to modify the control pulses to optimize the reward.
Each episode a new random initial state is generated and used for calculating the target density ma-
trix, by applying the target unitary to the initial state. The fidelity is then calculated by the overlap
between the output density matrix after applying the action of the agent, and the target density matrix.

When w, is increased, the energetic cost will be lower, however the fidelity also deteriorates quite
rapidly. Next to this the variation in the fidelity also increases when weight of the energetic cost is set
higher than the weight of the fidelity. This could be the result of the randomly generated initial state
each episode, and could indicate that the agent is not able to actually learn the unitary, but rather a
state-to-state transfer. These results motivated us to train RLA-2 on EO-GRAPE generated pulses, and
transfer the trained policy onto RLA-1 as an initial policy.
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Figure 4.8: Fidelity (red), Energetic Cost (green) and total reward (blue) as a function of training episode number for RLA-1,
for different weight settings: (a) wy = 1, we = 0, (b) wy = 0.7, w, = 0.3, (€) wy = 0.4, we = 0.6, (d) wy = 0.2, w, = 0.8.
Parameters: Uy = CNOT, Hq = H3, Hy = {0y, 02,0502}, Ty = ©, T, = 0, N = 10, layer_params = (200,100, 50,30,10)
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4.2.2. RLA-2 Performance

In figure 4.9, we show the reward as a function of training loop iteration number (episodes), of RLA-2.
The reward is equal to the negative value of the square difference between the target pulse and the
action of the agent, given by equation 3.28. The agent therefore tries to minimize the square difference
between the action and the target pulse, to optimize the reward. As one can see from figure 4.10, the
agent is able to learn the pulse generated by the EO-GRAPE algorithm after roughly 2000 episodes. For
all future experiments we therefore use N;, = 2000 as the number of Grape Approximation iterations.
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Figure 4.9: Reward of RLA-2 as a function of the training episode number. Parameters: Ur = CNOT, Hqy = H3, Hy =
{0,0%,050%}, Ty = 100T, T, = 100T, N, = 100, Ng = 500, layer_params = (100,100,100), Norra = 10,000, Ng4 = 2,000.

If we use the trained policy of RLA-2 as an initial policy for RLA-1, we get quite a different learning
curve as compared to starting from scratch. In figure 4.10, the fidelity (red), energetic cost (green),
and total reward (blue) as a function of episode number, for RLA-1 with a pre-trained policy is shown.
As one can see, the fidelity and energetic cost stay very stable throughout the whole training loop,
and there seems to be no further increase in performance. One could therefore question whether the
agent is actually still able to learn the system, or is simply replicating pulses that are almost similar and
seem to receive a high reward. To investigate this, the performance of both methods is investigated
under the influence of increasing noise, or decreasing relaxation T; and decoherence T, times. The
results for these experiments are discussed in the next section.
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Figure 4.10: Fidelity (red), Energetic Cost (green), and Total Reward (blue), as a function of training episode number, using the
trained policy from RLA-2 as initial policy. Parameters: Uy = CNOT, Hy = H3, Hy = {0y, 0%,0502}, Ty = 1000T, T, = 10007,
wys = 0.8, we = 0.2, N¢ = 100, Ny = 500, layer_params = (200,100, 50,30, 10), Norra = 10,000, Ng4 = 2,000.
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4.3. Noise Increase

In this section, the results of the noise increase experiments will be shown and discussed. The individual
performance of both the EO-GRAPE algorithm and the reinforcement learning methods will be shown
first. Afterwards, the performance of both methods will be benchmarked against each other. Finally,
the effect of increasing the neural network size on the performance in the presence of noise will be
presented.

4.3.1. Individual Performance

The performance of the EO-GRAPE algorithm while increasing the noise in the system is shown in figure
4.11. We can see that the algorithm is able to achieve high fidelity and low energetic cost throughout
most noise settings. From a noise gain setting of 20T we can see that the performance decreases quite
rapidly.
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Figure 4.11: Fidelity (red) and Energetic Cost (green) of EO-GRAPE generated control pulses as a function of decreasing deco-
herence time, or increasing noise level. Parameters: Ur = Hadamard, Hq = Hy, Hy = {04}, Ty = [100T,1T], T, = [100T,1T],
wg = 0.7, w, = 0.3, Ny = 100, Ny = 500.

In figure 4.12, the performance of the reinforcement learning agent both with and without warm start
(by RLA-2) in the presence of increasing noise is given. As we can see, the agent without warm start
is able to reach slightly higher fidelity than the agent with warm start, however the energetic cost of
the agent with warm start is more stable and lower.
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Figure 4.12: Fidelity (blue) and energetic cost (purple) of RL generated control pulses with warm start, and fidelity (red) and
energetic cost (green) of RL generated control pulses without warm start, as a function of the training episode number and
decreasing decoherence time. Parameters: Ur = Hadamard, Hg = Hy, Hy = {03}, Ty = [200T,1T], T, = [200T,1T], wy = 0.8,
We = 0.2, N = 100, Ng = 500, layer_params = (200,100, 50,30, 10), Ngrra = 10,000, Nga = 2,000.

The EO-GRAPE algorithm calculates control parameters based on the target unitary and the drift and
control Hamiltonian that are provided, and thus does not take into account any noise in the system.
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It is therefore quite remarkable that the control pulses generated by the EO-GRAPE algorithm are still
able to achieve high fidelity and low energetic cost in a highly noisy environment. The reinforcement
learning agent without warm start seems to be able to learn the noise characteristics of the system first,
and could therefore outperform the reinforcement learning agent with warm start on fidelity. However
when we take into account energetic cost as well, it is clear that the reinforcement learning agent with
warm start outperforms the agent without a warm start. To investigate how the EO-GRAPE algorithm
compares to the reinforcement learning methods, the performance of both will be investigated for a
universal set of gates. The results of these experiments will be shown in the next section.

4.3.2. EO-GRAPE versus RL Performance

To compare the EO-GRAPE algorithm performance to both the warm start and without warm start rein-
forcement learning agents, the fidelity and energetic cost of a universal gate set (CNOT, Hadamard, T)
using all three methods has been plotted as a function of increasing noise gain or decreasing relaxation
and decoherence time.

In figure 4.13, the results of these experiments are presented. One can see that the EO-GRAPE algo-
rithm outperforms both the warm start and without warm start reinforcement learning agents for all
three target unitary gates, and for all noise settings. Interestingly, the variance in the performance of
the reinforcement learning agent optimizing a T-gate is much smaller than the variance with the CNOT
gate or Hadamard gate as target unitary gate. Next to this, one can see that the reinforcement learning
agent with warm start in general has a smaller variance in performance than the reinforcement learning
agent without warm start, and that the energetic cost of the pulses generated by the reinforcement
learning agent with warm start are in general lower than the energetic cost of the pulses generated by
the reinforcement learning agent without warm start.

From this figure, we can thus conclude that the reinforcement learning agent is able to learn a universal
set of gates co-optimized on fidelity and energetic cost, and additionally that the EO-GRAPE algorithm
outperforms both reinforcement learning agents on fidelity and energetic cost, for all noise settings.

4.3.3. Neural Network Size Increase

To further explore the performance of the reinforcement learning agent compared to the EO-GRAPE
algorithm, we have investigated the effect of the size of the neural network on the performance of the
reinforcement learning agent. To make the effect more noticeable, the weight of energetic cost was
set to zero w, = 0, and the weights of the fidelity was set to one wy = 0, i.e., the agent is only trying to
optimize the pulse on fidelity, and not on energetic cost. The same experiments as in figure 4.13 have
been done, where the fidelity of both the EO-GRAPE algorithm and the reinforcement learning agents
with and without warm start are plotted as a function of increasing noise or decreasing relaxation and
decoherence time. The experiments all use the Hadamard gate as the target quantum unitary gate,
and are plotted for three different neural network sizes, with and without warm start, and two different
noise settings. The Neural Network Sizes can be found in introduction of chapter 4. In figure 4.14, the
results of the experiment are displayed for a low noise setting, i.e., T;, T, € [200T,10T], and in figure
4.15, the results are shown for a high noise setting, i.e., Ty, T, € [10T,0.1T].

In figure 4.14, one can see that in a low noise environment, the EO-GRAPE algorithm outperforms the
reinforcement learning agent, both with and without warm start, and for all three neural network sizes.
One can also see the increasing the neural network size has little effect on the performance of the
reinforcement learning agent, apart from the variance getting slightly smaller.

In figure 4.15, one can see that in a high noise environment, the performance of the EO-GRAPE
algorithm and the reinforcement learning agents approach each other. However, as the variance is
so big, one cannot conclude any significant result from this. Also, the noise setting of 0.1T, is not
physically relevant, and a fidelity of F = 0.7 is also not usable in a physical system. We can again see
that the effect of the neural network size is small, apart from a slight decrease in the variance of the
performance.
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Figure 4.13: Fidelity (blue) and energetic cost (purple) of EO-GRAPE generated control pulses, and fidelity (red) and energetic
cost (green) of RL generated control pulses, as a function of the training episode number and decreasing decoherence time, for a
universal set of gates, and with and without warm start. (a) CNOT gate, with warm start, (b) Hadamard gate, with warm start,
(c) T-gate, with warm start, (d) CNOT gate, without warm start, (e) Hadamard gate, without warm start, (f) T-gate, without
warm start. Parameters: Uy = CNOT, Hadamard, T, Hq = H3, H3, Hy = {03}, {0, 02,0502}, Ty = [100T,1T], T, = [100T, 1T],
wy = 0.8, we = 0.2, N; = 100, Ny = 500, layer_params = (200,100,50,30,10), Ngrra = 10,000, Ng4 = 2,000.
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Figure 4.14: EO-GRAPE generated pulses fidelity (blue) and RL generated pulses fidelity (red), as a function of training episode
number and decreasing decoherence time (high noise setting), for different neural network sizes and with and without warm
start. (@) Neural Network Size 1, with warm start, (b) Neural Network Size 2, with warm start, (c) Neural Network Size 3, with
warm start, (d) Neural Network Size 1, without warm start, (e) Neural Network Size 2, without warm start, (f) Neural Network
Size 3, without warm start. Parameters: Ur = Hadamard, Hq = Hj, Hy = {dx}, T1 = [200T,10T], T, = [200T,10T], wy = 1,

We =0, N = 100, Ng = 500, Ngrra = 10,000, Nga = 2,000.
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Figure 4.15: EO-GRAPE generated pulses fidelity (blue) and RL generated pulses fidelity (red), as a function of training episode
number and decreasing decoherence time (low noise setting), for different neural network sizes and with and without warm
start. (@) Neural Network Size 1, with warm start, (b) Neural Network Size 2, with warm start, (c) Neural Network Size 3, with
warm start, (d) Neural Network Size 1, without warm start, (e) Neural Network Size 2, without warm start, (f) Neural Network
Size 3, without warm start. Parameters: Ur = Hadamard, Hq = H3, Hy = {0y}, Ty = [10T,0.1T], T, = [10T,0.1T], wy = 1,
We =0, Ny = 100, Ng = 500, Nggrra = 10,000, Ng4 = 2,000.
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4.4. Bloch Sphere Path Length

In this section, the effect of the control pulses generated by both the EO-GRAPE algorithm and the
reinforcement learning agents on the unitary paths on the Bloch sphere are investigated. First the
effect of the drift Hamiltonian will be shown for both the EO-GRAPE algorithm and the reinforcement
learning agent. Afterwards, the relation between the path length of the unitary path on the Bloch
sphere and the energetic cost calculated through equation 2.16 will be investigated.

4.4.1. Example Paths

In figure 4.16, the unitary path on the Bloch sphere by the control pulses generated by the EO-
GRAPE algorithm (left) and the reinforcement learning agent (right), are shown. An initial state of
|y;) = |0) (green vector) and a target unitary of Ur = R,(m/2), is used, resulting in a target state of
|pr) = \%2(|0)—i|1)) = |—i) (orange vector). The control Hamiltonian operators are H;, = {a;,cr;}, and
there is no drift Hamiltonian, H; = I,. One can see that path induced by the control pulses generated
by the EO-GRAPE algorithm are much more smooth and straight than the path induced by the control
pulses generated by the reinforcement learning agent. One can nicely see how the reinforcement
learning agent learns by reward, as seen by the random walk paths the state vector travels, before
eventually arriving at the correct target state.

