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Abstract

With the rapid development of Quantum Computers (QC) and QC Simulators, there will be an
increased demand for functioning Quantum Algorithms in the near future. Some of the most
ubiquitously useful algorithms are solvers for linear systems of equations. Since the conception of
the Quantum Linear Solver Algorithm (QLSA) by Harrow, Hassidim and Lloyd (HHL) in 2009,
many improvements have been made, although a generic implementation for arbitrary matrices
and vectors is still not available. In this thesis a variant of the HHL QLSA is studied, and the open
challenges are investigated. Solutions for two of the challenges, namely the Eigenvalue Inversion
subroutine and the Higher-Order Ancilla Rotation subroutine, are discussed. As part of the thesis
project, these subroutines have been implemented in the QX Quantum Computer Simulator, and
the subroutines are combined to form a complete Quantum Linear Solver (QLS), with the restraint
that the implementation for the vector and Hamiltonian of the matrix must be provided by the
user. A proof-of-concept QLS by Cao et al. is also implemented in the QX simulator, and using
the implementation of the vector and Hamiltonian of Cao et al. the complete solver is tested.
In the process of this thesis, a framework for basic Quantum Arithmetic is built providing three
variants of Integer Adders, two variants of Integer Subtracters, one Integer Multiplier and one
Integer Divider. In addition, gates not natively available in the QX simulator are implemented,
and a number of improvements and extensions of algorithms presented in the literature are given,
making the described algorithms function on the QX simulator and extending features.
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Introduction

As the development of Quantum Computers continues, the field of Quantum Computing inches
closer to real world applications. The release of the first fully-integrated commercial Quantum
Computer by IBM in early 2019, making use of a 20 qubit processor, is a first step to the so-called
Noisy Intermediate-Scale Quantum (NISQ) era of Quantum Computing, where Quantum Com-
puters may transcend the capabilities of classical computers for the first time [1].

It is up to the field of Quantum Computation to be prepared and have the algorithms ready
to be implemented once the hardware allows for it. Quantum Computer Simulators play a vital
role in testing the feasibility of algorithms, and with ongoing projects such as LibKet1 that allow
for platform-independent high-level implementations of Quantum Algorithms, direct benchmarks
between platforms may soon be possible.

One of the most ubiquitously useful algorithms is that of the solver of systems of linear equations.
In many fields of research, especially those concerned with Quantum Physics and Simulations, it
is an essential part of computation. The proposition of the Quantum Linear Solver Algorithm
(QLSA) by Harrow, Hassidim and Lloyd (HHL) in 2009 promises a Linear Solver Algorithm that
runs exponentially faster than those on classical computers. However, a general QLSA subroutine
for generic matrices and vectors is not yet available.

The aim of this thesis is therefore to implement at least some of the parts of the HHL Quan-
tum Linear Solver Algorithm in the QX Quantum Computer Simulator [2]. To this purpose, the
algorithm including its improvements will be studied. In addition, its challenges will be inves-
tigated. They include the implementation of Hamiltonian Simulation, Vector Implementation,
Eigenvalue Inversion and Ancilla Rotation. Of these challenges, a number will be analysed further,
solved and combined to form a working prototype Quantum Linear Solver that is as complete as
possible.

Of the four main challenges, the Eigenvalue Inversion subroutine and Ancilla Rotation subrou-
tine are fully solved using multiple alternative methods. The result is a Quantum Linear Solver
(QLS) able to solve any matrix and vector, given that the implementation of the vector and Hamil-
tonian of the matrix are provided by the user. This solver and its subroutines are implemented
in the QX Quantum Computer Simulator, and a prototype solver for a specific Hamiltonian and
vector implementation is verified.

Besides the solver, a complete framework for Integer Arithmetic is developed to facilitate in solving
the Eigenvalue Inversion subroutine and Ancilla Rotation subroutine. The framework consists of
multiple variants of Integer Adders and Subtracters, a Multiplier and an Integer Division algorithm.
Additionally, multiple gates that are by default unavailable in the QX simulator are implemented.

The thesis is structured as follows. In Chapter 1, the basic concepts of Quantum Computa-
tion are explained. The concepts are used in the remainder of the thesis to construct Quantum
Circuits. The first applications are in Chapters 2 and 3, where, respectively, a number of common
Quantum Algorithms and Quantum Arithmetic are presented. In Chapter 4, the HHL Quantum
Linear Solver is introduced and an overview of its subroutines is given. In the three subsequent
Chapters 5, 6 and 7 the three main subroutines, that is, Eigenvalue Estimation, Eigenvalue In-
version and Ancilla Rotation are worked out in detail, respectively. The latter two are solved in
multiple ways, verified in the QX simulator, and compared to one another. Chapter 8 combines
the subroutines to form a complete proof-of-concept Quantum Linear Solver, and implements and
compares it with another proof-of-concept QLS. Finally, Chapter 9 gives a summary of the main
findings of the thesis, as well as conclusions, discussion and recommendations for future research.

This thesis is written in partial fulfilment of the requirements for the degree of Bachelor of Science
in Applied Physics and Applied Mathematics.

1Soon to be released open-source at gitlab.com/mmoelle1/LibKet.

gitlab.com/mmoelle1/LibKet
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1. Introduction to Quantum Computing

Quantum Computing is the culmination of Computer Science on one hand, and Quantum Mechan-
ics on the other. In Computer Science bits are used to encode information and computations are
performed by using logical operations such as ‘and’ and ‘or’. In Quantum Computing a similar
system is built using quantum bits or qubits instead of bits, to which quantum gates are applied
to change their states and thus perform computations [3]. These qubits allow for the use of effects
known from Quantum Mechanics, such as entanglement and superposition, which are not avail-
able in classical computers. An alternative to gate-based Quantum Computing, called Quantum
Annealing [4], is available, but it is not discussed in this thesis.

1.1 Basics of Quantum Computing

1.1.1 Single Qubit

In Quantum Computing, two energy levels are used to get a binary system. These energy levels
are indicated as |0〉 and |1〉, respectively. The states are written according to the bra-ket notation
introduced in 1939 by Dirac [5]. A qubit cannot only be in one of the two pure states |0〉 and
|1〉, but also in a so-called superposition of the two states. This can be written as a special linear
combination of the pure states |0〉 and |1〉 as follows,

|ψ〉 = α |0〉+ β |1〉 (1.1)

with coefficients α, β ∈ C and the normalisation requirement |α|2 + |β|2 = 1. When measuring
the |ψ〉 state, the result is a binary value ‘0’ or ‘1’, with respective probabilities |α|2 and |β|2,
and the qubit collapses into one of the two possible basis states |0〉 or |1〉. The |ψ〉 state is fully
characterised by the two complex amplitudes α and β, hence |ψ〉 can equivalently be written as
the coefficient vector of these values with regard to the pure state basis,

|0〉 ≡
[
1
0

]
, |1〉 ≡

[
0
1

]
, (1.2)

|ψ〉 = α |0〉+ β |1〉 ≡ α
[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
. (1.3)

With this notation, the normalisation requirement can be rewritten as an inner product,

〈ψ|ψ〉 =
[
α† β†

] [α
β

]
= α†α+ β†β = |α|2 + |β|2 = 1, (1.4)

where 〈ψ| and x† ∈ C are defined as the complex conjugates of |ψ〉 and x ∈ C, respectively. The
basis vectors chosen for |0〉 and |1〉 follow the orthogonality requirement 〈i|j〉 = δij , as 〈0|1〉 =
〈1|0〉 = 0. Here, δij is defined as the Kronecker delta. From the normalisation conditions in
Equation (1.4), it is seen that the most general allowed state is of the form

|ψ〉 = eiδ
(

cos

(
θ

2

)
|0〉+ eiγ sin

(
θ

2

)
|1〉
)

(1.5)

with θ ∈ [0, π] and γ ∈ [0, 2π). The value for δ ∈ [0, 2π) can be chosen arbitrarily, since it is
immeasurable and does not have any physical significance. It contributes equally to both |0〉 and
|1〉, and drops out in any inner product. The rewrite of the general qubit state in Equation (1.5)
allows for spherical representation of all possible single qubit states. The representation, called the
Bloch sphere, is shown in Figure 1.1. The states on the axes are known as the Clifford states.
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Figure 1.1: The Clifford states in the Bloch sphere [6].

Similar to classical computers, operations are used to perform computations. Among the op-
erations are so-called gates. An example of a gate that can also be found in a classical computer, is

the X gate (or not gate), which negates its input: |0〉 X−→ |1〉 and |1〉 X−→ |0〉. Gates work linearly
with superpositions, meaning that each single qubit operation can be written as a two-by-two
matrix that acts on the coefficient matrix of a state. For the example of the X gate, the matrix
reads

X =

[
0 1
1 0

]
. (1.6)

Multiplication of this matrix with an input qubit state yields the the output of the gate applied
to the qubit. Application of the X gate to the general state given in Equation (1.1) for example
yields the output state

X |ψ〉 ≡
[
0 1
1 0

] [
α
β

]
=

[
β
α

]
≡ β |0〉+ α |1〉 . (1.7)

The result of an operation should again be a legitimate quantum state, i.e. the normalisation
condition in Equation (1.4) should again hold after the transformation. Operations which obey
this condition are the so-called unitary operators [7]. An operator U is called unitary if and only
if it satisfies the condition UU† = U†U = I, with I the identity matrix. An important property of
a unitary matrix U is that all of its eigenvalues λ ∈ C obey |λ| = 1. This implies that all unitary
matrices are invertible. Since any Quantum Gate is of this form, it has the implicit consequence
that Quantum Computing is inherently reversible.

Every single qubit gate can be defined as a rotation around a specific axis, where the axis is
defined as in the Bloch sphere in Figure 1.1. A basis of three gates which allows for the construc-
tion of any rotation is the set of rotations around the x-, y- and z-axis. These gates are defined
as,

Rx(θ) =

[
cos θ2 9i sin θ

2

9i sin θ
2 cos θ2

]
, Ry(θ) =

[
cos θ2 9 sin θ

2

sin θ
2 cos θ2

]
, Rz(θ) =

[
e9iθ/2 0

0 eiθ/2

]
. (1.8)

The X gate for example can be interpreted as a rotation of π around the x-axis. Indeed, Rx(π) =
e9π/2X, which confirms the statement (global phase is immeasurable and hence unimportant).
Examples of other single-qubit gates used in this thesis are shown in Table 1.1. Since the decom-
positions of the gates are not a focus in this thesis, they will not be discussed.
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Name Symbol Matrix

Identity I

[
1 0
0 1

]
Pauli-X X

[
0 1
1 0

]
Pauli-Y Y

[
0 9i
i 0

]
Pauli-Z Z

[
1 0
0 91

]
Hadamard H 1√

2

[
1 1
1 91

]
Phase S

[
1 0
0 i

]
π/8 T

[
1 0
0 eiπ/4

]
√
not V 1√

2

[
1 + i 1− i
1− i 1 + i

]
Table 1.1: Examples of single-qubit gates used in this thesis.

1.1.2 Multiple Qubits

To design practical quantum algorithms, it is necessary to work and interact with multiple qubits.
To show what happens when several qubits are combined, first the case of a classical two bit system
is examined. The possible classical states are 0 and 1 for each bit, giving the four possible states 00,
01, 10 or 11 for two bits. A quantum system composed of two qubits, say |ψ1〉 = α1 |0〉1 + β1 |1〉1
and |ψ2〉 = α2 |0〉2 + β2 |1〉2, is described jointly as |ψ〉 = |ψ1〉 ⊗ |ψ2〉, where the “⊗” symbol,
called the Kronecker product, represents that the qubits form one system. The notation is often
shortened to |ψ〉 = |ψ1ψ2〉. The possible pure states for the system of two qubits are |00〉, |01〉,
|10〉 and |11〉, and the most general two qubit state can be written as a superposition of these pure
states,

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 , (1.9)

with the complex amplitudes α, β, γ, δ ∈ C, and the normalisation condition |α|2+|β|2+|γ|2+|δ|2 =
1. It is possible that the complex amplitudes allow the total state to be written as two separate
qubits, i.e. as |ψ〉 = (α1 |0〉1 + β1 |1〉1) ⊗ (α2 |0〉2 + β2 |1〉2). If however this is not the case, it is
said that the qubits are entangled, a feature that has no analogy in classical computers.

Comparable to the single qubit case, the complex amplitudes α through δ in Equation (1.9) fully
define the quantum state, and thus the system can equivalently be written as the coefficient vector,

|ψ〉 ≡


α
β
γ
δ

 , (1.10)

thereby assuming the canonical ordering, which is with the least significant bit combination on
top, i.e.,

|00〉 ≡


1
0
0
0

 , |01〉 ≡


0
1
0
0

 , |10〉 ≡


0
0
1
0

 , |11〉 ≡


0
0
0
1

 . (1.11)



5

For a quantum system comprised of n ∈ N qubits, the size of the coefficient vector is N = 2n.

Operations can be applied to multiple qubits. Generally, any gate acting on an n qubit system
can be represented by a 2n-by-2n unitary matrix, on the grounds that the normalisation condition
should again hold. Of special interest are controlled gates which will be discussed in the remainder
of this section.

A Controlled Quantum Gate applies a gate to the second qubit (“target”) only when the first
qubit (“control”) is in the |1〉 state. This operation is denoted as C(A), and it performs the follow-

ing transformation, |0〉1 ⊗ |ψ〉2
C(A)−−−→ |0〉1 ⊗ |ψ〉2 and |1〉1 ⊗ |ψ〉2

C(A)−−−→ |1〉1 ⊗ A |ψ〉2. The matrix
representation and symbol of this operation are,

C(A) =


1 0 0 0
0 1 0 0
0 0 A11 A12

0 0 A21 A22

 , •

A
, (1.12)

where A11, A21, A12 and A22 are the four elements of the matrix representation of A. In the
symbolic representation, the block with the A represents the gate applied to the target qubit, and
the dot represents the control qubit. A well known example of a controlled gate is the C(X) gate,
or cnot gate, which has its own specific symbol. The matrix representation and symbol are,

cnot = C(X) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , •
. (1.13)

The ⊕ symbol represents the application of the X gate to the target qubit, and the dot represents
the control qubit.

To illustrate the application of gates to higher numbers of qubits, one of the most ubiquitous
gates for three qubits is examined, which is the Toffoli gate. This gate operates comparable
to the cnot gate, as it is also a controlled-X gate. The difference lies in the fact that there are
two controlling qubits instead of one. Consider a three qubit system in which the first two qubits
are taken as controls, and the third qubit as target. The Toffoli gate is defined such that the

third qubit is flipped only when both other qubits are in the |1〉 state, i.e. |110〉 Toffoli−−−−−→ |111〉 and

|111〉 Toffoli−−−−−→ |110〉, whereas nothing happens for all 6 other states. The matrix representation of
the Toffoli gate is,

toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (1.14)

Finally completeness is briefly discussed. It can be proved that using a limited set of basis gates,
any gate of any size can be constructed up to arbitrary precision. An example of a set of universal
gates are the Hadamard, phase, cnot and π/8 gates [3]. However, the known process generally
takes an exponentially number of gates. One of the practical challenges of Quantum Computing is
to find efficient decompositions of quantum gates in terms of the aforementioned quantum gates.

1.2 Quantum Circuits

Qubits and gates as discussed in the previous section are used to construct Quantum Circuits.
Any quantum algorithm can be described as a quantum circuit. An example of a general Quantum
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Circuit is displayed in Figure 1.2. On the basis of this circuit the notation for Quantum Circuits
is explained.

|a〉 • H ×

|b〉 Z Y

|c〉 X • • ×

|d〉 T • S

Figure 1.2: Example of a quantum circuit.

In a quantum circuit, the different qubits are displayed on the vertical axis. By default, each
line represents a single qubit. Time is displayed horizontally, from left to right. A block represents
a gate, where the content inside the block denotes its type.

A controlled gate operates on two or more qubits. The qubit that acts as a control is shown
with a dot. A black dot is used when the gate is applied to the target qubit when the control qubit
is in the |1〉 state. It is also possible for the gate to be applied specifically when the controlling
qubit is in the |0〉 state. In that case a hollow dot is shown. A controlled gate can have multiple
qubits that act as control.

When two gates are applied to different qubits, they can be performed simultaneously. The gates
are then shown below one another. The ⊕ symbol is an alternative representation of the X gate,
causing the negation of the qubit states it is applied to. When two qubits are desired to switch
their states, a swap gate is applied which is denoted by two connected crosses.

A brief note should be made about Computer Science. Algorithms are often designed around the
ability to function for any number of qubits as input size and other input parameters. Consider
for example an algorithm that add two numbers together. Larger numbers as input will require
more qubits to store the values, and the process will require more gates. The terms commonly
used to describe the required numbers of qubit and gates are the width and depth of a circuit. The
width refers to the number of qubits necessary to perform the algorithm, while the circuit depth
refers to the number of time steps required to apply all the gates. The number of time steps is
by default the same as the number of gates, unless multiple gates can be applied simultaneously.
Then, the circuit depth is lower than the number of gates. Depending on the algorithm, the circuit
width and depth may either only slightly increase depending on input parameters, or can increase
substantially. To formalise the phenomenon, the Landau “Big O” notation is used [3]. A function
f(n) is called O(g(n)) for some function g(n) if and only if some n0 ∈ N and c ∈ R exist, such that
f(n) ≤ cg(n) for all n ∈ N with n ≥ n0. That is,

f(n) = O(g(n)) ⇐⇒
[
∃c ∈ R : ∃n0 ∈ N : ∀n ∈ N : n ≥ n0 =⇒ f(n) ≤ cg(n)

]
. (1.15)

Consider for example the function 3n2 + 5n− 3. This function scales as O(n2) and O(n3), but not
as O(n). In general, an algorithm is called feasible when for inputs of size n the circuit depth and
size scale as O(p(n)) for some polynomial function p(n), i.e. when the circuit width and depth
contain no exponentially growing terms.

The gates that are included in the calculation of the circuit width and depth can have consid-
erable impact on its outcome. Not every gate is directly implementable, but may instead require
multiple gates or even extra qubits to be implemented. Especially at hardware level there are
only a limited number of operations available, but also Quantum Simulators generally only offer a
subset of all possible Quantum Gates. Since the practical implementation of Quantum Algorithms
is the main focus of this thesis instead of thorough analyses on circuit width and depth, not much
attention is spent on these types of analyses.
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1.3 QX Implementation

The implementations of all circuits in this thesis are performed in the QX simulator, version 2.6.0
[2]. This simulator offers a limited number of gates, specifically: H, X, Y , Z, Rx(θ), Ry(θ), Rz(θ),
S, T , T †, cnot, Toffoli, swap, C(Z) and C(Rk). The definition of the Rk gate will follow in
the section on the Quantum Fourier Transform. The QX simulator reads quantum circuits in the
form of the Common Quantum Assembly language (cQASM) Version 1.0 [8]. In this section two
subjects are discussed. First an overview of the challenge of building gates that are not among the
default gates in QX and some implementations. Secondly is the procedure in which algorithms are
transformed into cQASM code in this thesis, which is through a cQASM code generator specifically
built in Python.

1.3.1 Building gates

Due to the limited number of available gates in the QX simulator, desired operations may not
be directly implementable. As was mentioned before, it is possible to approximate each gate
up to arbitrary precision using only a limited set of gates [3]. However, the process generally
takes exponentially many gates, which is not acceptable for an efficient practical implementation.
Whether a gate is able to be approximated efficiently depends on the gate, but a general analysis
is beyond the scope of this thesis. The interested reader is referred to [3]. The procedures to con-
struct a controlled gate and a multi-qubit controlled gate will be of use in this thesis, and will be
discussed in this section. First the construction of the controlled-U gate for any gate U is discussed.

It can be proven that for any single qubit gate U , there are always three single-qubit gates A,
B and C, such that ABC = I, and AXBXC = U , up to a phase difference eiα between the
outputs for |0〉 and |1〉, see [3]. Therefore, a controlled-U gate can be constructed using the circuit
in Figure 1.3. The gates A, B and C are case dependent. The algorithms to approximate these
single-qubit gates are not discussed in this thesis, and generally take an exponential circuit depth.

• • •
[
1 0
0 eiα

]
=

U C B A

Figure 1.3: General decomposition of a controlled gate into single gates and cnot gates

Secondly, the construction of the doubly-controlled-U gate is examined. There is no general process
as for the single controlled gate, but a procedure is available when the controlled-square-root-of-U
gate V is available, that is, V 2 = U . The circuit for this method is shown if Figure 1.4. The C(V )
gates are again not necessarily available directly in the QX simulator, but they may be approxi-
mated using the method described in Figure 1.3.

• • • •

• = • •

U V V † V

Figure 1.4: Doubly-controlled-U gate. V is defined such that V 2 = U .

For a more general method to build a doubly-controlled gate, or to construct a multi-qubit con-
trolled gate, a new concept is introduced. In the following circuits, extra work-qubits are required
in the process of implementing the gates. These work-qubits will be referred to as ancilla qubits
or ancillae. These are qubits which are required in the process to perform the operation, but do
not provide any useful information at the beginning or end. Preferably the ancillae start out at a
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simple state (usually |0〉), and after the operation are returned to that state. The circuits to make
a fivefold-controlled-U gate from either a singly-controlled-U gate or a doubly-controlled-U gate
are shown in Figure 1.5. It is seen that n−1 = 4 and n−2 = 3 ancillae are required in the circuits
respectively.

|c1〉 • • |c1〉
|c2〉 • • |c2〉
|c3〉 • • |c3〉
|c4〉 • • |c4〉
|c5〉 • • |c5〉
|0〉 • • |0〉
|0〉 • • |0〉
|0〉 • • |0〉
|0〉 • |0〉
|ϕ〉 U U c1c2c3c4c5 |ϕ〉

(a) Circuit for a fivefold-controlled-U gate, us-
ing a singly-controlled-U gate. The process re-
quires n− 1 = 4 ancilla qubits.

|c1〉 • • |c1〉
|c2〉 • • |c2〉
|c3〉 • • |c3〉
|c4〉 • • |c4〉
|c5〉 • |c5〉
|0〉 • • |0〉
|0〉 • • |0〉
|0〉 • |0〉
|ϕ〉 U U c1c2c3c4c5 |ϕ〉

(b) Circuit for a fivefold-controlled-U gate, us-
ing a doubly-controlled-U gate. The process re-
quires n− 2 = 3 ancilla qubits.

Figure 1.5: Circuits for a fivefold-controlled-U gate.

Many algorithms require some number of ancilla qubits. Not always however are they returned to
their initial state, in which case the output states are referred to as garbage output. An algorithm
to clear the garbage output exists, at the cost of more ancillae. Consider an operation U shown
in Figure 1.6a. In this operation a new notation is introduced; namely the notation for multiple
qubits on one line. This is denoted with a slash crossing the line. It provides shorthand notations
for larger operations, and it is fully case dependent what is precisely meant with any operation
involving multiple qubits per line. In this case, it is meant that the operation takes register |r〉 and
ancillae |a〉 as input, and transforms these respective registers into a desired output register |d〉 and
garbage-states |g〉. Instead of the garbage outputs, it is desirable to receive the ancillae state back
in their original state, in order to reuse them for other operations. A method to clear the garbage
register is shown in Figure 1.6b. It requires as many extra ancillae as there are in the |d〉 register,
initialised to |0〉. The output |d〉 can then be ‘copied’ into these qubits using the subroutine shown
in Figure 1.7. The word ‘copy’ for the copying subroutine is considered dangerous to use in the
context of quantum mechanics, as the No Cloning Theorem [3] states that a quantum state cannot
be duplicated; a duplicate will always be entangled with the original state. In the case of the copy
subroutine this is precisely desired, and hence the term ‘copy’ is safe to use in this context. A
downside of the garbage removal process besides the extra ancillae, is that more than twice as
many gates are required in order to undo U and to copy the |d〉 state.

|a〉 /
U

/ |g〉
|r〉 / / |d〉

(a)

|a〉 /
U U†

/ |a〉
|r〉 / • / |r〉
|0〉 / / |d〉

(b)

Figure 1.6: Method to avoid garbage production in a circuit. The registers |a〉, |r〉, |g〉 and |d〉 are respectively the
ancillae, the register, garbage output and desired output. The operation U† is defined as the inverse of operation
U .
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|x〉 / • / |x〉

|0〉 / / |x〉
=

|x0〉 • |x0〉
|x1〉 • |x1〉
...

. . .
...

|xn91〉 • |xn91〉
|0〉 |x0〉
|0〉 |x1〉
...

. . .
...

|0〉 |xn91〉

Figure 1.7: Subroutine to ‘copy’ a quantum state into another register

1.3.2 Python code generator

The QX simulator simulates circuits written in the cQASM language, which solely supports syntax
to perform gates. A file written in the cQASM language can be fed into the simulator. The
simulator returns the output states of the qubits in a command window. An example of cQASM
code that adds two 4 qubit values using the Cuccaro Adder algorithm [9] is shown in Figure 1.8a.
To aid the creation of complex circuits, a cQASM code generator is desirable. During the writing
of this thesis, an OpenQL compiler that takes a high-level language and outputs cQASM code
was in development, but it was not yet available in the course of this thesis. Therefore, a code
generator for cQASM was built in Python [10]. The tool contains three classes: Quantum Gates,
Quantum Subroutines and Quantum Functions. Each of the classes builds upon the previous, and
the Quantum Circuit class outputs a circuit in the cQASM language when ran. A Python code
example is shown in Figure 1.8b. It is the code that outputs the cQASM file in Figure 1.8a, and
can the cQASM code for a Cuccaro Adder of any input size. Additionally, it runs the circuit
in the QX Simulator, and retrieves the output state. Every circuit presented in this thesis has
been implemented and tested in the QX simulator using the Python code generator, unless stated
otherwise. Due to the multiple thousand lines of Python code and tens of thousands of lines of
QX code, the code is not included in this thesis. It can instead be found in the GitHub repository
https://github.com/0tmar/BEP_Quantum. All code is run through the RunQX.py file. In the file,
there is a list of booleans that determine which algorithms are ran, including input parameters for
most algorithms. The results shown in the thesis are often screen captures of the outputs of this
file.

https://github.com/0tmar/BEP_Quantum
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#function: Cuccaro Quantum Adder

qubits 12

.init

map q0,c

map q1,b0

map q2,a0

map q3,b1

map q4,a1

map q5,b2

map q6,a2

map q7,b3

map q8,a3

map q9,b4

map q10 ,a4

map q11 ,z

x a1

x b0

display

.add

cx a0 ,b0

cx a0 ,c

toffoli c,b0,a0

cx a1 ,b1

cx a1 ,a0

toffoli a0 ,b1,a1

cx a2 ,b2

cx a2 ,a1

toffoli a1 ,b2,a2

cx a3 ,b3

cx a3 ,a2

toffoli a2 ,b3,a3

cx a4 ,b4

cx a4 ,a3

toffoli a3 ,b4,a4

cx a4 ,z

toffoli a3 ,b4,a4

cx a4 ,a3

cx a3 ,b4

toffoli a2 ,b3,a3

cx a3 ,a2

cx a2 ,b3

toffoli a1 ,b2,a2

cx a2 ,a1

cx a1 ,b2

toffoli a0 ,b1,a1

cx a1 ,a0

cx a0 ,b1

toffoli c,b0,a0

cx a0 ,c

cx c,b0

.result

measure

display

(a) QX code for a four qubit
Cuccaro Adder.

from cQASM import *

def MAJ(qna , qnb , qnc):

gates = []

gates += [Qgate("cx", qna , qnb)]

gates += [Qgate("cx", qna , qnc)]

gates += [Qgate("toffoli", qnc , qnb , qna)]

return gates

def UMA(qna , qnb , qnc):

gates = []

gates += [Qgate("toffoli", qnc , qnb , qna)]

gates += [Qgate("cx", qna , qnc)]

gates += [Qgate("cx", qnc , qnb)]

return gates

class ADD(Qsubroutine ):

def __init__(self , n=1, qubitnamesa=None , qubitnamesb=None , qubitnamec=None , qubitnamez=None , do_overflow=True):

if type(do_overflow) is not type(True):

raise TypeError("’do_overflow ’ must be of type Boolean , not ’{}’".format(type(do_overflow )))

qna = buildnames(n, qubitnamesa , "a")

qnb = buildnames(n, qubitnamesb , "b")

if qubitnamec is None:

qnc = "c"

else:

qnc = qubitnamec

if do_overflow:

if qubitnamez is None:

qnz = "z"

else:

qnz = qubitnamez

else:

qnz = None

self.qubitnamesa = qna

self.qubitnamesb = qnb

self.qubitnamec = qnc

if do_overflow:

self.qubitnamez = qnz

gates = []

gates += MAJ(qna[0], qnb[0], qnc)

for i in range(1, n):

gates += MAJ(qna[i], qnb[i], qna[i-1])

if do_overflow:

gates += [Qgate("cx", qna[-1], qnz)]

for i in range(n-1, 0, -1):

gates += UMA(qna[i], qnb[i], qna[i-1])

gates += UMA(qna[0], qnb[0], qnc)

super (). __init__(name="add", gates=gates)

class ADDcircuit(Qfunction ):

def __init__(self , inp_a="0", inp_b="0", do_overflow=True):

name = "Cuccaro Quantum Adder"

na = len(inp_a)

nb = len(inp_b)

n = max(na , nb)

inp_a = (n-na)*"0" + inp_a

inp_b = (n-nb)*"0" + inp_b

qubits = 2*n + 2

addsubroutine = ADD(n=n, do_overflow=do_overflow)

qna = addsubroutine.qubitnamesa

qnb = addsubroutine.qubitnamesb

qnc = addsubroutine.qubitnamec

if do_overflow:

qnz = addsubroutine.qubitnamez

else:

qnz = "z"

if not isinstance(inp_a , str):

raise TypeError("input must be of type string")

if not isinstance(inp_b , str):

raise TypeError("input must be of type string")

initgates = []

initgates += [Qgate("map", "q0", qnc)]

for i in range(n):

initgates += [Qgate("map", "q"+str(2*i+1), qnb[i])]

initgates += [Qgate("map", "q"+str(2*i+2), qna[i])]

initgates += [Qgate("map", "q" + str(2*n + 1), qnz)]

for i in range(n):

if inp_a[-i-1] == "1":

initgates += [Qgate("x", qna[i])]

for i in range(n):

if inp_b[-i-1] == "1":

initgates += [Qgate("x", qnb[i])]

initgates += [Qgate("display")]

initsubroutine = Qsubroutine(name="init", gates=initgates)

resultgates = [Qgate("measure"), Qgate("display")]

resultsubroutine = Qsubroutine(name="result", gates=resultgates)

subroutines = [initsubroutine , addsubroutine , resultsubroutine]

super (). __init__(name=name , qubits=qubits , subroutines=subroutines)

if __name__ () == "__main__":

’’’Runs the Cuccaro Ripple -Carry Adder ’’’

# Inputs for the values

inp_a = "0010"

inp_b = "0001"

na = len(inp_a)

nb = len(inp_b)

n = max(na, nb)

# Write the circuits to a file

f = open(path + "adder_cuccaro.qc", "w")

f.write(str(AdderCuccaro.ADDcircuit(inp_a=inp_a , inp_b=inp_b )))

f.close()

# Run the circuits in the QX simulator and retrieve the results

res_add_cuc = runQX(’adder_cuccaro ’, n_tot + 2, return_res=True)

outp_a_plus_b_cuc = res_add_cuc [-1::-2]

# Show the results

print("\n\nAdder Cuccaro :\n\ninput a = {} = {}\ ninput b =

{} = {}\n\noutput a+b = {} = {}".format(

(n-na)*" " + inp_a , int(inp_a , 2),

(n-nb)*" " + inp_b , int(inp_b , 2),

outp_a_plus_b_cuc , int(outp_a_plus_b_cuc , 2)))

(b) Python code for generating a general Cuccaro Adder.

