Towards a sustainable last mile

deliveries and city logistics

A Multi-Actor Multi-Criteria Approach with a modelling implementation, aimed
at identifying the most sustainable alternatives for city logistics and model their
effects for all stakeholders combined

J.J. Daleman
4514742

Master Thesis

]
TUDelft

Towards sustainable last mile deliveries

and city logistics

A Multi-Actor Multi-Criteria Approach with a modelling implementation,
aimed at identifying the most sustainable alternatives for city logistics and
model their long-term effects for all stakeholders combined

By

Jasper Daleman

27" of August, 2018

In partial fulfilment of the requirements for the degree of

Master of Science

In Engineering and Policy Analysis

At the Delft University of Technology,

To be defended publicly on Monday 10 September, 2018 at 14:00h

Graduation Committee
Thesis Committee: Dr. J.H.R. (Ron) van Duin

Dr. ir. B. (Bert) Enserink
External Supervisor: Mr. M. (Marien) Vaandrager

%
TUDelft

(TU Delft; TBM)
(TU Delft; TBM)
(PostNL)

Preface

Preface

This report is the product of my final research project for my master
programme Engineering and Policy Analysis (EPA) of the TU Delft. After
completing my specialisation into the direction of Supply Chain Management
in Gothenburg, Sweden, I got inspired by the so-called last mile problem of
Supply Chains. I started my graduation project at PostNL into the direction of
the same issue, where [have tried to apply my knowledge at best to generate

useful outcomes and insights that inspire successors of my study.

I would not have been able to conduct this study without the help of some
important people to me, so [would like to thank them in advance of the report.
Firstly, I would like to thank my graduation committee, consisting of dr. ir. B.
Enserink, dr. J.H.R. van Duin and mr. M. Vaandrager of PostNL. Their
constructive feedback helped me creating a conclusive case as presented in
this report. Despite calling me (too) ambitious right from the start, I think we

ended up with some nice work.

Secondly, I would like to thank PostNL as a company for providing the
opportunity to conduct this study. I wrote them myself with the idea, but
without the support, facilities, support and commitment they offered this
result would have been possible. I hope I have delivered something they can

use in their future operations.

Finally, I would like to thank my family, friends and fellow students for all of
the support throughout the project, the interesting discussions and inspiring
questions about what exactly it was what [was studying. It all helped me

thinking through what to write down to get my message across.
[wish you lots of fun reading this report. Thank you all.

Jasper Daleman

Leiderdorp, 2018

Preface

Executive Summary

Executive Summary

The GHG-emissions of the Dutch transport sector are ever increasing. This
trend is accompanied by the growth of the e-commerce sector, leading to
more transport movements on the Dutch road network. In order to mitigate
the externalities of the e-commerce related parcel delivery market and try

to make it more sustainable, the following research question has been drafted:

How could the last mile delivery process become more sustainable, I.e.
minimising tratfic impacts and emissions, while maintaining the social and

economic benefits of e-commerce and home deliveries?

To answer the research question, this study follows a Multi—Actor Multi—
Criteria Approach (MAMCA), which is especially defined for large transport—
related projects that require high stakeholder involvement. Based on a
stakeholder analysis and an assessment of their points of view, a
sustainability framework has been defined. This framework consists of a set
of criteria along which several ‘more sustainable’ last mile alternatives have
been analysed. The most important criteria are the reduction of GHG

emissions, delivery time and costs and no decrease of customer satisfaction.

In explicit, this study assesses the costs and benefits of the implementation
of cargo bikes, electric vans, Urban Consolidation Centres (UCCs),
crowdsourcing systems, evening and night deliveries. First, a Simple Multi—
Attribute Rating Technique (SMART) method is applied to identify the
alternative(s) that offer the highest utility (most benefits). According to the
SMART analysis, parcel lockers, UCCs (with electric transport) and night
delivery are the most beneficial alternatives for a sustainable last mile in all

different cases (best—, middle- and worst-cases).

After implementing these alternatives in a Discrete—Event Simulation (DES)
model and conducting carefully designed experiments with it, the conclusion
can be drawn that implementing or expanding the parcel locker infrastructure
significantly enhances the operational efficiency the best. Furthermore, these
lockers can easily be replenished by night, which reduces the traffic impact
of parcel delivery even further. UCCs or city hubs with a focus on smaller

vehicles are significantly less efficient than the current system, as more

Executive Summary

kilometres and more time are needed to transport the same demand
throughout the city. However, due to the electric transport, significant

reductions in GHG-emissions can be obtained.