10) 10)

11) 11)
(a) (b)

Figure 4.16: Initial state (green vector), target state (orange vector), and path of the quantum unitary (blue) in the absence
of a drift Hamiltonian H,4, by (@) EO-GRAPE generated pulses and (b) RL generated pulses on the Bloch Sphere. Parameters:
Ur = Ry(m/[2), Hg = I, Hy, = {a;,cr;}, Ty = 1000T, T, = 1000T, wy = 1, w, = 0, Ny = 500, Ng = 500, Nogra = 10,000,
[¥i) = [0)

In figure 4.17, the unitary path on the Bloch sphere by the control pulses generated by the EO-GRAPE
algorithm (left) and the reinforcement learning agent (right) are shown in the presence of a drift
Hamiltonian H; = hw4/26,. The same initial state, target quantum unitary, and control Hamiltonian
operators are used. One can see the effect of the drift Hamiltonian, causing the state vector to precess
about the Z-axis at the qubit frequency w;.

Interestingly, one can see that the path induced by the control pulses generated by the EO-GRAPE
algorithm first “overshoots” the target state, and then rotates back up to reach the target state, while
the path induced by the control pulses generated by the reinforcement learning agent don’t overshoot
and arrive at the target state in one time. As mentioned in chapter 3, [4] suggests that the most energy
efficient quantum unitary is equivalent to state vector travelling from the initial state to the target state
via the geodesic between the two states on the Bloch sphere surface. In this scenario, the path induced
by the reinforcement learning agent seems shorter than the path induced by the EO-GRAPE algorithm,
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suggesting that the energetic cost of the reinforcement learning agent control pulses are lower than the
EO-GRAPE generated pulses in this specific scenario. To further investigate this, the relation between
the energetic cost and the path length of the unitary path on the Bloch sphere has been explored. The
results of these experiments are presented in the next sub section.
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Figure 4.17: Initial state (green vector), target state (orange vector), and path of the quantum unitary (blue) in the presence
of a drift Hamiltonian H;, by (a) EO-GRAPE generated pulses and (b) RL generated pulses on the Bloch Sphere. Parameters:
Ur = Ry(m/2), Hq = Hg, Hy = {0x,0y}, Ty = 1000T, T, = 1000T, ws = 1, we = 0, Ny = 500, Ng = 500, Ngrza = 10,000,

[¥i) = [0)

4.4.2. Path Length versus Energetic Cost Correlation

In figure 4.18, the correlation between the energetic cost of the control pulses generated by the EO-
GRAPE algorithm and the path length of the unitary path on the Bloch sphere is shown. The weights
associated to fidelity wy and the weights associated to energetic cost w, are varied, for the same initial
state, target unitary gate, and drift and control Hamiltonian operators.
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Figure 4.18: Correlation between energetic cost and path length of the path of the unitary on the Bloch Sphere for EO-GRAPE
generated pulses. Parameters: Ur = Ry(w/2), Hq = Hg, Hi = {0x,0y}, Ty = 1000T, T, = 1000T, wy = [1,0.1], w, =
[0.1,0.9], Nt = 100, Ng = 500, [¢);) = |0)
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One can see that there is a positive proportional relationship between the energetic cost of the control
pulses generated by the EO-GRAPE algorithm, and the path length of the unitary path on the Bloch
sphere, confirming the theoretical framework presented by [4]. A higher energetic cost results in a
longer path length of the unitary path of the Bloch sphere.

In figure 4.19, the correlation between the path length of the unitary path on the Bloch sphere and the
energetic cost of the control pulses generated by the reinforcement learning agent are shown. As the
reinforcement learning agent generates more random pulses and resulting in random paths, the error
bars from 10 experiment repetitions is included.

The color coding indicates the average fidelity of the 10 experiments for that specific weight setting,
again highlighting the trade-off between fidelity and energetic cost. With the control pulses generated
by the reinforcement learning agent, we can again see a positive proportional relationship between the
two metrics, confirming the theoretical framework presented by [4]. One can also see that in general,
the path length of the unitary paths induced by the control pulses generated by the reinforcement
learning agent are shorter than the path length of the unitary paths induced by the control pulses
generated by the EO-GRAPE algorithm.
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Figure 4.19: Correlation between energetic cost and path length of the path of the unitary on the Bloch Sphere for RL generated
pulses, where the color coding indicates the average fidelity of the control pulse. Parameters: Ur = Ry(m/2), Hq = HJ,
Hy = {a;,a;}, Ty = 1000T, T, = 1000T, wy = [1,0.1], we = [0.1,0.9], N¢ = 100, Nggra = 10,000, [¢;) = |0)

In figure 4.20, the correlation between the path length of the path on the Bloch sphere and the
energetic cost of the control pulses of both EO-GRAPE generated pulses and RL generated pulses are
shown (combination of figure 4.18 and 4.19).
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One can see that for a weight setting of w, = 1, wy = 0, the pulses generated by the EO-GRAPE
algorithm give a lower energetic cost due to the more structured nature of the optimizer. However, for
a higher value of the energetic cost, the RL agent is able to find pulses with a much shorter path length
than the EO-GRAPE generated pulses, probably because the RL agent is not restricted to keeping the
pulse harmonics in shape.

As can be seen from the results presented in this subsection, the theory presented in chapter 2.4.2
agrees with our findings. The shorter the path length on the Bloch sphere, the lower the energetic
cost required to implement a quantum unitary gate. Furthermore, the control pulses generated by
the EO-GRAPE algorithm are taking some form of accessible geodesics, as described by the theory in
section 2.4.2.
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Figure 4.20: Combined plot of EO-GRAPE and RL generated pulses showing the correlation between energetic cost path length of
the path of the unitary on the Bloch Sphere, where the color coding indicates the average fidelity of the control pulse. Parameters:
Ur = Ry(m/2), Hq = Hg, Hx = {05,0y}, Ty = 1000T, T, = 1000T, ws = [1,0.1], we = [0.1,0.9], N¢ = 100, Nggra = 10,000,
[¥:) = |0)



Conclusion and Future Work

I never think of the future, it comes soon enough.
- Albert Einstein

5.1. Conclusion

With quantum processors and algorithms becoming increasingly complex, the need for high fidelity and
coherent control of qubits has become monumental. The field of Quantum Optimal Control aims to de-
sign and implement electromagnetic field configurations that can effectively steer quantum processes
at the atomic or molecular scale in the best way possible. This includes a large variety of methods,
such as analytical, numerical, open-loop, closed-loop and gradient based or gradient free methods.
Quantum Optimal Control spreads use cases in many other allied topics, such as quantum algorithms,
gquantum thermodynamics, or compilation and circuits. While there has been a large interest in study-
ing quantum thermodynamics, little is still known about the energetic cost of quantum computational
processes. In the context of the growing interest in achieving quantum advantage through energy
efficiency, it appears to be crucial to understand energy efficiency in quantum operations, and how to
optimize it.

This research therefore focuses on two main research questions: “What is the energetic cost of a quan-
tum unitary gate, and what is the relation between fidelity and energetic cost?”, and "What Quantum
Optimal Control strategies can we utilize to investigate and co-optimize a quantum unitary gate on both
fidelity and energetic cost?”.

During this research we have answered all main and sub research questions. Regarding the main and
sub research question 1 and 1.1, we have found that the energetic cost of implementing a quantum
unitary gate through discrete pulse level control can be quantified through integrating the norm of the
total Hamiltonian required to implement a certain quantum unitary gate over the total gate duration.
In addition to this, we have found that this energetic cost positively correlates to the path length of
the quantum unitary on the Bloch sphere, supporting the theory that the most energy-efficient way to
implement a quantum unitary gate is through the geodesic between two quantum states. Looking at
sub question 1.2, we have seen that there is a trade-off between the fidelity and the energetic cost
required to implement a quantum unitary gate. We have seen that a decrease in energetic cost of 10
% yields an increase in infidelity of roughly 1 % in the low infidelity range. Regarding sub question 2.1,
we developed a novel cost function and gradient for the Gradient Ascent Pulse Engineering Method,
allowing for co-optimization of both the fidelity and energetic cost of a quantum unitary gate. This
novel algorithm is the Energy Optimized Gradient Ascent Pulse Engineering algorithm, or EO-GRAPE.
Next to the gradient-based open-loop quantum optimal control method, we have also investigated a
learning-based, model-free, closed-loop method as described in sub question 2.2. A Deep Reinforce-
ment Learning agent was developed to interact with a quantum environment, and to learn control
pulses that minimize both the energetic cost as well as the infidelity. Regarding the final sub question
2.3, we have seen that both optimal control methods perform relatively well in low noisy systems.
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However, when one decreases the relaxation and decoherence times of the qubits in the system, the
EO-GRAPE algorithm outperforms the reinforcement learning agents for all noise settings and neural
network sizes.

Theoretical research on how to quantify the energetic cost of a quantum unitary gate, as well as how
we can adapt existing methods or create novel methods to co-optimize the energetic cost besides
process fidelity has been done. In addition to this, a python software package has been developed
called Energy Optimized Universal Quantum Optimal Control, or “EUQOC", that contains code to create
guantum environments as well as code to run the optimization methods covered in this thesis.

The evaluation of the relation between fidelity and energetic cost, and the performance of both meth-
ods has been done by experiments sweeping the weight of the fidelity and the weight of the energetic
cost, and by monitoring the fidelity and energetic cost of a universal set of gates as a function of
increasing noise, respectively. Next to this, the relation between the path length of the quantum uni-
tary path on the Bloch sphere and the energetic cost of a control pulse sequence has been investigated.

These experiments have shown that there exists a inversely proportional relation between the ener-
getic cost and the infidelity (or error rate) of a quantum unitary gate. We have seen that a decrease in
energetic cost of 10 % yield an increase in infidelity of roughly 1 % in the low infidelity range. Next to
this, the experiments showed that while the reinforcement learning agent is able to learn how to devise
energy efficient control pulses to implement a certain quantum unitary, the control pulses generated
by the EO-GRAPE algorithm outperform the control pulses generated by the reinforcement learning
agent for all noise settings and neural network sizes. Finally, a positive proportional relation between
the path length of the quantum unitary on the Bloch sphere and the energetic cost of a control pulse
sequence was observed, suggesting that the notion of energy efficiency and geodesics on the Bloch
sphere is correct.

This work has shown that one can co-optimize a quantum unitary gate on energy efficiency as well as
fidelity by using Quantum Optimal Control methods. We have seen that there exist a Pareto optimal
front between the energetic cost and the fidelity of a quantum unitary gate. Next to this, the bench-
marks have shown that the Energy Optimized Gradient Ascent Pulse Engineering method works best
for the optimization problem, however it should be noted that after hyper parameter optimization and
larger training cycles, it could be that the reinforcement learning agent’s performance dramatically in-
creases. While the pulses generated by the algorithms are not suitable for physical quantum hardware,
it does give researchers a framework and toolbox to investigate lower energy configurations of their
control pulses and the effect is has on the fidelity of the quantum unitary gate.

In conclusion, the core contributions of this research are summarized below.

¢ Formulation of the energetic cost of implementing a quantum unitary gate using discrete control
pulses

¢ Formulation of the gradient of the energetic cost with respect to all control parameters

¢ Development of a modified version of the Gradient Ascent Pulse Engineering algorithm to co-
optimize the fidelity and energetic cost of a quantum unitary gate

« Identification of the trade-off between the fidelity and energetic cost of implementing a quantum
unitary gate

« Verification of the theory describing the energetic cost of a quantum unitary gate as the path
length of a quantum unitary gate on the Bloch sphere

¢ NumPy implementation of the QuTip Gradient Ascent Pulse Engineering algorithm

» Implementation of the Energy Optimized Gradient Ascent Pulse Engineering algorithm, including
the novel gradient evaluation

e Integration of a QuTip Processor quantum simulator back-end and the EO-GRAPE and reinforce-
ment learning agent classes

¢ Development of a Deep Reinforcement Learning agent able to learn and generate energy opti-
mized control pulses for a universal set of quantum unitary gates

» Development of a Deep Reinforcement Learning agent able to learn and generate pulses based
on EO-GRAPE generated control pulses
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« Integration and mapping of a Reinforcement Learning agent policy between two different Rein-
forcement Learning agents

¢ Development of a Quantum Environment class containing all methods and arguments required
for energy optimized quantum optimal control

e Development and investigation of methods to benchmark the performance of the EO-GRAPE
algorithm and Deep Reinforcement Learning agents with increasing noise levels

¢ Investigation of the effect of increasing the neural network size on the Reinforcement Learning
agent performance

« Verification of the correlation between the path length of a quantum unitary on the Bloch sphere
and the energetic cost of implementing a quantum unitary gate for Reinforcement Learning gen-
erated control pulses

5.2. Future Work

In this section, several future work topics that emerged during this research will be introduced and
explained. Three topics utilize the framework presented in this research to investigate theoretical
applications closely related to this work. Three other topics investigate new methods or adjustments
to the quantum optimal control methods introduced in this work to further explore and optimize the
performance of these methods.