Figure 1.8: QX and Python code for a Cuccaro Adder [9].
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2. Quantum Subroutines

With the basics of Quantum Computation introduced in the previous chapter, quantum algorithms
can be constructed, with the aim to build algorithms that work ‘faster’ than their classical coun-
terparts. The thinking is that the possible superposition of states can be used to process multiple
input configurations in parallel. One of the main difficulties in building efficient quantum algo-
rithms lies in the fact that any information stored in the complex amplitudes of the superimposed
states cannot be accessed. As soon as a state is measured, it collapses back into one of the pure
states. Algorithms have to be designed around this challenge. Only a relatively small number of
core algorithms have been discovered so far that give a speedup compared to classical computers.
Two of the most well known of these algorithms are Grover’s Search [11] and the Quantum Fourier
Transform [12]. In this chapter the Quantum Fourier Transform is focused on, as it is a key el-
ement in the algorithm for solving systems of linear equations. More specifically, the Quantum
Linear Solver Algorithm applies the Quantum Phase Estimation Algorithm [13], which relies on
the Quantum Fourier Transform. The Quantum Phase Estimation Algorithm will therefore also
be discussed in depth in this chapter. The explanations for both algorithms are adapted from [3].
The challenges in the QX implementation of the algorithms will also be discussed in this chapter.

2.1 Quantum Fourier Transform

The Quantum Fourier Transform is the Quantum equivalent of the classical Discrete Fourier Trans-
form, or more precisely, its inverse. On a series of values x0, . . . , xN−1 the Discrete Fourier Trans-
form is defined as the operation x0, . . . , xN−1 −→ y0, . . . , yN−1, with [14],

yk ≡
1√
N

N−1∑
j=0

xje
2πijk/N . (2.1)

This operation will now be rewritten as an operation on qubits |0〉 , . . . , |N − 1〉. The Quantum
Fourier Transform on one of the qubits |j〉 is defined as,

|j〉 qft−−→ 1√
N

N−1∑
k=0

e2πijk/N |k〉 , (2.2)

with j = 0, 1, . . . , N − 1. For a superposition of the |0〉 , . . . , |N − 1〉 states with respective ampli-
tudes x0, . . . , xN−1, the Quantum Fourier Transform is then defined as,

N−1∑
j=0

xj |j〉
qft−−→

N−1∑
k=0

yk |k〉 , (2.3)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj as defined in
Equation (2.1).

The value for N assumed to be a power of two N = 2n for n ∈ N, and the basis |0〉 , . . . , |N − 1〉
to be the basis states of an n qubit quantum computer, ordered from least significant to most
significant, i.e. |0〉 ≡ |0 · · · 000〉, |1〉 ≡ |0 · · · 001〉, |2〉 ≡ |0 · · · 010〉, etc. until |N − 1〉 ≡ |1 · · · 111〉.
More generally, each of the states |j〉 is written as,

j = j1j2 . . . jn = j12n−1 + j22n−2 + . . .+ jn20, (2.4)

for all j = 0, 1, . . . , N−1 and jk ∈ {0, 1} for k = 1, . . . , n. The following notation and approximation
will be used for values j between zero and one,

j = 0.j`j`+1 · · · jm · · ·
≈ 0.j`j`+1 · · · jm
≡ j`/21 + j`+1/2

2 + . . .+ jm/2
m−`+1 + . . . ,

(2.5)
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for some `,m ∈ Z and jk ∈ {0, 1} for k ∈ Z. Using this notation, the Quantum Fourier Transform
of a single basis state as defined in Equation (2.2) can be rewritten into the following product
representation,

|j1j2 . . . jn〉 −→
1

2n/2

n⊗
`=1

[
|0〉+ e2πij2

−`

|1〉
]

=
1

2n/2

(
|0〉+ e2πi·(0.jn) |1〉

)
⊗
(
|0〉+ e2πi·(0.jn−1jn) |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi·(0.j1j2...jn) |1〉

)
.

(2.6)
For the rewrite from the first to the second line, the fact is used that the binary representation
of j = j1j2 . . . jn with a power of two 2−` is written as j · 2−` = j1 . . . jn−`.jn−`+1 . . . jn, and that

e2πik = 1 = e2πi0 for any k ∈ Z. Therefore it is found that e2πij2
−`

= e2πij1...jn−`.jn−`+1...jn =
e2πi0.jn−`+1...jn . The desired operation can be summarised into the circuit as shown in Figure 2.1.

|j1〉

QFT

|0〉+ e2πi0.jn |1〉

|j2〉 |0〉+ e2πi0.jn−1jn |1〉
...

...

|jn−1〉 |0〉+ e2πi0.j2...jn |1〉

|jn〉 |0〉+ e2πi0.j1...jn |1〉

Figure 2.1: Desired operation of the Quantum Fourier Transform.

To perform the Quantum Fourier Transform in a Quantum Circuit, the unitary transformation
Rk is introduced for k ∈ N,

Rk ≡
[
1 0

0 e2πi/2
k

]
. (2.7)

On a general state α |0〉 + β |1〉, the gate has the effect α |0〉 + β |1〉 Rk−−→ α |0〉 + βe2πi/2
k |1〉. The

Rk gates are used to build the Quantum Fourier Transform circuit. The main part of the circuit
is shown in Figure 2.2. When compared to the desired operation shown in Figure 2.1, it is seen
that the output of the circuit in Figure 2.2 is upside down.

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉+ e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.j2...jn |1〉

...
. . .

. . . · · · ...

|jn−1〉 · · · • · · · • · · · H R2 |0〉+ e2πi0.jn−1jn |1〉

|jn〉 · · · • · · · • · · · • H |0〉+ e2πi0.jn |1〉

Figure 2.2: Circuit for the Quantum Fourier Transform.

In the circuit, the normalisation 1/2n/2 is ignored. The effects of the gates will now be exam-
ined one by one, to show that the output is indeed that of Equation (2.6). The input state is
assumed to be a single value |j〉, which implies that the values jk are deterministic. Now consider
only the first qubit |j1〉. If j1 = 0, then the first H gate transforms the state to |0〉 + |1〉, and
otherwise to |0〉 − |1〉, meaning that

|j1〉
H−→ |0〉+ (−1)j1 |1〉
= |0〉+ eπij1 |1〉
= |0〉+ e2πi·(0.j1) |1〉 .

(2.8)
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Again the normalisation is ignored for clarity. Now the effects of the controlled-R2 gate are
examined. If |j2〉 = |0〉, then nothing is changed to the state. If on the other hand |j2〉 = |1〉, then

the amplitude of the |1〉 state is multiplied by e2πi/2
2

= e2πi0.01. Therefore the total effect of the
controlled-R2 gate on the |1〉 state is e2πi0.0j2 . Since 0.j1 + 0.0j2 = 0.j1j2, it is seen that the total
state of the first qubit after the controlled-R2 gate becomes

|0〉+ e2πi·(0.j1) |1〉 C(R2)−−−−→ |0〉+ e2πi·(0.j1j2) |1〉 . (2.9)

The rewriting steps applied to the R2 gate can be repeated for all other Rk gates applied to |j1〉
to show that the final state for the first qubit becomes |0〉+ e2πi0.j1j2...jn |1〉. Moreover, the same
method can be repeated to show that the output states are indeed |0〉 + e2πi0.jk...jn |1〉 for qubit
|jk〉. The remaining issue is that the outcome of the circuit in Figure 2.2 is upside down. To
this end, bn/2c swap gates are needed to get the output of the circuit as shown to output the
actual Quantum Fourier Transform: one to swap |j1〉 and |jn〉; one to swap |j2〉 and |jn−1〉; etcetera.

Due to the reversibility of quantum circuits, the Inverse Quantum Fourier Transform directly
follows from the Quantum Fourier Transform discussed above: the order of all gates is to be re-
versed, and all gates are to be replaced by their adjoints. The adjoint of the Hadamard gate is
itself, since HH = I. The adjoint of the Rk gate for k ∈ N is named the R−k gate, and it is defined
as,

R−k ≡
[
1 0

0 −e2πi/2k
]
. (2.10)

It is indeed seen that RkR9k = I, and thus the adjoint of the Rk gate is the R−k gate. The main
part of the Inverse Quantum Fourier Transform circuit is shown in Figure 2.3. Again the swap
gates are left out, meaning that the input is upside down. The same reversal subroutine as for the
forward Quantum Fourier Transform can be used, which should now be applied before the circuit
instead of after it.

|0〉+ e2πi0.j1...jn |1〉 · · · · · · R−n R−n+1 · · · R−2 H |j1〉

|0〉+ e2πi0.j2...jn |1〉 · · · R−n+1 R−n+2 · · · H · · · • |j2〉

...
· · · . .

.
. .
. ...

|0〉+ e2πi0.jn−1jn |1〉 R−2 H · · · • · · · • · · · |jn−1〉

|0〉+ e2πi0.jn |1〉 H • · · · • · · · • · · · |jn〉

Figure 2.3: Circuit for the Inverse Quantum Fourier Transform.

A difficulty with the Quantum Fourier Transform is that all information of the transform is stored
in the complex amplitudes of the output states. Therefore if the output is measured, it collapses
back into a single state which destroys all information. Hence, the Quantum Fourier Transform
cannot be used as a standalone algorithm, but can instead solely be used as a subroutine in a
larger algorithm. In larger circuits the quantum Fourier transform and Inverse Quantum Fourier
Transform are often denoted by QFT and QFT†, respectively.

2.2 Quantum Phase Estimation

Consider a unitary operator U which has an eigenvector |u〉 with eigenvalue e2πiϕ, where ϕ is un-
known. It is assumed that ϕ lies in [0, 1), since any value outside of this interval is mapped onto it.
The Phase Estimation Algorithm [13] approximates the value ϕ, through the efficient construction
of the Quantum Fourier Transform of ϕ which is then transformed into an approximation of ϕ
using the Inverse Quantum Fourier Transform. To find the Quantum Fourier Transform of ϕ, the
Quantum Phase Estimation algorithm uses (1) a memory register with the |u〉 state, (2) a work
register of n qubits initialised at the |00 · · · 0〉 state, and (3) an operator that efficiently performs
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a controlled-U2k operation for any k ∈ N. That is, an operator that can efficiently perform the U
gate 2k times.

It is important to understand the effect of the controlled-U2k operation when applied to |u〉.
The effect is a global phase shift of (e2πiϕ)2

k

= e2πiϕ2
k

when the control qubit is in the |1〉 state,
and no effect when the control qubit is in the |0〉 state. Therefore, if the control qubit is in the
general state α |0〉+ β |1〉, the effect is(

α |0〉+ β |1〉
)
|u〉 C(U2k )−−−−−→

(
α |0〉+ e2πiϕ2

k

β |1〉
)
|u〉 . (2.11)

This exponential is rewritten to a form that can be related to the Quantum Fourier Transform.
Since ϕ ∈ [0, 1), the binary representation of ϕ can be written as and approximated to

ϕ = 0.ϕ1ϕ2 . . . ϕnϕn+1 . . .

≈ 0.ϕ1ϕ2 . . . ϕn

≡ ϕ̃,
(2.12)

with ϕj either 0 or 1. Through this approximation ϕ ≈ ϕ̃, 2kϕ in turn can be approximated
to 2kϕ̃ = ϕ1 . . . ϕk.ϕk+1 . . . ϕn, similar to how multiplication with some power of ten moves the
decimal point in basic arithmetic. In the section on the Quantum Fourier Transform, is was stated
that e2πik = 1 for any integer k ∈ Z. Application of these equalities shows that the right hand side
of Equation (2.11) can be rewritten to(

α |0〉+ e2πiϕ2
k

β |1〉
)
|u〉 ≈

(
α |0〉+ e2πi·(0.ϕk+1ϕk+2...ϕn)β |1〉

)
|u〉 . (2.13)

Since |u〉 is an eigenvector of U , it remains unchanged in the process. Hence, it will be omitted
from further calculations.

|0〉 H · · · • |0〉+ e2πi(2
n−1ϕ) |1〉

... . .
. ...

|0〉 H • · · · |0〉+ e2πi(2
1ϕ) |1〉

|0〉 H • · · · |0〉+ e2πi(2
0ϕ) |1〉

|u〉 / U20 U21 · · · U2n−1 |u〉

Figure 2.4: First part of the Phase Estimation Algorithm.

The first part of the Phase Estimation Algorithm, which is the part that constructs the Quantum
Fourier Transform of ϕ, is shown in Figure 2.4. In it, first a Hadamard transform is performed on
the work register. That is, to each qubit in the work register a Hadamard gate is applied, which
yields a state where each qubit in the work register is in an equal superposition of |0〉 and |1〉,

|00 · · · 0〉 H⊗n

−−−→ 1

2n/2

(
|0〉+ |1〉

)
⊗
(
|0〉+ |1〉

)
⊗ · · · ⊗

(
|0〉+ |1〉

)
. (2.14)

The second step is to apply a sequence of n U2k operations to the memory, controlled by the work

qubits. Specifically, for each k = 1, 2, . . . , n, a U2n−k

gate is applied to |u〉, controlled by the k-th
work qubit. From Equation (2.11) it is seen that these gates perform the operation,

1

2n/2

(
|0〉+ |1〉

)
⊗
(
|0〉+ |1〉

)
⊗ . . .⊗

(
|0〉+ |1〉

)
(
U2n−k

)⊗n

−−−−−−−−→ 1

2n/2

(
|0〉+ e2πiϕ2

n−1

|1〉
)
⊗
(
|0〉+ e2πiϕ2

n−2

|1〉
)
⊗ · · · ⊗

(
|0〉+ e2πiϕ2

0

|1〉
)

≈ 1

2n/2

(
|0〉+ e2πi·(0.ϕn) |1〉

)
⊗
(
|0〉+ e2πi·(0.ϕn−1ϕn) |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi·(0.ϕ1ϕ2...ϕn) |1〉

)
.

(2.15)
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The approximation is performed using Equation (2.13). A comparison with Equation (2.6) shows
that the approximation is indeed the Quantum Fourier Transform of ϕ̃ ≈ ϕ, and hence the applica-
tion of the Inverse Quantum Fourier Transform on the work register will result in an approximation
ϕ̃ of ϕ in the work register. The quantum circuit depicted in Figure 2.5 shows the complete Quan-
tum Phase Estimation algorithm.

|0〉 / H • QFT† |ϕ̃〉

|u〉 /
(
U2n−k

)⊗n
|u〉

Figure 2.5: Complete Phase Estimation Algorithm. The part of the Hadamard gate and controlled-
(
U2n−k

)⊗n

gate is shorthand for the circuit described in Figure 2.4, and the Inverse Quantum Fourier Transform is defined as
the opposite of the operation in Figure 2.1.

The net process of the Phase Estimation Algorithm can be summarised as follows,

|0〉 |u〉 Phase Est.−−−−−−−→ |ϕ̃〉 |u〉 , (2.16)

with |ϕ̃〉 = |ϕ1〉 |ϕ2〉 · · · |ϕn〉. The work register can be measured to find ϕ̃.

2.3 QX Implementation

In QX, only a restricted form of the controlled-Rk gate is available, in which k cannot be chosen
manually. The restricted controlled-Rk gate is called the Cr gate. It applies a controlled-Rk gate,
but the value of k depends on the relative position of the qubits: for a control qubit and target
qubit that differ in position by ` ∈ Z\{0} qubits, the controlled-R|`|+1 gate is applied. An example
for the application of the R2 gate and R3 gate is shown in Figure 2.6a and Figure 2.6b.

• •

Cr = R2

(a) Cr gate with relative qubit
difference ` = 1, yielding the R2

gate.

• •

=

Cr R3

(b) Cr gate with relative qubit
difference ` = 2, yielding the R3

gate.

• × ×

= × • ×

R2 Cr

(c) Method to apply an R2 gate
using a Cr gate and swap gates.

Figure 2.6: QX implementations of the Rk gate using Cr gates.

The Cr gate is optimised for the forward QFT, but it hinders the implementation of other algo-
rithms, since qubit swaps might be necessary to bring the respective qubits in the correct relative
positions. An example for the application of the R2 gate is shown in Figure 2.6c. Moreover, the
QX simulator has no native support for the R−k gate. In [15], a method is described to construct

one from positive Rk gates. This is accomplished using the equality e−2πi/2
k

= e(2
k−2)πi/2k =

e2πi/2 + e2πi/4 + · · ·+ e2πi/2
k

, which shows that the R−k gate is equal to the product of the gates
R1 up to Rk, i.e.,

R−k = R1 R2 · · · Rk . (2.17)

Again, in the QX simulator the k in the Rk gates is dependent on the relative position of the two
qubits, and hence qubit swaps are required in between gates. Consider for example the process for
the application of the controlled-R−4 gate, which is shown in Figure 2.7.

In some application it is desirable to have an Rk gate not only controlled by a single qubit,
but by two control qubits. For example, when using a control qubit to control whether a QFT is
performed. The method described in Figure 1.4 can be used to this end. The process makes use
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• • × × × × × ×

× • ×
=

× • ×
× • ×

R−4 Z Cr Cr Cr

Figure 2.7: QX implementation for a R−k gate for k = 4.

of controlled (inverted-)square-root-of-Rk gates, which are controlled-R±(k+1) gates. The circuit
applying this method is shown in Figure 2.8a. However, the circuit requires the application of
R9k91 gates, which have to be built using the cumbersome methods shown in Figure 2.7. More-
over, when only a limited number of qubits is used, not enough qubits may be available to create
the necessary qubit distance to apply an Rk+1 gate. If the use of a single extra ancilla qubit is
not an issue, then a second method is available, based on the method shown in Figure 1.5a. The
circuit for this second method is shown in Figure 2.8b. It does not require the decomposition of
the Rk gate, and thereby reducing the circuit depth considerably.

|ctrl〉 • • • •

|a〉 • = • •

|b〉 Rk Rk+1 R9k91 Rk+1

(a) First method, based on Figure 1.4.

|0〉 •

|ctrl〉 • • •

|a〉 •
=
• •

|b〉 Rk Rk

(b) Second method, based on Figure 1.5a.

Figure 2.8: QX implementations for a doubly-controlled-Rk gate.

When the Quantum Fourier Transform is made controlled, it is also necessary to have a controlled-
H gate. Its implementation is not trivial, and is shown in Appendix A on page 82.

To validate the QX implementation of the Quantum Fourier Transform, a test circuit was con-
structed. In this circuit, first the QFT was performed, and directly afterwards the Inverse QFT.
If the implementation is correct, then the output of the register should be identical to the input.
An example of the circuit and the QX output for the three qubit input |101〉 is shown in Figure 2.9.

It is seen that the output indeed matches the input. The output was validated for all four-qubit
inputs |0000〉 through |1111〉 and several other values with either higher or lower numbers of qubits,
which suggests that the QFT implementation and its inverse indeed function as expected. This
will be further verified in the next chapter, where the QFT will be used as subroutine for multiple
algorithms, which would be impossible if the QFT was implemented incorrectly.

The Phase Estimation Algorithm is not tested in this chapter, as it depends on an operator U
and vector v. As these are not available at this stage, the algorithm will only be implemented
when used as a subroutine in a Quantum Linear Solver.
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(a) cQASM Code. (b) QX ouptut.

Figure 2.9: Back and forth QFT using the three qubit input |101〉.
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3. Integer Arithmetic on a Quantum Computer

In multiple parts of the work done in this thesis it will be necessary to perform basic integer
arithmetic, i.e. Integer Addition, Integer Subtraction, Integer Multiplication and Integer Division.
In this chapter, multiple algorithms are discussed to perform those operations. More specifically,
algorithms for positive integers are discussed. The algorithms for subtraction, multiplication and
division all depend on addition algorithms, so the algorithms for addition will be described first.

3.1 Integer Addition

In this section, three alternative algorithms to add positive integers on a quantum computer will
be described, each named by their respective developers: the Draper [16], Cuccaro [9] and Muños-
Coreas [17] algorithms. The Draper algorithm exploits the advantages of quantum effects, by using
the Quantum Fourier Transform in the algorithm. The Cuccaro and Muños-Coreas adders on the
other hand more closely resemble classical algorithms, as they solely use X, cnot and Toffoli
gates. Each algorithm has its own benefits and downsides, which will be discussed after all three
algorithms have been introduced.

Before continuing to the actual algorithms, a general overview of the desired operation of an
adder is given. The aim of an adder is to construct the sum a+ b of two numbers a and b, which
in this case are positive integers. The numbers a and b are each saved in a quantum register as
a binary number. For example, the number a = 13 is stored as |a〉 = |1101〉, since 11012 = 1310.
Here, the subscripts 2 and 10 depict that the value is to be interpreted as a binary or decimal
number, respectively. More generally, if a is saved in an n qubit register, then it is referred to
as a = an91an92 . . . a0, where an91 is the most significant bit, and a0 the least significant. The
notation is chosen such that the index of each bit indicates the power of two it represents, i.e.
a = an91an92 . . . a0 = an91 · 2n91 + an92 · 2n92 + . . . + a0 · 20. The same notation is used for b.
Depending on the adder, the |b〉 register may or may not be the same size as |a〉.

In order to use as few qubits as possible, it is desirable to save the sum a + b in one of the
two already existing registers. The convention will be used that the |b〉 register is transformed
into the sum a + b, while a’s register is left untouched by the algorithm. The desired operation
performed by an adder is therefore

|a〉 |b〉 add−−→ |a〉 |a+ b〉 . (3.1)

It is necessary to assume that b’s register is at least as large as that of a in order to fit the sum
of both numbers. When the sum register is taken the same size as the largest of the two numbers,
problems may still occur. Namely, the sum a+b may require one additional qubit to save compared
to a and b separately (e.g. 1002 + 1002 = 10002). This extra qubit is called the overflow qubit,
and it depends on the situation whether the overflow is implemented. If left out, the numbers
and sum are called two’s complement [18]. Then, when the highest value is reached, the register
rolls back to 0, e.g. 11112 + 00012 = 00002 for 4 qubit two’s complement numbers, instead of the
normal 11112 + 00012 = 100002. One might also want to be able to control the addition operation,
meaning that an external qubit controls whether the addition is performed or not. The inputs and
outputs of the most complete adder algorithm, i.e. with both an overflow and a control, are as
shown in Figure 3.1.

Another important remark is that it will generally be assumed that a and b are integers. Calcula-
tion would not change in any way when placing the decimal point halfway through the numbers,
as long as it is in the same place for both numbers. Otherwise padding with zeroes is necessary.
This thesis will however not go into detail on non-integer values.
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ctrl • ctrl

a / • / a

b /
ADD

/

z
a+ b


Figure 3.1: Inputs and outputs of a quantum addition circuit implementing both an overflow qubit z and a control
ctrl.

3.1.1 Draper Adder

One of the earlier algorithms for additions was the Quantum Fourier Transform Adder algorithm
introduced by Draper in [16]. The complete algorithm is shown in Figure 3.2. The most significant
qubits are as mentioned those with the highest index, e.g. a = an91an92 . . . a0. This is precisely
the other way around compared to the explanation of the QFT.

|an91〉 • · · · · · · · · ·
|an92〉 • · · · • · · · · · ·

...
. . .

. . .

|a〉

|a0〉 · · · • · · · • · · · •

|bn91〉

QFT

· · · · · · · · · R1

QFT†
...
|b1〉 · · · R1 · · · Rn−1 · · ·

|a+ b〉

|b0〉 R1 R2 · · · Rn · · · · · ·




Figure 3.2: Complete Draper Adder.

The algorithm will now be analysed step by step to show that its output is indeed that of Equation
(3.1). First, the complete QFT (i.e. including swap subroutine) as shown in Figure 2.1 is applied
to register |b〉. This results in the states for |b〉 shown in Equation (2.6),

|b〉 = |bn91〉 |bn92〉 · · · |b0〉
qft−−→ 1

2n/2

(
|0〉+ e2πi·(0.b0) |1〉

)(
|0〉+ e2πi·(0.b1b0) |1〉

)
· · ·
(
|0〉+ e2πi·(0.bn91bn92...b0) |1〉

)
.

(3.2)

The final qubit of the |b〉 register (|b0〉) is now examined, in order to visualise the effect of the
controlled-R1, -R2, . . ., -Rn gates on its state. In the explanation of the Quantum Fourier Trans-
form is was explained that an Rk gate controlled by qubit an9` applied to the state α |0〉+β |1〉 has

the effect α |0〉 + β |1〉 Rk−−→ α |0〉 + e2πi0.0...0an9`β |1〉, with ` − 1 zeroes between the decimal point
and an9`. The effect of the controlled-R1, -R2, . . ., -Rn gates |b0〉 is thus,(
|0〉+ e2πi·(0.bn91bn92...b0) |1〉

)
R⊗n

k−−−→
(
|0〉+

[
e2πi·(0.an91)e2πi·(0.0an92 · · · e2πi0.0...0a0)

]
e2πi·(0.bn91bn92...b0) |1〉

)
=
(
|0〉+ e2πi·(0.an91an92...a0)e2πi·(0.bn91bn92...b0) |1〉

)
=
(
|0〉+ e2πi·(0.an91an92...a0+0.bn91bn92...b0) |1〉

)
.

(3.3)
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In the same way it can be seen that the effect of the controlled-R1, -R2, . . ., -Rn91 gates on qubit
|b1〉 is,

(
|0〉+ e2πi0.bn92bn93...b0 |1〉

) R⊗n91
k−−−−→

(
|0〉+

[
e2πi0.an92e2πi0.0an93 · · · e2πi0.0...0a0

]
e2πi0.bn92bn93...b0 |1〉

)
=
(
|0〉+ e2πi0.an92an93...a0e2πi0.bn92bn93...b0 |1〉

)
=
(
|0〉+ e2πi(0.an92an93...a0+0.bn92bn93...b0) |1〉

)
.

(3.4)

The steps can be repeated for all other qubits and Rk gates, yielding a total state of the |b〉 after
all Rk gates of,

1

2n/2
(
|0〉+ e2πi0.b0 |1〉

) (
|0〉+ e2πi0.b1b0 |1〉

)
· · ·
(
|0〉+ e2πi0.bn91bn92...b0 |1〉

)
R

⊗n(n+1)/2
k−−−−−−−→ 1

2n/2

(
|0〉+ e2πi(0.a0+0.b0) |1〉

)(
|0〉+ e2πi(0.a1a0+0.b1b0) |1〉

)
· · ·
(
|0〉+ e2πi(0.an91an92...a0+0.bn91bn92...b0) |1〉

)
.

(3.5)
This is precisely the Quantum Fourier Transform of a+ b, which shows that after the application
of the Inverse Quantum Fourier Transform subroutine to the b-register indeed the result |a+ b〉 is
found in it.