It is perceived unfeasible to implement a city hub for the Amsterdam parcel
delivery market in the traditional sense. However, the city hub’s effect gets
stronger when more small transporting companies are consolidated at the city
hub and are being transhipped to the dense networks of big transporting
companies. A sketch of this process is shown in Figure 7-4. Besides, it
remains unclear what the willingness to walk of customers is to a parcel
locker. This should be further investigated to further optimise the parcel
locker infrastructure and think of elegant solutions to not disrupt the street

image with big walls with parcel lockers.

Thus, a sustainable last mile delivery process consists of a widely used and
publicly available parcel locker infrastructure that is replenished by night.
Furthermore, the system contains a city hub that focusses more on special
deliveries with smaller vehicles and the consolidation of the shipments of
smaller transporting companies. The bigger transporting companies then
have to start shifting to electrified transport in cities in order to stay

competitive in the future.

Table of Contents

Table of Contents

| S =) = ToT IO 1
EXECULIVE SUIMIMIATY . euuiiniiniiiierierieeteeteeterttternernernersessesenssnssnessessessessssssssnssnsssessessessessessnssnssnssnesneses 3
1] | oY g o6 1101 A Lo« WUUUUURN SRR TRNN 11
1.1 ThE INIUCNCE Of @=COMUNOICE ...t ettt e e ettt atttea e eeaitieaeaes 11
1.2 THE F1E1A Of CILY LOZQISTICS.....cceueeaaeeeeeeeeeeee ettt ettt 12
1.3 ReSEAIrCH GAD AN QUESTIONS.cccceeeeeeeeeeeeeeeeeeeeeeee ettt ettt 12
1.4 Research approach and —1MELAOMcccoueeeeeeeeeeeeeeeeeeeee ettt
1.4.1 Sustainable Last Mile.......ccoocooeeeiiinnni.
1.4.2 Stakeholders and their perspectives ..
1.4.3 Identify active policieS......ccocvuvvvunveennn.
1.4.4 SeleCtiNg the DESE AlLEITIATIVES tiiuiieiii ittt ettt et e et e et e e e e e e e et e et e e et e eaneeaneeanaas
1.4.5 Costs and benefits of the selected AlterMaAtIVES ..oovuiiiiie et aaas 15
1.4.6 J55aN oY () 001y oL - 15 Lo} s NUUUR PRSP 16
1.5 Research FIOW and FEDOIT SHTUCIUICceeeeaeeaeeeeeeeeeeee ettt 16
2| Identification of Last Mile alt@rmativVesS ...ccuiiuueeueeueeeeiiiiiiirierierereeeeeeeeeteresnessersessessessessnesnesnes 19
2.1 WHAL IS LR TASE ITUIE? covoovveeeeeeeeeeeeeee ettt ettt ettt et eateee e 19
2.2 Alternative 1ast MIle AELIVELY DIOCEOSSEScc.ueiveeeeeaeeeeeeeeeeeeee ettt
2.2.1 Collection and Drop-off Points and parcel lockers....
2.2.2 Urban Consolidation Centres.......cooeeevveeeeiieeeiiieeeeinnnns
2.2.3 Crowdsourcing logistics services...
2.2.4 D)) s TSI D L=) IR TA=) o PRSPPI
2.2.5 10000000 F21 o PP PRPR
2.3 Alternatives implemented DY POSEINLco..eeveeeeeeeeeeeeeeeeeeee et 22
2.4 CONCIUSION. ...ttt ettt ettt ettt ettt 23
3] Defining the SuUStainable LaSt ML ... iiiieiiiiiiiiiiiieiireeieeeeeteeereenerenernererncrernerernernesernenns 25
3.1 COIPDOIALE SUSTAINADIIILY «.cooovveeeeeeeeeeeeeeeeeeeeee ettt 25
3.2 Sustainable Supply Chain Management (SSCM)cccueeeeeeeeeeeeieeeeeeieeeeeieeeeeieeeeeeieeaeeiaieeeeiiieaeen, 26
3.3 The comprehensive [ast MIle AELIVEIY DIOCESS......cc..uuuueeeeeeeaeeeeee ettt 27
3.3.1 THE (POSENL) DIOCESS oottt ettt ettt ettt et et ettt e e e e et e e e e e e e e e e et e e e et e e e e et e e et e e ettt e et e et e et e e e e e e e e e e e e e e e e e 27
3.3.2 S Te R 721 (=) s Lo (o 1<) PP PSRRI 28
3.3.3 S 10} 1 1Y AP PR 29
3.4 Assessing Stakeholders’ DOINES OF VIOW.......uuuuuu e 30
3.4.1 Consumers and business recipients
3.4.2 Em COMMEICE ANA SUD D I OIS o ittt ettt et e et e et e e e e e e e et e et e e et e e et e eaneeaneeanaas
3.4.3 | BTeT et R TeR N o g XA Le 1<) = WP
3.4.4 Governmental organisations
3.4.5 |5 oTel st o) gz VsV EY= 1A To) o 1IN
3.5 CONCIUSION. ...ttt ettt ettt tte ettt 32
4| Analysing the alternatives’ sustainable PerfOrmManCe......oocovvueeeeieiieieeiiiieieeeereieeeeeraeeeeeeananes 35
4.1 DOLINING THE CITECIIA........coeeeeeeeeeeeeeeeeee ettt ettt
4.1.1 End-consumers and recipients....
4.1.2 157 53 D 5 e) A Te 1) o PP PRPPP
4.1.3 R 1E15) 0]) ST
4.1.4 GOVErNMENTAL OFGATNISATIONS otutiitiie ittt ettt ettt e et et et et et e et e e e e e e e e e e e e e et e e et et etaneeaneeaneennnes
4.1.5 | otel sl o) gox=Y sV EY= 15 [o) s LI U P OTRPSUPT
4.1.6 | PV I o L =) o £ RO PRPPP
4.2 Determining the WeISHLS Of LHE CITLOITAccccueueeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 39