5.2.1. Information and Energy Relation

Information, entropy and energy are closely related quantities. Landauer’s principle states that the
minimum energy required by a logic operation will be the temperature times the entropy [65]. The
entropy has been established by Claude E. Shannon, given in units of bits. As one can see, the informa-
tion (bits) and energy of a control sequence are closely related [66]. Therefore a similar investigation
as to the one performed in this research between fidelity and energy can be proposed between infor-
mation and energy. One can investigate the co-optimization of both the information contained in a
control sequence, as well as the energy of a control sequence, and see what the relation is between
the two, and if it is possible to co-optimize, similar to fidelity and energy. In theory, one could change
the fidelity part of the cost-function presented in this work by a measure for information, and repeat
the same experiments that have been performed in this work.

5.2.2, Minimum Universal Controllability

Different formulations of the drift and control Hamiltonian operators have been investigated in this
research. However, the effect of having multiple control operators has not been thoroughly researched.
Minimizing the number of control operators per qubit to universally control the qubits is therefore a
critical component in minimizing the energetic cost of a quantum unitary gate. We can therefore ask
ourselves, given an N-qubit system, with drift Hamiltonian H;, how many individual control terms H;, do
we need to universally control the quantum system? There exists a theoretical framework to address
this problem called the "Lie rank test”, that states when an N-qubit system with control Hamiltonian H,
is fully controllable [67]. One could therefore use this theoretical framework to minimize the number
of control operators needed per qubit and per drift Hamiltonian, and observe the effect that it has on
the energetic cost of quantum unitary gates performed on the qubits.

5.2.3. Frequency Domain Optimization

The algorithms developed in this work generate and train on control pulses that are represented as
2D matrices with dimensions (len(Hy), N¢). If one has three control operators and 500 time steps, a
control pulse already contains 1500 individual parameters that the algorithm and reinforcement learning
agents need to adjust. However, as one can see from the pulses generated by the EO-GRAPE algorithm,
the pulses can often be decomposed into individual sin or cos functions. It is therefore plausible one
can transform the control pulses to the frequency domain by applying a Fourier transformation. This
would allow one to represent a control pulse with originally 1500 parameters, to just a few amplitude
and frequency parameters [68]. This would dramatically increase the computational efficiency of both
algorithms, and could also increase the performance of the reinforcement learning agent, as it would
automatically apply harmonic pulses instead of random block pulses.
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5.2.4. Hyper Parameter Optimization

This work has primarily focused on using reinforcement learning as a method to investigate energy
efficiency in quantum unitary gates, and has not focused on the theoretical framework behind rein-
forcement learning. We do believe however that tremendous steps can be made in the performance of
the reinforcement learning agent by optimizing the hyper parameters of the agent based on theoretical
or empirical results [69]. We therefore suggest a theoretical study and investigation of the reinforce-
ment learning agent, accompanied by a hyper parameter optimization, to improve the performance of
the reinforcement learning agent and compare it to the EO-GRAPE algorithm with increasing noise or
decreasing relaxation and decoherence times.

5.2.5. Concept Learning for Universal Gate Set and Random Unitaries

During this research, we have investigated co-optimizing control pulses on both fidelity and energetic
cost, for one specific universal gate set: (CNOT, Hadamard, T). However, one could also train a re-
inforcement learning agent to learn and create other energy optimal pulses that create new universal
gate sets from a specific set of hardware restrictions, such as a specific waveform, set of frequencies,
or bandwidth [70]. This removes the restriction of specific quantum gate synthesis, and allows the
agent to experiment and try other random unitaries that together form a universal gate, and thereby
any quantum computation, with a potentially lower energetic cost than using (CNOT, Hadamard, T).

5.2.6. Hardware Restricted Energy Optimized Quantum Gate Synthesis

The hardware restrictions imposed by both the qubit type and control electronics has not been taken into
account in this work. However, extending this work by using the EO-GRAPE or RL algorithms to devise
energy optimized control pulses for very specific quantum hardware will be very relevant. This work
provides the theoretical framework and software tools in order to implement energy optimized quantum
gate synthesis. By adjusting the drift Hamiltonian to include more terms and actual parameters based
on hardware, and by restricting the EO-GRAPE algorithm, or punishing the RL agent to devise pulses
according to the physical limitations of the control electronics, one can implement the theory and
software tools provided in this work to devise very specific control pulses for very specific quantum
hardware [71].
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Appendix

Appendix 1: Quantum Environment Class

class QuantumEnvironment(py_environment.PyEnvironment):

def __init__(self, n_q, h_drift, h_control, labels, t_1, t_2, u_target, w f =1, we =0,
timesteps = 500, pulse_duration = 2 x np.pi, grape_iterations = 500, n_steps = 1,
sweep_noise = False):

mwn

QuantumEnvironment Class

Create instance of a Quantum Processor with customizable Drift and Control
Hamiltonian, Relaxation and Decoherence times for Pulse Level control

Contains EO-GRAPE Algorithm (Energy Optimized Gradient Ascent Pulse Engineering)

Parameters
n_q : int

Number of qubits.
h_drift : Qobj

Drift Hamiltonian.
h_control : list of Qobj

List of Control Hamiltonians.
t_1 : int

Relaxation time of the Processor.
t.2 : int

Decoherence time of the Processor.
initial_state : Qobj, optional

Initial state of the quantum state.
u_target : array, optional

Target Unitary Evolution Operator.
timesteps : int, optional

Number of timesteps to discretize time. Default is 500.
pulse_duration : float, optional

Total pulse duration time. Default is 2pi
grape_iterations : int, optional

Number of GRAPE iterations. Default is 500

mwmn

self.n_q = n_q

self.h_drift = h_drift

self.h_control = h_control

self.labels = labels

self.t_1 =t_1

self.t_.2 =t_2

self.u_target = u_target

self.timesteps = timesteps

self.pulse_duration = pulse_duration
self.grape_iterations = grape_iterations
self.h_drift_numpy = fc.convert_qutip_to_numpy(h_drift)
self.h_control_numpy = fc.convert_qutip_list_to_numpy(h_control)
self.action_shape = (len(h_control), timesteps)
self.state_shape = (2xx(n_q), 2xx(n_q))

self.state_size = 2x(2xx(2xn_q))

self.current_step = 0

self.reward_counter = 0

self._episode_ended = False

self.n_steps = n_steps

self.w_f = w_f
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def

def

def

def

self.w_e = w_e

self.fidelity_list = []
self.reward_list = []
self.energy_list = []
self.sweep_noise = sweep_noise

self.noise = None
self.create_environment ()

create_environment(self):

Create instance of a Qutip Processor as environment with custom
Drift and Control Hamiltonians, T1, and T2 times

mwmn

timespace = np.linspace(0, self.pulse_duration, self.timesteps)
simulatortimespace = np.append(timespace, timespace[-1])

targets = list(range(self.n_q))
self.environment = Processor(N = self.n_q)
self.environment.add_drift(self.h_drift, targets = targets)

if self.sweep_noise == False:
self.noise = [self.t_1, self.t_ 2]
noise = RelaxationNoise(tl = self.t_1, t2 = self.t_2)
self.environment.add_noise(noise = noise)

for operator in self.h_control:
self.environment.add_control (operator, targets = targets)

self.environment.set_all_tlist(simulatortimespace)

action_spec(self):

Returns the action spec

mwmn

return array_spec.BoundedArraySpec(
shape = (len(self.h_control) x self.timesteps,),
dtype = np.float32,
name = “pulses”,
minimum = -1,
maximum = 1,

)

observation_spec(self):

Returns the observation spec

mn

return array_spec.BoundedArraySpec(
shape = (2x(2xx(2xself.n_q)),),
dtype = np.float32,
name = “density matrix”,
minimum = np.zeros(2x(2xx(2xself.n_q)), dtype=np.float32),
maximum = np.ones(2x(2xx(2xself.n_q)), dtype = np.float32),

)

_reset(self):

mwmn

Resets the environment and returns the first timestep of a new episode
self.current_step = 0

self._episode_ended = False

self.initial_dm = self.initial_state x self.initial_state.dag()
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self.initial_dm_np = fc.convert_qutip_to_numpy(self.initial_dm)
self.initial_dm_np_re = self.initial_dm_np.real

self.initial_dm_np_im = self.initial_dm_np.imag

self.initial_dm_np_re_flat = self.initial_dm_np_re. flatten ()
self.initial_dm_np_im_flat = self.initial_dm_np_im. flatten ()
self.combined_initial_dm = np.ndarray.astype(np.hstack((self.initial_dm_np_re_flat,

self.initial_dm_np_im_flat)), dtype = np.float32)

def

def

return ts.restart(self.combined_initial_dm)

_step(self, action):

Updates environment according to the action

mwrn

action_2d = np.reshape(action, (len(self.h_control),

if self._episode_ended:
return self._reset()

if self.current_step < self.n_steps:

next_state, fidelity = self.calculate_fidelity_reward(action_2d)

energy = self.calculate_energetic_cost(action_2d)

self.fidelity_list.append(fidelity)
self.energy_list.append(energy)

reward = self.w_f x fidelity + self.w_e x (1 — energy)

self.reward_list.append(reward)
terminal = False
if self.current_step == self.n_steps — 1:
terminal = True
else:
terminal = True
reward = 0
next_state = 0
self.current_step +=1
self.reward_counter += 1
if terminal:
self._episode_ended = True
return ts.termination(next_state, reward)

else:
return ts.transition(next_state, reward)

run_pulses(self , pulses, plot_pulses = False):

mwn

Send pulses to a specific qutip processor instance and simulate result

Parameters

pulses : array

(K x I_G) Array containing amplitudes of operators in Control

Returns

result : Result instance of Environment using specified Initial

mwmn

for i in range(len(pulses[:, 0])):

self.environment. pulses[i].coeff = pulses[i]

self.timesteps))

Hamiltonian.

State and Pulse set.
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result = self.environment.run_state(init_state = self.initial_state)
density_matrix = result.states[-1]

if plot_pulses == True:
self.environment. plot_pulses ()
plt.show()

return density_matrix

def calculate_fidelity_reward(self, pulses, plot_result = False):

Calculates Fidelity Reward for a specific Qutip result.

Parameters

Result : Result instance of Environment using specified Initial State and Pulse set.

Returns

combined_dm_sim_np_im_flat : Flattened and combined real and imaginary part of the
density matrix after simulation

r_f : Fidelity Reward for a specific Qutip result, Initial State, and Target Unitary.

mwmn

for i in range(len(pulses[:, 0])):
self.environment. pulses[i].coeff = pulses[i]

self.result = self.environment.run_state(init_state = self.initial_state)
dm_sim = self.result.states[-1]

dm_sim_np = fc.convert_qutip_to_numpy(dm_sim)

dm_sim_np_re = dm_sim_np.real

dm_sim_np_im dm_sim_np.imag

dm_sim_np_re_flat dm_sim_np_re. flatten ()

dm_sim_np_im_flat dm_sim_np_im. flatten ()

combined_dm_re_im_flat = np.ndarray.astype(np.hstack((dm_sim_np_re_flat,
dm_sim_np_im_flat)), dtype = np.float32)

self.dm_target = (Qobj(self.u_target) x self.initial_state) x (Qobj(self.u_target) x
self.initial_state).dag()

r_f = fidelity (dm_sim, self.dm_target)
if plot_result == True:

vz.hinton(dm_sim, xlabels = [r’'$\vert 00\rangle$ ', r’'$\vert Ol\rangle$’, r’'$\vert
10\rangle$ ', r'$\vert 11\rangle$ '],
ylabels = [r’$\vert 00\rangle$’, r’'$\vert Ol\rangle$’, r’'$\vert 10\rangle$ ', r’
$\vert 11\rangle$’])
plt.show()

return combined_dm_re_im_flat, r_f

def calculate_energetic_cost(self, pulses, return_normalized = True):

Calculate Energetic Cost of certain set of Pulses

Parameters

pulses : array
(K x I_G) Array containing amplitudes of operators in Control Hamiltonian.