Since the controlled-Rk gates are diagonal matrices (i.e. their only non-zero values lie on the
diagonal), it is seen that the the different Rk gates commute, as all diagonal matrices commute.
This implies that the order of the Rk gates in the circuit in Figure 3.2 is irrelevant. Moreover,
multiple of the Rk gates can even be performed simultaneously. This allows for the rewrite of
the circuit shown in Figure 3.3, which has a greatly reduced circuit depth compared to the initial
circuit shown in Figure 3.2.

|an91〉 • · · ·

|an92〉 • · · ·
...

. . .

|a〉

|a0〉 · · · •

|bn91〉

QFT

· · · R1

QFT†
... . .

. ...

|b1〉 R1 · · · Rn−1
|a+ b〉

|b0〉 R1 R2 · · · Rn




Figure 3.3: Rewrite of the complete Draper Adder optimised for circuit depth.

Now consider a value a saved in a register that is m qubits smaller than the |b〉 register, i.e.

a = 0n910n92 . . . 0n9man9m91an9m92 · · · a0
= an9m91an9m92 · · · a0.

(3.6)

Then the first m columns of Rk gates as shown in Figure 3.3 can be omitted, since the a` for
` ≥ n −m are always zero. The value of a can thus indeed be saved in a smaller register than b,
and the circuit can be rewritten to the form shown in Figure 3.4.

The Draper adder does not natively support overflow. This thesis proposes a small extension
to the Draper adder that effectively implements an overflow qubit. If the register containing |b〉 is
defined one qubit larger than necessary and if the most significant is left zero, then the method for
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|an9m91〉 • · · ·

|an9m92〉 • · · ·
...

. . .

|a〉

|a0〉 · · · •

|bn91〉

QFT

· · · R1

QFT†

... . .
. ...

|bm+1〉 R1 · · · Rn9m91

|bm〉 R1 R2 · · · Rn9m |a+ b〉
...

...
...

...
...

|b1〉 Rm Rm+1 · · · Rn91

|b0〉 Rm+1 Rm+2 · · · Rn




Figure 3.4: Draper adder for a saved in a register m qubits smaller than b.

addition of two qubits of different sizes (Figure 3.4) can be applied: if m is taken as m = 1 and n
is changed to n → n + 1, then the resulting circuit precisely outputs the sum a + b with overflow
in the b register.

3.1.2 Cuccaro Adder

The Cuccaro Addition Algorithm was first described in [9]. This algorithm resembles a classical
algorithm, as it does not exploit any quantum-exclusive effects. The Cuccaro adder algorithm is
instead based on a classical integer adder algorithm, the so-called ripple-carry adder [9]. In the
Cuccaro algorithm the numbers are saved in registers of the same size, i.e. as a = an91an92 · · · a1a0
and b = bn91bn92 · · · b1b0 for some n ∈ N.

The Cuccaro Adder algorithm consists of multiple subroutines, which partially solve the addi-
tion problem for one significant bit at a time. The first subroutine starts at the least significant
bits a0 and b0. The subroutine determines whether a0 and b0 are both in the |1〉 state, in which
case the partial sum exceeds the length of one bit, since 12 + 12 = 102. In that case, the resulting
|1〉 qubit is communicated to the next significance level as a so called carry bit, denoted as c1. The
next subroutine takes the carry bit c1 and the next two bits a1 and b1 as inputs, and determines
the carry bit for the next level, c2, etcetera. This process is repeated until the most significant
qubits an91 and bn91, at which level the carry bit is equal to the overflow. The information of the
carry bits can now be used to calculate the actual values of s ≡ a+ b for each significant bit, which
are si = ai ⊗ bi ⊕ ci. Here, the “⊕” symbol depicts the xor operation. In the Cuccaro Quantum
Ripple Carry Adder the desired in- and outputs for a single significance level are shown in Figure
3.5a. The circuits for the maj and uma subroutines are defined in Figures 3.5b and 3.5c. Their
names stand for MAJority add and UnMajority Add, respectively.

Using the maj and uma subroutines, a full adder can be built using the circuit shown in Fig-
ure 3.6. Note that an extra ancilla qubit |c0〉 initialised at |0〉 is necessary to perform the first
maj and last uma subroutine in the algorithm. It is possible to omit the overflow qubit |z〉. In
that case the single cnot in Figure 3.6 is left out, and the sum becomes two’s complement. This
also allows for the removal of the last two gates in the last maj subroutine and the first two gates
of the first uma subroutine, since these gates now cancel out. A visual difference compared to
the Draper adder is the order of the qubits, with the |a〉 and |b〉 registers interwoven instead of
separated. Since the order of the qubits is physically unimportant, this does not have any impact
and is solely done for ease of explanation.
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ci

J
A
M ci ⊕ ai

A
M
U ci

bi bi ⊕ ai si

ai ci+1 ai

(a) Desired in- and output of a significance level step in the Cuccaro Quantum Ripple Carry Adder.

J
A
M •

= •
• •

(b) maj subroutine.

A
M
U • • • •

= • = •
• • •

(c) uma subroutine, including rewrite.

Figure 3.5: The maj and uma subroutines used in the Cuccaro Quantum Ripple Carry Adder.

c0

J
A
M · · · c0 ⊕ a0 · · ·

A
M
U 0

b0 · · · b0 ⊕ a0 · · · s0

a0

J
A
M · · · c1 ⊕ a1 · · ·

A
M
U

a0

b1 · · · b1 ⊕ a1 · · · s1

a1

J
A
M · · · c2 ⊕ a2 · · ·

A
M
U

a1

b2 · · · b2 ⊕ a2 · · · s2

a2 . . . c3 ⊕ a3 . .
. a2

...
. . .

... . .
. ...

an−1 . . .

J
A
M cn ⊕ an

A
M
U . .

. an−1

bn · · · bn ⊕ an · · · sn

an · · · cn+1 • · · · an

z · · · z · · · z ⊕ sn+1

Figure 3.6: Full Cuccaro Adder circuit, with the maj and uma subroutines as defined in Figures 3.5b and 3.5c.
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In the Cuccaro paper [9], the circuit is compacted using the rewrite of the uma subroutine as
defined in Figure 3.5c. This rewrite allows for more parallel executions of gates. An example of
the rewrite for n = 5 is shown in Figure 3.7.

b0 • • s0
a0 • • • a0
0 • • • 0
b1 • • s1
a1 • • • • • • • a1
b2 • • s2
a2 • • • • • • • a2
b3 • • s3
a3 • • • • • • • a3
b4 • • s4
a4 • • • • • • a4
b5 • s5
a5 • • • • • a5
z z ⊕ s6

Figure 3.7: Compact parallel rewrite of the Cuccaro Adder as defined in Figure 3.6.

The Cuccaro paper does not elaborate on how to extend the circuit to make the addition con-
trolled by an external qubit. This thesis proposes a minor extension to the Cuccaro Integer adder
to add this feature. The non-compacted version of the algorithm is transformed into a controlled
circuit by changing out the first cnot in each maj subroutine for a Toffoli gate also controlled
by the control qubit, and the same for the last cnot in every uma subroutine. These controlled
maj and uma subroutines are shown in Figure 3.8. When the control qubit is in the |0〉 state, these
new Toffoli gates are not performed. The algorithm now has no effect, since the maj and uma
subroutines are now effectively each other’s complements, as Toffoli gates and cnot gates are
their own adjoints. When an overflow qubit is used, the single cnot gate should also be replaced
by a Toffoli gate additionally controlled by the control qubit.

• •

J
A
M

•
= •

• •
(a) controlled-maj subroutine.

• •

A
M
U

• •
= •

•
(b) controlled-uma subroutine, including rewrite.

Figure 3.8: The controlled-maj and controlled-uma subroutines used in the controlled Cuccaro Quantum Ripple
Carry Adder.

To the author’s best knowledge, there is no extension for the compacted form of the Cuccaro
Adder to make the it controlled. The methods which can be implemented cause the parallelli-
sation to be undone, meaning that the benefit of the rewrite is lost entirely. Therefore, when a
controlled version of the Cuccaro adder is desired, the default form is used.

3.1.3 Muños-Coreas Adder

A more recent implementation of a Quantum Ripple Carry Adder is described by Muñoz-Coreas
et al. in [17]. An example of a Muñoz-Coreas adder circuit for n = 5 qubit numbers is shown in
Figure 3.9.

The complete Muñoz-Coreas adder requires the same number of gates as the uncompressed Cuc-
caro adder, and also requires an ancilla qubit, but it has two adaptations with benefits over the
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ctrl • • • • • • • ctrl
b0 • • s0
a0 • • • a0
b1 • • s1
a1 • • • • • • • a1
b2 • • s2
a2 • • • • • • • a2
b3 • • s3
a3 • • • • • • • a3
b4 • • s4
a4 • • • • • • a4
z z ⊕ s5
z • z

Figure 3.9: Circuit for the complete Muñoz-Coreas Adder for n = 5 qubit numbers.

Cuccaro adder. These extensions are that the full adder can be transformed such that it requires
no extra ancilla qubit when either no overflow, or no control is needed. The circuits for these
adaptations are shown in Figure 3.10 and Figure 3.11 respectively. The adapted circuit in Figure
3.10 was proposed in [18], while the adapted circuit in Figure 3.11 is the outcome of this thesis’
work. The adapted circuits will be beneficial in the algorithm used for integer division.

ctrl • • • • • ctrl
b0 • • s0
a0 • • • a0
b1 • • s1
a1 • • • • • • • a1
b2 • • s2
a2 • • • • • • • a2
b3 • • s3
a3 • • • • • • • a3
b4 s4
a4 • • • a4

Figure 3.10: Circuit for the Muñoz-Coreas Adder for n = 5 qubit numbers, without overflow.

b0 • • s0
a0 • • • a0
b1 • • s1
a1 • • • • • • • a1
b2 • • s2
a2 • • • • • • • a2
b3 • • s3
a3 • • • • • • • a3
b4 • s4
a4 • • • • • a4
z z ⊕ s5

Figure 3.11: Circuit for the Muñoz-Coreas Adder for n = 5 qubit numbers, without control.

3.1.4 Discussion on the adders

The three adders introduced in this chapter each have their benefits and downsides, and hence the
choice of the ‘optimal’ adder depends on the application. The main properties of the adders and
their variations are listed in Table 3.1.

If the goal of the adder is to add a small number to another larger number, then the Draper
Adder is the only efficient option. Besides, it is the only “fully featured” (both controlled and



25

Category
Draper Cuccaro Muñoz-Coreas
Default Default Compact Default No control No overflow

Number of gates1 3
2n(n− 1) 6n+ 1 9n− 8 7n− 4 7n− 6 7n− 8

Circuit Depth n2 6n+ 1(4) 2n+ 2 5n 5n− 2 5n− 4
Number of ancillae 0(2) 1 1 1 0 0
Controlled Yes(2) Yes No Yes No Yes
Overflow Yes(3) Yes Yes Yes Yes No
Unequal register size Yes No No No No No
Only basic gates No Yes Yes Yes Yes Yes

Table 3.1: Comparison between the different adders.
(1): In the required number of gates, no distinction is made in difficulty to implement gates. This may give a skewed
view of the numbers, but is satisfactory for our purposes and outside the scope of this thesis.
(2): When making the Draper Adder controlled, doubly-controlled-Rk gates are required, possibly making an ancilla
qubit necessary. See the section on QX implementation for details.
(3): The overflow can be implemented using an unequal register size, as described in the Draper Adder section.
(4): Some form of parallellisation is possible with the default Cuccaro Adder, but it becomes impossible when
making the adder controlled.

with overflow) adder that does not inherently require an ancilla qubit. However, it is also the only
adder with a circuit depth of O(n2) instead of O(n). Moreover, the adder is built from Rk gates,
which are very expensive when implemented in the QX simulator due to its lack of a user-defined
k in the Rk gates. When doubly-controlled, the Rk gates practically even require an ancilla qubit
to efficiently be implemented on the QX simulator. See the section on QX implementation in the
previous chapter for more details. All together this makes the Draper Adder far from ideal in
practical situations, despite its otherwise desirable features.

The differences between the Cuccaro and Muñoz-Coreas Adders are more subtle; which adder
is preferred is strongly case dependent. It should be based on whether parallel gates can be used,
whether the operation should be controlled and/or have an overflow. The decision criteria can
then be based on what is most important: fewer required qubits or a smaller circuit depth. It will
depend on those criteria which adder is the most suited for the situation.

3.2 Integer Subtraction

Any Quantum Integer Adder can be transformed into a Quantum Integer Subtracter through one
of two possible methods. In this section, the two methods will be discussed. The Draper Adder
additionally has a specific method to be transformed into a subtracter, which will be discussed
separately.

3.2.1 General Approach

In this section two methods are shown to transform any adder performing the operation |a〉 |b〉 →
|a〉 |a+ b〉 for a, b ∈ N into a subtracter. The first approach creates the operation |a〉 |b〉 →
|a〉 |a− b〉, the second one |a〉 |b〉 → |a〉 |b− a〉. The b − a circuit was introduced by Thapliyal
in [19], whereas the a− b circuit is the outcome of this thesis.

To begin with, the method to construct the b − a subtracter is discussed. To this purpose the
operation a is defined as the bitwise inverse of a, i.e. each bit of a is flipped. For example,
11010 = 00101. As was noted in [19], using this operation and an adder the value b − a can be
calculated using the equality

b− a = (b+ a). (3.7)

In order to understand why this is correct, the algebraic consequences of the a operation are
examined. For any n-bit number a ∈ N, the equality a+a = 11 · · · 1 = 2n−1 holds. Consequently,
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a = 2n− 1− a. This second equality allows for the rewrite of the right hand side of Equation (3.7)
to indeed find its left hand side,

(b+ a) = 2n − 1−
[(

2n − 1− b
)

+ a
]

= 2n − 1− 2n + 1 + b− a
= b− a.

(3.8)

The equality is used to build the subtracter circuit depicted in Figure 3.12a. The ⊕ symbol
represents that an X gate is applied to each qubit in the register. The same calculation as in
Equation (3.8) can be performed to find that

(a+ b) = a− b, (3.9)

which shows how to construct a− b. In this case however, the two inversions do not occur in the
same register, so attention needs to be paid when making the operation controlled. The method
for a controlled subtracter is shown in Figure 3.12b. The cnot symbol represents that a cnot
gate is applied to each qubit in the register. When the subtraction is not controlled, the cnot
gates are replaced by X gates.

ctrl • ctrl

a / • / a

b /
add

/

z
b− a


(a) Circuit to perform b− a.

ctrl • • ctrl

a / • / a

b /
add

/

z
a− b


(b) Circuit to perform a− b.

Figure 3.12: General methods to convert an addition circuit into a subtraction circuit.

It may appear conträıntuitive that the the overflow qubit is excluded from the inversions in Figure
3.12. In the b − a case, inverting the qubit before and after the addition has no effect, since no
other qubits depend on the overflow qubit and therefore the X gates cancel out. In the case of
a − b, the overflow qubit is only flipped when 2n − 1 − b < a, which is precisely also when b > a.
Hence, the operation is already performed correctly when no cnot is applied; a cnot gate would
thus precisely yield an incorrect result.

3.2.2 Specific algorithm for the Draper Adder

The Draper Subtracter conversion is also able to perform either the operation b− a or a− b. The
b−a operation was introduced in [15], whereas the a−b method is introduced in this thesis. Firstly
the former is discussed. In the Draper Adder, a is added to b due to the positive rotation of the Rk
gates. This implies that if the same Rk gates between the QFT’s are applied, only with negative
rotation instead, then the state right before the inverse QFT becomes

1
2n/2

(
|0〉+ e2πi(0.b0−0.a0) |1〉

) (
|0〉+ e2πi(0.b1b0−0.a1a0) |1〉

)
· · ·
(
|0〉+ e2πi(0.bn91bn92...b0−0.an91an92...a0) |1〉

)
.

(3.10)
This is exactly the requested Quantum Fourier Transform of b−a. Note that the negative rotations
are exactly obtained when the R9k gates introduced in the previous chapter are used instead of Rk
gates. With these gates, the subtraction circuit can be built as shown in Figure 3.13.

If it is instead desired to calculate a − b, the signs in all Rk gates should be flipped, including
those in the (Inverse) Quantum Fourier Transforms.

3.3 Integer Multiplication

3.3.1 Additive Multipliers

Multiplication of two numbers can always be rewritten as a number of additions. As an example,
123 · 5 can be written as 100 · 5 + 2 · 10 · 5 + 3 · 5 = 615. A variation on this method is used in
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|an91〉 • · · ·

|an92〉 • · · ·
...

. . .

|a〉

|a0〉 · · · •

|bn91〉

QFT

· · · R−1

QFT†
... . .

. ...

|b1〉 R−1 · · · R−(n−1)
|b− a〉

|b0〉 R−1 R−2 · · · R−n




Figure 3.13: Complete Draper Subtracter

the implementation of the Integer Multiplication Algorithm proposed by Vedral in [20], and it was
slightly modified by Nguyen in [21]. Again, in this thesis only positive integers are considered.

3.3.1.1 Vedral Multiplier

Consider two positive integers a, b ∈ N, of m and n qubits in length, respectively. The goal of the
Vedral Multiplier is to compute the product a · b, which will be an m + n bit integer. In order
to accommodate the numbers, three registers |a〉, |b〉 and |c〉 are used of sizes m, n and m + n,
respectively. The algorithm, which will be referred to as the mul subroutine in subsequent sections,
performs the operation

|a〉 |b〉 |0〉 mul−−→ |a〉 |b〉 |ab〉 . (3.11)

The product a·b will now be rewritten in a form that is suitable to be performed only by performing
additions on binary numbers. The integer a is written as a = am−1 · · · a1a0 ≡ am−12m−1 + · · · +
a121 + a020, and b is written as b = bn−1 · · · b1b0 ≡ bn−12n−1 + · · · + b121 + b020. Note that
multiplication by 2` in binary effectively adds ` zeroes at the end of the number it is multiplied
with, e.g. 101 · 23 = 101000. The product a · b can therefore be rewritten as follows,

a · b = (am912m91 + · · ·+ a121 + a020) · b
= am91 · (2m91 · b) + · · ·+ a1 · (21 · b) + a0 · (20 · b)
= am91 · (bn91 · · · b1b000 · · · 0) + · · ·+ a1 · (bn91 · · · b1b00) + a0 · (bn91 · · · b1b0).

(3.12)

The number of zeroes after b0 at the start of the last line is equal to m − 1. The equation shows
that the product a · b is equivalent to m controlled additions: first, of b controlled by a0, then of b
shifted by one bit controlled by a1 etcetera, until b shifted by m− 1 bits controlled by am91.

ctrl • ctrl

x / • / x

0 / / x

=

ctrl • • · · · • ctrl

x0 • x0

x1 • x1
...

. . .
...

xn91 • xn91

0 x0

0 x1
...

. . .
...

0 xn91

Figure 3.14: Subroutine to ‘copy’ a binary state into another register, controlled by a single qubit.
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This particular order of additions is chosen deliberately. Namely, it was assumed that register
|c〉 is initialised as |0〉, which means that adding b to it only requires a controlled ‘copying’ sub-
routine to duplicate b into |cn91 · · · c1c0〉. The controlled-‘copy’ subroutine is an adaptation of the
‘copy’ subroutine shown in Figure 1.7, and is shown in Figure 3.14. For the next steps of adding
21b through 2m91b however, add subroutines a required, since the product register is not empty
anymore. The complete circuit is shown in Figure 3.15.

a0 • · · ·
a1 • · · ·
...

|a〉

am91 · · · •

b0:n91 / • • · · · • / |b〉

c0 · · ·
c1

ADD

· · ·
...

...
. . .

cn91 . . .

ADD

cn . . .
|ab〉

cn+1 . . .
...

. . .
cm+n91 · · ·

|a〉

|b〉

|0〉




Figure 3.15: Verdral Multiplication Algorithm circuit.

It is noteworthy that the add subroutines cover only a part of the qubits of the product reg-
ister. This is allowed because when summing a binary number ending in k zeroes (e.g. 101000),
the addition has no impact on those k least significant bits of the outcome (3 in the case of the
example, e.g. 101000 + 011 = 101011). Additionally, since the addition steps are ordered from
small to large, the most significant qubits of register |c〉 are always zero, meaning that any overflow
can only reach one qubit further than the added 2kb. For example, after the copying subroutine
the most significant m qubits of the product register are zero, i.e. the number in the product
register is smaller than 2n. The value 21 · b that is then possibly added in the first add-subroutine
has a maximum value of 2n+1−1, implying that the sum can never exceed 2n+2−1, and thus only
a single overflow at qubit cn+1 is necessary to save the sum. The last m− 1 qubits of the product
register therefore remain zero after this subroutine, and the method can be repeated for the next
add subroutine.

3.3.1.2 Nguyen Extension

In some situations it is beneficial to apply a sum and product at the same time, i.e. the goal is to
not only calculate the product a · b, but also add some value c at the same time, resulting in the
final desired answer of c + ab. The Vedral algorithm just discussed can easily be transformed to
have those desired in- and outputs. The adaptation will be referred to as muladd, and has the
following effect,

|a〉 |b〉 |c〉 muladd−−−−−→ |a〉 |b〉 |c+ ab〉 . (3.13)

There are two possible situations, which require different circuits. The distinction lies in whether
c < 2n. In other words, whether c can (like b) be written as an n qubit number cn91 · · · c1c0 or not.
If it is the case, then the only change necessary is that the copying subroutine needs to be replaced
by an add subroutine. The add subroutine should add b · 20 to the product register, controlled
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by a0. This change results in a circuit that can deal with the addition of c to the product ab. The
complete circuit is shown in Figure 3.16. The algorithm is again allowed to have the sums only
partially cover the |c〉 register, since all qubits |ci〉 with i ≥ n start out at zero, meaning that after
the first step only qubits |c0〉 , |c1〉 , . . . , |cn〉 can have non-zero values, after which the algorithm
can continue as described before.

a0 • · · ·
a1 • · · ·
...

|a〉

am91 · · · •

b0:n91 / • • · · · • / |b〉

c0

ADD

· · ·
c1

ADD

· · ·
...

. . .
cn91 . . .

ADD

cn . . .
|c+ ab〉

cn+1 . . .
...

. . .
cm+n91 · · ·

|a〉

|b〉

|c〉




Figure 3.16: Nguyen Multiplication adaptation capable of dealing with the addition of c < 2n.

For the second case, where c ≥ 2n, an adaptation of the above algorithm is possible that al-
lows a c up to a value of 2m+n − 1 to be added alongside the multiplication. In this case, all ci
in the product register can be non-zero, which means that the assumptions that the higher order
qubits in the product register can no longer be assumed zero, and hence any addition 2kb can now
affect the more significant qubits of c previously unaffected. It is now also possible for the sum
of c and ab to exceed 2m+n 9 1, meaning that an extra overflow qubit is necessary. To accom-
modate these new requirements, the additions themselves can remain the same, but the addition
subroutines now need to be able to deal with the changes in the most significant qubits of the c
register. The circuit that can deal with these changes is shown in Figure 3.17. In this case, the
register for b is smaller than the sub-registers of register c to which b is being added. To circumvent
the need for multiple ancilla qubits, the Draper QFT Adder is required to perform these additions.

It may also be desired not to add but to subtract the product ab from c. The circuit for this
operation, called the mulsub operation, is proposed in this thesis and has the following effect,

|a〉 |b〉 |c〉 mulsub−−−−→ |a〉 |b〉 |c− ab〉 . (3.14)

To change a muladd operation into a mulsub subroutine, only the add subroutines need to be
replaced by sub subroutines. However, only the second method can be used, since we now always
either have a c larger than ab (meaning non-zero high significance qubits), or an overflow of the
register will occur, which will give an erroneous result with the first method in both cases.

3.3.2 Alternative Integer Multiplication Algorithms

The Vedral multiplier has a circuit depth of O(n2) [20]. There are multipliers with circuit depths
of O(n1.5) using Karatsuba’s algorithm (“Divide and conquer”) [22, 23, 24]. These methods do
require extra ancillae. The goal of this thesis is to get a fully functioning QLSA implementation.
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a0 • · · ·
a1 • · · ·
...

|a〉

am91 · · · •

b0:n91 / • • · · · • / |b〉

c0

ADD

· · ·
c1

ADD

· · ·
...

. . .
cn91 . . .

ADD

cn . . . |c+ ab〉
cn+1 . . .

...
. . .

cm+n91 · · ·
z · · ·

|a〉

|b〉

|c〉




Figure 3.17: Complete Straightforward Multiplication Algorithm adaptation capable of dealing with the addition
of any c < 2m+n.

The tuning of individual components, such as a more efficient Integer Multiplication Algorithm, is
therefore not a primary goal of this thesis, and therefore left for future research.

3.4 Integer Division

The final operation of the basic integer arithmetic is Integer Division, where the goal is to find
the quotient a/b of two integers a, b ∈ N. The classical concept is less straightforward than the
previous algorithms, since is is not necessary for the outcome of the division a/b to be an integer.
Consider for example 7/4 = 1.75 6∈ N. The outcome to integer division a/b is therefore defined
differently, as two integers q and r, such that a = q · b + r and r ∈ {0, 1, . . . , b − 1}. q is called
the quotient and r the remainder. Thapliyal et al. describe an Integer Division Algorithm in
[18] and [19] which solves the problem without requiring any ancillae. However, attempts to
implement the algorithm as described in [18] and [19] resulted in different outcomes compared to
the descriptions. The quotient and remainder ended up in each others registers, and the algorithm
failed for b > 100 · · · 002 = 2n−1. An adaptation of the algorithm is proposed in this thesis which
works experimentally, and which requires no extra qubits or gates compared to the Thapliyal
algorithm. Although the interpretation of the steps performed in the adaptation is completely
different from that in [18] and [19], the changes to the circuits in the algorithm are only minor.

3.4.1 Adapted Thapliyal Algorithm

3.4.1.1 Overview

For any two n-qubit integers a and b, the adapted Thapliyal Integer Division Algorithm aims to
find the n-qubit integers q and r, such that a = q · b+ r. For the algorithm 3n qubits are required.
Due to the increased complexity of the integer division algorithm compared to the other algorithms
described in this chapter, explicit register names are used. The 3n qubits are ordered into three
registers N , Q and D, each of size n. Specifically, the 3n qubits are labelled as

|ψ3n−1 · · ·ψ2nψ2n−1 · · ·ψnψn−1 · · ·ψ0〉 ≡ |Dn−1 · · ·D0Qn−1 · · ·Q0Nn−1 · · ·N0〉 , (3.15)
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with |ψi〉 the qubits. The registers N and D are initialised to |a〉N and |b〉D, the binary represen-
tations of a and b, respectively. Register Q is initialised as |0〉Q, and is transformed into |q〉Q, the
binary representation of the desired quotient q. During the algorithm, register D is left untouched,
while register N is transformed into |r〉N , the binary representation of the remainder r. The total
operation of the algorithm therefore becomes,

|a〉N |0〉Q |b〉D −→ |r〉N |q〉Q |b〉D . (3.16)

As with the other algorithms for integer arithmetic, the most significant qubit will be taken
as the qubit with the highest index, i.e. |a〉N = |an−1〉Nn−1

|an−2〉N−2 · · · |a1〉N1
|a0〉N0

, and

|b〉D = |bn−1〉Dn−1
|bn−2〉Dn−2

· · · |b1〉D1
|b0〉D0

. The input and output states of the circuit are
therefore as shown in Figure 3.18.

|a0〉N0

DIV

|r0〉N0

...
...

|r〉N
|an91〉Nn91

|rn91〉Nn91

|0〉Q0
|q0〉Q0

...
...

|q〉Q
|0〉Qn91

|qn−1〉Qn91

|b0〉D0
• |b0〉D0

...
...

|b〉D
|bn−1〉Dn91

• |bn−1〉Dn91

|a〉N

|0〉Q

|b〉D




Figure 3.18: In- and outputs of the Thapliyal Integer Division Algorithm.

The algorithm applies a variation on the classical Long Division Algorithm [25]. Long Division is
comparable to the manual method for division (“staartdeling”), and works in n iterations. First it
looks at whether 2n−1 · b can be subtracted from a. If that is possible, then the amount is removed
from a, and 2n−1 is added to q. Otherwise, nothing is done. Secondly, the same steps are repeated,
but now with 2n−1 replaced by 2n−2, i.e. it is examined whether 2n−2 · b can be subtracted from
(what remains of) a. If that is possible, then the amount is removed from (what remains of) a, and
2n−2 is added to q. The process is repeated for smaller powers of two, until the n-th step where
20 is used instead of 2n−1. After the n-th iteration, the only thing left of a will be the remainder
r, while q has been transformed to its desired value ba/bc.

3.4.1.2 The Adapted Thapliyal Integer Division Algorithm

The Adapted Thapliyal Integer Division Algorithm uses the same n iterations, indicated by the
index i ∈ {0, . . . , n − 1}. In the i-th iteration, it examined whether 2n−i−1 · b can be subtracted
from register N (i.e. from what is left of a after the first i− 1 iterations). If this is the case, then
2n−i−1 is added to register Q (i.e. to what will become q after all n iterations). In the actual
algorithm, an iteration will more closely resemble the following steps,

1. subtract 2n−1 · d from N ,

2. if the result is negative, add back 2n−1 · b to N ,

3. otherwise if the result is non-negative, add 2n−1 to Q.