Table of Contents

4.3 Assessing performance Of the AILEITIALIVEScceueeueeeeeeeeeeeeeeeeeeeee ettt 40
4.3.1 Electrification of the VEhICIE FLEEt...cuuuuii i e e e e e e e e e e e e ea e e e e eeeesaenns 41
4.3.2 (E-)Cargo bikeS.....uuveveeeeeeeieniiinnnnnns
4.3.3 Evening- and Night delivery

4.3.4 UCCS it
4.3.5 CDPsS @nd ParcCel LOCKEIS coiiiiiiiiieiieiiiiiie et e et e e et e e e e et e et e e e e e e eaa e e eeeeesaaten e eeeeassstanaeeeeesssenns
4.3.6 Crowdsourcing logistics services
4.3.7 CONSErUCTING The INDULS TaDLE 1u ittt et et e e e e e e et e et e e et e eaneeaneeanaas
4.4 CONAUCHING LHE ANALYSIS....c....veiiiiseeeeeeiiee e e ettt e e e e e ettt e e e e e ettt e s e e ea sttt e e e e e s sttt aassssassssssssnns 53
4.5 CONCIUSIONS ...ttt ettt ettt ttee ettt aaatraaaees 55
5| Modelling SUStaINable CIty IOZiStICS uuiuiiiiiiiiiiiiiiiiieeiiiieiieereterereeaeresernerernsrernereessreesernenns 57

5.1 CONCEPLUALISALION.c.eeeeoeseeeeaseeeeeeeeeeeeeeeeeeeeeeeeeaeeeeaaaa
5.1.1 Determining the simulation model inputs
5.1.2 Determining the simulation MOAE] OULDULS t.uiuniieiii ittt e e et e e et et e e e e e eanaas 61
5.1.3 Determining the simulation MOAE] COMIIOLS ..ttt ettt et et e e e e eans 62

5.2 SPOCIIICALION ..o

5.2.1 DES in Python
5.2.2 Class diagrams of Python model

5.2.3 Process diagrams of Python model
5.2.4 Calculating the OULDUL VAITADLES tu.iiuniii ittt et et e et e et e et e e et e e e eaneeanaas
I Y)7510) Lo (o) I 10T Lo <) AT 68
5.3.1 Parcel locker setup
5.3.2 Simulation model setup
5.3.3 SIMUIATION IIOAEL SCIIDE tentiiniiie ettt ettt ettt ettt et e et et et e e e e e e e e e e e et e e et e e et e eaneeaneeanaes 68
5.3.4 Y (oY (Y e E= T s 1o Y Y- T« AT PRPR 69
5.4 LS 7o Y5 (o) 2 BT
5.4.1 Single parcel trace
5.4.2 Extreme number of parcels
5.4.3 Extreme values for siImulation VATADLIES ...ttt eaas 71
5.4.4 CONCIUSION VEITIICATION 1.iiittiiiii e e e et et e et e et et e et e e et e e e e e e e e e e e e e et e e s e e seaneeeeaas 71
5.5 Y (a2 (o) s B P 71
5.6 EXDOITIMOIIALION. ..ottt 72
5.6.1 Calculate the required NUMDEr Of EXDEITIIMENTS tiuuiiuiii ittt et e e et e et e et e e e eaeeanaas 73
5.6.2 Some further notifications on the CONTIGUIAtIONS ..oiuuiin ittt ettt e eaaas 73
I 0o Tad (113 o) o AP 73
6 | AnalySing SIMUIALION TESUILS wuvuiiniiiiiiiiiiiiieieieitiereeereteenerernerenernerernessenerersesssseressesnssesnennes 75
6.1 ALY SIS c.cieieeeeeeeee et 75
6.2 Reflecting upon the SUSIAINADIIITY [ACLOIS.ccuueeeeaeeeeeeeeeeeee ettt 76
6.3 CONCIUSIONS ...ttt ettt ettt ttee ettt aaatraaeees 77
7 | Reflecting on real—life implementation .v.ivee e ieeieiieeiieeiieieieieeeteenerenernererncrernereenernesesncens 79
7.1 VTl B o1e)) o U U 79
7.2 CILY HUD .o ettt 80
7.3 CONCIUSIONS ..ottt ettt ettt e ettt ettt aaatraaaees 81
8| (OF6)sTe] 1B EST (0} aRTR-Vale A q(=] 1 [<Yo3 5 [0)'s HUUUR PR 83
8.1 ANSWEIING LHE SUD TQUEOSTIONS ..ottt 83
8.2 Answering the main reSEAICH QUESTIOMN..............cc.eueeeeeeeeeeeeeees ettt ettt 85
I BN Yo (=Y 157 4 (ol a =y (= o5 L) s HUUU P 86
8.4 Recommendations [Or fUItACE FESCAICHuueeeeiiieiiiieeeseeeeiiieeeeeeeeetteee e eetittteeaeeeaaiiaeeaens 88