Returns

return_value : float
Energetic cost of the quantum operation
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mwmn

h_t_norm = []
stepsize = self.pulse_duration/self.timesteps
self.max_u_val = 2

for i in range(self.timesteps — 1):
h_t=20
for j in range(len(self.h_control)):
h_t += pulses[j, i] x self.h_control_numpy[j]

h_t_norm.append(np.linalg.norm(h_t))

energetic_cost = np.sum(h_t_norm) x stepsize
energetic_cost_normalized = energetic_cost / (self.pulse_duration x self.max_u_val x

np.linalg .norm(np.sum(self.h_control_numpy)))

def

if return_normalized == True:
return_value = energetic_cost_normalized
elif return_normalized == False:
return_value = energetic_cost
return return_value

grape_iteration(self, u, r, J, u_b_list, u_f_list, dt, eps_f, eps_e, w_f, w_ e):

Perform one iteration of the GRAPE algorithm and update control pulse parameters

Parameters

u : The generated control pulses with shape (iterations, controls, time)

r : The number of this specific GRAPE iteration

J : The number of controls in Control Hamiltonian

u_b_list : Backward propagators of each time (length M)

u_f_list : Forward propagators of each time (length M)

dt : Timestep size

eps_f : Distance to move along the gradient when updating controls for Fidelity
eps_e : Distance to move along the gradient when updating controls for Energy
w_f : Weight assigned to Fidelity part of the Cost Function

w_e : Weight assigned to Energy part of the Cost Function

Returns

u[r + 1, :, :] : The updated parameters

mwn

du_list = np.zeros((J, self.timesteps))
max_du_list = np.zeros((J))

for m in range(self.timesteps — 1):
P = u_b_list[m] @ self.u_target
for j in range(J):

Q = 1j % dt x self.h_control_numpy[j] @ u_f_list[m]
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du_f = -2 x w_f x fc.overlap(P, Q) x fc.overlap(u_f_list[m], P)

denom = self.h_drift_numpy.conj().T @ self.h_drift_numpy + u[r, j, m] x (self
.h_drift_numpy.conj().T @ self.h_control_numpy[j] + self.h_control_numpy[j].conj().T @
self.h_drift_numpy)

due =0

for k in range(J):

du_e += -1 x dt x w_e x (np.trace(self.h_drift_numpy.conj().T @ self.

h_control_numpy[j] + self.h_control_numpy[j].conj().T @ self.h_drift_numpy) + np.trace(
self.h_control_numpy[j].conj().T @ self.h_control_numpy[k] x (u[r, j, m] + u[r, k, m])))

denom += u[r, j, m] x u[r, k, m] x self.h_control_numpy[j].conj().T @
self.h_control_numpy[k]

du_e /= (2 % np.trace(denom) xx (1/2))

du_e_norm = du_e / (self.pulse_duration x (np.linalg.norm(self.h_drift_numpy)
+ np.linalg.norm(np.sum(self.h_control_numpy))))

du_t = du_f + du_e_norm

du_list[j, m] = du_t.real

max_du_list[j] np.max(du_list[j])
ulr + 1, j, m] =ulr, j, m] + eps_f x du_f.real + eps_e x du_e_norm.real

for j in range(J):
ulr + 1, j, self.timesteps — 1] = u[r + 1, j, self.timesteps - 2]

return max_du_list
def run_grape_optimization(self, w_f, w_e, eps_f, eps_e):

mwmn

Runs GRAPE algorithm and returns the control pulses, final unitary, Fidelity , and
Energetic Cost for the Hamiltonian operators in H_Control
so that the unitary U_target is realized

Parameters

w_f : float
Weight assigned to Fidelity part of the Cost Function

w_e : float
Weight assigned to Energetic Cost part of the Cost Functions

eps_f : int
Learning rate for fidelity

eps_e : int
Learning rate for energy

Returns

u : Optimized control pulses with dimension (iterations, controls, timesteps)
u_f_list[-1] : Final unitary based on last GRAPE iteration

du_max_per_iteration : Array containing the max gradient of each control for all
GRAPE iterations

cost_function : Array containing the value of the cost function for all GRAPE
iterations
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infidelity_a

energy_array

mwmn

rray : Array containing the infidelity for all GRAPE iterations

Array containing the energetic cost for all GRAPE iterations

self.w_f = w_f

self.w_e = w_e

times = np.linspace(0, self.pulse_duration, self.timesteps)

if eps_f is
eps_f =

if eps_e is
eps_e =

M
J

len(time
len(self

u np.zeros
self.du_max

self.cost_fu

None:

0.1 % (self.pulse_duration) /(times[-1])
None:

0.1 % (self.pulse_duration) / (times[-1])
s)

.h_control_numpy)
((self.grape_iterations, J, M))

_per_iteration = np.zeros((self.grape_iterations — 1, 1))

nction_array = []

self.infidelity_array = []
self.energy_array = []

with alive_b
for r in

bar (
dt =

def

for j in range(J

ar(self.grape_iterations — 1) as bar:
range(self.grape_iterations — 1):

)
times[1] — times[0]

_H_idx(idx):
return self.h_drift_numpy + sum([u[r, j, idx] x self.h_control_numpy[j]

)

u_list = [expm(-1j % _H_idx(idx) x dt) for idx in range(M - 1)]
u_f_list = []
u_b_list = []
u_f = np.eye(x(self.u_target.shape))
u_b = np.eye(x(self.u_target.shape))
for n in range(M - 1):
u_f = u_list[n] @ u_f
u_f_list.append(u_f)
u_b_list.insert(0, u_b)
u_b = u_list[M - 2 - n].T.conj() @ u_b
self.du_max_per_iteration[r] = self.grape_iteration(u, r, J, u_b_list,

u_f_list, dt, eps_f, eps_e, w_f, w_e)

cost

_function = w_f x (1 — fc.Calculate_Fidelity(self.u_target, u_f_list[-1])

) + w_e x self.calculate_energetic_cost(u[r])

self
self
u_f_list[-1]))
self
self

return u[-1]

.cost_function_array.append(cost_function)
.infidelity_array.append(1 — fc.Calculate_Fidelity (self.u_target,

.energy_array.append(self.calculate_energetic_cost(u[r]))
.final_unitary = u_f_list[-1]

def plot_grape_pulses(self, pulses):
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Plot the pulses generated by the EO-GRAPE Algorithm
Parameters
pulses : Pulses generated by the EO-GRAPE algorithm
!,a),?els : Labels for the operators in h_control
time = np.linspace(0, self.pulse_duration, self.timesteps)
colors = [”"blue”, "orange”, "green”]
fig, ax = plt.subplots(len(self.h_control_numpy))
if len(self.h_control_numpy) ==
ax.plot(time, pulses[0, :], label = f"{self.labels[0]}"”, color = colors[0])
ax.set(xlabel = "Time”, ylabel = f"{self.labels[0]}")
else:
for i in range(len(self.h_control_numpy)):
ax[i].plot(time, pulses[i, :], label = f”{self.labels[i]}”, color = colors[i
D ax[i].set(xlabel = "Time”, ylabel = f"{self.labels[i]}")
plt.subplot_tool ()
plt.show()
def plot_rl_pulses(self, pulses):
Plot the pulses generated by the QRLAgent
Parameters
pulses : Pulses generated by the QRLAgent
!,?,F,Jels : Labels for the operators in h_control
time = np.linspace(0, self.pulse_duration, self.timesteps)
colors = [ '#03080c’, '#214868 ", '#5b97ca’]
fig, ax = plt.subplots(len(self.h_control_numpy))
if len(self.h_control_numpy) ==
ax.axhline(y = 0, color = "grey”, Is = "dashed”)
ax.step(time, pulses[0, :], label = f”"{self.labels[0]}"”, color = colors[0])
ax.set(xlabel = "Time”, ylabel = f"{self.labels[0]}")
ax.legend ()
else:
for i in range(len(self.h_control_numpy)):
ax[i].axhline(y = 0, color = "grey”, |Is = "dashed”)
0 ax[i].step(time, pulses[i, :], label = f”{self.labels[i]}"”, color = colors[i

ax[i].set(xlabel = "Time”, ylabel = f”"{self.labels[i]}")
ax[i].legend()

fig.suptitle(”Final
fig.tight_layout()

Pulse Generated by the QRLAgent”)
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def

plt.subplot_tool ()
plt.show()

plot_tomography(self):

Plot the tomography of the target unitary and the unitary realized by the EO-GRAPE

algorithm

Parameters

final_unitary : The final unitary obtained by the EO-GRAPE algorithm

mrn

op_basis = [[Qobj(identity(2)), Qobj(sigmax()), Qobj(sigmay()), Qobj(sigmaz())]] x 2
op_label = [["1", "X", "Y", "2"1] % 2

u_i_s = to_super(Qobj(self.u_target))

u_f_s = to_super(Qobj(self.final_unitary))

chi_1 = gpt(u_i_s, op_basis)

chi_2 = gpt(u_f_s, op_basis)

fig_1 = plt.figure(figsize = (6,6))

fig_1 = qpt_plot_combined(chi_1, op_label, fig=fig_1, threshold=0.001, title = '

Target _Unitary Gate ')

fig_2 = plt.figure(figsize = (6, 6))

fig_2 = qgpt_plot_combined(chi_2, op_label, fig = fig_2, threshold = 0.001, title = '
Final Unitary after Optimization ")

plt.show()
def plot_du(self):

Plot the max gradient over all timesteps per control operator as function of GRAPE
iterations

Parameters

du_list : The list containing gradient values from the EO-GRAPE algorithm

labels : The labels associated to the operators in h_control

iteration_space = np.linspace(1, self.grape_iterations — 1, self.grape_iterations —
1)

for i in range(len(self.h_control_numpy)):

plt.plot(iteration_space, self.du_max_per_iteration[:, i], label = f"{self.labels

(i

plt.axhline(y = 0, color = “black”, linestyle = "=")

plt.xlabel ("GRAPE Iteration Number”)

plt.ylabel ("Maximum Gradient over Time”)

plt. title ("Maximum Gradient over Time vs. GRAPE Iteration Number”)

plt.legend()

plt.grid()

plt.show()
def plot_cost_function(self):

mwmn

Plot the value of the cost function as function of GRAPE iterations

Parameters
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cost_fn : The array containing cost function values obtained by the EO-GRAPE
algorithm

infidelity : The array containing the infidelity values obtained by the EO-GRAPE
algorithm

energy : The array containing the energetic cost values obtained by the EO-GRAPE
algorithm

w_f : The weight assigned to the fidelity part of the cost function

w_e : The weight assigned to the energetic cost part of the cost function

iteration_space = np.linspace(1, self.grape_iterations — 1, self.grape_iterations —
1)

plt.plot(iteration_space, self.cost_function_array, label = f”"Cost Function, $w_f$ =
{self.w_f}, $w_e$ = {self.w_e}”)
plot(iteration_space, self.infidelity_array, label = f”Infidelity (1-F)")
plot(iteration_space, self.energy_array, label = f”Normalized Energetic Cost”)
axhline(y = 0, color = ”"black”, linestyle = "=")

plt.
plt.
plt.
.xlabel ("GRAPE iteration number”)

.ylabel (”"Cost Function”)

.title ("Cost Function, Infidelity , and Energetic Cost vs. GRAPE Iteration Number”)
.legend ()

.grid ()

.show ()

def convert_dm_to_coordinates(dm):

a
b
X
Y
z

dm[0, 0]
dm[1, 0]

b.real

2 %
2 x b.imag
2 %

a -1

return x, y, z

def calc_arc_length(nl, n2):

return np.arccos(np.dot(nl, n2))

def get_total_arc_length(self):

density_matrix_list = fc.convert_qutip_list_to_numpy(self.result.states)

x_coordinate_list
y_coordinate_list
z_coordinate_list

for

dm

a
b
X
Y
z
X
Y

o

[]
[]
[]

in range(len(density_matrix_list)):
= density_matrix_list[i]

dm[0, 0]

dm[1, 0]