To facilitate the concrete definition of the iterations, two sub-registers Y (i) and Z(i) are defined
for i ∈ {0, . . . , n− 1}. Sub-register Y (i), of length n, is the collection of the qubits with the same
size as register N , but moved n− i− 1 qubits downward. Sub-register Z(i), of length 1, is the first
qubit below the sub-register Y (i). Concretely, these registers are defined as

|Y (i)〉 = |Qn9i92 · · ·Q0Nn91 · · ·Nn9i91〉 = |ψ2n9i92 · · ·ψn9i91〉 ,
|Z(i)〉 = |Qn9i91〉 = |ψ2n9i91〉 .

(3.17)
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With the help of these sub-registers, the iterations are defined as,

1. subtract |b〉D from |Z(i)〉 ⊗ |Y (i)〉, with |Z(i)〉 overflow

2. add back |b〉D to |Y (i)〉 without overflow, controlled by |Z(i)〉,

3. invert |Z(i)〉.

Notice that these additions and subtractions can be performed without ancilla qubits when using
the Muñoz-Coreas Adders shown in Figure 3.11 and Figure 3.10. One full iteration is shown in
Figure 3.19.
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Figure 3.19: Single iteration in the Thapliyal Integer Division Algorithm for an arbitrary number of qubits n.
The iteration number i should lie in the range 0 ≤ i ≤ n− 1.

A complete circuit for n = 4 is shown in Figure 3.20.
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Figure 3.20: Complete Adapted Thapliyal Integer Division Algorithm for n = 4.

3.4.1.3 Step-by-step explanation of the algorithm

In this section the interpretation of the steps in the iterations is discussed. The three concrete steps
taken in an iteration are examined to see that they closely align with the three-step breakdown
shown earlier.

Recall that 2n−1 · b written in binary is the same as b (= |D〉), but with n − 1 trailing zeroes.
Also note that the combination |RQ〉 of registers |R〉 and |Q〉 can be viewed as a binary number
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Rn−1 · · ·R0Qn−1 · · ·Q0. Since |R〉 is initialised at zero, and since |Q〉 start out as |a〉, the com-
bination register |RQ〉 can also be viewed as being initialised as |a〉, but with extra zeroes before
the number. Note that |Y (1)〉 lies within |RQ〉, in such a way that it is moved n − 1 digits from
|Q〉 (to the more significant side). This means that if |D〉 (= |b〉) is subtracted from |Y 〉 (as in
step 1 of iteration 1), that this is the same as subtracting 2n−1 ·b from a, which is exactly as desired.

The two possible cases of 2n−1 · b ≤ a and 2n−1 · b > a are now examined separately, in order
to understand the consequences of Step 1. If 2n−1 · b was smaller than or equal to a (which
in the first Iteration is only the case when b ≤ 1), then nothing happens to the overflow qubit
|Z(1)〉 = |Qn−1〉. In other words, it remains zero since the result after the subtraction stays
above or at zero. However, when 2n−1 · b is larger than a, then the result is that the overflow
qubit |Z(1)〉 rolls over, since the result after the subtraction becomes negative. The overflow qubit
|Z(1)〉 = |Rn−1〉 is therefore effectively behaves as a sign indicator.

If this sign is negative (i.e. |1〉) after Step 1, it means that b should be added back to |Y (1)〉,
while this should not happen if the sign is positive (i.e. |0〉). This is exactly what happens in Step
2, where the sign qubit controls the re-addition of b to |Y (1)〉.

Now the only step left in the first iteration is Step 3. That is, to save 2n−1 to |Q〉 when the
sign is positive (i.e. |0〉), and not to save it when the sign is negative. Notice that qubit |Qn−1〉 is
the qubit of |Q〉 with significance 2n−1. But remember that precisely |Qn−1〉 = |Z(1)〉. However,
|Z(1)〉 is exactly |1〉 if it is desired to be |0〉 and vice versa. Hence, only this sign qubit is to be
flipped. This is precisely what is performed in Step 3.

Next, the second iteration is performed. Note that it is critical that |Z(2)〉 starts out at zero,
since otherwise the controlled re-addition (Step 2) and qubit flip (Step 3) will happen exactly the
wrong way around. However, this is inherently the case after the first iteration: if there was no
sign-flip, the register-Q-qubits of |Y (1)〉 (and especially |Z(2)〉 = |Y (1)n−1〉) are left untouched
and remain at zero, whereas if there was a sign flip (possibly changing |Y (2)〉), the subtraction is
undone in Step 2, so again it is found that |Y (2)〉 ends up at zero!

The iterations can be repeated until the last iteration, after which a binary representation of
q has formed in register |Q〉, and a binary representation of r is left in register |R〉.

An interesting realisation about the second to last paragraph, is that a single error in |Y (i)〉
for a low i can have a dramatic effect one the outcome of the algorithm. This may make the al-
gorithm relatively prone to the noise experienced in real Quantum Computers. Thorough analysis
of this possible phenomenon however is beyond the scope of this thesis.

3.4.1.4 Extensions to the algorithm and remarks

In this final section an extension to the algorithm is discussed, which allows for a larger register size
for a than for b. The results of division by zero are also briefly touched upon, as well as possible
future extensions for negative numbers.

First, the extension for a larger register size for a is discussed. Consider a value a that is saved in
a register m qubits larger than that of b, which is still saved in an n qubit register. The value a is
therefore saved in a n + m qubit register. In the extension of the Integer Division algorithm, the
quotient q and remainder r will not both have qubit size n. It turns out, however, that only the
register for q will change in size. Namely, it was defined that r should be smaller than b, meaning
that r keeps its maximum size of n qubits. The quotient q on the other hand can now become
larger; suppose b = 1, then q will become the largest at q = a, implying that q now requires
an n + m qubit register. It is therefore observed that an equal amount of qubits is necessary to
store q and r compared to a and b, at 2n+m qubits. Hence, no extra qubits are required at this
stage. However, limitation will be necessary for the possible values for b. This will be discussed in
depth later on. The only major change to the algorithm is that the Iterations subroutine will be
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performed n + m times instead of just n times. Additionally, the registers are renamed and new
ones are introduced. The total number of required qubits will now be 3n + m, which will again
be split into three registers, only this time in twofold. Firstly into the three registers N , O and D
(of sizes n+m, n and n, respectively), and afterwards into R, Q and D (of sizes n, n+m and n,
respectively), which are defined as follows,

|N〉 = |Nn+m91 · · ·N0〉 = |ψn+m91 · · ·ψ0〉 ,
|O〉 = |On91 · · ·O0〉 = |ψ2n+m91 · · ·ψn+m〉 ,
|D〉 = |Dn91 · · ·D0〉 = |ψ3n+m91 · · ·ψ2n+m〉 ,
|R〉 = |Rn91 · · ·R0〉 = |ψn91 · · ·ψ0〉 ,
|Q〉 = |Qn+m91 · · ·Q0〉 = |ψ2n+m91 · · ·ψn〉 .

(3.18)

This means that all the qubits can be written in two different ways:

|ψ3n+m91 · · ·ψ2n+mψ2n+m91 · · ·ψn+mψn+m91 · · ·ψnψn91 · · ·ψ0〉
= |Dn91 · · ·D0On91 · · ·O0Nn+m91 · · ·NnNn91 · · ·N0〉
= |Dn91 · · ·D0Qn+m91 · · ·QmQm91 · · ·Q0Rn91 · · ·N0〉 .

(3.19)

The inputs and outputs of the algorithms can now be defined as

|a〉N |0〉O |b〉D −→ |r〉R |q〉Q |b〉D . (3.20)

The total desired operation of the algorithm is shown in Figure 3.21.

|a0〉N0

DIV

|r0〉R0

...
...

|an91〉Nn91
|rn91〉Rn91

|r〉R

|an〉Nn
|0〉Rn

|an+1〉Nn+1
|q0〉Q0

...
...

|am91〉Qm91
|qm9n92〉Qm9n92

|0〉O0
|qm9n91〉Qm9n91

|q〉Q

...
...

|0〉On
|qm91〉Qm91

|b0〉D0
• |b0〉D0

...
...

|bn−1〉Dn91
• |bn91〉Dn91

|b〉D

|0〉Dn
• |0〉Dn

|a〉N

|0〉O

|b〉D




Figure 3.21: In- and outputs for the complete Adapted Thapliyal Integer Division Algorithm for unequal register
sizes.

As mentioned, the process remains structurally unchanged, as a number of Iterations on sub-
registers. Only the number of iterations changes. To accommodate the higher iterations, the
sub-registers |Y (i)〉 and |Z(i)〉 are redefined. They remain the same size, and are identical for the
early iteration (i.e. they start out at the same positions relative to register D, at 1 qubit above
D),

|Y (i)〉 = |ψ2n+m9i92 · · ·ψn+m9i91〉 ,
|Z(i)〉 = |ψ2n+m9i91〉 ,

(3.21)

for i ∈ 0, 1, . . . , n+m− 1. The Iterations themselves are kept the same as before, apart from the
fact that the definitions of |Y (i)〉 and |Z(i)〉 have changed, and the fact that i now has a maximum



35

|N0〉

It
er

at
io

n
5 |R0〉

|N1〉

It
er

a
ti

on
4 |R1〉

|N2〉

It
er

at
io

n
3 |R2〉

|N3〉

It
er

a
ti

on
2 |R3〉

|N4〉

It
er

at
io

n
1 • |Q0〉

|N5〉

It
er

at
io

n
0 • |Q1〉

|O0〉 • |Q2〉
|O1〉 • |Q3〉
|O2〉 • |Q4〉
|O3〉 • |Q5〉
|D0:3〉 / • • • • • • / |D0:3〉

Figure 3.22: Complete Adapted Thapliyal Integer Division circuit for unequal register sizes for n = 4 and n = 2.
Note that the most significant qubit of register D must be equal to |0〉 in order for the algorithm to work.

of n+m−1. The explanation steps in the previous section can be repeated to comprehend the main
workings of this new adaptation. An example circuit for n = 4 and m = 2 is shown in Figure 3.22.

An attentive reader might have spotted a problem in the current implementation: what if b is
larger than 2n91, i.e. it has its most significant qubit in the |1〉 state? In that case the algorithm
will fail, since the |Z(i)〉 qubit might not be initially zero at some point. To illustrate, an example
is examined. Consider b = 1111 and a = 00100000: in that case nothing happens in the first few
iterations, since 27 · b up until 22 · b are clearly larger than a. The fact that 22 · b = 111100 is
larger than a = 100000 will cause a problem however, since this means that in the next step |Z(i)〉
will start out at |1〉 instead of the required |0〉. From that point and on, all controlled operations
will happen exactly the wrong way around, resulting in an incorrect output. The only way to fix
this, is by forcing the most significant qubit of b to be zero. In practice this means that an extra
(ancilla) qubit needs to be added to registers D and O if register N is larger than register D. This
effectively means increasing n by one, and decreasing m by one. It also means that for a register
size difference of m = 1, the ancilla qubits force the registers to be the same size.

Theoretical support for negative numbers is discussed next. It depends on the definition of in-
teger division for negative numbers whether any changes need to be implemented. From the used
definition of integer division, r cannot be negative. What this means, is that the answers for (−a)/b
and a/(−b) are different: suppose a = q ·b+r, then 9a = (9q) ·(9b)+r and 9a = (9q−1) ·b+(b−r),
which are different answers. It is easiest to allow r to be negative since q will only possibly change
by one, and in such a way that the average error remains the same (rounding up instead of down).
In this changed definition, and when using an independent sign qubit definition (e.g. the sign qubit
performs the operation (−1)x), no changes have to be made to the algorithm, apart from a cnot
on the resulting signs of the outputs. If, on the other hand, there is a need for a non-negative
r, the Thapliyal algorithm can easily be adapted to suit this requirement. First the algorithm is
performed as normal. The sign qubit can then be used to control a −1 subtraction on q, and to
perform the operation b − r, which was seen to able to be performed without any ancillae using
the Muñoz-Coreas Adder.

Finally, a brief look is taken at dividing by zero. Tests show that afterwards the Q register
ends up with the state |q〉 = |11 · · · 11〉, while the R register remains unchanged at |r〉 = |a〉. This
satisfies the equation a = q · b+ r = r. However, it may be desirable to have the Q register end up
in the |0〉 state. This can be done using two ancilla qubits: the Q register, initialised at zero, can
be used as ancillae to perform a Cn(X) as in Figure 1.5 on register D to check if it is entirely zero.
Note that register Q is immediately reset to zero again. The output qubit of the Cn(X) can now
be saved in our first extra ancilla qubit, and it can be used to control all the gates in the algorithm
from that point on, making sure nothing happens if register D is empty. The second extra ancilla
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qubit is to make sure this is possible: many operations now need to be controlled by three qubits.
This is only possible using an ancilla qubit, and hence the second extra ancilla.

Since negative numbers and division by zero are beyond the scope of this thesis, these imple-
mentations are purely theoretical, and will therefore not be implemented or tested. These imple-
mentations are left for future research.

3.5 QX implementation

The only real difficulties in the implementation of the discussed quantum arithmetic algorithms lie
in the implementation of the Draper adder. Specifically, in the columns of R±k gates used in the
Draper Adder circuit in Figure 3.3 and Figure 3.13. Figure 3.23 and Figure 3.23 show a proposed
implementation of these gate columns.

• • × ×

R1 Z × • ×
R2

=
Rk

R3 Rk

R4 Rk

Figure 3.23: Method for applying a Rk column from the circuit in Figure 3.3 up to k = 4

• • × × × × × ×

R−1 Z × • ×

R−2
=

Z × • × Rk

R−3 Z × • × Rk Rk

R−4 Z Rk Rk Rk

Figure 3.24: QX implementation of the R−k column used in the circuit in Figure 3.13

Nearly all arithmetic algorithms discussed in this chapter were implemented in the QX simula-
tor. Specifically,

• The three adders (all both controlled and uncontrolled, the Cuccaro and Muñoz-Coreas
adders also with a choice of whether to include overflow, the Draper adder with full support
for different register sizes).

• Subtracters of all three adder algorithms (Draper adder using its specific subtracter extension
only in the a− b form, the Cuccaro and Muñoz-Coreas adders with both the b− a and a− b
extensions, all possibly controlled and with a choice of overflow or different register sizes as
for the adders).

• Straightforward Multiplication (only for large number addition/subtraction i.e. only the
second muladd and mulsub variation).

• Thapliyal Division for unequal register sizes.

Altogether over 30 variations of the algorithms have been implemented. When an algorithm is run,
the compiler returns the inputs and outputs of said algorithm to gain insight into correctness of the
output. All implementations have been thoroughly tested and verified for all possible four-qubit
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values, as well as for a multitude of values with higher and lower numbers of qubits. It would be
unwise to show all raw results. Instead, an example for each algorithm will be shown, in the form
of the output of the Python compiler. The tested circuits are the controlled adders, the controlled
a − b subtracters, the multiplier and divider of same-size inputs. The example values taken are
a = 10102 = 10 and b = 00112 = 3, meaning that the outputs are expected to be a + b = 13,
a− b = 7, a · b = 30 and the integer division q = 3 and r = 1 such that a = q · b+ r. The outputs
are shown in Figure 3.25 for the adders and Figure 3.26 for the multiplier and divider. It is seen
that the outputs indeed match the expectations.

(a) Draper. (b) Cuccaro. (c) Muñoz-Coreas.

Figure 3.25: Outputs of the different adders and subtracters.

(a) Multiplier. (b) Thapliyal Division.

Figure 3.26: Outputs of the Straightforward Multiplier and Thapliyal Division.
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4. Quantum Linear Solver Algorithm

4.1 General problem statement

Consider the following linear algebra problem: given an invertible N ×N matrix A and an N × 1
vector ~b, find the N × 1 vector ~x, such that

A~x = ~b. (4.1)

It is assumed that A is a Hermitian matrix, that is, A is equal to its complex conjugate, A ≡ A†

[26]. Two crucial properties for the QLSA will be that the eigenvectors ~vj of a Hermitian matrix

are linearly independent, and the eigenvalues λj are real [26]. The vectors ~x and ~b are assumed to
be such that they can be implemented on a quantum computer, as |x〉 and |b〉, respectively. This is

the case when ||~x|| = ||~b|| = 1, with || · || defined as the `2-norm, i.e., ||~x|| = ||~x||2 ≡ (
∑N
i=1 |xi|2)1/2

[27]. The vector ~b can simply be chosen such that ||~b|| = 1, but vector ~x need not satisfy ||~x|| = 1
when A has any eigenvalue λ with |λ| 6= 1. Therefore the problem reduces to finding the state |x〉
that satisfies,

A |x〉 = |b〉 . (4.2)

In other words, |x〉 is the solution

|x〉 =
A−1 |b〉
||A−1 |b〉 ||

. (4.3)

Two important quantities that characterise a matrix, are its condition number κ and sparsity s.
The condition number κ of the matrix A is defined as κ(A) ≡ ||A|| · ||A−1||, where the value ||A|| is
defined as the spectral norm ||A|| ≡ lim sup~x

||A~x||
||~x|| [27]. The value for ||A|| is equal to the maximum

absolute eigenvalue of A, which allows the condition number to be written as the maximum ratio

between the eigenvalues of A, that is, κ(A) =
maxj |λj |
minj |λj | [27]. The sparsity s of a matrix is related

to the number of non-zero elements. The matrix A is called s-sparse, when, in each row, only s
elements or fewer are non-zero [28]. Together with the size of the matrix N , the quantities κ and
s play an important role in the required circuit width and depth to solve a linear system, both
classical and quantum.

Consider the situation where the given N -by-N matrix A is invertible, but not Hermitian. Then,
a method exists to convert the matrix A and vector ~b (with ||~b|| = 1) to a form that can be solved

using the HHL QLSA. Specifically, A and ~b can be transformed into a 2N -by-2N Hermitian matrix
A′ and 2N -by-1 vector ~b′ (with ||~b′|| = 1), such that the 2N -by-1 output vector of the HHL QLSA,

~x′, closely resembles the desired output ~x. Define A′ and ~b′ as follows,

A′ ≡
[

0 A
A† 0

]
, ~b′ ≡

[
~b
~0

]
, (4.4)

then it is evident that A′ is Hermitian, and that ||~b′|| = ||~b|| = 1, implying that the linear system

A′~x′ = ~b′ can indeed be solved using the HHL QLSA. The new system is easily seen to have the
solution

~x′ =

[
~x
~0

]
, (4.5)

with ~x the solution of the original system A~x = ~b. Hence, the linear system A~x = ~b can be solved
using the HHL QLSA for any invertible matrix A at only linear increase in calculation complexity
compared to a Hermitian matrix A.
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4.2 Classical alternative

The most efficient classical algorithm to solve a system of linear equations is Gauss’s method. This
is the method most often taught in linear algebra courses, and it has a complexity of O(N3) [29].
To solve sparse systems, there are faster methods such as the Conjugate Gradient Method, which
can solve an s-sparse semi-definite system with condition number κ in O(Nsκ) time [30]. When
only a scalar quantity is needed that can be computed as a matrix-induced inner product of the
solution vector ~x, i.e. ~x†M~x, then the answer may be found in O(N

√
κ) time [30].

4.3 Literature review

In 2009, a paper on solving linear systems of equations using quantum algorithms was published
by Harrow, Hassidim and Lloyd [30]. This was the first paper detailing how a linear solver could
be implemented on a quantum computer with exponentially improved complexity as compared to
a classical computer, with a circuit depth of O(κ2 logN), although this only holds for sparse matri-
ces. The algorithm is often referred to as the HHL QLSA. The authors did not specify how exactly
the subroutines in the algorithm should be implemented, and significant improvements could still
be made. In the following years multiple papers have contributed improvements to the algorithm,
or proof-of-concept implementations of the algorithm. The papers will now be discussed, split into
the two categories of theoretical improvements and practical implementations.

Firstly, the theoretical improvements will be examined. These are improvement which prove
what improvements should be possible, without necessarily showing a method to implement these
changes concretely. The focus has mainly been on the Hamiltonian simulation in the algorithm,
which is the conversion of a matrix H into exp(iHt). However, the first improvement was not
of this kind, and already came one year after the original paper. In [31], Ambainis describes an
amplitude amplification method, which as a result gives a near quadratic improvement in runtime
for κ, to a circuit depth of O(κ log3 κ logN). In subsequent years, Berry et al. focused on Hamil-
tonian simulation in [32, 28]. Especially in the latter paper, they prove that this process can be
realised in a near optimal circuit depth of O(τ log(τ/ε)/ log log(τ/ε)), where τ = s||H||maxt and ε
denotes the accuracy. This method was then used by Childs et al. in [33] to make an exponential
improvement in accuracy to the HHL algorithm, with a circuit depth of O(poly(logN, log 1/ε)) for
sparse matrices, whereas the original HHL algorithm has a circuit depth of O(1/ε). More recently,
in 2017, Wossnig et al. described the first adaptation to the HHL algorithm that can efficiently
solve dense matrices. Their approach, however, only results in a quadratic speedup compared to
classical computers, with a circuit depth of O(κ2

√
npolylog(n)/ε).

Concerning publications on the practical aspects of the QLSA, the focus has been on proof-of-
concept circuits, and especially on their implementation on real quantum computers. The first
proof-of-concept theoretical implementation of the HHL QLSA was by Cao et al. [34] in 2012.
Here, they show an explicit circuit for solving a specific 2-by-2 and 4-by-4 matrix, respectively.
However, the circuits were not implemented on an actual quantum computer. This would change
in the next two years, as three independent research groups managed to implement a proof-of-
concept circuit on a real quantum computer in 2013 and 2014. Pan et al. managed to solve a
specific 2-by-2 matrix on a magnetic resonance quantum computer for different input vectors in
[35]. Cai et al. and Barz et al. followed with their respective papers [36] and [37], both also solving
a specific 2-by-2 matrix, but this time on a photonic quantum computer. All of their setups were
highly specific to their respective matrices, and their methods were not easily expandable. In 2017,
Zheng et al. were the first to use a superconducting quantum processor to solve a 2-by-2 matrix,
which method is more suitable for expansion [38].

In this thesis, the knowledge from the listed papers is used to implement a general Quantum
Linear Solver on a Quantum Computer Simulator. The implementation will be based on the orig-
inal method described in the HHL paper [30], and on the theoretical implementation by Cao et al.
in [34]. The Cao et al. paper splits one of the steps from Harrow et al. into two, leading to an
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algorithm that is easier to implement. Only the Cao et al. variation is discussed in this thesis.

4.4 The HHL algorithm

4.4.1 Introduction

Before going into the technical details of the algorithm, it is important to understand the critical
thinking steps behind the algorithm. This section will attempt to explain these steps.

In quantum computing there are only a couple of algorithms known that can perform calcula-
tions exponentially faster than this is possible on classical computers. The challenge is to rewrite
a problem to have one of these algorithms as core. This is exactly what Harrow, Hassidim and
Lloyd did in their approach for solving linear systems of equations. Specifically, the problem will
be rewritten to include the Quantum Phase Estimation algorithm [13]. The algorithm is explained
in detail in Chapter 2.2; it finds the phase ϕ ∈ [0, 1) of eigenvalues eiϕ of a unitary operator by
cleverly applying the corresponding eigenvector.

Instead of directly inverting the Hermitian matrix A to find ~x, Harrow et al. make clever use
of the properties of eigenvectors and eigenvalues. Let ~uj be the eigenvectors of A, with λj ∈ R
denoting the corresponding eigenvalues for j ∈ {0, 1, . . . , N − 1}. These eigenvectors are defined
by the property A~uj = λj~uj [26]. Furthermore, since A is Hermitian, the eigenvectors form a

linearly independent set spanning the entire vector space Rn [39]. Hence, ~b and ~x can be writ-

ten as a linear combination of these eigenvectors, as~b =
∑
j βj~uj and ~x =

∑
j βjλ

91
j ~uj , respectively.

The critical new idea on how to perform these steps efficiently, is to use the Hamiltonian of the
matrix A, exp(iAt), for a certain time t. This is again a matrix with the same eigenvectors ~uj , but
with the original eigenvalues λj transformed to exp(iλjt) [26]. From the fact that A is Hermitian,
it follows that λj ∈ R. Hence, when applied to exp(iAt) for different times t, the eigenvectors ~uj
rotate in the complex domain with the angular velocity of their eigenvalues λj .

This angular velocity is precisely what the Quantum Phase Estimation algorithm is designed to
estimate. Hence, it can be applied to exp(iAt) to obtain the eigenvalues of A. The eigenvalues
should then be inverted and multiplied with their respective eigenvectors to obtain the solution of ~x.

The way the HHL algorithm applies these ideas, will be detailed in the next section.

4.4.2 Realisation of the HHL algorithm

The HHL algorithm uses four sets of qubits:

• an O(log(n)) qubit memory register m to initially store ~b, and which is transformed to ~x,

• an O(n) qubit register r to store the eigenvalues of A,

• another O(n) qubit register q to store the inverted eigenvalues of A,

• a single ancilla qubit register a.

Suppose~b, ~uj , λj and λ91j can be implemented as |b〉m, |uj〉m, |λj〉r and |λ91j 〉q for all j ∈ {1, . . . , N},
respectively, such that |b〉m is written as a superposition of |uj〉m,

|b〉m =

N∑
j=1

βj |uj〉m . (4.6)

How this is performed will be discussed later. This also means that the requested vector ~x can be
written as |x〉m =

∑N
j=1 βjλ

−1
j |uj〉m.
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The Cao et al. adaptation to the HHL algorithm [34] performs the following steps to acquire
the state |x〉m:

0. Initialise: |0〉a |0〉q |0〉r |b〉m

=

N∑
j=1

βj |0〉a |0〉q |0〉r |uj〉m

1. Perform Quantum Phase Estimation using eiAt, and map the eigenvalues λj into the register
r:

−→
N∑
j=1

βj |0〉a |0〉q |λj〉r |uj〉m

2. Invert the eigenvalues λj to λ91j , and map them to the second register q:

−→
N∑
j=1

βj |0〉a |λ
91
j 〉q |λj〉r |uj〉m

3. Rotate the ancilla qubit to the state
√

1− c2

λ2
j
|0〉a + c

λj
|1〉a for each j using a controlled

rotation on the |0〉a qubit, for a predefined c < λmax:

−→
N∑
j=1

βj

(√
1− c2

λ2j
|0〉a +

c

λj
|1〉a

)
|λ91j 〉q |λj〉r |uj〉m

4. Perform the opposite operation of Steps 1 and 2 to reset registers q and r:

−→
N∑
j=1

βj

(√
1− c2

λ2j
|0〉a +

c

λj
|1〉a

)
|0〉q |0〉r |uj〉m

5. Measure the ancilla qubit. If the |1〉a state is obtained, the resulting vector in the m register
is |x〉m:

−→
√

1∑N
j=1 c

2|βj |2/|λj |2

N∑
j=1

βj

(
c

λj

)
|1〉a |0〉q |0〉r |uj〉m

∝ |1〉a |0〉q |0〉r
N∑
j=1

βj
λj
|uj〉m

= |1〉a |0〉q |0〉r |x〉m

However, if the |0〉a state is obtained, then the outcome is garbage, and the algorithm needs
to be retried.

The probability to measure |1〉a is equal to P(|1〉a) = c
√∑N

j=1 |βj/λj |2. Since this probability

increases linearly with c, it is desirable to choose this number as large as possible without violating
the condition that c < λmax.

Step 2 and register q are not present in the original HHL paper, and were introduced by Cao
et al. in [34]. This is due to the fact that the transformation immediately from λj to a rotation
proportional to 1/λj is an unreasonably complex step, and can be implemented more easily using
this split-up.
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4.4.3 In depth discussion

In order to better understand the steps taken in the HHL algorithm, it is insightful to first assume
that ~b is an eigenvector of A, say ~b = ~u1, with eigenvalue λ1 ∈ R. In that case, when in Step
1 the exp(iAt) transformation is applied for different t, the only thing that happens, is that the
complex amplitude of the state starts to rotate in the complex plane, with the angular velocity λ1.
Note that the amplitude of the state does not change. This rotation is exactly what the Quantum
Phase Estimation algorithm is designed to detect, and it will save this angular velocity (equal to
the eigenvalue) to the register. Now that the eigenvalue λ1 has been obtained, Step 2 is used to
find the inverse of this eigenvalue, λ911 . This inverted eigenvalue in turn is used in Step 3 to rotate
the ancilla qubit to a state, such that the complex probability to measure the |1〉a state becomes
proportional to λ911 . If, after clearing the registers in Step 4, the ancilla qubit is measured in Step 5
and the |1〉a state is found, then the final state should now be a state proportional to the quantum

representation of ~u1/λ1 = ~b91, precisely as desired.

However, it should be noted that in this case where ~b is exactly an eigenvector of A, the normali-
sation of the final state causes the destruction of all information stored in the complex amplitude.
This is expected, since the result for |x〉m will be proportional to |u1〉m. The latter state was
already normalised, and hence after normalisation |x〉m will be precisely equal to |u1〉m again. The

algorithm only has a net effect when ~b is not an eigenvector of A, but instead a linear combination
of its eigenvectors.