NS (S S s (L1 TR 89

Appendices

Table of Contents

List of Figures

List of Figures

Figure 1=1: ReSearCh FLOW DIaglaml. o . e 16
Figure 2-1: Regular delivery process (Gevaers et al., 2009) cooeeeuueeie et 20
Figure 3—1: Collection process (based on an interview with Bakr, 2018)ueeeeeieiieeiieeeeeeeeeeeeeennn 27
Figure 3-2: GHG emissions per city logistics activity, adopted from Boer et al. (2017)...cccovvuuunnn.... 28
Figure 4—2: ANalyse the avVerage ULITIES .uu e 54
Figure 4-3: Best case scores Figure 4-4: Intermediate CaASe SCOTES .itumntiumieie oo, 54
G UIE 4= WO St CaASE SOOI S ettt et e e e aeans 54
Figure 5-1: Collection process (based on an interview with Bakr, 2018)ueeeeeieiieeiieeeeeeeeeeeeeann 58
Figure 5-2: Universal process 0f the SImULATION. toeee e 58
Figure 5-3: Black box representation Simulation MOAel. .. oo e e 59
Figure 5—4: Extended black DOX MOAEL INMPULS «eeunierneei e e 61
Figure 5-5: Extended black DOX MOAEL OULDPULS «.ueerneeit et 62
Figure 5-6: Expanded black DOX MOAE]L CONTIOLS 1 iennitineeie e 62
Figure 5-7: Class diagram Python simulation MOAELcoeunieeeeeee e 65
Figure D=8 FLOWCRAIT TNOAEL. .. oo 66
Figure 5=9: FLIOWCRAIT TNOAEL. .. e 66
Figure D=10: FIOWCRAIT DC ...t 66
B UIE D L L VOl e PIOC S S ettt e 67
Figure 5-12: 1 parcel trace, no city hub Figure 5-13: 1 parcel trace, 1 city hub............... 70
Figure 5-14: Extreme numbers, no city hub Figure 5-15: Extreme numbers, city hub................ 70

Figure 7-1:
Figure 7-3:

Figure 7-4:

Underground bicycle storage Figure 7-2: Underground disposal containers....79
City BUD WITH HNE BAUL e 80

CItY NUD QS DICKTUD DOIME 1ttt 80

Table 1-1:
Table 2-1:
Table 3-1:
Table 3-2:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:

Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 4-14:
Table 4-15:
Table 4-16:
Table 4-17:

Table 5-1:
Table 5-2:
Table 6-1:
Table 8-1:
Table 8-2:

List of Tables

List of Tables

U D QU S OIS 1 ettt et ettt ettt 13
The alternatives taken into CONSIAEIAtIONiiiiiiiiiiiciiiiiiiiee e et e et e e e e earaeeeas 23
Stakeholder shortlist Parcels and EXDreSS oo 30
Summarising points of VIew StaKEhOLIACT'S ..o 32
Criteria from eNd=CONSUITIEIS ..uiiiiiieiiiiiiiiiieeeeeeeieiirreeeeeeessesitrrreeeeeessasssnbraeeeeeessssssssraeeeeeeesns 36
CrItEIr1ia SPL DIOVIARES ettt e 36
CrIEOIIA SUPDIICES ¢ttt et et 37
Criteria governmental OrGaANISATIONS . vuu .t eee ettt ettt e et e e e eas 37
Criteria DrancCh OFGANISATIONS ..eeunteee ettt ettt e et e e e e e e e eas 38
FINAL CTIEEITA tiiiiiiiiiiiieiie e ettt e ettt e e e e e ettt e e e e e e e eattbraeeeaeeessssttbbaeeaaeeeessssnsraeeaaeeenas 38
Stakeholder FANKING TOTII wuneen et et s 39
Weights calculation @XAIMPLE . e et 40
EV S Pl OrmanCe. . i an 42
P OrMANCE CAZO DI S ottt e 44
Performance EVENING QelIV eIy .. e 46
Performance NIGHE QeLIVEIY o e 46
Performance Of UCC ...ttt e et e e e e e e stttba e e e e e e e e e eaeabbaeeeas 48
Performance CDPs and parCel LOCKETS ..t 50
Performance crowdsSoUrcing lOGISTICS SCIVICES uuuitunttt et e 51
D DOINES SCALE SCOTES ettt 52
Performances INDUL taDL ... e e e e 53
Market shares of transporters (ACM, 2016) couuuuoeiee oot 60
SIMULATION EX DI IIMICIIES - ettt ettt ettt e et e et e e e s 72
Percental outcomes Of the @XDEIIIMIEITS ouuniiee et 75
RESEAICH SUD T QUESTIONS ettt ettt e 83
SNOTEIIST Of CIIEEITA uvviiiiiieiiiiiiiieie e e e ettt e e e ettt e e e e e ettt b e e e e e eeesssttbraeeeeeeessssssssaaeeeeeanas 83

3BL
B2B
B2C
c2C
CDP
CO:
DC
DES
EC

EU
GDZES
GHG
GRI

IT
MAMCA
MCDA
SC
SCM
SDG
SMART
SSCM
UCC
UN

List of abbreviations

List of abbreviations

Triple Bottom Line

Business to Business

Business to Consumer

Consumer to Consumer
Collection/Drop—off Point

Carbon di-oxide

Distribution Centre

Discrete-Event Simulation

European Commission

European Union

Green Deal Zero Emissions Stadslogistiek
Green House Gases

Global Reporting Initiative

Information Technology

Multi—Actor Multi—Criteria Analysis
Multi-Criteria Decision Analysis
Supply Chain

Supply Chain Management

Sustainable Development Goals
Simple Multi—Attribute Rating Technique
Sustainable Supply Chain Management
Urban Consolidation Centre

United Nations

Introduction

] | Introduction

The emission of Green House Gases (GHG) has been a problem to the environment for many years
now. The global transport sector is one of the largest contributors, as it accounts for 23% of the
global emissions (PBL, 2016). According to the EIA (2017), transportation demands are expected to
rise even more towards 2050. This expectation is already noticable in recent numbers from the
Netherlands, stating that the increase in (freight) transport movements is causing the emissions from

the transport sector to increase (CBS, 2017a; CBS, 2017b; CBS, 2017c; CBS, 2018).

The increase in transport movements does not only have a bad effect on the emission of GHG, but
also on the amount of congestion. According to the ANWB (2017), there is still a growing number of
traffic jams. Furthermore, the growing congestion is causing the congestion impact (measured in
kmmin) to increase by 38% in 2021 (KiM, 2016). Hence, the Dutch “Kennisinstituut Mobiliteitsbeleid”

(KiM) is raising awareness for the fact that, if no further action is taken, cities become clogged.

Furthermore, traffic jams have an additive effect on GHG—-emissions (Ligterink, van Zyl, & Heijne,
2016). Ligterink et al. (2016) note that heavy—duty vehicles, like trailer—trucks, can emit up to 100%
more CO2 when caught in a traffic jam, compared to their cruising speed of 80 km/h. Traffic has less
influence on light-duty vehicles like delivery vans, but they can still emit up to 60% more COs
compared to when driving 80 km/h (Ligterink, van Zyl, & Heijne, 2016). So, by the increasing number
of traffic movements, the resulting increase in traffic impact and the additive effect this congestion

has on vehicles’ emissions, it is easy to see that the problem is growing.

1.1 The influence of e-commerce
Consumers are increasingly ordering online, which could well be a reason why the number of freight

transport movements is increasing. This is expressed by the fact that the number of web shops has
doubled in the period 2010 till 2015 and that the total value of the Dutch e-commerce market has
increased by 13% compared to the foregoing year (CBS, 2016; Thuiswinkel waarborg, 2017).
Furthermore, PostNL is noting a growth rate of 17% over 2017 due to the growing volume of parcels

(PostNL, 2018).

However, it is not only the growing market that is worrying. Most e-commerce related parcel
deliveries are conducted in city areas (Cardenas, Beckers, & Vanelslander, 2017). It is currently
assumed that many workers have their parcels being delivered at the office in the city. Taking the
current trends of urbanisation into account (by 2020 about 80% of the European citizens is expected
to live in cities), even more pressure will be exerted on the urban road network (Cardenas, Beckers,

& Vanelslander, 2017; European Union, 2013).