2 x b.real

2 x b.imag

2 xa-1
oordinate_list.append(x)
coordinate_list.append(y)

z_coordinate_list.append(z)

coordinate_matrix = np.vstack ((x_coordinate_list, y_coordinate_list,
z_coordinate_list)).real

arc_length_list = []

for

in range(len(coordinate_matrix[0]) — 1):
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def

argument = np.linalg.norm(np.cross(coordinate_matrix[:, i], coordinate_matrix[:,
i + 1]))/(np.dot(coordinate_matrix[:, i], coordinate_matrix[:, i + 1]))

arclen_tan = np.arctan(argument)

arc_length_list.append(arclen_tan)
total_arc_length = np.sum(arc_length_list)
return total_arc_length
plot_bloch_sphere_trajectory(self):

density_matrix_list = fc.convert_qutip_list_to_numpy(self.result.states)

x_coordinate_list = []
y_coordinate_list = []
z_coordinate_list = []
for i in range(len(density_matrix_list)):
dm = density_matrix_list[i]
a = dn[0, 0]
b =dm[1, 0]
X = 2 % b.real
y = 2 x b.imag
z=2xa-1
x_coordinate_list.append(x)
y_coordinate_list.append(y)

z_coordinate_list.append(z)
points = [x_coordinate_list, y_coordinate_list, z_coordinate_list]
target_state = (Qobj(self.u_target) x self.initial_state)
bsphere = Bloch ()
bsphere . make_sphere ()
bsphere.add_states(self.initial_state)
bsphere.add_states(target_state)
bsphere.add_points(points)
bsphere.render ()

plt.show()
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Appendix 2: EO-GRAPE Approximation Class

class GRAPEApproximation(py_environment.PyEnvironment):

def

__init__(self, n_q, h_drift, h_control, labels, u_target, w f=1, we =20, eps_f =

1, eps_e = 100, timesteps = 500, pulse_duration = 2 x np.pi, grape_iterations = 500,
n_steps = 1):

def

def

def

self.n_gq = n_q

self.h_drift = h_drift

self.h_control = h_control

self.labels = labels

self.u_target = u_target

self.w_f = w_f

self .w_e = w_e

self.eps_f = eps_f

self.eps_e = eps_e

self.timesteps = timesteps

self.pulse_duration = pulse_duration

self.grape_iterations = grape_iterations

self.h_drift_numpy = fc.convert_qutip_to_numpy(h_drift)
self.h_control_numpy = fc.convert_qutip_list_to_numpy(h_control)
self.current_step = 0

self.reward_counter
self._episode_ended
self.n_steps = n_steps
self.difference_list = []
self.reward_list = []

0
False

self.target_pulse = self.run_grape_optimization()
action_spec(self):

return array_spec.BoundedArraySpec(

shape = (len(self.h_control) x self.timesteps,),
dtype = np.float32,

name = “pulse”,

minimum = -10,

maximum = 10,

)
observation_spec(self):

return array_spec.BoundedArraySpec(
shape = (2x(2xx(2xself.n_q)),),
dtype = np.float32,
name = “unitary”,
minimum = np.zeros(2x(2xx(2xself.n_q)), dtype=np.float32),
maximum = np.ones(2x(2xx(2xself.n_q)), dtype = np.float32),

_reset(self):

self.current_step = 0

self._episode_ended = False

self.initial_unitary = identity(2xxself.n_q)

self.initial_unitary_np = fc.convert_qutip_to_numpy(self.initial_unitary)
self.initial_unitary_np_re = self.initial_unitary_np.real
self.initial_unitary_np_im = self.initial_unitary_np.imag
self.initial_unitary_np_re_flat = self.initial_unitary_np_re.flatten ()
self.initial_unitary_np_im_flat = self.initial_unitary_np_im.flatten ()
self.combined_initial_unitary = np.ndarray.astype(np.hstack((self.

initial_unitary_np_re_flat, self.initial_unitary_np_im_flat)), dtype = np.float32)

def

return ts.restart(self.combined_initial_unitary)

_step(self, action):

if self._episode_ended:

return self._reset()
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def

if self.current_step < self.n_steps:

next_state, reward = self.calc_unitary_and_reward(action)
self.reward_list.append(reward)

terminal = False
if self.current_step == self.n_steps — 1:
terminal = True

else:
terminal = True
reward = 0
next_state = 0
self.current_step += 1
self.reward_counter += 1

if terminal:
self._episode_ended = True
return ts.termination(next_state, reward)

else:
return ts.transition(next_state, reward)

grape_iteration(self, u, r, J, u_b_list, u_f_list, dt):

mwmn

Perform one iteration of the GRAPE algorithm and update control pulse parameters

Parameters

u : The generated control pulses with shape (iterations, controls, time)

r : The number of this specific GRAPE iteration

J : The number of controls in Control Hamiltonian
u_b_list : Backward propagators of each time (length M)
u_f_list : Forward propagators of each time (length M)

dt : Timestep size

eps_f : Distance to move along the gradient when updating controls for

Fidelity

eps_e : Distance to move along the gradient when updating controls for Energy

w_f : Weight assigned to Fidelity part of the Cost Function
w_e : Weight assigned to Energy part of the Cost Function

Returns

u[r + 1, :, :] : The updated parameters

mwmn

du_list = np.zeros((J, self.timesteps))
max_du_list = np.zeros((J))

for m in range(self.timesteps — 1):
P = u_b_list[m] @ self.u_target
for j in range(J):

Q =1j x dt x self.h_control_numpy[j] @ u_f_list[m]
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du_f = =2 x self.w_f x fc.overlap(P, Q) x fc.overlap(u_f_list[m], P)

denom = self.h_drift_numpy.conj().T @ self.h_drift_numpy + uf[r, j, m] x (self
.h_drift_numpy.conj().T @ self.h_control_numpy[j] + self.h_control_numpy[j].conj().T @
self.h_drift_numpy)

du_e =0

for k in range(J):

du_e += -1 x dt x self.w_e x (np.trace(self.h_drift_numpy.conj().T @ self

.h_control_numpy[j] + self.h_control_numpy[j].conj().T @ self.h_drift_numpy) + np.trace(
self.h_control_numpy[j].conj().T @ self.h_control_numpy[k] % (u[r, j, m] + u[r, k, m])))

denom += u[r, j, m] x u[r, k, m] x self.h_control_numpy[j].conj().T @
self.h_control_numpy[k]

du_e /= (2 x np.trace(denom) xx (1/2))

du_e_norm = du_e / (self.pulse_duration x (np.linalg.norm(self.h_drift_numpy)
+ np.linalg.norm(np.sum(self.h_control_numpy))))

du_t = du_f + du_e_norm

du_list[j, m] = du_t.real

max_du_list[j] np.max(du_list[j])

ufr + 1, j, m] = uf[r, j, m] + self.eps_f x du_f.real + self.eps_e x du_e_norm
.real

for j in range(J):
ulr + 1, j, self.timesteps — 1] = u[r + 1, j, self.timesteps - 2]

return max_du_list
def run_grape_optimization(self):

mwmn

Runs GRAPE algorithm and returns the control pulses, final unitary, Fidelity , and
Energetic Cost for the Hamiltonian operators in H_Control
so that the unitary U_target is realized

Parameters

w_f : float
Weight assigned to Fidelity part of the Cost Function

w_e : float
Weight assigned to Energetic Cost part of the Cost Functions

eps_f : int
Learning rate for fidelity

eps_e : int
Learning rate for energy

Returns

u : Optimized control pulses with dimension (iterations, controls, timesteps)
u_f_list[-1] : Final unitary based on last GRAPE iteration

du_max_per_iteration : Array containing the max gradient of each control for all
GRAPE iterations

cost_function : Array containing the value of the cost function for all GRAPE
iterations
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infidelity_array : Array containing the infidelity for all GRAPE iterations

energy_array

mwmn

Array containing the energetic cost for all GRAPE iterations

times = np.linspace(0, self.pulse_duration, self.timesteps)

if self.eps_f is None:
eps_f = 0.1 x (self.pulse_duration) /(times[-1])

if self.eps_e is None:
eps_e = 0.1 x (self.pulse_duration) / (times[-1])

M
J

u

len(times)
len(self.h_control_numpy)

np.zeros((self.grape_iterations, J, M))

self.du_max_per_iteration = np.zeros((self.grape_iterations — 1, J))

self.cost_function_array = []
self.infidelity_array = []
self.energy_array = []

with alive_bar(self.grape_iterations — 1) as bar:

for r in range(self.grape_iterations — 1):

bar(

)

dt = times[1] — times[0]

def

_H_idx(idx):

return self.h_drift_numpy + sum([u[r, j,

idx] x self.h_control_numpy[j]

for j in range(J)])
u_list = [expm(—-1j % _H_idx(idx) x dt) for idx in range(M - 1)]
u_f_list = []
u_b_list = []
u_f = np.eye(x(self.u_target.shape))
u_b = np.eye(x(self.u_target.shape))
for n in range(M - 1):
u_f = u_list[n] @ u_f
u_f_list.append(u_f)
u_b_list.insert(0, u_b)
ub = u_list[(M -2 - n].T.conj() @ u_b
self.du_max_per_iteration[r] = self.grape_iteration(u, r, J, u_b_list,
u_f_list, dt)

cost_function = self.w_f x (1 — fc.Calculate_Fidelity (self.u_target,
[-1])) + self.w_e x self.calculate_energetic_cost(u[r])

self
self

u_f_list[-1]))

def

self
self

return u[-1]

.infidelity_array.append(1 — fc.Calculate_Fidelity (self.u_target,

cost_function_array .append(cost_function)

energy_array.append(self.calculate_energetic_cost(u[r]))
final_unitary = u_f_list[-1]

calculate_energetic_cost(self, pulses, return_normalized = False):

mwn

Calculate Energetic Cost of certain set of Pulses

Parameters

u_f_list
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pulses : array
(K x I_G) Array containing amplitudes of operators in Control Hamiltonian.

Returns

return_value : float
Energetic cost of the quantum operation

mwmn

h_t_norm =
stepsize = self.pulse_duration/self.timesteps
for i in range(self.timesteps — 1):

h_t=20

for j in range(len(self.h_control)):
h_t += pulses[j, i] x self.h_control_numpy[j]

h_t_norm.append(np.linalg.norm(h_t))
energetic_cost = np.sum(h_t_norm) x stepsize
energetic_cost_normalized = energetic_cost / (self.pulse_duration x np.linalg.norm(np
.sum( self.h_control_numpy)))
if return_normalized == True:
return_value = energetic_cost_normalized
elif return_normalized == False:
return_value = energetic_cost
return return_value
def calc_unitary_and_reward(self, action):
times = np.linspace(0, self.pulse_duration, self.timesteps)
action_2d = np.reshape(action, (len(self.h_control), self.timesteps))
def _H_idx(idx):
return self.h_drift_numpy + sum([action_2d[j, idx] x self.h_control_numpy[j] for
j in range(len(self.h_control_numpy))])
dt = times[1] — times[0]
u_list = [expm(—-1j % _H_idx(idx) x dt) for idx in range(len(times) — 1)]
u_f_list = []
u_f = np.eye(x(self.u_target.shape))
for n in range(len(times) — 1):

u_f = u_list[n] @ u_f
u_f_list.append(u_f)

final_unitary = u_f_list[-1]

final_unitary_re final_unitary.real

final_unitary_im = final_unitary.imag

final_unitary_re_flat = final_unitary_re.flatten()

final_unitary_im_flat = final_unitary_im.flatten ()

combined_final_unitary = np.ndarray.astype(np.hstack((final_unitary_re_flat,
final_unitary_im_flat)), dtype = np.float32)

reward = self.find_sq_diff (action)
return combined_final_unitary, reward

def find_sq_diff(self, action):
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target_flat = self.target_pulse.flatten ()

diff = target_flat — action

diff_sq = np.square(diff)

tot_diff = =1 x np.sum(diff_sq)

return tot_diff

def plot_grape_pulses(self, pulses):

Plot the pulses generated by the EO-GRAPE Algorithm

Parameters

pulses : Pulses generated by the EO-GRAPE algorithm

I"erlll,?els . Labels for the operators in h_control

time = np.linspace(0, self.pulse_duration, self.timesteps)

colors = ["blue”, "orange”, "green”]

fig, ax = plt.subplots(len(self.h_control_numpy))

if len(self.h_control_numpy) ==
ax.plot(time, pulses[0, :], label = f"{self.labels[0]}"”, color = colors[0])
ax.set(xlabel = "Time”, ylabel = f"{self.labels[0]}")

else:
for i in range(len(self.h_control_numpy)):