In that case, |b〉m can be viewed as a superposition of these eigenvectors, as was required in
the algorithm. Since the operations are performed on a quantum computer, all the following steps
in the algorithm also happen as a superposition of these eigenvectors: with a complex amplitude
of β1 for the case that |u1〉m (as described above); with complex amplitude β2 for the case that
|u2〉m; etcetera. The ancilla rotation in Step 3 will now be different for each eigenvector, so when
the |1〉a state is measured in Step 4, the relative probabilities for the different eigenvectors change.
This is not changed by the re-normalisation, since that only occurs over all states as a whole. The
final state is a superposition of eigenvectors |uj〉m with relative amplitudes βj/λj . Due to the way
the implementation of the vectors was defined, this is exactly equivalent to the desired state |x〉m.

4.4.4 Implementation

A high-level circuit of the complete Cao adaptation to the HHL QLSA is shown in Figure 4.1.

|0〉a Ancilla

Rotation

|ψj〉a |ψf 〉a |1〉a

|0〉q /
Eigenvalue

Inversion

|λ−1j 〉q |λ−1j 〉q
Undo

P.E. &

E.I.

|0〉q |0〉q

|0〉r /
Eigenvalue

Estimation

|λj〉r |λj〉r |0〉r |0〉q

|b〉m / |uj〉m |b〉m |x〉m

Figure 4.1: High-level overview of the Cao et al. implementation [34] of the HHL QLSA [30]. After the Quantum
Phase Estimation subroutine, |b〉m is written as |uj〉m to emphasise that all steps should be viewed in the basis
of the eigenvectors of A, and that |b〉m is a superposition of these eigenvectors. The state |ψj〉a is defined as

|ψj〉a ≡
√

1− C2/λ2j |0〉a +C/λj |1〉a, and |ψf 〉a is the entangled superposition of these states with the input vector

state |b〉m.

In this overview, after the Quantum Phase Estimation subroutines, |b〉m is written as |uj〉m to
emphasise that |b〉m is a superposition of these eigenvectors, and that all subsequent steps should
be viewed in the basis of those eigenvectors. The ancilla state |ψj〉 is defined as the desired rotated

ancilla state for eigenvalue λj , |ψj〉a ≡
√

1− C2

λ2
j
|0〉a + C

λj
|1〉a. The final ancilla state |ψf 〉a is

defined as the superposition of the |ψj〉a states entangled with the |uj〉m states as in Step 4 of the
Cao et al. HHL algorithm implementation.
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The subroutines described in Figure 4.1 will be the focus of the remainder of this thesis. Each of
the three subroutines will be discussed in their own chapter, and solved where reasonably possible.
At the end, the solutions and implementations to subroutines will be combined to form a working
prototype Quantum Linear Solver that is as complete as possible.

Before the subroutines can be discussed, it is essential to know how the vectors ~bm and ~xm can
be implemented on a quantum computer as |b〉m and |x〉m, and how the values λj and λ91j can be

constructed as |λj〉 and |λ91j 〉, such that the implementations have the required properties. The
latter two can be constructed as was discussed in the previous chapter. In [34], an implementation
for the vectors is shown which will thereafter be discussed in greater detail.

In a quantum system of n qubits, there are 2n possible pure states: |00 · · · 0〉 through |11 · · · 1〉.
If only positive integers are considered, then any value smaller than 2n can simply be saved as is
binary representation, i.e.: |0〉 ≡ |00 · · · 00〉, |1〉 ≡ |00 · · · 01〉 etc. until |2n − 1〉 ≡ |11 · · · 11〉.

Now consider the vector ~b of length N ≤ 2n,

~b =


β1
β2
...
βN

 , (4.7)

with ||~b|| = 1, that is,
∑N
j=1 |βj |2 = 1. This vector can then be implemented in a quantum register

as,

|b〉m =

N∑
j=1

βj |j − 1〉m , (4.8)

where |j〉m is the positive integer j state of the memory as defined above. This implementation is
well-defined, since all these states are independent of each other. It also entails that only dlog2(N)e
qubits in the memory are required to be able to store ~b.

For example, if N = 4, then only log2(N) = 2 qubits are required in the memory to store the
vector. Let |j = 0〉m ≡ |00〉m, |j = 1〉m ≡ |01〉m, |j = 2〉m ≡ |10〉m and |j = 3〉m ≡ |11〉m, then the

quantum representation of the vector ~b = [β1 β2 β3 β4]
T

is written as |b〉m = β1 |00〉m+β2 |01〉m+
β3 |10〉m + β4 |11〉m.

An inherent downside of this way to store vectors, is that all the information of |b〉 (and even-
tually |x〉) is stored in the complex amplitudes of the memory qubits. The complex amplitudes
are impossible to measure directly, since the state collapses into one of the |j〉 states when doing
so [3]. Therefore, the HHL algorithm can only be used as either an intermediate step in a larger
quantum algorithm, or when only a single property of the output vector is desired, like ~x†M~x [30].

With the knowledge of what the inputs and outputs of the different subroutines should be, and
how they should be stored, the subroutines themselves can now be studied in detail. The next
three chapters will be dedicated to this purpose. Firstly, in Chapter 5, the Eigenvalue Estimation
subroutine is examined, which is an adaptation on the Quantum Phase Estimation Algorithm. The
main challenge of this subroutine will be implementation of the exp(iAt) operations and vector |b〉.
Those implementation, however, will be left for future research. Next, in Chapter 6, the Eigenvalue
Inversion subroutine is examined, and three different solutions are implemented. After that, in
Chapter 7, the Ancilla Rotation subroutine is investigated and solved using multiple implementa-
tions. Finally, in Chapter 8, the subroutines are combined to form a complete prototype Quantum
Linear Solver.
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5. Eigenvalue Estimation

In the previous chapter it was claimed that using the Hamiltonian exp(iAt) for t ∈ R+ and the

Quantum Phase Estimation algorithm [13], the quantum representation |b〉 of a vector ~b can be
decomposed into eigenvectors of A, and the corresponding eigenvalues of A can be found [30]. In
this chapter it is investigated why this holds, and the challenges of constructing the Hamiltonian
exp(iAt) and vector |b〉 are examined.

5.1 The Quantum Phase Estimation Algorithm

First a brief recap of the Quantum Phase Estimation Algorithm, on which the Eigenvalue Estima-
tion Algorithm is based. The Quantum Phase Estimation Algorithm has been discussed in depth
in Chapter 2.2.

Consider a unitary operator U with an eigenvector |u〉 and corresponding eigenvalue e2πiϕ, where
ϕ ∈ R is unknown. Without loss of generality, it is assumed that ϕ lies on the interval [0, 1), since
any value outside this domain will be mapped onto it. The Quantum Phase Estimation Algorithm
approximates this value. The requirements are (1) a memory register with the |u〉 state, (2) a work
register of n qubits that starts out in the |00 · · · 0〉 state, and (3) an operator capable of performing

a controlled-U2k operation for k ∈ N. Note that since the value ϕ lies in [0, 1), it can be written
as and approximated to,

ϕ = 0.ϕ1ϕ2 . . . ϕnϕn+1 . . .

≈ 0.ϕ1ϕ2 . . . ϕn

≡ ϕ̃,
(5.1)

with ϕj either 0 or 1. The net process of the Quantum Phase Estimation Algorithm can be
described as

|0〉 |u〉 Phase Est.−−−−−−−→ |ϕ̃〉 |u〉 , (5.2)

using the circuit given in Figure 5.1, where the subroutines in the dashed box are as shown in
Figure 5.2.

|0〉 / H • QFT† |ϕ̃〉

|u〉 / U2k |u〉

Figure 5.1: Complete Quantum Phase Estimation Algorithm. The encircled part of the Hadamard gate and

controlled-U2k gates is as described in Figure 5.2, and the Inverse Quantum Fourier Transform is defined as the
reverse of the circuit in Figure 2.1.

It was shown Chapter 2.2 that the application of a C(U2k) gate, controlled by a quantum state
α |0〉+ β |1〉, has the following effect,(
α |0〉+β |1〉

)
|u〉 C(U2k )−−−−−→

(
α |0〉+e2πiϕ2

k

β |1〉
)
|u〉 ≈

(
α |0〉+e2πi·(0.ϕk+1ϕk+2...ϕn)β |1〉

)
|u〉 , (5.3)

which shows that the state of the top register after the U2k subroutine can be written as,

1

2n/2

(
|0〉+ e2πi·(0.ϕn) |1〉

)
⊗
(
|0〉+ e2πi·(0.ϕn−1ϕn) |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi·(0.ϕ1ϕ2...ϕn) |1〉

)
. (5.4)

This is precisely the Quantum Fourier Transform of ϕ̃ ≈ ϕ, and hence the application of the
Inverse Quantum Fourier Transform to the work register indeed results in the state |ϕ̃〉 in the work
register.



45

|0〉 H · · · • |0〉+ e2πi(2
n91ϕ) |1〉

... . .
. ...

|0〉 H • · · · |0〉+ e2πi(2
1ϕ) |1〉

|0〉 H • · · · |0〉+ e2πi(2
0ϕ) |1〉

|u〉 / U20 U21 · · · U2n91 |u〉

Figure 5.2: The U2k subroutine in the Quantum Phase Estimation Algorithm.

5.2 The Eigenvalue Estimation Algorithm

The Quantum Phase Estimation Algorithm will now be rewritten to calculate the eigenvalues of
the matrix A. The adaptation will be referred to as the Eigenvalue Estimation algorithm. Since the
matrices in the HHL QLSA are assumed to be Hermitian, the eigenvalues are real. In this explana-
tion, it is additionally assumed that the eigenvalues of the matrix are positive integers. Extensions
to allow for negative and non-integer eigenvalues will be discussed at the end of this section. The
value for n ∈ N is chosen such that the largest eigenvalue λmax satisfies λmax ≤ 2n. This means
that each eigenvalue can be written in binary form as λj = λj,1λj,2 . . . λj,n, with λj,k ∈ {0, 1} for
all j ∈ {1, 2, . . . , N} and k ∈ {1, 2, . . . , n}.

As was touched upon in the previous chapter, controlled-exp(iAt) operations are used to per-
form the Eigenvalue Estimation. It was stated that eiAt is a matrix, with the same eigenvectors
~uj as A, but with eigenvalues transformed from λj to exp(iλjt). If the value for t is not taken as
t0 = 2π/2n, then the eigenvalues become

eiλjt0 = e2πi·(0.λj,1λj,2...λj,n), (5.5)

for j ∈ {1, . . . , N}. This is the same as in the Quantum Phase Estimation algorithm for U20 when
ϕ is replaced by λj . If the value for t is now changed again, this time to tk = t02k = 2π/2n−k for
some k ∈ N0, then the following eigenvalues are obtained,

eiλjtk = e2πi·(0.λj,k+1λj,k+2...λj,n). (5.6)

Comparing this result to Equation (5.3) shows that these eigenvalues are exactly equal to those

of U2k , when the binary values ϕk are replaced by λj,k. Therefore, if in the Quantum Phase

Estimation Algorithm U2k is replaced by eiAtk and |u〉 is replaced by an eigenvector of A, i.e.
|u〉 = |uj〉 for some j ∈ {1, . . . , N}, then the net operation becomes,

|0〉 |uj〉
Phase Est.−−−−−−−→ |λj〉 |uj〉 , (5.7)

with |λj〉 = |λj,1〉 |λj,2〉 . . . |λj,n〉. Its circuit implementation is shown in Figure 5.3, where the
subroutines in the dashed box are as shown in Figure 5.4.

|0〉 / H • QFT† |λj〉

|uj〉 / eiAtk |uj〉

Figure 5.3: The Quantum Phase Estimation Algorithm rewritten to approximate the Quantum Fourier Transform
of the eigenvalue λj of the matrix A. The two subroutines in the dashed box are shown in Figure 5.4.

However, this still requires the knowledge and implementation of the eigenvector ~uj . Ideally,
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|0〉 H · · · • |0〉+ e2πiλj/2
0 |1〉

... . .
. ...

|0〉 H • · · · |0〉+ e2πiλj/2
n92 |1〉

|0〉 H • · · · |0〉+ e2πiλj/2
n91 |1〉

|uj〉 / eiAt02
0

eiAt02
1 · · · eiAt02

n91 |uj〉

Figure 5.4: The U2k subroutine in the Quantum Phase Estimation Algorithm rewritten to approximate the
Quantum Fourier Transform of the eigenvalue λj of the matrix A.

|b〉 is automatically split up into its eigenvector decomposition. Due to the clever implementa-
tion of |b〉 and the fact that A is Hermitian, it turns out that this process is already performed
automatically. In the previous chapter, it was stipulated that the vector |b〉 can be written as

|b〉 =
∑N
j=1 βj |uj〉. The Quantum Phase Estimation Algorithm simply solves the problem as a

superposition of each |uj〉, and creates a superposition of entangled |λj〉 ⊗ |uj〉 states between the
register and the memory,

|0〉 |b〉 ≡ |0〉
N∑
j=1

βj |uj〉 =

N∑
j=1

βj |0〉 |uj〉
Phase Est.−−−−−−−→

N∑
j=1

βj |λj〉 |uj〉 . (5.8)

A complete circuit to find the eigenvalues therefore is as shown in Figure 5.5.

|0〉 / H • QFT†

|b〉 =
∑n
j=1 βj |uj〉 / eiAtk

∑n
j=1 βj |λj〉 |uj〉


Figure 5.5: Complete algorithm to find the eigenvector decomposition with eigenvalues of a vector ~b (implemented

as |b〉) and matrix A for integer eigenvalues. The final state is the entangled superposition
∑N

j=1 βj |λj〉 |uj〉. The

part of the Hadamard gate and controlled-eiAtk gates is as described in Figure 5.2, with |u〉 = |b〉 and U2k = eiAtk ,
where tk = 2π/2n−k. The Inverse Quantum Fourier Transform is defined as the reverse of the circuit in Figure 2.1.

At the start of this explanation it was assumed that the eigenvalues λj were positive integers.
In these final paragraphs, extensions to the Eigenvalues Inversion Algorithm are proposed which
make the algorithm function for non-positive and non-integer eigenvalues λj . These proposed ex-
tensions are untested theoretical concepts which will require further research.

In the Quantum Phase Estimation Algorithm, negative numbers −ϕ are mapped to 1− ϕ. In the
Eigenvalue Estimation Subroutine this is translated to that a negative eigenvalue −λ is mapped
to 2n − λ. This will create problems in the coming subroutines if left unchanged. A solution is
to increase n by one, such that |λmax| < 2n−1. In that case, if λ > 0, then the most significant
qubit of the work register will always be left |0〉, while if λ < 0, the most significant qubit will
always roll over to |1〉. This makes the most significant qubit effectively a sign symbol. Since the
negative eigenvalue is still mapped as 2n − λ − 1, a cnot can be performed on all other qubits
of the register, with the sign qubit being the control. The value then becomes 2n−1 + λ, with
the 2n−1 the sign-qubit. The sign of the estimated eigenvalue has therefore been separated from
the absolute value, and can be applied when necessary in later subroutines. Specifically, it will be
needed in the Ancilla Rotation subroutine, where it can be used to control the sign of the rotations.

Implementing non-integer numbers also requires only minor changes to the Eigenvalue Estima-
tion Algorithm. Consider non-negative eigenvalues again, such that 2n−1 < λmax ≤ 2n. Consider
the situation where an absolute accuracy of 2−m is desired on all eigenvalues. That is, all λ in
binary form are to be approximated as λ1λ2 · · ·λn.λn+1 · · ·λn+m. This can be achieved by increas-
ing the size of the register to n + m qubits, and by changing the range of the eiAtk gates from
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k = 0, 1, . . . , n−1 to k = −m,−m+1, . . . ,−1, 0, 1, . . . , n−1. After the Inverse Quantum Fourier
Transform in the Eigenvalue Estimation Algorithm, the resulting values in the work register will
precisely the requested approximations. The extension to facilitate negative numbers can be used
in combination with this method.

5.3 Hamiltonian Simulation

Up to this point, it was assumed that a memory in the |b〉 state is available, and that black boxes
capable of performing exp(iAtk) for k ∈ N are available as well. Building the vector, and especially
the matrix exponential is not at all trivial however. Construction of the vector |b〉 falls under the
category of building a general quantum state [3], and is left completely for future research. The
process of constructing the Hamiltonian exp(iAtk) from the matrix A is well known in quantum
mechanics, as the problem of Hamiltonian Simulation [40]. The problem will hence be referred to
as the Hamiltonian Simulation Problem, and it will briefly be discussed in the next section. Its
implementation, however, is again left for future research.

5.3.1 Classical Implementation

The classical definition of the matrix exponent eX from a square matrix X is defined as [26],

eX ≡
∞∑
k=0

1

k!
Xk, (5.9)

where Xk represents the k-times multiplication of the matrix X with itself. The Hamiltonian
exp(iAt) can therefore be constructed from A by replacing X with iAt in Equation (5.9), yielding
the equation,

eiAt =

∞∑
k=0

1

k!
(iAt)k = I + iAt− 1

2
A2t2 − 1

6
iA3t3 + . . . (5.10)

Since A was assumed to be Hermitian, it has linearly independent eigenvectors and can conse-
quently be diagonalised as A = PDP−1, with D a diagonal matrix of all eigenvalues of A, and P
the matrix of all corresponding eigenvectors [26]. Using this notation, the k-times multiplication
of A can be written as Ak = PDkP−1, and hence the Hamiltonian exp(iAt) can be diagonalised
as well, as

eiAt = PeiDtP−1. (5.11)

This rewrite shows that exp(iAt) indeed has the same eigenvectors as A, only with the eigenvalues
λj transformed to exp(iλjt). Therefore, if the eigenvectors and eigenvalues of A are known, it is
near trivial to calculate its matrix exponential. In the more common case where the eigenvectors
and eigenvalues are unknown however, the problem becomes much harder, since now only Equation
(5.10) can be used.

5.3.2 Quantum Implementations

The problem of implementing a Hamiltonian as in Equation (5.10) is discussed in this section. The
problem is well known in the field of Quantum Computing, as it is required in the implementation
of Quantum Simulation [40]. A major issue in the implementation of the Hamiltonian lies in the
fact that in general, a matrix A cannot directly be performed on a quantum computer. As was
mentioned in Chapter 1 on the Introduction to Quantum Computing, only unitary operations
(meaning |λ| = 1 for all eigenvalues λ) can be implemented on a Quantum Computer, as it would
otherwise be possible for the complex amplitudes of a state to fail the normalisation requirement.
However, this means that it is impossible to directly implement any matrix A with any eigenvalue
|λ| 6= 1. This is a significant hurdle in the implementation of Hamiltonians. A number of different
algorithms have been developed to solve the problem of Hamiltonian Simulation. Some of these
algorithms are listed below. In this thesis the choice was made to focus on the other two subroutines
of the HHL QLSA, and therefore the implementation of Hamiltonian Simulation algorithms is left
for future research.



48

5.3.2.1 Group Leadership Algorithm

In [41], Daskin et al. show a general method for the implementation of any Hamiltonian, called the
Group Leadership Algorithm. This however is not a quantum algorithm, but instead a classical
genetic algorithm that finds an approximate circuit for the Hamiltonian Simulation. Since the aim
of this thesis is to find direct Quantum Algorithms and not efficient ways of classically approxi-
mating them, this algorithm was not investigated further. The implementation of the Hamiltonian
that will be used in Chapter 8 was conceived using the Group Leadership algorithm by Cao et al.
in [34].

5.3.2.2 Quantum Walks Algorithm

Childs, Berry, et al. have published several papers on the implementation of Hamiltonians using
the Quantum Walks Algorithm [28, 32, 33, 42, 43, 44, 45]. This algorithm decomposes any sparse
matrix A implemented as a quantum oracle into a sum of matrices with low sparsity, so that they
can efficiently be implemented. In [28] it is shown that the Hamiltonian can be simulated in a
circuit depth of O (τ log(τ/ε)/ log log(τ/ε)) queries to the oracle. The papers, however, do not
elaborate on the implementation of the oracle and many other critical subroutines, which makes
an implementation outside the reach of this thesis.

5.3.2.3 Quantum Singular Value Estimation Algorithm

In [46], Wossnig et al. present a method to implement the Hamiltonian of any dense matrix
using the Quantum Singular Value Estimation Algorithm, which is an algorithm that decomposes
a matrix into a sum of vector cross products. This algorithm, however, reduces the theoretical
exponential speedup of the original HHL algorithm for sparse matrices to only a quadratic speedup
over any classical algorithm. The paper also does not present implementation details of most of
its subroutines, again leaving a practical implementation outside the reach of this thesis.
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6. Eigenvalue Inversion

In this chapter, implementations of the Eigenvalue Inversion subroutine are examined and imple-
mented. The algorithms are responsible for finding the inverses λ−1j of the eigenvalues λj that were
found in the Eigenvalue Estimation subroutine. A general Eigenvalue Inversion subroutine makes
use of at least two registers. One memory register containing |λj〉, and an empty register that will
store the inverse |λ−1j 〉. The algorithm should leave the memory untouched and only overwrite the
second register. Hence, the algorithm should perform the following operation,

|λj〉 |0〉
Eig.Inv.−−−−−→ |λj〉 |λ91j 〉 . (6.1)

One of the algorithms will only make use of a single register, in which |λj〉 is directly transformed
into |λ−1j 〉. It is, however, only a very specific proof-of-concept Eigenvalue Inversion implemen-
tation. Since inversion is closely linked to division, a division algorithm may be used instead of
a specific inversion algorithm. A division algorithm calculating a/b for some n qubit numbers
a, b ∈ N can be used for calculating the inverse or reciprocal of a number λj by taking the values
a = 1 and b = λj .

6.1 Classical Approaches

On a classical computer, inversion is mainly performed through division a/b using a = 1, as de-
scribed above. Hence, solely division algorithms are examined. The easiest method for computing
a/b, is to repeatedly subtract b from a until the result is smaller than b. The amount of times
that b has been subtracted from a is then an approximation for a/b, specifically, ba/bc. This
method, however, is relatively inefficient, with a circuit depth O(n2n); it takes O(n) operations to
subtract a single b from a, and a maximum of O(2n) subtractions are possible (e.g. when b = 1
and a = 2n − 1). Two main types of more efficient division algorithms exist: fast algorithms and
slow algorithms [25]. The first category contains the Long Division Algorithm (“staartdeling”)
commonly taught at schools, which has a circuit depth of O(n2). All slow division methods use a
variation of the principles used in the Long Division method, where one significant bit is resolved
at a time. Fast division algorithms on the other hand are methods that can be applied when
a relatively close estimate is already available. These algorithms allow for faster approximation
than the slow algorithms from that first estimate. Examples are the Newton-Raphson and the
Goldschmidt algorithms. These approximate the answer quadratically faster than slow algorithms
[25].

6.2 Methods for Computing the Reciprocal of a number

In this chapter, three quantum algorithms for Eigenvalue Inversion will be discussed. Each of them
is based on another method. The first algorithm is an extremely simple algorithm only designed for
inverting powers of two, useful for, e.g., proof-of-concept circuits. Secondly, an inversion algorithm
based on the Newton-Rhapson Algorithm is discussed, which was suggested by Cao et al. in [47].
Finally, an algorithm based on long division, proposed by Thapliyal et al. [18, 19] is discussed.
The algorithms are all implemented in the QX simulator and compared to each other at the end of
this chapter. A fourth algorithm, proposed by Cao et al. in [34], was investigated. Initial attempts
at implementation, however, have proved unsuccessful. A description of the algorithm and the
attempts at implementation are found in Appendix B.

Before proceeding to the descriptions of the algorithms, a quick recap about binary numbers
will be made, including notes on inverses of binary numbers. Since only finitely many qubits are
available, say n qubits for a positive integer x, there will always be a largest possible value, which is
2n−1 in this case. Any positive integer x that is smaller than 2n can be written as xn91xn92 · · ·x0,
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and its inverse 1/x = y as y = y0.y91y92 · · · y9n+1y9n · · · . Note that the bit representation of the
exact inverse may have infinitely many non-zero bits. When the solution is saved as a binary
number, then it must be truncated at a finite amount of bits, e.g., it is approximated to m qubits
as ỹ ≡ y0.y91y92 · · · y9m91 ≈ y0.y91y92 · · · y9m91 · · · y9n · · · = y.

If y is multiplied by some power of two 2` for ` ∈ N, then only the position of the decimal
point changes: 2` · y = y91y92 · · · y9`.y9`91 · · · . The decimal point itself will not explicitly be saved
in the implementations in this thesis; instead it will follow from the implementation of the circuit.
This implies that the inverse 1/x of x is actually equivalent to performing 2`/x for any ` ∈ N.
Due to this property, 2`/x will also interchangeably be called an inverse x−1 of x. In some cases,
the inverse is approximated by integer values, which means that a higher ` may lead to a higher
accuracy, depending on the implementation.

6.2.1 Powers-of-Two Algorithm

Computing the reciprocal of a number a is easiest when only positive integer powers of two are
considered as inputs. For example, let a = 2k for some k ∈ N. In that case the binary represen-
tation may be written as a = 00 · · · 010 · · · 002, where only the k-th bit from the right is non-zero.
Its inverse 1/a is then equal to 0.00 · · · 010 · · ·2, where only the (k − 1)-th bit to the right of the
decimal point is non-zero (for k = 1, i.e. a = 00 · · · 012, the solution is 1/a = a = 12). Consider the
situation where n qubits are available and only positive integers are considered. Then, the largest
possible power of two is 2n−1, and the smallest one is 20 = 1. The inverses therefore lie between
2−n−1 and 20 = 1. The critical observation is that if these inverses are multiplied by 2n−1, then
the output range is again between 20 and 2n−1; the same as for the inputs. Now define a−1 as

2n−1/a. Then,
(
20
)−1

= 2n−1 and
(
2n−1

)−1
= 20. The same goes for 21 and 2n−2, etcetera. This

shows that the inversion of a number that is a power of two can be computed by reversing the
qubit order, using a reverse subroutine as is shown in Figure 6.1.

a0 ×

a1 ×

...
. . .

... . .
.

|2n−1/a〉

an92 ×

an91 ×

|a = 2k〉




Figure 6.1: Eigenvalue inversion for inputs that are solely powers of two.

This inversion method is mainly useful for showing a proof-of-concept, as will be done in Chapter
8 on the implementation of the full HHL QLSA.

6.2.2 Newton-Raphson Algorithm

One method for inverting the eigenvalues, is to approximate the inverted values using a variation
on the Newton-Raphson Root Finding Algorithm, as was proposed in [47]. It is based on the
function

f(x) = 2x− λx2, (6.2)

which is a parabola with its top at (x, y) = (λ−1, λ−1). Due to this top, if a first estimate x is
chosen sufficiently close to the top, and the output of the function f(x) is continually added back
into the function, the output value will approach the value λ−1 arbitrarily closely. The first esti-
mate is sufficiently close when it lies in the so-called region of convergence around the top, which
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is where |df/dx| < 1. This constraint precisely holds for the open region x ∈ (0, 2λ91).

The first estimate that is used in [47], is

x0 = 2−p, 2p−1 < λ ≤ 2p. (6.3)

This value indeed lies in the convergence region: the estimate is indeed greater than zero, and can
never be more than a factor of two away from λ−1. The only problematic case could be for λ = 2k

for some k ∈ Z, but in that case the first estimate is already exactly equal to λ−1. After this first
estimate, all following approximations are defined as

xi+1 = f(xi)

= 2xi − λx2i
= xi (2− λxi) .

(6.4)

In [47], a circuit is proposed for finding x0 = 2−p. This circuit for finding 2−p is shown in Figure
6.2.

•
. . .

|x0〉

•
· · · |0〉

•

. .
.

•
|λ〉

•

|0〉

|0〉

|λ〉







Figure 6.2: Circuit for creating the first estimate of λ−1, x0 = 2−p with 2p−1 < λ ≤ 2p. The least significant
qubit for both registers is the highest qubit.

However, for subsequent iterations of xi, no explicit circuits are presented in [47]. In this sec-
tion a circuit will be proposed to perform these steps, with an extra circuit specifically constructed
to perform the step from x0 to x1.

First, the general step from xi to xi+1 for any i ∈ N0 is discussed. To this end, the last equality
of Equation (6.4) is used: xi+1 = xi (2− λxi). An intermediate register is used to first calculate
2− λxi, which is then multiplied with xi to obtain the value for xi+1. The circuit for this process
is shown in Figure 6.3.

|0〉 / mul / |xi (2− λxi)〉 = |xi+1〉

|0〉 / +2 mulsub • / |2− λxi〉

|xi〉 / • • / |xi〉

|λ〉 / • / |λ〉
Figure 6.3: Circuit for performing the Newton-Raphson iteration step from xi to xi+1 for any i ∈ Z≥0.

In the circuit, a mul and mulsub subroutine are used. These subroutine were defined in Chapter
3.3.

A possible bottleneck with this implementation is the number of qubits required. Assume that
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λ is a positive integer of n qubits, meaning that the inverse satisfies 0 < λ−1 ≤ 1, and therefore
0 < xi < 2λ−1 ≤ 2 for any i (so also for i+1). Consequently, the operation from 2 to 2−λxi yields
an output value of 0 < 2−λxi < 2. Hence, the value in the register never exceeds 2, implying that
this register containing |2− λxi〉 is allowed have as most significant a qubit with value 2. Then,
the +2 operation is performed by flipping the most significant qubit. Now suppose that xi is stored
in an mi qubit register, then n + mi qubits are required to store |2− λxi〉, which in turn shows
that mi+1 = n + 2mi are required to store xi+1. Therefore, on top of the n qubits to store |λ〉,
2n+ 4mi qubits are required to calculate a single Newton-Raphson iteration. In the case of i = 0
(where m0 = n), it means that to reach x1 at least 7n qubits are needed, with an m1 = 3n qubit
long output state. A second iteration therefore requires another 2n+4 ·3n qubits and results in an
m2 = 7n qubit output state. More generally, xk is an mk =

(
2k+1 − 1

)
n qubit value, and it takes(

2k+3 − 2 ∗ k − 7
)
n qubits to find it. This is an exponential increase of qubits for higher order

approximations, which is not acceptable with the current amount of qubits available on quantum
computers and simulators.