Introduction

1.2 The field of City Logistics

City logistics is defined in multiple ways, of which one of them is “the last leg in the supply chain to
the customer location in the city, or the first leg from a customer location in a city back into the
supply chain” (Boer, Kok, Ploos van Amstel, Quak, & Wagter, 2017, p. 13). Furthermore, city logistics
is seen as a multi—disciplinary bridge between urban freight transport and city sustainability
(Caliskan, Kalkan, & Ozturkoglu, 2017). It aims at optimising the logistics and transport activities of
the last leg, while also considering the traffic environment, traffic congestion and energy consumption
(De Marco, Mangano, & Zenezini, 2018). Hence, city logistics literature may provide useful insights

in how to mitigate the negative effects of goods distribution in the city.

Today, an increasing number of governments and municipalities are acknowledging the upcoming
challenges regarding the distribution of freight through the cities (PostNL, 2018). Therefore, they
are looking for new innovative ways for freight distribution in cities. According to the analysis of the
municipal elections that was conducted for PostNL (2018), these municipalities are looking to cargo
bikes and Urban Consolidation Centres (UCCs) to optimise the parcel deliveries in the cities. PostNL
is trying to be a part of these developments, and already offers alternative delivery methods like

delivery by bike, parcel lockers and/or pick—up at retail locations.

1.3 Research gap and questions
Despite the efforts of developing new delivery options, there is still a lack of knowledge in research

about their sustainable performance. Furthermore, there is not much insight in the criteria for a
sustainable home delivery mechanism. Besides, much of the alternatives that have been studied in
literature have not been analysed on the same factors of interest. Therefore, Cardenas et al. (2017)
raised the question of comparing the most promising ‘last mile delivery alternatives on the same

‘sustainability’ factors. Hence, the following research question is raised:

How could the last mile delivery process become more sustainable, I.e.
minimising tratfic impacts and emissions, while maintaining the social and

economic benefits of e-commerce and home deliveries?

There is not one straightforward answer to this main research question. Therefore, several sub-
questions are defined to divide the research into smaller parts. The answers to the sub—questions
together provide the desired answer to the main research question. The sub—questions can be found

in Table 1-1 at the next page.

Introduction

Table 1-1:Sub—-questions

Number Question

1. How is a sustainable last mile delivery defined?

2. What are the most important stakeholders in the PostNL case? And, what are their
points of view regarding a more sustainable last mile delivery process?

3. What are the current policies steering the sector in a sustainable direction? And, are
they effective?

4, What are the most promising last mile delivery alternatives, given the sustainability
requirements and perceptions of the stakeholders?

5. What benefits can be obtained by implementing one of these alternatives?

6. How could this alternative be implemented?

1.4 Research approach and -method
To reach a definitive and satisfying answer to the main research question, an appropriate research

approach has to be applied. A typical and widely used approach for choosing between different
alternatives based on a set of both quantitative and qualitative criteria, is the Multi—Criteria Decision
Analysis (MCDA) approach (Ampe & Macharis, 2008; Vincke, 1992). However, it is not a given that
all stakeholders’ opinions are included in a MCDA and therefore, the Multi-Actor Multi—Criteria
Analysis (MAMCA) approach was developed (Hadavi, Macharis, & Van Raemdonck, 2018).

By including more stakeholders in the early stages of the MCDA, in explicit, with the problem
definition and defining the criteria, the MAMCA approach claims to aid more sustainable decision—
making in large and complex transport projects (Macharis, Turcksin, & Lebeau, 2012). Since the last
mile problem in cities is a problem that concerns many different stakeholders with different points of
view, as can be derived from the introduction, the MAMCA approach seems to be a better fit for this
research than regular MCDA approaches. Besides, the MAMCA approach not only aids the decision—
making, but also covers implementation, which is a totally different stage in these kinds of projects.

Hence, it is more appealing from a sustainability perspective and is therefore applied in this study.

The MAMCA approach starts with defining the problem and the alternative measures (Macharis,
Turcksin, & Lebeau, 2012). Secondly, the relevant stakeholders have to be identified, followed by
assessing their key objectives and the relative importance of the objectives. This is covered by the
second sub—question. Then, indicators for the criteria can be defined, in explicit, the criteria’s units
of measurement. The next step is the actual evaluation of the alternatives with regard to the criteria,
resulting in a ranked outcome of the alternatives revealing their strengths and weaknesses in the
sixth step. Hereby, the fourth sub—question is answered. The final step is to implement the chosen

alternative.