D ax[i].plot(time, pulses[i, :], label = f”{self.labels[i]}”, color = colors[i

ax[i].set(xlabel = "Time”, ylabel = f"{self.labels[i]}")

plt.subplot_tool ()
plt.show()
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Appendix 3: Quantum Reinforcement Learning Class

class QuantumRLAgent:

def __init__(self, TrainEnvironment, EvaluationEnvironment, num_iterations, w_f, w_e,
num_cycles = 1, fc_layer_params = (100, 100, 100), learning_rate = le-3,
collect_episodes_per_iteration = 1, eval_interval = 1, replay_buffer_capacity = 10,
policy = None, rand_initial_state = True, sweep_noise = False, noise_level = "Low”,
initial_state = basis(4,2)):

mwn

QuantumRLAgent Class

Create instance of a reinforcement learning agent interacting with a
QuantumEnvironment Instance

Parameters

TrainEnvironment : class
Quantum Environment Instance

EvaluationEnvironment : class
Quantum Environment Instance

num_iterations : int
Number of training loop iterations

mwmn

self.env_train_py = TrainEnvironment
self.env_eval_py = EvaluationEnvironment
self.num_cycles = num_cycles
self.env_train_py.n_steps = self.num_cycles
self.env_eval_py.n_steps = self.num_cycles
self.num_iterations = num_iterations
self.fc_layer_params = fc_layer_params

self.learning_rate = learning_rate
self.collect_episodes_per_iteration = collect_episodes_per_iteration
self.eval_interval = eval_interval

self.replay_buffer_capacity = replay_buffer_capacity
self.policy = policy

self.rand_initial_state = rand_initial_state
self.initial_state = initial_state
self.env_train_py.w_f = w_f

self.env_eval_py.w_f = w_f

self.env_train_py.w_e = w_e
self.env_eval_py.w_e = w_e
self.sweep_noise = sweep_noise
self.noise_level = noise_level

self.create_network_agent(policy = policy)

def create_network_agent(self, policy = None):

Create Neural Network and Agent Instance based on Quantum Environment Class

mwmn

self.train_env = tf_py_environment.TFPyEnvironment(self.env_train_py)
self.eval_env = tf_py_environment. TFPyEnvironment(self.env_eval_py)

self.actor_net = actor_distribution_network.ActorDistributionNetwork (
self.train_env.observation_spec(),
self.train_env.action_spec(),
fc_layer_params = self.fc_layer_params

)
self.optimizer = keras.optimizers.Adam(learning_rate = self.learning_rate)

self.train_step_counter = tf.compat.v2.Variable(0)
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def

self.tf_agent = reinforce_agent.ReinforceAgent(
self.train_env.time_step_spec(),
self.train_env.action_spec(),
actor_network = self.actor_net,
optimizer = self.optimizer,
normalize_returns = True,
train_step_counter = self.train_step_counter

)
self.tf_agent.initialize ()
if policy is None:

self.eval_policy = self.tf_agent.policy
self.collect_policy = self.tf_agent.collect_policy

else:
self.eval_policy = tf.compat.v2.saved_model.load(policy)
self.collect_policy = self.tf_agent.collect_policy

self.replay_buffer = tf_uniform_replay_buffer. TFUniformReplayBuffer(
data_spec = self.tf_agent.collect_data_spec,
batch_size = self.train_env.batch_size,
max_length = self.replay_buffer_capacity

)

self.eval_replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
data_spec = self.tf_agent.collect_data_spec,
batch_size = self.eval_env.batch_size,

max_length = self.num_cycles + 1

)

self.avg_return = tf_metrics.AverageReturnMetric()

self.eval_observers = [self.avg_return, self.eval_replay_buffer.add_batch]
self.eval_driver = dynamic_episode_driver.DynamicEpisodeDriver(
self.eval_env,
self.eval_policy,
self.eval_observers,
num_episodes = 1

)

self.train_observers = [self.replay_buffer.add_batch]
self.train_driver = dynamic_episode_driver.DynamicEpisodeDriver(
self.train_env,
self.collect_policy,
self.train_observers,
num_episodes = self.collect_episodes_per_iteration

)

self.tf_agent.train = common. function(self.tf_agent.train)

run_training(self , save_episodes = True, clear_buffer = False):

Starts training on Quantum RL Agent

Parameters

save_episodes : bool : True
Saves episodes if set to True

clear_buffer : bool : False
Clears buffer each episode if set to True

mwn

noise_low = np.linspace(start = 200, stop = 10, num = self.num_iterations) x self.

env_eval_py.pulse_duration
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noise_high = np.linspace(start = 10, stop = 0.01, num = self.num_iterations) x self.

env_eval_py.pulse_duration

if self.noise_level == "Low"”:

self.noise = noise_low

elif self.noise_level == "High”:

self.return_list

self.noise = noise_high

self.episode_list
self.iteration_list

with

[]
[]

[l

trange(self.num_iterations, dynamic_ncols = False) as t:

for

i in t:

if self.rand_initial_state == True:

new_initial_state = rand_ket(2xxself.env_train_py.n_q)

else:

new_initial_state = self.initial_state

self.env_train_py.initial_state = new_initial_state
self.env_eval_py.initial_state = new_initial_state

if (i % 100 == 0):

if self.sweep_noise == True:

noise
self.
self.
self.
self.

= RelaxationNoise(tl = self.noise[i], t2
env_train_py.noise = [self.noise[i], self.
env_eval_py.noise = [self.noise[i], self.n
env_train_py.environment.add_noise(noise =
env_eval_py.environment.add_noise(noise =

t.set_description(f”Episode {i}")

if clear_buffer:
self.replay_buffer.clear ()

final_time_step, policy_state = self.train_driver.run()

= self.noise[i])
noise[i]]
oise[i]]

noise)
noise)

experience = self.replay_buffer.gather_all()
train_loss = self.tf_agent.train(experience)
if i % self.eval_interval == 0 or i == self.num_iterations — 1:

self.avg_return.reset()
final_time_step, policy_state = self.eval_driver.ru

n()

self.iteration_list.append(self.tf_agent.train_step_counter.numpy())
self.return_list.append(self.avg_return.result().numpy())

t.set_postfix ({"Return” : self.return_list[-1]})

if save_episodes:
self.episode_list.append(self.eval_replay_buffer.gather_all())

def plot_fidelity_return_per_episode(self):

mwmn

Plots the average fidelity and return per episode versus number of episode

mwn

avg_eval_reward_per_episode = []
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for i in range(self.num_iterations):
sum_eval = np.sum(self.env_eval_py.fidelity_list[self.num_cycles x i : self.

num_cycles + self.num_cycles x i])

def

avg_eval_reward_per_episode.append(sum_eval/self.num_cycles)

fig, axl = plt.subplots()
ax2 = axl.twinx()
ax2.axhline(y = 0, color = "grey”)

axl.plot(self.iteration_list, avg_eval_reward_per_episode, label = "Fidelity”, marker
"d”, color = '#214868 ', markevery = 20)
ax2.plot(self.iteration_list, self.return_list, label = “Return”, marker = ”“d”, color

"#5b97ca”, markevery = 20)
axl.set_ylabel("Fidelity ")
ax2.set_ylabel (”“Return”)
axl.set_xlabel (”Episode number”)
axl.legend(loc = (0.7, 0.45))
ax2.legend(loc = (0.7, 0.55))
fig.tight_layout()

plt.show()

plot_fidelity_energy_reward_per_iteration(self):

Plots fidelity per iteration

mwmn

self.iteration_space = np.linspace(l, self.num_cycles x self.num_iterations, self.

num_cycles x self.num_iterations)

fig, axl = plt.subplots()

ma_fid = self.moving_average(self.env_eval_py. fidelity_list)
ma_energy = self.moving_average(self.env_eval_py.energy_list)
ma_iteration_space = np.arange(len(ma_fid))

np.save( 'RL_Fidelity_Noise_RAW ", self.env_eval_py.fidelity_list)
np.save( 'RL_Energy_Noise_RAW ", self.env_eval_py.energy_list)
np.save( 'RL_Fidelity_List_MA ', ma_fid)

np.save( 'RL_Energy_List_MA’, ma_energy)

ax2 = axl.twiny()

ax2.axhline(y = 0, color = "grey”)
ax2.set_xticks ([0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000], [’

”

o0 T, '90 T, ‘80 T, ‘70 T", '60 T", '50 T', ‘40 T', 30 T', ‘20 T", '10 T', '0T'])

ax2.set_xlabel (”"Decoherence Time (T1, T2)")

axl.plot(ma_iteration_space, self.env_eval_py.fidelity_list[:len(ma_fid)], color = "#
FFCCCB ")

axl.plot(ma_iteration_space, self.env_eval_py.energy_list[:len(ma_fid)], color = "#
ECFFDC ")

axl.plot(ma_iteration_space, ma_fid, label = "Fidelity”, color = '#F70D1A")

axl.plot(ma_iteration_space, ma_energy, label = "Energy”, color = '#7CFC00")

axl.set_ylim (0.0, 1.0)

axl.set_xlabel (”"Episode number”)

axl.legend(loc = "upper right"’)

fig.suptitle(f”Fidelity , Energy, and Total Reward per Iteration QRLAgent \n $w_f = {
self.env_eval_py.w_f}$, $w_e = {self.env_eval_py.w_e}$")

def

fig.tight_layout()
plt.show()

get_final_pulse(self):

mwmn

Returns final action of agent

mwn

self.final_val = self.episode_list[-1]
self.final_pulse = self.final_val.action.numpy()[0, 0, :]
self.pulse_2d = np.reshape(self.final_pulse, (len(self.env_train_py.h_control), self.

env_train_py.timesteps))

def

return self.pulse_2d

get_highest_fidelity_pulse(self):
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mwmn

Returns the pulse with the highest fidelity

mwmn

self.max_index = self.env_eval_py.fidelity_list.index(max(self.env_eval_py.
fidelity_list))

self.max_val = self.episode_list[self.max_index]

self.max_pulse = self.max_val.action.numpy()[0, 0, :]

self.max_pulse_2d = np.reshape(self.max_pulse, (len(self.env_train_py.h_control),
self.env_train_py.timesteps))

return self.max_pulse_2d
def plot_final_pulse(self):

wmnn

Plots the final action generated by the RL agent

mwmn

self.timespace = np.linspace(0, self.env_eval_py.pulse_duration, self.env_eval_py.
timesteps)

colors = [ '#03080c’, '#214868 ', '#5b97ca’]

self.final_val = self.episode_list[—-1]
self.final_pulse = self.final_val.action.numpy()[0, 0, :]

self.pulse_2d = np.reshape(self.final_pulse, (len(self.env_train_py.h_control), self.
env_train_py.timesteps))

fig, ax = plt.subplots(len(self.env_train_py.h_control))
if len(self.env_train_py.h_control) ==

ax.axhline(y = 0, color = "grey”, Is = "dashed”)

ax.step(self.timespace, self.pulse_2d[0], label = f”{self.env_train_py.labels[0]}
", color = f"{colors[0]}")

ax.set(xlabel = "Time (a.u.)”, ylabel = f”{self.env_train_py.labels[0]}")

ax.legend ()

else:
for i in range(len(self.env_train_py.h_control)):
ax[i].axhline(y = 0, color = "grey”, Is = "dashed”)
ax[i].step(self.timespace, self.pulse_2d[i], label = f”{self.env_train_py.

labels[i]}”, color = f”{colors[i]}")
ax[i].set(xlabel = "Time (a.u.)”, ylabel = f”{self.env_train_py.labels[i]}")
ax[i].legend ()

fig.suptitle(”Final Pulse Generated by the QRLAgent”)
fig.tight_layout()

plt.show()

def show_summary(self):

Prints summary of the Actor Network (including number of parameters)

mwmrn

self.actor_net.summary()
def save_weights(self, directory):

my_weights = PolicySaver(self.collect_policy)
my_weights.save(directory)

def moving_average(self, a, n = 100):

ret = np.cumsum(a)
ret[n:] = ret[n:] - ret[:—n]
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return ret[n - 1:] / n

Appendix 4: EO-GRAPE Quantum Reinforcement Learning Class

class GRAPEQRLAgent:

def

def

__init__(self, TrainEnvironment, EvaluationEnvironment,
1, fc_layer_params =
collect_episodes_per_iteration = 1, eval_interval = 1, replay_buffer_capacity =
policy = None):

mwn

(100, 100, 100), learning_rate = le-3,

GRAPEQRLAgent Class

num_iterations, num_cycles

100,

Create instance of reinforcement learning agent interacting with a GRAPEApproximation
environment