The number of qubits can be reduced significantly when rounding in between steps. It is as-
sumed that the least significant qubits in the xi for smaller i are effectively noise, as the total error
is still so large that the less significant qubits do not contribute significantly to the accuracy. The
results in the QX implementation indicate that the assumption holds for x1. For higher values,
it will not be checked due to the amount of qubits required. Thorough analysis is left for future
research. Suppose it is allowed to only use the first m qubits of xi in the next iteration. Note
that this rounds down the result but keeps it above zero, which means that the rounded result
inherently stays within the stable region. The rounded value can be combined with the circuit
shown in Figure 1.6b to clear garbage states, to only require m extra qubits for each added step.
The number of required qubits does increase to implement the garbage removal algorithm, at m
qubits to copy the first xi. The precise implementation is left for future research.

Next, the process of specifically building x1 from x0 is examined, to construct a circuit that
performs this step more efficiently than the general method. Since |x0〉 is a power of two, it only
has a single qubit unequal to |0〉, which can be used to create a more efficient circuit. Note that
x1 will be equal to:

x1 = 2−p+1 − 2−2pλ. (6.5)

This operation can be performed using only n controlled subtractions. First, x0 = 2−p is multiplied
by two. This does not need any circuitry; only the interpretation of the qubits building x0 is to
be changed, such that each qubit representing 2k for some k ∈ N now represents 2k+1. Just one of
these qubits, namely the qubit with k = p, will have value |1〉, whereas all others have value |0〉.
The qubits of x0 can therefore be used as the control qubits for the subtraction of 2−2kλ. Only for
the qubit with k = p this subtraction will be performed, so only 2−pλ will be subtracted, yielding
2−p+1 − 2−2pλ = x1.

To be able to perform the 2−kλ subtractions, additional less-significant qubits are necessary in
the x0 register, since 2−2(n−1)λ may contain bits with significance less than 2−n+2 (which is the
least significant qubit in 2x0). Specifically, the least significant possible value in 2−2(n−1)λ can be
2−2(n−1), so the x0 register will need to be enlarged with n extra qubits.

A major gain in efficiency can be accomplished through the range of the subtractions. When
qubit 2−p+k+1 is in the |1〉 state, it means that the k most significant qubits of λ are zero, i.e. that
only the last n−k qubits of |λ〉 need to be taken into account when subtracting. These are exactly
the qubits of λ such that all non-zero qubits of 2−2(p+k)λ are less significant than 2−p+k+1.

A problem with the controlled subtractions is that controlling a subtraction by its most signif-
icant qubit is not possible with the subtracters discussed in this thesis. A solution is to copy
the value into an ancilla qubit using a cnot. This copied value can then be used to control the
subtraction. This method, however, yields a new problem. The problem lies in the fact that sub-
tracting any value from 2x0 will cause the non-zero qubit to overflow, meaning that its value is not
constant and can therefore not be used to reset the ancilla qubit. Therefore, n of these ancillae
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are required. If however in the future a method becomes available to control a subtracter by it
most significant qubit, these ancillae would not be necessary anymore. The circuit for the first
Newton-Raphson iteration is shown in Figure 6.4.

• / / • / · · · / •

sub(292(n91)λ)

· · ·

· · ·

sub(292(n92)λ)

· · ·
...

· · ·

×2

• · · ·
|x1〉

• · · ·
. . .

· · ·
sub(290λ)

· · · •

/ • • · · · • |λ〉

|0〉

|0〉

|x0〉

|λ〉




Figure 6.4: Circuit for performing the first Newton-Raphson iteration x0 to x1.

The approximations created using the Newton-Raphson method have different errors for differ-
ent values. The first four approximations are shown in Figure 6.5.

Figure 6.5: Approximations of x−1 using Newton-Raphson iterations.

It can be seen that for λ = 2n the approximations are perfect, while for values downward to-
wards a lower power of two the approximation becomes less accurate. For the first approximation
x0, the maximum relative error is 50% as the approximation for λ = 2k + ε is equal to x0 = 2k−1.
Each iteration yields a quadratically better approximation than the previous, meaning that the
maximum relative error for any iteration xk is 0.52k. For example, the relative errors for the first
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four approximations are,

x0 : εrel, max = 0.5,

x1 : εrel, max = 0.25,

x2 : εrel, max = 0.0625,

x3 : εrel, max = 0.00375.

(6.6)

As was discussed before, these approximations come at the cost of requiring a significant amount
of ancillae. For example, when a relative error of less than 0.25 is desired, a bare minimum of
n+ 2n+ 6n = 9n qubits is necessary to store the final answers alone. With a maximum of around
40 qubits in simulation, the algorithm is therefore impractical for higher order approximations at
the current state of technology.

6.2.3 Thapliyal Inversion Algorithm

The final algorithm applies the Adapted Thapliyal Integer Division Algorithm defined in Chapter
3.4.1. The extension of the algorithm to accommodate larger a will be used. A brief recap of the
Extended Thapliyal Integer Division Algorithm is given, and it will be shown how the algorithm
can be converted into an inversion algorithm.

For any m and n ≤ m qubit integers a and b the Extended Thapliyal Integer Division Algo-
rithm finds the m and n qubit integers q and r, respectively, such that a = q · b+ r. To find q and
r, the algorithm requires 2n+m+ 2 qubits. These qubits are always split up into three registers,
although the registers before and after the algorithm are not equal. Before the algorithm, the
qubits are split up into the registers N , O and D (of m, n+ 1 and n+ 1 qubits, respectively), and
afterwards in the registers R, Q and D (of n + 1, m and n + 1 qubits, respectively). Using these
registers, the algorithm performs the operation,

|a〉N |0〉O |b〉D
div−−→ |r〉R |q〉Q |b〉D . (6.7)

The registers D and R are one qubit larger than their respective contents of b and r. The most
significant qubit in these two registers must remain zero. Otherwise, the algorithm will give an
erroneous result as was explained in Chapter 3.4.1. The complete in- and outputs of the algorithm
are shown in Figure 6.6.

|a0〉N0

DIV

|r0〉R0

...
...

|an91〉Nn91
|rn91〉Rn91

|r〉R

|an〉Nn
|0〉Rn

|an+1〉Nn+1
|q0〉Q0

...
...

|am91〉Qm91
|qm9n92〉Qm9n92

|0〉O0
|qm9n91〉Qm9n91

|q〉Q

...
...

|0〉On
|qm91〉Qm91

|b0〉D0
• |b0〉D0

...
...

|bn−1〉Dn91
• |bn91〉Dn91

|b〉D

|0〉Dn
• |0〉Dn

|a〉N

|0〉O

|b〉D




Figure 6.6: In- and outputs for the complete Adapted Thapliyal Integer Division Algorithm for unequal register
sizes.
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The Thapliyal Division Algorithm will now be used to find an approximation of the inverse of
a positive integer eigenvalue λ. Earlier in this chapter it was observed that 2k/λ is effectively
equivalent to the actual inverse 1/λ for any integer k. Also note that q is equal to the floor of the
real value a/b, i.e. q = ba/bc. Combining this shows that when a = 2m91 and b = λ are taken, the

result q = b2m91/λc ≡ λ̃91 is obtained. With these modifications, the total process of the Thapliyal
Inversion algorithm becomes

|2m91〉N |0〉O |λ〉D
Thap. Inv.−−−−−−−→ |r〉R |λ̃91〉Q |λ〉D . (6.8)

The value of the power in a = 2m91 is not chosen arbitrarily: since N is an m qubit register, 2m91 is
the largest power of two which can be saved in it, as |100 · · · 00〉N . It should be noted that dividing
q by a yield the approximation of the inverse 1/λ in decimal, since q/a = b2m91/λc/2m91 ≈ 1/λ.
This fact is used in the section on the QX implementation, to intuitively show the output of the
algorithm.

A remaining question is the accuracy of λ̃91. Register Q per definition contains an integer, with its
least significant qubit having a value of 20 = 1. Now since Q contains m qubits, its most significant
qubit has a value of 2m91. If the register was instead interpreted as 1/λ instead of 2m91/λ, then it
follows that the most significant qubit now carries a value of 20, and the least significant qubit a
value of 29(m91). Therefore, the maximum error in the approximation is εmax = 29(m91). Since λ can
have a value of up to λ = 2n− 1 < 2n, the minimum inverse becomes (1/λ)min = 1/(2n− 1) > 291.
Therefore, the maximum relative error is

εrel, max = εmax/(1/λ)min < 29(m91)/291 = 2n9m+1 (6.9)

For any m > n + 1 the relative error is always smaller than the inverse itself, with exponentially
higher accuracy for higher m at the cost of a constant increase in circuit width and depth.

6.3 Comparison of the algorithms

In this chapter, three algorithms for Eigenvalue Inversion have been discussed. To build a complete
Quantum Linear Solver however, only one algorithm is required. When choosing, the Thapliyal
Inversion algorithm is the preferred algorithm. This is mainly due to the disadvantageous properties
of the other algorithms, which will now be discussed. The Power-of-Two Inverter only works for
powers of two as input. For a proof of concept implementation this can be ideal, but for a general
linear solver it is not acceptable. The main alternative to the Thapliyal Inversion algorithm is
therefore the Newton-Raphson Inverter. Its fast convergence makes it ideal in theory, but it is
unusable at the current state of technology due to its large number of required ancillae. The
Thapliyal Inversion algorithm, which only requires n+ 2 ancillae for an n qubit input, is therefore
the preferred algorithm going onward.

6.4 QX Implementation

None of the algorithms discussed in this chapter pose significant challenges in their QX implemen-
tations, although the higher-order Newton-Raphson Iterations are not implemented due to their
high number of required qubits. The analysis of the Powers-of-Two inverter is also excluded from
this section, as its functioning is inherent and does not require testing. The implementations of the
Newton-Raphson and Thapliyal Inversion algorithms will therefore be discussed in the remainder
of this chapter.

Of the Newton-Raphson Inversion, only the circuits for the first two iterations x0 and x1 have been
implemented, since higher orders would take too many qubits to implement at over 7n qubits. The
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n ancillae qubits were reduced to one single ancilla, by resetting the qubit after each subtraction.
This makes the circuit irreversible and impossible to implement on a real quantum computer, but
aids calculation time in the proof of concept.

The algorithm was tested for all possible inputs of four qubits and for several numbers of more
qubits in length. The algorithm behaved as expected, i.e. its approximations were equal to
the expectations. An example output for the n = 5 qubit input λ = 010112 = 11 is shown
in Figure 6.7. The found approximations indeed align with the theoretical approximations of
x0 = 29dlog(λ)e = 0.125 and x1 = 2x0 − λx20 = 0.078125.

Figure 6.7: Output of the first two orders of Newton-Raphson Inversion for the input 01011.

The Thapliyal Inversion algorithm is performed using the Thapliyal Division implemented in Chap-
ter 3.4.1, by taking the inputs a = 2k and b = λ. In Section 6.2.3, it was explained that dividing
the output quotient q of the Thapliyal division algorithm by the input value a yields the decimal
representation of the approximation of the inverse, that is, q/a ≈ 1/λ. In validating the Thap-
liyal Division algorithm, the Thapliyal Inversion algorithm has effectively been validated as well.
To give an idea of the output of the algorithm, the example from Newton-Raphson Inversion is
repeated, i.e. λ = 010112 = 11. For k the value k = 15 is chosen, yielding a = 16384. For these
inputs, 25 qubits are required in the calculations. Higher values of k result in significant calcula-
tion times and do not yield much extra insight in the working of the algorithm. The results of the
calculation are shown in Figure 6.8. In this figure, the values a and b are written as n and d, which
is another common notation. Additionally, the answers are shown as q = 1489 and r = 5, which
need to be rewritten to a recognisable form using q/a ≈ 1/λ. The found approximation for the
inverse is therefore q/a = 1489/16384 ≈ 0.09088, compared to the actual value of 1/11 ≈ 0.90909.
When comparing the bit representation of the approximation q/a = 0.000101110100012 to that of
the actual approximation 1/11 ≈ 0.000101110100010111012, it is clear that the approximation is
indeed the first k = 15 bits of the real value, as expected. This leads to the conclusion that the
implementation of the Thapliyal Inversion Algorithm functions properly.

Figure 6.8: Output of the Thapliyal Division algorithm used as Thapliyal Inversion for the input λ = 010112 = 11
and k = 15 bit precision. The approximated value for 1/11 ≈ 0.000101110100010111012 ≈ 0.90909 is q/a =
1489/16384 ≈ 0.09088.
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7. Ancilla Rotation

In this chapter the third and final subroutine of the HHL algorithm is discussed, which is the
Ancilla Rotation subroutine. The inputs for this subroutine are an ancilla qubit A initialised
in the |0〉 state, and an m qubit register Q, containing an inverted eigenvalue λ91 ≤ 1. In the
subroutine, the ancilla qubit A should be rotated to a state, where the complex amplitude of |1〉A
is proportional to λ91. The desired operation of the Ancilla Rotation subroutine is therefore [34],

|0〉A |λ
91〉Q

Anc. Rot.−−−−−−→

(√
1− c2

λ2
|0〉A +

c

λ
|1〉A

)
|λ91〉Q , (7.1)

where c ∈ R is a predetermined value satisfying the condition |c| < 1. First, an implementation
by Cao et al. [34] is discussed, after which two times two expansions are proposed which increase
accuracy for constant c. Two extensions are implemented in the QX simulator and verified.

7.1 Cao implementation

In [34], Cao et al. propose a method to approximate the output state for the ancilla qubit. The
algorithm solely uses m controlled-Ry(θ) gates. In Chapter 1, the Ry(θ) gate was defined as

Ry(θ) =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
. (7.2)

From this definition it is observed that by applying Ry(θ) to the |0〉A the state

Ry(θ) |0〉A = cos

(
θ

2

)
|0〉A + sin

(
θ

2

)
|1〉A (7.3)

is obtained. Therefore, if an angle θ is found such that sin(θ/2) = c/λ, the desired rotation is
performed. From the equality sin(arcsin(ϕ)) = ϕ for ϕ ∈ (−π, π), it is observed that this holds for
θ = 2 arcsin(c/λ). That is,

Ry

(
2 arcsin

(
C

λ

))
|0〉A =

√
1− C2

λ2
|0〉A +

C

λ
|1〉A . (7.4)

The challenge of the subroutine, hence, lies in the transformation x → arcsin(x), or more specif-
ically, x → 2 arcsin(cx). Once this transformation is performed, only controlled y-rotations are
required to perform the ancilla rotation. The transformation is where Cao et al. use an approx-
imation. Through the Taylor expansion of arcsin(x) around x = 0, arcsin(x) can be written as
[48],

arcsin(x) = x+

∞∑
k=1

1 · 3 · 5 · . . . · (2k − 1)

2 · 4 · 6 · . . . · (2k)

x2k+1

2k + 1
= x+

1

6
x3 +

3

40
x5 +

5

112
x7 +

35

1152
x9 +O(x11).

(7.5)
In Equation (7.5), it is shown that arcsin(x) can be approximated to arcsin(x) ≈ x for small x.
Hence, with the y-rotations applied directly to λ91, the ancilla rotation can be performed arbitrar-
ily precisely, as long as c is kept small. The implementation that Cao et al. use in [34] is shown in
Figure 7.1.

The implementation exploits the fact that multiplication ofRy gates sums the angles (i.e. Ry(θ)Ry(ϕ) =
Ry(θ + ϕ)), in combination with the fact that a binary number can be written as a sum, e.g.
x = x0.x1x2 · · ·xm91 = x0 + x1291 + x2292 + . . .+ xm9129m+1 with xj ∈ {0, 1}. Hence,

Ry (cx) = Ry (cx0)Ry
(
cx1291

)
Ry
(
cx2292

)
· · ·Ry

(
cxm9129m+1

)
. (7.6)
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|0〉A Ry
(

2π
2r+m91

)
Ry
(

2π
2r+m92

)
· · · Ry

(
2π
2r

)
cos( cλ ) |0〉A + sin( cλ ) |1〉A

|λ910 〉Q0
• |λ910 〉Q0

|λ911 〉Q1
• |λ911 〉Q1

...
. . .

...

|λ91m91〉Qm91
• |λ91m91〉Qm91

Figure 7.1: Circuit for performing the ancilla rotation |0〉A → cos(c/λ) |0〉A + sin(c/λ) |1〉A ≈
√

1− c2/λ2 |0〉A +
c/λ |1〉A, for c = π/2r, with a freely selectable integer r ∈ N.

Since the xj are either zero or one, they effectively act as a control. For example, Ry (cx0) is
equivalent to Cx0 [Ry (c)]. Equation (7.6) can therefore be reformulated as

Ry (cx) = Cx0 [Ry (c)] Cx1
[
Ry
(
c291

)]
Cx2

[
Ry
(
c292

)]
· · · Cxm91

[
Ry
(
c29m+1

)]
. (7.7)

This is equivalent to the circuit shown in Figure 7.1 for c = 2π/2r, which yields the output ancilla
state,

cos
( c
λ

)
|0〉A + sin

( c
λ

)
|1〉A . (7.8)

The value of the positive integer r ∈ N is to be chosen beforehand. Note that sin(x) is only
monotonously increasing for x ≤ π/2, which means that with a maximum value of λ91 = 1 at least
r = 1 is required in order to have a unique answer for each λ91. Increasing r will decrease c, and
hence create a better approximation; the error increases as O(c3). A downside of increasing r,
however, is that this decreases the complex amplitude of |1〉A, and hence also the probability of
finding a correct answer in the HHL QLSA. This probability decrease is linear in c. The choice for
r is therefore a consideration between precision and efficiency. The maximum error and probability
of measuring |1〉A for different values of r are shown in Table 7.1.

r 1 2 3 4 5 6

max error 5.71 · 1091 7.83 · 1092 1.00 · 1092 1.26 · 1093 1.58 · 1094 1.97 · 1095

max probability 1.00 · 100 5.00 · 1091 1.46 · 1091 3.81 · 1092 9.61 · 1093 2.41 · 1093

Table 7.1: Table of the maximum error and probability for |1〉A for different values of r in the approximation
used in the paper by Cao et al. [34]. The maximum error in the approximation is reached for the highest value of
λ91 = 1. In other words, the maximum error is equal to π/2r − sin(π/2r). The probability for measuring |1〉A is
equal to the square of its complex amplitude. Again the maximum is for λ91 = 1, for which the probability is equal
to 〈1|1〉A = sin2(π/2r).

7.2 Proposed extensions

7.2.1 Third order approximations

An option for improved accuracy is to use a higher-order Taylor approximation of the arcsin(x)
function as defined in Equation (7.5). Here, two possible extensions to the Cao Algorithm are
proposed. Consider the first higher-order approximation, arcsin(x) ≈ x+x3/6. This approximation
can be built in two ways: either (λ91)3 = λ93 can explicitly be calculated, or the rotation Ry(c3/λ3)
can be applied directly from λ91. The two respective methods are shown in Figure 7.2.

7.2.1.1 Explicit Third Power Calculation Ancilla Rotation Algorithm

In the first case, where λ93 is explicitly calculated, the rotation method from the Cao Implemen-
tation can be repeated on λ93, except with c→ c3/6. The method has a runtime of O(n2), and its
circuit is shown in Figure 7.2a. The difficulty in implementing this algorithm is the calculation of
x→ x3. With the algorithms discussed in this thesis, this can only be accomplished by (1) copying
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|0〉A Ry
(
2 π
2r x
)

Ry

(
2 π3

23r
x
6

)
Ry( cλ + c3

6λ3 ) |0〉A

|λ91〉 / • • |λ91〉

|0〉 / x3 • |λ93〉

(a) Higher order ancilla rotation subroutine by calculating λ93.

|0〉A Ry
(
2 π
2r x
)

Ry

(
2 π3

23r
x3

6

)
Ry( cλ + c3

6λ3 ) |0〉A

|λ91〉 / • • |λ91〉
(b) Higher order ancilla rotation subroutine by applying a Ry(x3) rotation.

Figure 7.2: Two methods for applying a higher order ancilla rotation: one by calculating λ93 explicitly, the other
by directly applying the rotation Ry(cx3) with c = π/2r.

x into a second register, (2) calculating x2 in a third register by multiplying these two copies, and
(3) calculating x3 in a fourth register by multiplying x2 and x. A circuit to perform this process
is shown in Figure 7.3.

|x〉 / • • • • |x〉
/

MUL
•

/ •
|x2〉

/ •
MUL/ |x3〉

/

|0〉⊗5n




Figure 7.3: Circuit for calculating x3 from an n-bit number x.

The copying subroutine is shown in Figure 1.7. The least amount of qubits required to calcu-
late x3 using this method is equal to n+ 2n+ 3n = 6n in order to store x, x2 and x3 respectively.
Note that no additional n qubits are required to save the copy of x, since after calculating x2 the
register storing the second x can be cleared again by repeating the copying procedure. It can then
be reused to store x3, as is shown in the figure.

The copying subroutine requires n cnot gates, leading to the circuit depth O(n). The multi-
pliers implemented in this thesis have circuit depths of O(n2). Therefore, the complete Explicit
Third Power Calculation Ancilla Rotation Algorithm has a circuit depth of order O(n2), and a
circuit width of 6n = O(n).

7.2.1.2 Direct Third Power Rotation Ancilla Rotation Algorithm

The second method, where the operation Ry(x3) is performed directly from x will be examined
in this section. In contrast to the Explicit Third Order Calculation methods, it requires only a
single extra qubit in practice. It is, however, very specific in its implementation for each number
of qubits, and has a circuit depth of order O(n3). The general circuit for the algorithm is shown in
Figure 7.2b. The challenge is to find a subroutine such that Ry(cx3) can be applied directly from
x. To this end, it is used that x3 can be written as a sum of multiplications of the bits of x. Due
to the writing complexity, the method will be explained for four qubits, but is similar for different
numbers of qubits. Since it was assumed that 0 ≤ x ≤ 1 (and that x is only four qubits long), x
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can be written in binary as

x = x0.x91x92x93

= x0 + 291x91 + 292x92 + 293x93

= a+ b+ c+ d,

(7.9)

where a through d are defined as a ≡ x0, b ≡ 291x91, c ≡ 292x92, and d ≡ 293x93. This allows for
the rewrite of x3 as a sum of partial products, which in turn can be rewritten to conditional sums,

x3 = (a+ b+ c+ d)3

= a3 + b3 + c3 + d3

+ 3
[
a2b+ ab2 + a2c+ ac2

+ a2d+ ad2 + b2c+ bc2

+ b2d+ bd2 + c2d+ cd2
]

+ 6
[
abc+ abd+ acd+ bcd

]
= x30 + x391293 + x392296 + x393299

+ 3
[
x20x91291 + x0x

2
91292 + x20x92292 + x0x

2
92294

+ x20x93293 + x0x
2
93296 + x291x92294 + x91x

2
92295

+ x291x93295 + x91x
2
93297 + x292x93297 + x92x

2
93298

]
+ 6
[
x0x91x92293 + x0x91x93294 + x0x92x93295 + x91x92x93296

]
= x0 + x91293 + x92296 + x93299

+ 3
[
x0x91291 + x0x91292 + x0x92292 + x0x92294

+ x0x93293 + x0x93296 + x91x92294 + x91x92295

+ x91x93295 + x91x93297 + x92x93297 + x92x93298
]

+ 6
[
x0x91x92293 + x0x91x93294 + x0x92x93295 + x91x92x93296

]
= x0 + x91293 + x92296 + x93299

+ 3
[
x0x91(291 + 292) + x0x92(292 + 294) + x0x93(293 + 296)

+ x91x92(294 + 295) + x91x93(295 + 297) + x92x93(297 + 298)
]

+ 6
[
x0x91x92293 + x0x91x93294 + x0x92x93295 + x91x92x93296

]

(7.10)

A couple of remarks on this rewrite, in order: (1) From step 2 to step 3, the xi are reintroduced.
However, now when two xi are next to each other, it is not meant that they are forming a bitwise
number, but instead that they are multiplied. (2) From step 3 to step 4, the powers of all the xi
are removed. This is allowed, since all the xi either have value 0 or 1, which are both number with
the property that xki = xi for all k ∈ N. (3) In the last step, all the same multiplications of xi’s
are grouped.

The value x3 is now split into a sum of products, which means that Ry(cx3) can be written
as a number of separate rotations, comparable to Equation (7.6),

Ry(cx3) =

Ry(cx0) Ry(cx91293) Ry(cx92296) Ry(cx93299)

Ry(3cx0x91(291 + 292)) Ry(3cx0x92(292 + 294)) Ry(3cx0x93(293 + 296))

Ry(3cx91x92(294 + 295)) Ry(3cx91x93(295 + 297)) Ry(3cx92x93(297 + 298))

Ry(6cx0x91x92293) Ry(6cx0x91x93294) Ry(6cx0x92x93295) Ry(6cx91x92x93296)

(7.11)

The value of a product of xi’s is binary, with only an output value of 1 when all the xi in the
product are equal to 1. In the section on the Cao implementation it was shown that a binary value
in an Ry gate effectively act as a control, so a product of k xi’s in an Ry gate behaves as a k-fold
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controlled y-rotation. Hence, the third power rotation Ry(cx3) can be rewritten to a number of
controlled-Ry gates,

Ry(cx3) =

Cx0 [Ry(c)] Cx91 [Ry(c293)] Cx92 [Ry(c296)] Cx93 [Ry(c299)]

Cx0x91 [Ry(3c(291 + 292))] Cx0x92 [Ry(3c(292 + 294))] Cx0x93 [Ry(3c(293 + 296))]

Cx91x92 [Ry(3c(294 + 295))] Cx91x93 [Ry(3c(295 + 297))] Cx92x93 [Ry(3c(297 + 298))]

Cx0x91x92 [Ry(6c293)] Cx0x91x93 [Ry(6c294)] Cx0x92x93 [Ry(6c295)] Cx91x92x93 [Ry(6c296)]

(7.12)

This final rewrite is precisely equivalent to the circuit performing a third-order rotation, except
not yet written in a recognisable form. The actual circuit is shown in Figure 7.7 on page 66. In
this circuit, three-fold controlled gates are used, which are not gates that are available in QX by
default. In the section on the QX Implementation it will be shown that the three-fold-controlled-
Ry gate can be implemented using a single ancilla qubit. This is precisely the reason for requiring
an ancilla qubit in the algorithm.

For different numbers of qubits, the circuit will be similar in the sense that it will consist of
rotations of every possible combination of controlled-Ry gates, controlled by either one, two or
three qubits. Specifically,

(
n
1

)
= n,

(
n
2

)
= 1

2n(n− 1) and
(
n
3

)
= 1

6n(n− 1)(n− 2) of these controlled
rotations are required, respectively. This means that the operation scales as O(n3). The angles of
the gates can be found in the same manner as in Equation (7.10). A more direct method will be
discussed in the next section.

7.2.1.3 Comparison of the methods

When explicitly calculating the third power λ93, the circuit has a circuit depth of order O(n2),
and the number of required number of qubits scales as O(n). Compare this to the second method
of directly rotating by the third power, which has circuit depth O(n3) and circuit width O(n).
Written this way, it seems that the explicit method is more convenient. The notation however does
not show the large constant factors in that method: roughly 12n2 +O(n) and 6n+O(1) gates and
qubits, respectively, compared to the 1

6n
3 + 5

6n gates and n+O(1) qubits for the second method.
It takes values saved in registers of over n = 70 qubits long (i.e. values greater than roughly 1021)
to need a larger circuit depth using the direct rotation method compared to the explicit method.
Currently, there are no quantum computers or simulators that can even get close to that number
of qubits, so the direct rotation method is preferred at this stage. However, given that one of the
goals for quantum computers is to compute especially large problems at some point, the explicit
method will possible become preferred in the the future.

7.2.2 Higher order approximations

The two methods from the previous section can be adapted to implement higher orders than only
the third order. With higher-order methods it is meant that arcsin(x) is approximated as a higher-
order polynomial, according to Equation (7.5). Consider the approximation up to x2k+1. Then
the powers x, x3, x5, . . ., x2k+1 are required. The two adaptations to the algorithms from the
previous section are shown in Figure 7.4. Again both methods will be discussed.

7.2.2.1 Explicit Higher-Power Calculation Ancilla Rotation Algorithm

In this method, comparable to the third power approximation, all xk are explicitly calculated. The
first two powers x2 and x3 are calculated the same way as before. Using these values, x5 can be
calculated by multiplying x2 and x3, x7 can be calculated by multiplying x2 and x5 etcetera, up
until x2n−1 from x2 and x2k−1. Using the direct approach, this requires n+ 2n+ 3n+ 5n+ 7n+
. . . + (2k + 1)n = (k2 + 2k + 3)n qubits, as in Figure 7.4a. Comparable to the uncomputation of
the second x before, it is possible to first build the lower-power numbers in the registers of the
higher-power numbers. The rotations of these lower power numbers can be performed directly
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(a) Higher order ancilla rotation subroutine by explicitly calculating λ9p from λ91.
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(b) Higher order ancilla rotation subroutine by directly applying Ry(xk) rotations to λ91.