Introduction

Hence, it can be stated that the MAMCA approach supports the complete project cycle for large scale
transport projects, which is what makes it attractive for the kind of problems this study also tries to
solve. However, the choice for the last mile delivery alternative is based on data with high
uncertainty, thus implementing a completely new logistics system throughout PostNL would be too
far—fetched. Furthermore, full-scale implementation of one of the alternatives would require high
investments of finance and time. Instead, modelling and simulation provides a safe environment to
experiment with different scenarios and explore the new system’s behaviour. So, that is where the

application of the MAMCA-approach in this study differs from the original definition.

Simulation is about modelling a real process or proposed system to conduct numerical experiments,
providing better understanding of the system’s behaviour for a given set of conditions (Kelton,
Sadowski, & Sturrock, 2003, p. 7). By firstly defining the simulation model, and secondly the set of
conditions for which the proposed alternative works as desired, estimates about proper

implementation can be made. Hence, both the fifth and sixth sub—question can be answered.

By answering all the sub—questions, it should be possible to derive the answer to the main research
question. However, it is not yet made clear what exactly the sub—questions contribute to the definitive
answer. Therefore, the research methods that will be applied to answer each of the sub—questions,

are described in the following paragraphs.

The first sub—question aims at defining a framework of requirements, or criteria, for a sustainable
last mile delivery process by means of a literature study. A large body of literature is available that
discusses the sustainability issues, both within companies (corporate sustainability) and within supply
chains (sustainable supply chain management (SSCM)) (Ahi & Searcy, 2013; Seuring & Miiller, 2008).
First, sustainability in general is defined. This is then projected on the last mile problem theory,
which can also be found within the SSCM literature. Hence, a definition of a sustainable last mile is

obtained, which defines the objectives for the new system to fulfil.

As mentioned before, the identification of stakeholders and their key objectives is an important aspect
of the MAMCA-approach (Macharis, Turcksin, & Lebeau, 2012). A literature study has been
conducted to answer the second sub—question, which is defined so that the stakeholders of the last
mile and city logistics problem can be identified. Furthermore, based on PostNL documents, the key

objectives of the stakeholders are identified, which are used to extend the sustainability framework.

The issues around city logistics have played an important role in the municipal elections last March
(PostNL, 2018). Since many different opinions about the design of city logistics have been raised, it

is important to get more insight in both the active policies and intended policies regarding city

Introduction

logistics. Thereby, opportunities (subsidies) and constraints (restrictions) become clear, finalising
the sustainability framework. The insights have been obtained by literature studies and interviews

within PostNL.

The next step of the MAMCA-approach is the selection of the best alternative for city logistics,
which is determined by the fourth sub—question. The selection is based on the performance of the
alternatives on the criteria in the sustainability framework and is executed by means of a Multi

Criteria Decision Analysis (MCDA) method, in explicit, the SMART-method (Edwards, 1977).

The MAMCA-approach overlaps the SMART-method on the first steps, as the first steps of the
SMART-method are the identification of stakeholders, the alternatives (decisions) to choose from
and the definition of the dimensions of value to analyse the alternatives (Edwards, 1977). The next
step is to assign weights to the criteria, or dimensions. The weights can simply be based on a ranking,
or a ranking combined with assigning a relative importance. In this study, the weights will be
determined based on only the ranking of the criteria, based on the perceptions of different
stakeholders. The obtained ranking is already uncertain, since representatives from the stakeholder
group will be consulted, without consulting more individuals from this group. Hence, by assigning a
relative weight to the obtained ranking, uncertainty would only increase and possibly mitigate trends
in the rankings, as one is more conservative with assigning importance than others. Finally, the

alternatives have to be measured along the dimensions, followed by a calculation of their total utility.

The purpose of the fourth sub—question is to make a quick selection from the alternatives that will
be implemented in a simulation model, based on fuzzy and uncertain data. The SMART-method is
aimed at the busy decision—-maker that wants a quick method to analyse decisions (Edwards, 1977).
According to Edwards (1977), the SMART -method yields very close approximations of the weighted
averages compared to much more complicated non-linear approaches. Furthermore, the SMART-
method is easy to compute and understand, and therefore fulfils the requirements for implementation

in this study.

A logistics operation in cities is subject to many uncertainties: what is the traffic situation in the city,
for how many red lights or pedestrians does the delivery van have to stop, how long does it take for
the customer to open the door and sign for reception, does the delivery man have to walk up a four—
story building before he can drop-off the package? By using a simulation model, and in particular a
discrete—event model, all these uncertainties can be sampled from an uncertainty space (Walker,
Marchau, & Kwakkel, 2013). In contrast, a spreadsheet is a deterministic model using statistical

averages in most of the aforementioned cases, leading to less reliable results.