Parameters

TrainEnvironment

class

GRAPEApproximation Instance

EvaluationEnvironment : class
GRAPApproximation Instance

num_iterations

int

Number of RL loop iterations

mwmn

self.env_train_py = TrainEnvironment

self.env_eval_py

self.num_cycles =

= EvaluationEnvironment

num_cycles

self.env_train_py.n_steps = self.num_cycles
self.env_eval_py.n_steps = self.num_cycles
self.num_iterations = num_iterations
self.fc_layer_params = fc_layer_params

self.learning_rate = learning_rate
self.collect_episodes_per_iteration = collect_episodes_per_iteration
self.eval_interval = eval_interval

self.replay_buffer_capacity = replay_buffer_capacity
self.policy = policy

self.create_network_agent()

create_network_agent(self):

mwmn

Create Neural Network and Agent Instance based on GRAPEApproximation class

mwmn

self.train_env =

tf_py_environment.TFPyEnvironment(self.env_train_py)

self.eval_env = tf_py_environment.TFPyEnvironment(self.env_eval_py)

self.actor_net =

self.train_env.observation_spec(),
self.train_env.action_spec(),
fc_layer_params = self.fc_layer_params

)

self.optimizer =

keras.optimizers.Adam(learning_rate =

self.train_step_counter = tf.compat.v2.Variable(0)

self.tf_agent =

reinforce_agent.ReinforceAgent(

self.train_env.time_step_spec(),
self.train_env.action_spec(),
actor_network = self.actor_net,

actor_distribution_network.ActorDistributionNetwork (

self.learning_rate)
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def

optimizer = self.optimizer,
normalize_returns = True,
train_step_counter = self.train_step_counter

)
self.tf_agent.initialize ()
if self.policy is None:

self.eval_policy = self.tf_agent.policy
self.collect_policy = self.tf_agent.collect_policy

else:
self.eval_policy = tf.compat.v2.saved_model.load(self.policy)
self.collect_policy = self.tf_agent.collect_policy

self.eval_policy = self.tf_agent. policy
self.collect_policy = self.tf_agent.collect_policy

self.replay_buffer = tf_uniform_replay_buffer. TFUniformReplayBuffer (
data_spec = self.tf_agent.collect_data_spec,
batch_size = self.train_env.batch_size,
max_length = self.replay_buffer_capacity

)

self.eval_replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
data_spec = self.tf_agent.collect_data_spec,
batch_size = self.eval_env.batch_size,

max_length = self.num_cycles + 1

)

self.avg_return = tf_metrics.AverageReturnMetric()

self.eval_observers = [self.avg_return, self.eval_replay_buffer.add_batch]
self.eval_driver = dynamic_episode_driver.DynamicEpisodeDriver(
self.eval_env,
self.eval_policy,
self.eval_observers,
num_episodes = 1

)

self.train_observers = [self.replay_buffer.add_batch]
self.train_driver = dynamic_episode_driver.DynamicEpisodeDriver(
self.train_env,
self.collect_policy ,
self.train_observers,
num_episodes = self.collect_episodes_per_iteration

)
self.tf_agent.train = common. function(self.tf_agent.train)

run_training(self, save_episodes = True, clear_buffer = False):

Starts training on Quantum RL Agent

Parameters

save_episodes : bool : True
Saves episodes if set to True

clear_buffer : bool : False
Clears buffer each episode if set to True

mwn

self.return_list = []
self.episode_list = []
self.iteration_list = []

with trange(self.num_iterations, dynamic_ncols = False) as t:
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def

for i in t:
t.set_description(f”Episode {i}")

if clear_buffer:
self.replay_buffer.clear()

final_time_step, policy_state = self.train_driver.run()
experience = self.replay_buffer.gather_all()
train_loss self.tf_agent.train(experience)

if i % self.eval_interval == 0 or i == self.num_iterations - 1:

self.avg_return.reset()
final_time_step, policy_state = self.eval_driver.run()

self.iteration_list.append(self.tf_agent.train_step_counter.numpy())
self.return_list.append(self.avg_return.result().numpy())

t.set_postfix ({"Return” : self.return_list[-1]})

if save_episodes:
self.episode_list.append(self.eval_replay_buffer.gather_all())

plot_reward_per_iteration(self):

Plots reward per iteration

mwmn

self.iteration_space = np.linspace(1l, self.num_cycles x self.num_iterations, self.

num_cycles x self.num_iterations)

fig, axl = plt.subplots()
axl.axhline(y = 0, color = "grey”)
axl.plot(self.iteration_space, self.env_eval_py.reward_list, label = "Reward”, marker

= "d”, color = '#5b97ca’, markevery = 50)

def

axl.set_xlabel (”"Episode number”)

axl.set_ylabel (”Reward”)

axl.legend(loc = (0.7, 0.45))

fig.suptitle (”"Reward per Iteration GRAPEQRLAgent”)
fig.tight_layout()

plt.show()

get_final_pulse(self):

mwmn

Returns final action of agent

mwmn

self.final_val = self.episode_list[—-1]
self.final_pulse = self.final_val.action.numpy()[0, 0, :]
self.pulse_2d = np.reshape(self.final_pulse, (len(self.env_train_py.h_control), self.

env_train_py.timesteps))

def

return self.pulse_2d

get_best_pulse(self):

Returns best action of agent

mwmnn

self.max_index = self.env_eval_py.reward_list.index(max(self.env_eval_py.reward_list)

self.max_val = self.episode_list[self.max_index]
self.max_pulse = self.max_val.action.numpy()[0, O,
self.max_pulse_2d = np.reshape(self.max_pulse, (len(self.env_train_py.h_control),

self.env_train_py.timesteps))

return self.max_pulse_2d
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def plot_best_pulse(self):
self.max_index = self.env_eval_py.reward_list.index(max(self.env_eval_py.reward_list)
self.max_val = self.episode_list[self.max_index]
self.max_pulse = self.max_val.action.numpy()[0, 0, :]
self.max_pulse_2d = np.reshape(self.max_pulse, (len(self.env_train_py.h_control),
self.env_train_py.timesteps))
fig, ax = plt.subplots(len(self.env_train_py.h_control))

self.timespace = np.linspace(0, self.env_eval_py.pulse_duration, self.env_eval_py.
timesteps)

colors = [ '#03080c’, '#214868 ', '#5b97ca’]
if len(self.env_train_py.h_control) ==

ax.axhline(y = 0, color = "grey”, Is = "dashed”)

ax.step(self.timespace, self.max_pulse_2d[0], label = f”"{self.env_train_py.labels
[0]}", color = f"{colors[0]}")
ax.set(xlabel = "Time (a.u.)”, ylabel = f”{self.env_train_py.labels[0]}")

ax.legend ()

else:
for i in range(len(self.env_train_py.h_control)):
ax[i].axhline(y = 0, color = "grey”, |Is = "dashed”)
ax[i].step(self.timespace, self.max_pulse_2d[i], label = f"{self.env_train_py
.labels[i]}"”, color = f”{colors[i]}")
ax[i].set(xlabel = "Time (a.u.)”, ylabel = f”{self.env_train_py.labels[i]}")

ax[i].legend ()

fig.suptitle ("Approximated GRAPE pulse generated by GRAPEQRLAgent”)
fig.tight_layout()

plt.show()

def plot_final_pulse(self):

Plots the final action generated by the RL agent

mwmn

self.timespace = np.linspace(0, self.env_eval_py.pulse_duration, self.env_eval_py.
timesteps)

colors = [ "#03080c ", "#214868 ', '#5b97ca’]

self.final_val = self.episode_list[—-1]
self.final_pulse = self.final_val.action.numpy()[0, 0, :]

self.pulse_2d = np.reshape(self.final_pulse, (len(self.env_train_py.h_control), self.
env_train_py.timesteps))

fig, ax = plt.subplots(len(self.env_train_py.h_control))
if len(self.env_train_py.h_control) ==

ax.axhline(y = 0, color = "grey”, Is = "dashed”)

ax.step(self.timespace, self.pulse_2d[0], label = f”"{self.env_train_py.labels[0]}
", color = f”{colors[0]}")
ax.set(xlabel = "Time (a.u.)”, ylabel = f”{self.env_train_py.labels[0]}")

ax.legend ()
else:
for i in range(len(self.env_train_py.h_control)):

ax[i].axhline(y = 0, color = “grey”, Is = "dashed”)
ax[i].step(self.timespace, self.pulse_2d[i], label = f”"{self.env_train_py.
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labels[i]}"”, color = f”{colors[i]}")

ax[i].set(xlabel = "Time (a.u.)”, ylabel = f”{self.env_train_py.labels[i]}")
ax[i].legend()

fig.suptitle (“Approximated GRAPE pulse generated by GRAPEQRLAgent”)
fig.tight_layout()

plt.show()

def show_summary(self):

def

mwmn

Prints summary of the Actor Network (including number of parameters)

mwn

self.actor_net.summary ()
save_weights(self, directory):

my_weights = PolicySaver(self.collect_policy)
my_weights.save(directory)
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Appendix 5: Miscellaneous Functions

def

def

def

def

def

def

def

def

def

tensor(a, b):

wmn

Returns tensor product between two matrices

wmnn

return np.kron(a, b)

identity (N):

wn

Returns Identity Matrix with Dimension 'N’

mmnn

return np.identity (N)

sigmax () :

mwmn

Returns Pauli—-x Matrix

wn

return np.array([[0,1],
[1,0]])

sigmay () :

wun

Returns Pauli-y Matrix

mwun

return np.array([[0, -1j],
[1j, 01])

sigmaz():

mwn

Returns Pauli-z Matrix

mwmun

return np.array([[1, 0],
[0, -11D)

cnot():

wnn

Returns CNOT Unitary Gate

wun

return np.array([[1, O, 0, O],
(0, 1, 0, 0],
[0, 0, 0, 1],
(0, 0, 1, 011)

Generate_Rand_Unitary(N):

wmun

Returns N-Dimenstional Random Unitary

wmn

rand_unitary (N)
x. full ()

parray = np.array(y)

return nparray

hadamard() :

wmun

Returns Hadamard Gate

wnn

return (1/np.sqrt(2)) x np.array([[1, 1],
[1, -11D

t_gate():
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def

def

def

def

wn

Returns T-Gate

wmn

return np.array([[1, 0],
[0, np.exp(=1j x (np.pi/4))]])

rx_gate(theta):

Returns X—Rotation gate

mwn

return np.array([[np.cos(theta/2), —-1j % np.sin(theta/2)],
[-1j % np.sin(theta/2), np.cos(theta/2)]])

rz_gate(theta):

return np.array([[np.exp(-1j x theta/2), 0]
11

[0, np.exp(1lj % theta/2) ),

overlap(A, B):
return np.trace(A.conj().T @ B) / A.shape[0]

Calculate_Unitary_Scipy(H_Static, H_Control, Control_Pulses, Timesteps, Total_Time):

Calculates Unitary based on Static Hamiltonian, Control Hamiltonian, and control
parameters

Parameters

H_Static : Static/Drift Hamiltonian Term

H_Control : Control Hamiltonian containing operators that can be tuned in the Hamiltonian
via the control fields

Control_Pulses : The Control Parameters for each term in ”“H_Control”
Timesteps : Number of timesteps ‘N for time discretization
Total_Time : Total Unitary Gate Time

Returns

Unitary_Total : Unitary Gate based on input parameters

wun

time = np.linspace(0, Total_Time, Timesteps+1)

H_Total = 0
U_Total = []
for i in range(Timesteps—1):

dt = time[i+1] — time[i]
H_Total = H_Static
for j in range(len(H_Control)):
H_Total += Control_Pulses[ixlen(H_Control) + j] x H_Control[j] # (H_1(t = 0),
H_2(t=0), H_1(t=1), ...)
U = expm(—1jxH_Totalxdt)
U_Total.append(U)

Unitary_Total = np.eye(4,4)
for x in U_Total:
Unitary_Total = x @ Unitary_Total

return Unitary_Total
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133 def Calculate_Fidelity (U_Target, U):
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def

wn

Calculate Fidelity Between Target Unitary and other Unitary U

Parameters

U_Target : Target Unitary Gate
U: Unitary Gate to Calculate Fidelity of

Returns

F: Fidelity between U_Target and U
F = abs(np.trace(U_Target.conj().T @ U)/np.trace(U_Target.conj().T @ U_Target) )xx2
return F