Figure 7.4: Two methods for applying a higher order ancilla rotation: one by finding the λ9k explicitly, the other
by applying the rotations Ry(cxk).

after the number is constructed, and can then directly be uncomputed to make room for the
higher-power numbers. An example for k = 4 (i.e. up to x9) is shown in Figure 7.5. Now instead
of at least 27n, only a minimum of n + 2n + (2k − 1)n + (2k + 1)n = (4k + 3)n = 19n qubits
are required, in order to save x, x2, x7 and x9 (since x cannot be cleared, and x2 and x7 are
required to build x9). This process cannot easily be generalised for any k however, since the total
size of the lower-power-number registers scales quadratically, compared to the linear increase in
individual register sizes. This implies that for higher k not all lower-power numbers will fit into
the larger-power-number registers as with k ≤ 4, which in turn will mean that extra qubits will
be required. With current technologies, however, where a maximum simulation can only handle
around 40 qubits, these higher powers cannot be reached anyway for any reasonably sized input
value. The large benefit of this explicit method though is that it will always scale with O(n2), so
it may become preferred once large-scale quantum computers become available.

|x〉 • • • • • |x〉

|0〉⊗2n / MUL |x2〉 • • • • • |x2〉

|0〉⊗n / |x〉 •
MUL

•

|0〉⊗6n /
|x7〉

•
|x7〉

|0〉⊗3n / MUL |x3〉 • • • MUL†

MUL|0〉⊗5n / MUL |x5〉 • MUL† |x9〉

|0〉⊗n /




Figure 7.5: Circuit for building x3, x5, x7 and x9 from x using multiplication.

7.2.2.2 Direct Higher-Power Rotation Ancilla Rotation Algorithm

The second method, that is, direct rotation proportional to xp from x, is currently much more
attractive due to its smaller memory footprint, i.e. the number of required qubits. In this method,
implementing the highest power Ry(cx2k+1) requires Ry gates controlled to up to 2k + 1 qubits,
with

(
n
p

)
rotations controlled by p qubits. In the section on QX implementation, it will be shown

that a p-fold-controlled-Ry gate can be implemented using p − 2 ancillae, implying that 2k − 1
ancillae are required for an approximation up to the (2k + 1)-th order. The circuit depth of the
complete algorithm scales as O(n2k+1).
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In this section it will be explained how a xp rotation can be implemented for n qubits, with
an x5 rotation controlled by 5 qubits as example. For a complete ancilla rotation, multiple xp ro-
tations are required as detailed earlier in this section. The process for a single xp rotation consists
of three nested steps and a calculation step; (1) the gates are separated by the amount of unique
controlling qubits `, (2) per amount of controlling qubits `, each combination C of said amount of
controlling qubits is determined, (3) for these combinations C, all possible permutations F of the
amount each qubit controls the combination are found, including relative frequency of occurrence
F , (4) these combinations C and frequencies F are used to determine the rotation value of each
combination of controlling qubits:

1. Cycle over the amount of unique qubits p that control a gate, with ` = 1, 2, . . . , p.

• For example ` ∈ {1, 2, 3, 4, 5} for p = 5.

2. For any given `, find all
(
n
`

)
combinations of ` out of n qubits. Call these combinations

C`,i(n, p) = {C(0)`,i (n, p), C(1)`,i (n, p), . . . , C(`91)`,i (n, p)} for i ∈ {1, 2, . . . ,
(
n
`

)
}.

• For the example with n = 5 and p = 5, consider ` = 3. For this `, there are
(
5
3

)
= 10

combinations, namely,

C3,1(5, 5) = {q0, q1, q2}, C3,6(5, 5) = {q0, q3, q4},
C3,2(5, 5) = {q0, q1, q3}, C3,7(5, 5) = {q1, q2, q3},
C3,3(5, 5) = {q0, q1, q4}, C3,8(5, 5) = {q1, q2, q4},
C3,4(5, 5) = {q0, q2, q3}, C3,9(5, 5) = {q1, q3, q4},
C3,5(5, 5) = {q0, q2, q4}, C3,10(5, 5) = {q2, q3, q4}.

3. Find all
(
p91
`91

)
permutations of the amount of times each qubit is controlled in each of

these combinations, including their frequencies. Name these permutations P`,i,j(n, p) =

{P(0)
`,i,j(n, p), P

(1)
`,i,j(n, p), . . . , P

(`91)
`,i,j (n, p)} and frequencies F`,i,j(n, p) for combination C`,i(n, p)

and j ∈ {1, 2, . . . ,
(
p91
`91

)
}. The permutations need to satisfy two conditions: they must have

P(m)
`,i,j(n, p) ∈ Z≥1 for all m, and

∑`91
m=0 P

(m)
`,i,j(n, p) = p. Elementary probability theory shows

that the frequency F`,i,j(n, p) is equal to [49],

F`,i,j(n, p) =
p!∏`91

m=0[P(m)
`,i,j(n, p)]!

. (7.13)

• For the example of n = 5, p = 5 and ` = 3 there are
(
4
2

)
= 6 permutations. Take i = 1,

i.e. C3,1(5, 5) = {q0, q1, q2}, then the possible permutations with frequencies are

P3,1,1(5, 5) = {3, 1, 1}, F3,1,1(5, 5) = 20, ∼20q30q1q2

P3,1,2(5, 5) = {1, 3, 1}, F3,1,2(5, 5) = 20, ∼20q0q
3
1q2

P3,1,3(5, 5) = {1, 1, 3}, F3,1,3(5, 5) = 20, ∼20q0q1q
3
2

P3,1,4(5, 5) = {2, 2, 1}, F3,1,4(5, 5) = 30, ∼30q20q
2
1q2

P3,1,5(5, 5) = {2, 1, 2}, F3,1,5(5, 5) = 30, ∼30q20q1q
2
2

P3,1,6(5, 5) = {1, 2, 2}, F3,1,6(5, 5) = 30, ∼30q0q
2
1q

2
2

4. Sum the values found in the third step to get the angle θ`,i(n, p) of the rotation gate controlled
by the combination of qubits C`,i(n, p), CC`,i(n,p)[Ry(cθ`,i(n, p))]. Here, it is assumed that
the number is written as q = q0.q1q2 · · · qn91 = q0 + q11091 + q21092 + . . . + qn91109n+1. the
value for θ`,i(n, p) in the CC`,i(n,p)[Ry(cθ`,i(n, p))] gate then becomes

θ`,i(n, p) =

(p91
`91)∑
j=1

F`,i,j(n, p)
n91∏
m=0

109m·P
(m)
`,i,j(n,p). (7.14)
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• For the example with n = 5, p = 5, ` = 3 and i = 1 (which corresponds to combination
{0, 1, 2}, i.e. the gate controlled by q0, q1 and q2), the angle becomes,

θ3,1(5, 5) = 20(1093 + 1095 + 1097) + 30(1094 + 1095 + 1096)

= 2 · 1092 + 3 · 1093 + 5 · 1094 + 3 · 1095 + 2 · 1096

= 0.023532.

Hence, the rotation gate controlled by qubits q0, q1 and q2 is Cq0q1q2 [Ry(0.023532c)].

In Step 3, the fact that there are
(
p91
`91

)
permutations is not completely trivial. The process is

equivalent to dividing p balls over ` buckets (where “the number of balls in bucket x” represents
“the number of times qubit x occurs in the specific permutation”), with the additional condition
that no bucket may remain empty (because an empty bucket would mean that one or more qubits
do not occur in the permutation, which would mean that permutations are counted doubly). The
additional condition can be met when one ball is added preemptively to each of the ` buckets.
Hence, there are effectively only p− ` free balls. The number of ways to put x balls into y buckets
is equal to

(
x+y91
x91

)
[49]. Taking x = p9` and y = ` shows that there are indeed

(
p91
`91

)
permutations.

Some remark is in order for small qubit numbers. Consider the implementation of a p-th power
rotation on an n < p qubit number. From the explanation above, one would expect to have
rotation gates controlled up to p unique qubits. This, however, is impossible with fewer then p
qubits; the maximum is n unique qubits. Generally, ` only goes up to min(n, p) instead of up to p.
The number of ancilla qubits is therefore only max(0,min(n, p)− 2) instead of max(0, p− 2). For
example for n = 4, the maximum required number of qubits is only 2 for approximation up to an
arbitrarily high order, making it relatively inexpensive to do so in terms of circuit depth.

7.2.2.3 Comparison of the methods

For the higher-order approximations, the same considerations hold as for the third power approxi-
mation. The method that explicitly calculates the higher powers retains a circuit depth of O(n2),
but with a high constant factor. Additionally, although it requires O(n) qubits, the constant factor
is again large; at least (4k+3)n qubits are required. The second method only requires k−2 ancillae
for the k-th approximation (up to power x2k+1), but it does scale as O(x2k+1), albeit with small
constant factors. This thesis has not gone in depth on what these constant factors exactly are,
and the thorough analysis is left open for future research. Due to the high circuit width for the
explicit method, the direct rotation method is preferred going forward.

7.2.3 Error analysis

Finally the errors of the higher-order approximations are examined. Instead of the r factor as
before, it will now be examined up to what input number for cx the results of the ancilla rotation
∼
√

1− c2x2 |0〉 + cx |1〉 stay under a certain error. The errors looked at will be 5%, 1% and
0.1‰ for k from 0 to 5 (i.e. for the highest power ranging between x and x11). The results are
shown in Table 7.2. It might seem strange that some maximum input values exceed cx = 1, while
the maximum output is equal to one. This is due to the fact that input values cx can be larger
than one, and values slightly larger than one are mapped close to it. Hence, for example, for
input values up to roughly 1.05 the output error can stay under 5%, yielding the results in the
table. The error is monotonous up to π/2 ≈ 1.57, which is greater than the maximum input, so
any values smaller than those given in the table will result in a smaller error. For higher-order
approximations, however, inputs significantly larger than one will result in rapid oscillations of the
output, hence c and x should be chosen such that always cx ≤ 1.

7.3 QX Implementation

The main challenge in the implementation of the algorithms described in this chapter lies in the
construction of the (multiply-)controlled-Ry gates. For the Cao implementation and the Explicit
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k 0 1 2 3 4 5

error 0.05 0.5519 0.8900 0.9889 1.0257 1.0414 1.0485
error 0.01 0.2453 0.5996 0.7652 0.8493 0.8974 0.9274
error 0.001 0.0775 0.3389 0.5264 0.6440 0.7208 0.7738

Table 7.2: Values for cx such that the error in ∼
√

1− c2x2 |0〉+ cx |1〉 stays under a certain level, approximated
up to the a2k+1x

2k+1 term.

Higher Powers implementation, only singly-controlled-Ry gates are required. These have success-
fully been implemented by application of the circuit in Figure 1.3 in combination with the realisa-
tion that the square root of the Ry(θ) gate is the Ry(θ/2) gate. The circuit for the controlled-Ry
gate is found in Appendix A on page 82. The decomposition for the doubly-controlled-Ry gate can
also be found in that section, which was constructed using the singly-controlled-Ry gate and the
circuit shown in Figure 1.4, which shows how to construct a doubly-controlled gate using its singly-
controlled-square-root gates. For a general k-fold-controlled-Ry gate the circuit shown in Figure
1.5b can be applied to the doubly-controlled-Ry gate. This final method does require k−2 ancillae.

Due to the amount of required qubits, the Explicit Higher Powers method has not been imple-
mented in QX. The Direct Higher Order Rotations method on the other had has been implemented
for any number of qubits and up to any power. The higher power rotations have been implemented
as stand alone functions. They have been tested for all four qubit values x, all powers p up to five,
a number of different values for c and a multitude of larger x and p. For any input cxp ≤ π/2
the algorithm performs a correct rotation, with absolute errors never exceeding 5 · 1097, which
corresponds to the accuracy of the results in the QX simulator. An example of the output of the
implementation for c = 10, x = 0.10112 = 0.6875 (implemented as |01011〉) and p = 7 is shown in
Figure 7.6a. This implementation requires 8 qubits.

(a) Single rotation. (b) Complete arcsin rotation.

Figure 7.6: Outputs of the Direct Higher Order Rotation Ancilla Rotation Algorithm. (a) Single rotation for
c = 10, x = 0.10112 = 0.6875 and p = 7. (b) Complete algorithm for c = 1.1, x = 0.10112 = 0.6875 and k = 4.

The independent rotations were then used to build the complete ancilla rotation as described
in the chapter. As for the single rotations, the algorithm was validated for all four qubit values,
all k ≤ 3 and various c. The outputs never had a relative error larger than 1096 compared to the
expectation, so the error analysis from the previous section still holds. As an example consider
again x = 0.10112 = 0.6875, but this time with c = 1.1 and k = 4, meaning that the approximation
is up to x9. The results are shown in Figure 7.6b. It is observed that the output value is within
the range of the rounding error of the expected value, and the relative error follows the analysis
from the previous section.

The Direct Higher Order Rotation Ancilla Rotation Algorithm is therefore a successful method for
increasing the accuracy up to arbitrary precision while retaining the highest possible measurement
probability.
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8. Quantum Linear Solver Algorithm

In this chapter, practical implementations of the HHL Quantum Linear Solver Algorithm are
discussed. First, the proof of concept Quantum Linear Solver presented by Cao et al. in [34] is
examined, implemented and tested on the QX simulator. After this, an alternative realisation of
the HHL QLSA is developed and implemented from the subroutines discussed in this thesis and
using the Hamiltonian simulation algorithm implemented in the first section.

8.1 Baseline circuit by Cao et al.

8.1.1 Overview

In [34], Cao et al. present a proof-of-concept realisation of the HHL QLSA, which can solve a

specific system with a 4-by-1 vector ~b and a 4-by-4 matrix A. Specifically, the matrix and vector
are:

A =
1

4


15 9 5 −3
9 15 3 −5
5 3 15 −9
−3 −5 −9 15

 , ~b =
1

2


1
1
1
1

 (8.1)

The matrix and vector were not chosen randomly, but instead have a number of properties that
make it suitable for a proof of concept implementation. The matrix’s eigenvalues are all powers of
two, namely,

λ1 = 1, λ2 = 2, λ3 = 4, λ4 = 8, (8.2)

with respective eigenvectors,

~v1 =
1

2


−1
1
1
1

 , ~v2 =
1

2


1
−1
1
1

 , ~v3 =
1

2


1
1
−1
1

 , ~v4 =
1

2


1
1
1
−1

 . (8.3)

Since the eigenvalues are all powers of two, the proof-of-concept eigenvalue inversion circuit of
Chapter 6.2.1 can be used. The sizes of the eigenvalues imply that they can be saved in a four
qubit register, while the size of A and ~b with N = 4 = 22 imply that the vectors may be encoded
using two qubits, as was shown earlier in this thesis. Specifically, the vectors ~b and eigenvectors ~vi
for i ∈ {1, 2, 3, 4} are encoded as

|b〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) , (8.4)

|vi〉 =
1

2

(
(91)δi1 |00〉+ (91)δi2 |01〉+ (91)δi3 |10〉+ (91)δi4 |11〉

)
, (8.5)

where δij is the Kronecker delta. The vector |b〉 is chosen such that it is the equal superposition
of the eigenvectors A, i.e.,

|b〉 =
1

2
(|v1〉+ |v2〉+ |v3〉+ |v4〉) . (8.6)

In the original explanation of the HHL algorithm, it was shown that ~x may be written as the same
linear combination of eigenvectors as ~b, except with all complex amplitudes of the eigenvectors
divided by the respective eigenvalues. In the example this becomes,

|x〉 ∝ 1

2

(
1

1
|v1〉+

1

2
|v2〉+

1

4
|v3〉+

1

8
|v4〉

)
∝ −1 |00〉+ 7 |01〉+ 11 |10〉+ 13 |11〉 .

(8.7)
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This final state is proportional to what is expected as output of the implementation of the algo-
rithm.

For the ancilla rotation, a first order approximation of arcsin(x) ≈ x is used. The circuit pre-
sented in the original paper [34] is shown in Figure 8.1. In the main circuit (Figure 8.1a), the
r in the rotation gates can be chosen freely, as was discussed in the previous chapter. Since |b〉
is the equal superposition of two qubits, it can be constructed by applying a Hadamard gate on
two qubits in the |0〉 state. In the main circuit, the gates up until the qft† subroutine form the
eigenvalue estimation. The swap gate thereafter is the eigenvalue inversion, and the four Ry gates
after that are the ancilla rotation. The uncompute subroutine is meant to reverse the eigenvalue
inversion and eigenvalue estimation. The angles in the rotation gates yield a prefactor of π/2r+2

in Equation (8.7).

|0〉 Ry
(

8π
2r−1

)
Ry
(

4π
2r−1

)
Ry
(

2π
2r−1

)
Ry
(

π
2r−1

)
|0〉 H •

qft†

•

Uncompute

|0〉 H • × •

|0〉 H • •

|0〉 H • × •

e−iA
t0
16 e−iA

t0
8 e−iA

t0
4 e−iA

t0
2|b〉


(a) Proof-of-concept circuit realisation of the QLSA from [34].

eiA
t0
16

• Rx(0.98) Rzz(1.88) • Rx(0.59) •

= Z Rx(0.2) V † Rzz(0.38) X X Z

(b) Implementation of the eiAt0/16 gate.

Figure 8.1: Complete proof-of-concept QLS as presented in [34], where t0 ≡ 2π.

Figure 8.1b shows the circuit for the eiAt0/16 gate as given in [34]. In the paper, it is explained
that for larger angles (i.e. times 2k), the angles in rotation gates need to be multiplied by the same
amount (i.e. also times 2k). The circuit for eiAtk/16 are constructed in this fashion.

8.1.2 Implementation

The practical implementation of the circuit revealed a couple of subtleties the will be discussed in
what follows. They are related to the eigenvalue inversion, with the output of the eiAt gates, with
the higher angles in the eiAt gates, and with the rotation of the Fourier transform.

• In the output of the e−iAt0/16 gate, the complex amplitude of the |10〉 state is negative
compared to what it should be, i.e.

|vi〉
e9iAt0/16)

−−−−−−→ eiϕi
1

2

(
(91)δi1 |00〉+ (91)δi2 |01〉 − (91)δi3 |10〉+ (91)δi4 |11〉

)
. (8.8)

This problem is easily fixed by replacing the last (Z) gate in the circuit depicted in Figure
8.1b by a Z gate controlled by the top qubit.

• For higher times t in the matrix exponential gate, the original paper states that the angles
in the rotation gates are multiplied by the same amount (i.e. 2k). What is not mentioned,
however, is the fact that the V † gate also effectively works as a rotation gate. In order for
the higher orders to function properly, the V † gate should be taken to the power 2k. This
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means that the V † gate should be replaced by (V †)2 = X for k = 1, and (V †)2
k

= I for
k > 1.

• The eigenvalues that are obtained after the eigenvalue estimation subroutine are |1110〉,
|1101〉, |1011〉 and |0111〉, instead of the desired |0001〉, |0010〉, |0100〉 and |1000〉. The found
values are exactly the complements of the desired values. This is equivalent to finding the
negative versions of the eigenvalues, since −x is mapped to 2n − 1 − x = 11112 − x = x.
The negated eigenvalues are not a surprise when comparing the given eigenvalue estimation
subroutine to the Eigenvalue Estimation algorithm defined in Figure 5.5: in the latter the
exponentials do not have the minus in the exponent. In order to fix this, it is solely needed
to remove the minusses in the matrix exponential gates in Figure 8.1a. The minusses are
likely to be a typo, given the fact that the Hamiltonian shown in Figure 8.1b does not have
it.

• Comparing the eigenvalue inversion subroutine in Figure 8.1a to the eigenvalue inversion
circuit in Figure 6.1, shows that these circuits do not match. The subroutine shown in the
former figure performs the possible operations: |1〉 → |4〉 and |4〉 → |1〉, while |2〉 and |8〉
remain the same. This is not an inversion, so the single swap is replaced by two swap gates:
one swapping qubits 2 and 5, and the other swapping qubits 3 and 4, which is an Eigenvalue
Inversion subroutine as defined in Figure 8.1a.

Combining these remarks and fixes, the new experimental circuit becomes as is shown in Figure
8.2, where the changed parts are highlighted by dashed lines.

|0〉 Ry
(

8π
2r−1

)
Ry
(

4π
2r−1

)
Ry
(

2π
2r−1

)
Ry
(

π
2r−1

)
|0〉 H •

qft†

× •

Uncompute

|0〉 H • × •

|0〉 H • × •

|0〉 H • × •

eiA
t0
16 eiA

t0
8 eiA

t0
4 eiA

t0
2|b〉


(a) Improved proof-of-concept circuit realisation of the QLSA from [34].

eiA
t0
16

• Rx(0.98) Rzz(1.88) • Rx(0.59) • •

= Z Rx(0.2) V † Rzz(0.38) X X Z

(b) Improved implementation of the eiAt0/16 gate.

Figure 8.2: Improved version of the complete proof-of-concept QLS as shown in Figure 8.1, where t0 ≡ 2π. The
changes compared to Figure 8.1 are encircled with dashed lines.

The Rzz(θ) and Rz(θ) gates are defined as follows in [34],

Rz(θ) =

[
1 0
0 eiθ

]
, Rzz(θ) =

[
eiθ 0
0 eiθ

]
. (8.9)

It was already mentioned that this definition of Rz(θ) is equivalent to the more common definition
introduced in Chapter 1, except for a negligible global phase shift of eiθ/2. For the Rzz(θ) gate
there is no equivalent in the QX simulator. That is not a problem though, since it will be used as

C (Rzz(θ)), which is equivalent to performing Rz(θ) on the controlling qubit. The C(eiA2kt0/16)
gates are therefore implemented as shown in Figure 8.3.
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• • • • Rz(2
k0.38) • Rz(2

k1.88) • • • •

eiA
2kt0
16

= • Rx(2k0.98) • Rx(2k0.59) • •

Z Rx(2k0.2)
(
V †
)2k X X Z

Figure 8.3: Implementation for the controlled eiA2kt0/16 gates, for k ∈ Z≥0.

Multiple of the controlled gates used in Figure 8.3 are not available in QX. These can be em-
ulated, however, using gates available in QX. Appendix A on page 82 shows the respective circuits.

For the uncomputation subroutine, the inverses of the eiA2kt0/16 gates are necessary, which are

e−iA2kt0/16 gates. Their implementation is trivial; the order of all gates is reversed, and all angles
are replace by their negatives, and the V † gate is replaced by a V gate. Note that still V 2 = X

and V 2k = I for k ∈ Z≥2. The circuit is shown in Figure 8.4.

• • • • • Rz(−2k1.88) • Rz(−2k0.38) • • •

e−iA
2kt0
16

= • • Rx(−2k0.59) • Rx(−2k0.98) •

Z X X V 2k Rx(−2k0.2) Z

Figure 8.4: Implementation for the controlled e−iA2kt0/16 gates, for k ∈ Z≥0.

Finally, through a simple brute force fivefold for-loop with stepsize 0.001, an improvement to
the rotation angles was found. From the first rotation gate to the last rotation gate, the improved
rotation angles are as follows,

0.20→ 0.196; 0.38→ 0.375; 0.98→ 0.982; 1.88→ 1.883; 0.59→ 0.589. (8.10)

These improved angles were sought for to exclude any major errors introduced by the Hamiltonian
simulation. The angles will be compared to the original angles in the next section.

8.1.3 Results

Firstly the adapted Hamiltonian simulation as defined in Figure 8.3 is examined, for both the orig-
inal angles and improved angles as defined in Equation (8.10). The Hamiltonians eiAtk have been

tested on the eigenvectors |vj〉 of A, which should yield the output state ei2π2
kλj = ei2π2

j+k

for
j, k = 0, 1, 2, 3. This is a complex rotation of 22.5 · 2j+k degrees. The results are shown in degrees,
as this means that the ideal outputs are round numbers and therefore easy to compare. Tests of
the Hamiltonian simulations for the different eigenvectors have shown that for every possible input
and for both the original and new angles, the rotations of all four qubit states are identical. Hence,
only the total angle of each input has to be examined. The ideal results, and the results using both
the original and improved angles are shown in Table 8.1a, Table 8.1b and Table 8.1c, respectively.
The absolute errors for both the original and improved angles are shown in Table 8.2a and Table
8.2b, respectively.

Table 8.2 shows that the errors for larger rotations k scale as 2k, which is equal to the increased
factor in total rotation, as expected. The maximum error for the original angles is a rotation of
1.47◦, or 0.41% of the total unit circle. This compared to the maximum error of 0.14◦, or 0.039%
of the total unit circle, for the improved angles. It is concluded that the improvements to the
angles have been successful, with a more than tenfold increase of accuracy over the original angles.
It is however the relative error in the rotations that determines the possible error after the Inverse
Quantum Fourier Transform in the outcome of the Eigenvalue Estimation subroutine. These rela-
tive errors are the same for different values of k, so only the relative errors for k = 0 are observed,
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k\j 0 1 2 3 k\j 0 1 2 3 k\j 0 1 2 3

0 22.5 45 90 180 0 22.5289 44.8743 90.1836 -179.8620 0 22.5003 45.0175 89.9830 179.9947
1 45 90 180 0 1 45.0579 89.7486 -179.6329 0.2758 1 45.0006 90.0351 179.9661 -0.0107
2 90 180 0 0 2 90.1156 179.4971 0.7342 0.5518 2 90.0010 -179.9100 -0.0680 -0.0212
3 180 0 0 0 3 -179.7688 -1.0059 1.4684 1.1035 3 -179.9979 0.1400 -0.13580 -0.0425

(a) Ideal rotations (b) Original rotations (c) Improved rotations

Table 8.1: Rotations in degrees of the Hamiltonian simulation using the Cao matrix for time tk = t02k = 2π · 2k
and eigenvector vj as defined in Equation (8.5). (a) Ideal rotations, (b) Rotations using the circuit shown in Figure
8.3, with original angles, (c) Rotations using the circuit shown in Figure 8.3, with the improved angles shown in
Equation (8.10).

k\j 0 1 2 3 k\j 0 1 2 3

0 2.89 · 1092 1.26 · 1091 1.85 · 1091 1.38 · 1091 0 2.75 · 1094 1.75 · 1092 1.70 · 1092 5.27 · 1093

1 5.78 · 1092 2.51 · 1091 3.67 · 1091 2.76 · 1091 1 5.67 · 1094 3.51 · 1092 3.39 · 1092 1.07 · 1092

2 1.16 · 1091 5.03 · 1091 7.34 · 1091 5.52 · 1091 2 1.03 · 1093 7.00 · 1092 6.79 · 1092 2.12 · 1092

3 2.31 · 1091 1.01 · 1090 1.47 · 1090 1.10 · 1090 3 2.06 · 1093 1.40 · 1091 1.36 · 1091 4.25 · 1092

(a) Absolute errors (b) Relative errors

Table 8.2: Absolute errors in degrees of the rotations of the Hamiltonian simulation using the Cao matrix shown
in Table 8.1. (a) Errors using the original angles, (b) errors using the improved angles.

which are shown in Table 8.3.

j 0 1 2 3

ε
(j)
rel, original 1.28 · 1093 2.80 · 1093 2.04 · 1093 7.67 · 1094

ε
(j)
rel, improved 1.22 · 1095 3.89 · 1094 1.88 · 1094 2.93 · 1095

Table 8.3: Relative errors of the rotations of the Hamiltonian simulation using the Cao matrix shown in Table 8.1
of both the original and improved angles, for k = 0.

It is observed that an improvement in errors of more than a factor of seven has been achieved,
with a decrease in maximum relative error from 2.80 · 1093 to 3.89 · 1094. All further tests and
implementations have therefore solely been performed using the improved angles. Although it was
not thoroughly researched what the precise impact of the relative errors is on the output of the
Eigenvalue Estimation subroutine, it is known that these errors result in non-zero amplitudes for
incorrect estimates of eigenvalues. The probabilities of these undesirable states, however, scale as
the square of the sine of the error, which is a function that can be approximated by x2 for small
values. Hence, the resulting error is unlikely to be significant. Initial testing showed that the errors
are indeed insignificant. This will later implicitly be confirmed in the results of the full QLSA,
since the errors keep decreasing for higher accuracy of the Ancilla Rotation.

The complete QLS circuit shown in Figure 8.2 was implemented and ran in the QX simulator
for different values of r. An example of the output for r = 5 is shown in Figure 8.5, giving the final
real and complex amplitude of each state. The given numbers are the decimal values that the state
would have when viewing the ancilla qubit as the most significant qubit. The outputs are near
purely real, and only states |010〉 ≡ |0000000〉 through |310〉 ≡ |0000011〉 and |6410〉 ≡ |1000000〉
through |6710〉 ≡ |1000011〉 have significant probabilities, with no other state exceeding a probabil-
ity of 1098. This is precisely as desired. The second four non-zero states are the interesting ones,
as these are the desired outcome of the HHL algorithm |x〉 as defined in Equation (8.7).