CalculateEnergeticCost(Control_Pulses, H_Static, H_Control, Timesteps, Total_Time,
Return_Normalized = False):

wmun

Calculate Energetic Cost of certain Unitary

Parameters

Control_Pulses : The Control Parameters for each term in “H_Control”
H_Static : Static/Drift Hamiltonian Term

H_Control : Control Hamiltonoian containing operators that can be tuned in the
Hamiltonian via the control fields

Timesteps : Number of timesteps ‘N’ for time discretization
Total_Time : Total time of unitary gate

Returns

EC : Energetic Cost of the Control Pulses based on the static and drift Hamiltonian

wmnn

H_T_Norm = []
stepsize = Total_Time/Timesteps
for in range(Timesteps—1):

i
HT =0

for j in range(len(H_Control)):
H_T += Control_Pulses[j, i] x H_Control[j]

#H_T += H_Static # Optionally include Static Hamiltonian
H_T_Norm.append(np. linalg .norm(H_T))
EC = np.sum(H_T_Norm) x stepsize
EC_Normalized = EC / (Total_Time x np.linalg.norm(np.sum(H_Control)))
if Return_Normalized == True:
Value = EC_Normalized

elif Return_Normalized == False:
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def

def

Value = EC
return Value
convert_qutip_to_numpy(operator):

data = operator. full ()
array = np.array(data)

return array
convert_qutip_list_to_numpy(operator_list):
new_list = []

for operator in operator_list:
new_list.append(convert_qutip_to_numpy(operator))

return new_list
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Appendix 6: Example Usage of Classes

# Initialize Environments

TrainingEnvironment = QuantumEnvironment(number_qubits, h_d, h_c, h_I, t1, t2,
target_unitary_cnot, 0.2, 0.8, number_of_timesteps, gate_duration,
number_of_grape_iterations, n_cycles)

EvaluationEnvironment = QuantumEnvironment(number_qubits, h_d, h_c, h_l, t1, t2,
target_unitary_cnot, 0.2, 0.8, number_of_timesteps, gate_duration,
number_of_grape_iterations, n_cycles)

TrainingEnvironmentGRAPE = GRAPEApproximation(number_qubits, h_d, h_c, h_l,
target_unitary_cnot, w_f = 1.0, w.e = 0, timesteps = number_of_timesteps,
grape_iterations = number_of_grape_iterations)

EvaluationEnvironmentGRAPE = GRAPEApproximation(number_qubits, h_d, h_c, h_I,
target_unitary_cnot, w_f = 1.0, w.e = 0, timesteps = number_of_timesteps,
grape_iterations = number_of_grape_iterations)

ApproximationAgent = GRAPEQRLAgent(TrainingEnvironmentGRAPE , EvaluationEnvironmentGRAPE,
num_iterations_Approx, fc_layer_params = (100, 100, 100), replay_buffer_capacity = 100)

# Run GRAPE Approximation Training Phase and save policy
ApproximationAgent.run_training ()
ApproximationAgent.save_weights( 'Test_Policy_Approx ")

# Initialize RLAgent Environment including loaded policy

RLAgent = QuantumRLAgent(TrainingEnvironment, EvaluationEnvironment, num_iterations_RL, w_f =

0.2, w_e = 0.8, fc_layer_params = (200, 100, 50, 30, 10), replay_buffer_capacity = 10,
policy = None, rand_initial_state = False)

# Run Trainingq
RLAgent. run_training ()
RLAgent.save_weights( 'Test_Policy_RL ")

# Plot the Reward per iteration of the Approximation Agent
ApproximationAgent. plot_reward_per_iteration ()

# Plot Best Pulse Generated by the Approximation agent
ApproximationAgent. plot_best_pulse ()

# Plot the Pulse Generated by the QRLAgent
RLAgent. plot_final_pulse ()

# PLot the Fidelity per iteration of the QRLAgent
RLAgent. plot_fidelity_energy_reward_per_iteration ()
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Appendix 7: Bloch Sphere Arc Length Experiment Example

# Define input parameters
drift_hamiltonian = h_d_1_qubit

n_q = number_qubits
control_hamiltonian = h_c_1_qubit
hamiltonian_label = h_I_1_qubit
u_target = fc.rx_gate(np.pi/2)
initial_state = basis(2,0)
gate_duration = 2 x np.pi
number_of_timesteps = 200

t1

1000 x gate_duration

t2 1000 x gate_duration
num_experiments = 10
weights = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]

# Simple Bloch Sphere Plot
def bloch_sphere_grape():

environment = QuantumEnvironment(n_q, drift_hamiltonian, control_hamiltonian,
hamiltonian_label, t1, t2, u_target, w.f =1, we = 0, timesteps = number_of_timesteps,

pulse_duration = gate_duration, grape_iterations = 200, n_steps = 1, sweep_noise = False)

environment. initial_state = initial_state
grape_pulses = environment.run_grape_optimization(w_f = 1, w.e = 0, eps_f = 1, eps_e =
100)

_, f_grape= environment.calculate_fidelity_reward(grape_pulses, plot_result = False)

environment. plot_grape_pulses(grape_pulses)

print(”Fidelity is:”, f_grape)

environment. plot_bloch_sphere_trajectory ()

total_arc_length = environment.get_total_arc_length ()

”

print(”"Total Arc Length is:”, total_arc_length)

def bloch_sphere_rl():

TrainingEnvironment = QuantumEnvironment(n_q, drift_hamiltonian, control_hamiltonian,
hamiltonian_label , t1, t2, u_target, w_f = 0.5, w.e = 0.5, timesteps =
number_of_timesteps, pulse_duration = gate_duration, grape_iterations = 200, n_steps =
sweep_noise = False)

TrainingEnvironment. initial_state = initial_state

EvaluationEnvironment = QuantumEnvironment(n_q, drift_hamiltonian, control_hamiltonian,
hamiltonian_label , t1, t2, u_target, w_f = 0.5, w.e = 0.5, timesteps =
number_of_timesteps, pulse_duration = gate_duration, grape_iterations = 200, n_steps =
sweep_noise = False)

EvaluationEnvironment. initial_state = initial_state

RLAgent = QuantumRLAgent(TrainingEnvironment, EvaluationEnvironment, num_iterations_RL,

w_f = 0.5, we = 0.5, fc_layer_params = (200, 100, 50, 30, 10), replay_buffer_capacity =

10, policy = None, rand_initial_state = False)
RLAgent. initial_state = initial_state
RLAgent.run_training ()

BestPulse = RLAgent.get_highest_fidelity_pulse ()

_, f_rl = EvaluationEnvironment. calculate_fidelity_reward (BestPulse, plot_result = False)

print(”“Fidelity is”, f_rl)



60
61
62
63
64
65
66

68
69
70
71
72
73
74

75
76

77
78
79

80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99
100
101

102
103

104
105

106
107
108
109
110

112
113

114

88 5. Conclusion and Future Work
EvaluationEnvironment. plot_bloch_sphere_trajectory ()
arc_length = EvaluationEnvironment.get_total_arc_length ()
print(”“Total Arc Length is:” , arc_length)
def correlation_experiment_grape():
weights = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
arc_length_list = []
energetic_cost_list = []
for i in range(len(weights)):
environment = QuantumEnvironment(n_q, drift_hamiltonian, control_hamiltonian,
hamiltonian_label , t1, t2, u_target, w_f = weights[i], w.e = 1 — weights[i], timesteps =
number_of_timesteps, pulse_duration = gate_duration, grape_iterations = 200, n_steps = 1,
sweep_noise = False)
environment. initial_state = initial_state
grape_pulses = environment.run_grape_optimization(w_f = weights[i], w_e = 1 — weights
[i], eps_f =1, eps_e = 100)
_, f_grape= environment.calculate_fidelity_reward(grape_pulses, plot_result = False)
total_arc_length = environment.get_total_arc_length ()
energetic_cost = environment. calculate_energetic_cost(grape_pulses, return_normalized
= False)
arc_length_list.append(total_arc_length)
energetic_cost_list.append(energetic_cost)
plt.plot(energetic_cost_list, arc_length_list, marker = 'd’, color = '#214868")
plt.xlabel(”"Energetic Cost (a.u.)"”)
plt.ylabel(”Bloch Sphere Arc Length (a.u.)”)
plt.grid()
plt.tight_layout()
plt.show()
def correlation_experiment_rl():

weights = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
arc_length_list = np.zeros((num_experiments, len(weights)))
energetic_cost_list = np.zeros((num_experiments, len(weights)))
fidelity_list = np.zeros((num_experiments, len(weights)))
for i in range(num_experiments):

for j in range(len(weights)):

TrainingEnvironment = QuantumEnvironment(n_q, drift_hamiltonian,

control_hamiltonian, hamiltonian_label, t1, t2, u_target, w_f = weights[j], we =1 -
weights[j], timesteps = number_of_timesteps, pulse_duration = gate_duration,
grape_iterations = 200, n_steps = 1, sweep_noise = False)

TrainingEnvironment. initial_state = initial_state

EvaluationEnvironment = QuantumEnvironment(n_q, drift_hamiltonian,
control_hamiltonian, hamiltonian_label, t1, t2, u_target, w_f = weights[j], we = 1-

weights[j], timesteps = number_of_timesteps, pulse_duration = gate_duration,
grape_iterations = 200, n_steps = 1, sweep_noise = False)

EvaluationEnvironment. initial_state = initial_state

RLAgent = QuantumRLAgent(TrainingEnvironment, EvaluationEnvironment,
num_iterations_RL, w_f = weights[j], w_e = 1 — weights[j], fc_layer_params = (200, 100,
50, 30, 10), replay_buffer_capacity = 10, policy = None, rand_initial_state = False)

RLAgent. initial_state = initial_state

RLAgent. run_training ()

BestPulse = RLAgent.get_final_pulse()

_, f_rl = EvaluationEnvironment. calculate_fidelity_reward (BestPulse, plot_result
= False)

total_arc_length = EvaluationEnvironment.get_total_arc_length ()

energetic_cost = EvaluationEnvironment. calculate_energetic_cost(BestPulse,
return_normalized = False)

arc_length_list[i, j] = total_arc_length
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5.2. Future Work

energetic_cost_list[i, j] = energetic_cost

fidelity_list[i, j] = f_rl

np.save(”Arc_Length_Multiple_Experiments.npy”, arc_length_list)
np.save(”EC_RL_Multiple_Experiments.npy”, energetic_cost_list)
np.save(”F_RL_Multiple_Experiments.npy”, fidelity_list)

correlation_experiment_rl ()

arc_length_array = np.load(”Arc_Length_Multiple_Experiments.npy”)

ec_array = np.load(”"EC_RL_Multiple_Experiments.npy”)
f_array = np.load(”F_RL_Multiple_Experiments.npy"”)
mean_arc_length = []

st_dev_arc_length = []

mean_ec = []

st_dev_ec = []

mean_f = []

for i in range(len(weights)):

m_arc_length = np.mean(arc_length_array[:, i])
mean_arc_length.append(m_arc_length)
std_arc_length = np.std(arc_length_array[:, i])
st_dev_arc_length .append(std_arc_length)

m_ec = np.mean(ec_array[:, i])
mean_ec.append(m_ec)

std_ec = np.std(ec_array[:, i])
st_dev_ec.append(std_ec)

m_f = np.mean(f_array[:, i])

mean_f.append(m_f)

fig, ax plt.subplots()
scatter ax.scatter(mean_ec, mean_arc_length, marker
clb = plt.colorbar(scatter)

norm = colors.Normalize(vmin = min(mean_f), vmax = max(mean_f))
mapper = cm. ScalarMappable(norm = norm, cmap = “viridis”)
color = np.array ([(mapper.to_rgba(v)) for v in mean_f])

for x, y, e_x, e_y, c in zip(mean_ec, mean_arc_length, st_dev_ec, st_dev_arc_length, color):

plt.scatter(x, y, marker = ‘d’, color = c)

plt.errorbar(x, y, xerr = e_x, yerr = e_y, fmt = "d”, color

plt.xlabel(”"Energetic Cost (a.u.)”)
plt.ylabel(”"Bloch Sphere Arc Length (a.u.)”)
plt.grid()

plt.tight_layout ()

plt.show()
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