The accuracy of the output of the |x〉 state for different values of r is now examined. The values of
the four amplitudes in the |x〉 state for different r are shown in Table 8.4a. Since the amplitudes
decrease for higher r, it is instructive to look at their relative sizes, as that is what remains after
normalisation. The relative values, which are obtained by defining xrel,00 ≡ −1, are therefore
shown in Table 8.4b. For larger values of r, especially for r ≥ 7, it is observed that the answer
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(a) Real part (b) Imaginary part

Figure 8.5: Output state of the circuit adapted from [34], using r = 5. The horizontal axis is the state, transformed
from a binary state to a decimal number, with the ancilla state as most significant qubit. The vertical axis is the
real or imaginary part of the complex amplitude of each state. The non-zero states correspond to |0000000〉 ≡ |0〉
through |0000011〉 ≡ |3〉 and |1000000〉 ≡ |64〉 through |1000011〉 ≡ |67〉. The real amplitudes of the first four
non-zero states are [0.548184, 0.439798, 0.411345, 0.404145], and the real amplitudes of the second four states are
[−0.007829, 0.154382, 0.248179, 0.296716].

indeed approaches the correct answer of |x〉 ∝ −1 |00〉+ 7 |01〉+ 11 |10〉+ 13 |11〉. For lower values
of r, especially for r ≤ 4, the answer does not resemble the desired output at all. This is not
entirely unexpected, as for r ≤ 4 the rotations in the Ancilla Rotation subroutine can exceed π/2,
which results in a non-uniform increase of the amplitude of the |1〉A state, causing a completely
unrecognisable output.

r x00 x01 x10 x11 r xrel,00 xrel,01 xrel,10 xrel,11

3 0.52245 0.02245 0.16889 0.33110 3 -1.00000 -0.04297 -0.32328 -0.63376
4 0.07122 0.21767 0.37988 0.47367 4 -1.00000 -3.05625 -5.33385 -6.65086
5 -0.00783 0.15438 0.24818 0.29672 5 -1.00000 19.71925 31.69996 37.89960
6 -0.01013 0.08367 0.13221 0.15668 6 -1.00000 8.26197 13.05480 15.47161
7 -0.00614 0.04295 0.06750 0.07977 7 -1.00000 7.27412 11.44647 13.53699
8 -0.00303 0.02144 0.03370 0.03984 8 -1.00000 7.06691 11.10877 13.13085
9 -0.00153 0.01073 0.01687 0.01994 9 -1.00000 7.01503 11.02484 13.03007

(a) Absolute outputs (b) Relative outputs

Table 8.4: Absolute and relative outputs of the real parts of the |x〉 state for different r.

Next, the probability to measure |1〉A is examined. This probability is equal to the sum of the
absolute square of all complex amplitudes containing |1〉A. Due to the many zero states, the prob-
ability can be rewritten to P(|1〉A) = |x00|2 + |x01|2 + |x10|2 + |x11|2. Since all xij are dependent
on the rotation proportional to 29r, it is seen that the probability scales as P(|1〉A) ∝ 292r = 49r

for larger r. The results for the different values of r are shown in Table 8.5, which support the
calculation. For values of r higher than 9, the probability to measure |1〉A becomes so small that
the values are not included. Already for r = 9 on average over 1000 runs are required for a single
positive outcome.

r 3 4 5 6 7 8 9

P(|1〉A) 4.12 · 10−1 4.21 · 10−1 1.74 · 10−1 4.91 · 10−2 1.27 · 10−2 3.19 · 10−3 8.00 · 10−4

Table 8.5: Probability to measure the desired state |1〉A for different r.
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Finally, the absolute and relative errors in the final answer are reviewed. The answer for some
value of r should ideally be |x〉 = π

4·2r (−1 |00〉+ 7 |01〉+ 11 |10〉+ 13 |11〉) for a perfect Ancilla
Rotation subroutine. This ideal output is what the earlier results found are compared to in Table
8.4. The absolute errors are displayed in Table 8.6a, and the relative errors in Table 8.6b. Both
the absolute and relative errors decrease for larger values of r with a factor of roughly 8 = 23 for
each increment of r. This is in line with the expectation, as the error in the approximation of
arcsin(x) has an order of O(x3), and for each increment of r the rotation is halved. Although the
absolute errors in the first term are the smallest, they are the largest relatively by a margin. This
is due to the fact that x00 is roughly ten times smaller than the other terms.

r ε00 ε01 ε10 ε11 r εrel,00 εrel,01 εrel,10 εrel,11

3 0.62062 0.66478 0.91103 0.94517 3 6.32158 0.96734 0.84361 0.74057
4 0.12031 0.12595 0.16008 0.16446 4 2.45088 0.36653 0.29647 0.25772
5 0.01671 0.01742 0.02180 0.02235 5 0.68102 0.10142 0.08075 0.07005
6 0.00214 0.00223 0.00278 0.00285 6 0.17478 0.02601 0.02063 0.01788
7 0.00027 0.00028 0.00035 0.00036 7 0.04399 0.00655 0.00519 0.00450
8 0.00003 0.00003 0.00004 0.00004 8 0.01107 0.00162 0.00129 0.00112
9 0.000004 0.000005 0.000006 0.000006 9 0.00260 0.00045 0.00034 0.00029

(a) Absolute errors (b) Relative errors

Table 8.6: Absolute and relative errors in the outputs of the real parts of the |x〉 state for different r.

Since the results asymptotically approach the actual answer with the expected orders, it is con-
cluded that all parts in the circuit work properly.

8.2 General circuit using Cao matrix

In this thesis, general methods for Eigenvalue Inversion and higher-order methods for Ancilla Ro-
tation have been discussed. Only an implementation for the process of transforming a matrix into
the circuit for its Hamiltonian, and for implementing a general vector are lacking. In order to
build a proof-of-concept complete Quantum Linear Solver, the Hamiltonian and vector from the
previous section are used, including the adapted circuits for implementing the controlled-exp(iAt)
gates. For Eigenvalue Inversion, the Thapliyal Inversion introduced in Chapter 6.2.3 is used, and
for the Higher-Order Ancilla Rotations the Direct Higher-Order Rotation method introduced in
Chapter 7.2.2.2 is used.

Define the registers V , E, Q, R, B and A, for respectively: the vector |b〉; the eigenvalues; the
inverted eigenvalues; the remainder in the Thapliyal inversion; the ancillae for the higher order
ancilla rotation; and the rotation ancilla. Due to the sizes of the known vector and eigenvalues,
registers V and E require at least 2 and 4 qubits, respectively. The Thapliyal inversion algorithm
requires the eigenvalues to have a |0〉 as most significant qubit, meaning that in practice register
E requires 5 qubits. The registers Q and R for the Thapliyal inversion require at least as many
qubits as the register being inverted. Taking this minimum results in register sizes of 5 qubits for
both Q and R. The number of ancillae in the higher order ancilla rotation algorithm is bound
by size of the register containing the rotation angle (i.e. Q). The maximum size of register B
therefore becomes 5− 2 = 3 qubits. Finally, register A contains only one qubit. The total number
of qubits required is therefore equal to 2 + 5 + 5 + 5 + 3 + 1 = 21, and the complete circuit for an
k = 2 Ancilla Rotation is shown in Figure 8.6.

The algorithm was performed for different values of k ranging from 0 to 9, i.e. for different orders
of approximation for the ancilla rotation up to x19. The value for r was kept constant throughout
the runs, at r = 5. This value of r was specifically chosen, as it is the lowest value of r for which
the answer can get arbitrarily close to the correct answer, while the effects of the higher-order
approximations are especially visible. The results for the different k are shown in Table 8.7. Note
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Figure 8.6: Quantum Linear Solver circuit using Cao matrix and vector, for k = 2.
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that for k = 0, the circuit is effectively identical to that of the previous section. As expected, the
result is also identical. For higher approximation orders, the results start to resemble the desired
result more closely, again as desired.

k x00 x01 x10 x11 k xrel,00 xrel,01 xrel,10 xrel,11

0 -0.00783 0.15438 0.24818 0.29672 0 -1.00000 19.71925 31.69996 37.89948
1 -0.01884 0.16609 0.26392 0.31299 1 -1.00000 8.81706 14.01056 16.61592
2 -0.02225 0.16951 0.26765 0.31674 2 -1.00000 7.61822 12.02890 14.23496
3 -0.02353 0.17079 0.26896 0.31805 3 -1.00000 7.25928 11.43197 13.51838
4 -0.02406 0.17133 0.26950 0.31859 4 -1.00000 7.11956 11.19926 13.23915
5 -0.02431 0.17157 0.26974 0.31883 5 -1.00000 7.05842 11.09734 13.11680
6 -0.02442 0.17169 0.26986 0.31895 6 -1.00000 7.02964 11.04942 13.05929
7 -0.02448 0.17174 0.26992 0.31900 7 -1.00000 7.01536 11.02557 13.03072
8 -0.02451 0.17177 0.26995 0.31903 8 -1.00000 7.00796 11.01330 13.01595
9 -0.02453 0.17179 0.26996 0.31905 9 -1.00000 7.00432 11.00718 13.00860

(a) Absolute outputs (b) Relative outputs

Table 8.7: Absolute and relative outputs of the real parts of the |x〉 state for different k and r = 5.

The probability to measure |1〉A will converge to a specific value. This probability is P(|1〉A) =
|x00|2 + |x01|2 + |x10|2 + |x11|2 for |x〉 = π

4·25 (−1 |00〉+ 7 |01〉+ 11 |10〉+ 13 |11〉), so

lim
k→∞

P(|1〉A) =
( π

27

)2 (
|−1|2 + |7|2 + |11|2 + |13|2

)
≈ 0.2048. (8.11)

Due to the monotonically increasing approximation of arcsin(x), the probability will be increasing
to this limit. This is confirmed by the actual probabilities shown in Table 8.8.

k 0 1 2 3 4 5 6 7 8 9

P(|1〉A) 0.1735 0.1956 0.2012 0.2032 0.2041 0.2044 0.2046 0.2047 0.2048 0.2048

Table 8.8: Probability to measure the desired state |1〉A for different k and r = 5.

Finally, the errors will again be investigated. The errors are depicted in Table 8.9. Note that
they are decreasing for higher k as expected. Unlike with the first-order approximation, there is
no such simple connection between the errors. It is, however, clear that the errors are rapidly
decreasing for higher r. For example for k = 7 (and r = 5), the relative error is smaller than the
relative error for r = 9 (and k = 0) in Table 8.6b, while the probability to measure the |1〉A state
is several orders of magnitude larger. This difference in probability is roughly 22(r2−r1) ≈ 2.5 · 102.

The implementation is therefore successful in its goals of obtaining up to arbitrary precision in
results while retaining the highest possible measurement results. Hence, it is concluded that in this
thesis, the implementation of a general Quantum Linear Solver is implemented, on the condition
that the vector and Hamiltonian implementations are provided.
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k ε00 ε01 ε10 ε11 k εrel,00 εrel,01 εrel,10 εrel,11

0 0.01671 0.01742 0.02180 0.02235 0 0.68102 0.10142 0.08075 0.07006
1 0.00571 0.00572 0.00606 0.00607 1 0.23251 0.03329 0.02246 0.01904
2 0.00229 0.00229 0.00233 0.00233 2 0.09341 0.01335 0.00861 0.00729
3 0.00102 0.00102 0.00102 0.00102 3 0.04142 0.00592 0.00378 0.00320
4 0.00048 0.00048 0.00048 0.00048 4 0.01954 0.00280 0.00178 0.00151
5 0.00024 0.00024 0.00024 0.00024 5 0.00964 0.00138 0.00088 0.00075
6 0.00012 0.00012 0.00012 0.00012 6 0.00492 0.00070 0.00045 0.00038
7 0.00006 0.00006 0.00006 0.00006 7 0.00255 0.00037 0.00024 0.00020
8 0.00003 0.00003 0.00003 0.00003 8 0.00133 0.00020 0.00012 0.00011
9 0.00002 0.00002 0.00002 0.00002 9 0.00072 0.00010 0.00007 0.00006

(a) Absolute errors (b) Relative errors

Table 8.9: Absolute and relative errors in the outputs of the real parts of the |x〉 state for different k and r = 5.
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9. Conclusions and Future Work

In this thesis, the HHL Quantum Linear Solver Algorithm has been analysed, and a possible real-
isation of the QLSA has been implemented and tested on the QX Quantum Computer Simulator.
The subroutines that have been implemented are the Eigenvalue Inversion subroutine and the
Ancilla Rotation subroutine. Those subroutines have been combined to form a Quantum Linear
Solver that can solve any matrix and vector, with the condition that the implementations for the
vector and Hamiltonian of the matrix are provided. A specific Hamiltonian and vector implemen-
tation have been used to validate the functionality of the solver.

For the Eigenvalue Inversion subroutine four solutions have been analysed, which are in order
the Powers-of-Two Inverter, the Cao Inverter, the Newton-Raphson Inverter and the Thapliyal In-
verter. The Powers-of-Two Inverter works as advertised, which is only for powers of two. The Cao
Inverter was implemented in the QX simulator, but did not yield the expected results. The origin
of the erroneous results has not conclusively been determined. The Newton-Raphson Inverter has
been implemented for the first two orders, and functions as expected. At a circuit width of at least
9n qubits for higher orders, the algorithms requires too many qubits to implement higher orders,
and hence, yields inaccurate results. The Thapliyal Inverter has been implemented successfully
and has been expanded to yield arbitrary precision when desired. This and its low number of re-
quired ancillae at n+1 ancillae result in the conclusion that it is the preferred Eigenvalue Inversion
subroutine out of the four considered in this thesis.

For the Ancilla Rotation subroutine, the externally proposed first-order circuit by Cao et al. was
successfully implemented in the QX simulator. Two extensions yielding up to arbitrary precision
while retaining constant probability of success have been proposed and analysed, specifically the
Explicit Higher-Order Value Ancilla Rotation Algorithm and the Direct Higher-Order Rotation
Ancilla Rotation Algorithm. The first algorithm has low asymptotic scaling in circuit depth at
O(n2), but has high constant factors, and at a circuit width of over (4k + 3)n qubits it requires
too many qubits to be implemented at the current state of technology. The second algorithm has
higher order asymptotic scaling of circuit depth at O(n2k+1), but low constant factors and requires
only 2k − 1 ancillae. This makes it more suitable for implementation on current and mid-future
quantum computers. At this stage, the Direct Higher-Order Rotation algorithm is therefore the
preferred higher order approximation algorithm.

An externally proposed proof-of-concept Quantum Linear Solver by Cao et al. has been imple-
mented and thereby adapted to successfully function in the QX simulator. Its specific Hamiltonian
and vector implementation in combination with the Thapliyal Inversion and Direct Higher-Order
Ancilla Rotation subroutines have been used to build a complete prototype Quantum Linear Solver
using general circuitry to invert and rotate over the eigenvalues. The correct functioning of the
algorithm has been demonstrated for for a particular choice of input data, leading to the conclu-
sion that in this thesis a complete Quantum Linear Solver has successfully been implemented, on
the condition that the implementations for the vector and Hamiltonian of the matrix have to be
provided by the user.

In the process of implementing the different subroutines, a number of useful by-products have
been developed and implemented. A number of gates that are not natively available in the QX
simulator have been implemented as circuits, especially a number of (doubly-)controlled versions
of basic gates. A full framework for basic Quantum Arithmetic has been implemented, with three
Adders, two Subtracters, a Multiplier and an Integer Divider successfully implemented in the QX
simulator. A number of improvements and expansions were made over algorithms and implemen-
tations published in the literature, allowing them to function in the QX simulator.

The work of this thesis suggests different directions for future research. Firstly, the main open
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question that remains in the implementation of a general purpose Quantum Linear Solver, lies
in the implementation of the vector and the Hamiltonian of the matrix. A couple of papers on
this subject have been published in literature, and creating a systematic overview of the available
algorithms is advised. Secondly, a number of subroutines in this thesis have not been thoroughly
analysed with regard to circuit width and depth, specifically the Thaliyal Inversion and Higher-
Order Ancilla Rotation subroutines. In-depth research of those aspects will yield a better overview
of the system requirements for a general-purpose Quantum Linear Solver. Thirdly and finally, the
degree of error proneness of any of the subroutines has not at all been considered in this thesis. For
an eventual physical implementation of the algorithm this would be essential in order to predict its
functioning. With these three areas of further research combined, the HHL Quantum Linear Solver
Algorithm may be ready for implementation on physical Quantum Computers and help pave the
road for a faster Quantum future.
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A. Controlled gates

The QX simulator only offers a limited number of gates, with especially few controlled versions of
gates. Some of these gates are desired in QX implementation in this thesis, and hence they need
to be emulated using other gates. Most circuits are based on the circuits in Figure 1.3 and Figure
1.4.

The gates that are implemented in this thesis are,

• V (†)

• controlled-S(†)

• controlled-H

• controlled-V (†) (requires V , controlled-H and controlled-S(†))

• controlled-Rx(θ), -Ry(θ) and -Rz(θ)

• doubly-controlled-Rx(θ), -Ry(θ) and -Rz(θ)

• doubly-controlled-Z (requires controlled-S(†))

The following figures will provide the circuits for these gates. All gates were tested for every
possible basis state (e.g. |00〉, |01〉, |10〉 and |11〉 for a two qubits gate). Due to linearity, this
proves the functionality of the gates for all other states as well.

V = H S H

(a) QX implementation of the V gate.

V † = H S† H

(b) QX implementation of the V † gate.

Figure A.1: QX implementation of the V and V † gate.

• • • T

S = T T †

(a) QX implementation of the S gate.

• • • T †

S† = T † T

(b) QX implementation of the V † gate.

Figure A.2: QX implementation of the controlled-S and controlled-S† gate.

• T X T † X • •

H = H T † T † H T T H S X

Figure A.3: QX implementation of the controlled-H gate.

• • • •

V = H S H

(a) QX implementation of the controlled-V gate.

• • • •

V † = H S† H

(b) QX implementation of the controlled-V † gate.

Figure A.4: QX implementation of the controlled-V and controlled-V † gate. The implementations of the
controlled-H, controlled-S and controlled-S† gates are shown in Figures A.3, A.2a and A.2b respectively.
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• • •

Rx(θ) = Rx
(
θ
2

)
Z Rx

(
− θ2
)

Z

(a) QX implementation of the controlled-Rx(θ) gate.

• • •

Ry(θ) = Ry
(
θ
2

)
Ry
(
− θ2
)

(b) QX implementation of the controlled-Ry(θ) gate.

• • •

Rz(θ) = Rz
(
θ
2

)
Rz
(
− θ2
)

(c) QX implementation of the controlled-Rz(θ) gate.

Figure A.5: QX implementation of the controlled-Rx(θ), controlled-Ry(θ) and controlled-Rz(θ) gate.

• • • • • •

• = • Z • Z

Rx(θ) Rx
(
θ
4

)
Z Rx

(
− θ4
)

Z Rx
(
θ
4

)
Z Z Rx

(
− θ4
)

Z

(a) QX implementation of the doubly-controlled-Rx(θ) gate.

• • • • • •

• = • •

Ry(θ) Ry
(
θ
4

)
Ry
(
− θ4
)

Ry
(
θ
4

)
Ry
(
− θ4
)

(b) QX implementation of the doubly-controlled-Ry(θ) gate.

• • • • • •

• = • •

Rz(θ) Rz
(
θ
4

)
Rz
(
− θ4
)

Rz
(
θ
4

)
Rz
(
− θ4
)

(c) QX implementation of the doubly-controlled-Rz(θ) gate.

Figure A.6: QX implementation of the doubly-controlled-Rx(θ), doubly-controlled-Ry(θ) and doubly-controlled-
Rz(θ) gate.
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• • • •

• = • •

Z S S† S

(a) QX implementation of the doubly-controlled-Z gate.

• • • • T † •

• = • T † • • T •

Z T T † T † T

(b) QX implementation of the doubly-controlled-Z gate, compact.

Figure A.7: QX implementation of the doubly-controlled-Z gate.
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B. Cao Eigenvalue Inversion Algorithm

The Eigenvalue Inversion algorithm proposed by Cao et al. in [34] takes advantage of quantum
effects to invert the eigenvalues and is the only algorithm not based on a classical one. However,
attempts to implement the algorithm have proved unsuccessful, which means that this section can
be skipped if only algorithms with proven functionality are of interest. More in depth analysis on
the attempts at implementation will follow in the section on QX implementation.

The algorithm makes use of three registers L, M and C, with `, m and n qubits respectively.
The C register is used to store the value tol be inverted, say λ. The L register stores the final
inverted values, and the M register is a work register that will end up with garbage states. Cao et
al. propose the following algorithm.

0. Initially:

|0〉L ⊗ |0〉M ⊗ |λ〉C
1. Apply Walsh-Hadamard transform to registers L and M (i.e. a Hadamard gate to each qubit

in registers L and M):

−→
2`−1∑
s=0

|s〉L ⊗
2m−1∑
p=0

|p〉M ⊗ |λ〉C

2. Apply the Rzz subroutine:

−→
2`−1∑
s=0

2m−1∑
p=0

exp
[
2πi

p

2m

]
|s〉L |p〉M ⊗ |λ〉C

3. Apply the eiH0t0 subroutine:

−→
2`−1∑
s=0

2m−1∑
p=0

exp
[
2πi

p

2m+l

(
2` − λs

)]
|s〉L |p〉M |λ〉C

≈
2m−1∑
p=0

|2`/λ〉L |p〉M |λ〉C

= |2`/λ〉L |λ〉C ⊗
2m−1∑
p=0

|p〉M

A circuit of the proposed algorithm is shown in Figure B.1.

|0〉L / H Rzz • |2`/λ〉

|0〉M / H • eiH0t0 |g〉

|λ〉C / • |λ〉
Figure B.1: Circuit for the Eigenvalue Inversion Algorithm proposed by Cao et al. in [34].

The Rzz and eiH0t0 subroutines, which are hereafter interchangeably referred to as the Rota-
tion Subroutine and Hamiltonian Subroutine, will be examined later. First, however, the rewrite
in step 3 from the first to the second step is discussed, as it is not a trivial rewrite. The step makes
use of the equality [34],

N−1∑
k=0

exp
(

2πik
r

N

)
= δ(r,0modN). (B.1)
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The state in the first line of Step 3 can be rewritten into the left hand side of this equality, when
N = 2m, k = p and r = 1

2

(
2l − λjs

)
are taken. This implies that according to the equality, only

the states with r = 1
2

(
2l − λjs

)
= 0 are non-zero. Solving the equality for s shows that only the

state s = 2l/λj remains. This is precisely an inverse of s, as was requested.

In what follows, the two subroutines Rzz and eiH0t0 will be explained in more detail.

B.1 The Rotation subroutine

First is the Rzz Rotation Subroutine. The Rzz subroutine is defined as the transformation,

|s〉L |p〉M
Rzz−−→ exp

[
2πi

p

2m

]
|s〉L |p〉M . (B.2)

To implement this subroutine, Cao et al. [34] make use of so-called Rzz(θ) gates, which are defined
as global rotation gates,

Rzz(θ) =

[
eiθ 0
0 eiθ

]
. (B.3)

Note that the effect of an Rzz gate is independent of the gate to which it is applied. With the Rzz
gates, the implementation of the Rzz subroutine as defined in [34] is shown in Figure B.2, alongside
the Hadamard transforms. In the subroutine, a value t0 is used. This value is defined as 2π.

|0〉0 H

...
...

|0〉kl H

...
...

|0〉(l−1) H Rzz
(
t0
2m

)
· · · Rzz

(
t0

2m−km

)
· · · Rzz

(
t0
2

) ∑
s

∑
p e

i p
2m t0 |s〉L |p〉M

|0〉0 H •
...

...
. . .

|0〉km H •
...

...
. . .

|0〉(m−1) H •

|0〉L

|0〉M





Figure B.2: Walsh-Hadamard transform and Rzz subroutine as defined in [34], where t0 = 2π.

B.2 The Hamiltonian Subroutine

The matrix H0 is defined as a diagonal matrix, with the values [1, 2, 4, . . . , 2m−1] on its diagonal.
The subroutine performs a Hamiltonian simulation of H0 over time t0 on register M , controlled
by |λ〉C and register L, in such a way that it performs the operation

|s〉L |p〉M |λ〉C
exp(iH0t0)−−−−−−−→ exp

[
−2πi

p

2m+`
λs
]
|s〉L |p〉M |λ〉C . (B.4)

Since H0 is a diagonal matrix, its Hamiltonian simulation eiH0t is easily found as was shown in
[50]. The circuit for eiH0t/2

m

as defined in [34] is shown in Figure B.3.

It is important to note that Cao et al. use a different definition for the Rz(θ) gate. Their definition
differs only in global phase, and is defined as

Rz(θ) =

[
1 0
0 eiθ

]
. (B.5)
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Rz
(
t
2

)
Rz
(
t
22

)
/ eiH0

t
2m / ≡ Rz

(
t
23

)
...

Rz
(
t

2m

)


Figure B.3: Decomposition of the Hamiltonian Simulation eiH0t of matrix H0.

Since only the unimportant global phase is different, the difference is ignored. With this definition
of the Rz(θ) gate, Cao et al. stipulate that the circuit in Figure B.3 is a decomposition for the
Hamiltonian Simulation of H0.

Using the eiH0t/2
m

decomposition, Cao et al. implement the eiH0t0 subroutine as a number of
G(`− k) operations as defined in Figure B.4.

|s〉L / • / /

G(`) G(`− 1)

· · ·

G(`− k`)

· · ·

G(1)

/

|p〉M / eiH0t0 / = / · · · · · · /

|λ〉C / • / / · · · · · · /

Figure B.4: Implementation of the eiH0t0 subroutine as defined in [34].

The G(`− k`) operations in turn are defined as a number of Hamiltonian simulations, as is shown
in Figure B.5. The gates labelled (u, v) (where u = c, . . . , c−kc, . . . , 1 and v = `−k`) in the circuit
represent an exp

(
− iH0t0

2u+v

)
gate. This means that the (u, v)-gates can be realised using an eiH0

t
2m

simulation as shown in Figure B.3 with t = t0
2u+v−m .

A remaining question is what sizes registers L and M need to be in order to be able to perform
the inversion of λ’s. Since M and L need to store all values λj and 1

λj
of matrix A, respectively,

the minimum required size are m ≥
⌈
log λmax

⌉
and ` ≥

⌈
log 1/λmin

⌉
. These constraints can be

rewritten to the more general constraint of: m − ` ≈ log κ. Increasing the sizes of both registers
together will improve accuracy.

B.3 Results

The Cao Inversion Algorithm makes use of Rzz(θ) gates. These Rzz(θ) gates are not available in
the QX Simulator and are impossible to recreate. However, only controlled-Rzz(θ) gates are used
in the algorithm. These controlled versions can be implemented by directly applying an Rz(θ) gate
(with the same angle) to the control qubit. The target qubit drops out of the implementation, as
the output of the Rzz is independent of the qubit state it is applied to. The QX implementation
only results in an unimportant global phase difference compared to using a C(Rzz(θ)) gate.

The Cao Inversion Algorithm was implemented for any number of input qubits. However, due
to the large number of required ancillae, it has only been run for n ≤ 4, in which case the algo-
rithm requires up to 4n = 16 qubits for n = 4. Despite the thorough explanations by Cao et al,
the implementation of the Cao Inversion Algorithm does not show any of the expected results.
Especially none of the cancelling of states in Step 3 is observed. Instead, every state from Step
2 is still present, but with different rotations depending on the value of the M register (higher
value means larger rotation). Due to the many hundreds of states in superposition (for example
210 = 1024 states for n = 3), the states will not be plotted. The superposition of rotations is not
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|a〉L /

G(`− k`)

/

|p〉M / / =

|λ〉C / /

0th

...
k`
th • · · · • · · · •
...

(`− 1)
th

−→ / (c, `− k`) · · · (c− kc, `− k`) · · · (1, `− k`)

0th •
...

. . .

kc
th •
...

. . .

(c− 1)
th •

|s〉L

|p〉M

|λ〉C




Figure B.5: Decomposition of the G(` − k`) block used in the eiH0t0 subroutine. The gates labelled (u, v) in

the diagram, for u = c, . . . , c − kc, . . . , 1 and v = ` − k`, represent the quantum gate exp
(
− iH0t0

2u+v

)
, which can be

realised using the circuit in Figure B.3.

unsurprising, since z-rotations by themselves cannot have a cancelling effect.

The main suspicion with regard to the unexpected results, was that the final states were ob-
fuscated by the garbage states in register M . To get rid of these states, the method from Figure
1.6b was applied: first, the algorithm was performed, then the result in register L was copied to
a fourth register K, and finally the algorithm was reversed. This, however, did not have any of
the desired effects, as the resulting state in the K register was simply a pure Walsh-Hadamard
transform of the initial |0〉K state. Snippets of this final state for input |010〉 are shown in figure
B.6.

The main suspicion to why the algorithm does not work lies in the eiH0t0 subroutine. The Cao
paper does not explain in detail why exactly this subroutine should work, and it is not easily
verifiable whether it does. Future research could further look into this method, but due to the
other successful number inversion algorithms described in this thesis it is doubtful whether this is
worthwhile.
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Figure B.6: Snippets of the output of the Cao Inversion Algorithm for n = 3 and input |010〉. The registers in
the output are respectively the K, C, M and L registers of lengths 3, 3, 6 and 3.
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