Introduction

As already mentioned, full-scale implementation of one of the alternatives would require high
investments of finance and time. Since the process of parcel delivery can easily be broken down to
a set of events that follow up in time (which is covered in more detail in the fifth chapter) and
discrete—event simulation (DES) is widely used among logistical problems, the best alternative(s) will
be implemented in DES—-model (Behiri, Belmokhtar-Berraf, & Chu, 2018; Simoni & Claudel, 2018;
White & Ingalls, 2009).

The DES-model can then be used to conduct experiments with. To reduce the required simulation
time, not all possible combinations of input variables will be simulated. Instead, a Design Of
Experiments (DOE) method can be applied (Kleijnen, 2001), depending on the complexity of the
simulation model. Thereby, the focus of the experiments will be more on the inputs and outputs of
interest, in explicit, the variables that provide the desired results. By conducting experiments with
different settings for the (uncertain) variables, outcomes with regard to the costs and benefits of the
alternative(s) can be obtained. Hence, the fifth sub—question can be answered.

1.4.6 Implementation

The sixth sub—question is defined to provide PostNL and the other stakeholders with a descriptive
policy advice that makes it more attractive to implement the new last mile delivery process. This will
be obtained by conducting desk research based on the optimal outcomes of the simulation
experiments. This will be focussed on solutions applied in other (city) logistics sectors to assess
opportunities for similar design solutions for the last mile delivery alternatives. Hence, the sixth sub—

question can be answered.

1.5 Research Flow and report structure
The study as proposed in this chapter is translated into a Research Flow Diagram, which is shown in

Figure 1-1. The Research Flow Diagram shows the order of activities or topics that will be executed

during this study in the same order as they are covered in this thesis.

Problem definition Stakeholders & Criteria Modelling & Analysis Reflections & Conclusions

Figure 1-1. Research Flow Diagram

Introduction

The first block defines the problem dealt with in this study. The problem definition consists of the
introduction of this chapter and the background literature as presented in chapter 2. Therein, the
applied definitions of the last mile problem and city logistics are presented, together with the
alternative last mile processes. After that, the ‘Stakeholders and Criteria’ block is covered, which
consists of the stakeholder analysis and the definition of the sustainable last mile in chapter 3 and
the criteria analysis and MCDA in chapter 4. Then, the Modelling and Analysis’ block covers the
creation of the initial simulation model of the sustainable last mile in chapter 5. The results of the
experiments are then analysed in chapter 6, Finally, the ‘Reflections and Conclusions block provides
the reader with a descriptive advice for the implementation of the alternative system in chapter 7.

The conclusions and reflections are written in chapter 8 and conclude this report.

Introduction

Identification of Last Mile alternatives

2 | Identification of Last Mile alternatives

Since the research question indicates the need for a more sustainable way of transporting goods
along the last mile, it is interesting to see what has already been written in literature. To structure
the search for last mile alternatives, key words like /ast mile problem, sustainable last mile, last mile
efficiency and others have been applied in the Scopus search engine. Based on the results, the basic

definitions around the last mile are explained first, followed by the last mile alternatives.

2.1 What is the last mile?

Before products reach the consumers’ hands, they flow through a chain of organisations that try to
add value to the product. This is captured in the Supply Chain Management (SCM) theory, in which a
supply chain (SC) is defined as: “--a network of organizations that are involved, through upstream
and downstream linkages, in the different processes and activities that produce value in forms of

products and services in the hands of the ultimate consumer.” (Christopher, 1998).

Within the SCM theory, the coordination of material-, financial- and information flows is seen as very
important (Stadtler, 2004). As the developments in Information Technology (IT) are advancing, big
increases in information flows and links between all tiers in the SC can be noticed. Moreover, retailers
are increasingly interacting with their customers through the internet, which has opened a new
market, called “e-commerce”(Khan, Varshney, & Quadeer, 2011; Stadtler, 2004). While e-commerce
was initially focussed on the Business—to—Consumer (B2C) market, it is increasingly becoming active

in the Business—to-Business (B2B) market.

Since most products cannot be utilised by only online interactions, they have to be transported to the
recipient’s location. This last step in the SC is called “The Last Mile” in SCM theory (Brown &
Guiffrida, 2014; Edwards, McKinnon, & Cullinane, 2010). Since the Netherlands have a very high
urbanisation degree, a Dutch last mile is closely related to the city logistics field, which was already
defined as “the last leg in the supply chain to the customer location in a city, or the first leg from a
customer location in a city back into the supply chain” (Boer, Kok, Ploos van Amstel, Quak, & Wagter,

2017, p. 13). Hence, the last mile alternatives are seen as possible solutions for city logistics as well.

However, the Last Mile process has still been treated as a black box. Hence, the Last Mile process
under investigation could either be very broad (SCM perspective), or very narrow (transporters
perspective). Furthermore, the definition of Boer et al. (2017) could be interpreted from both
perspectives, despite their definition being closely related to the definition of Gevaers et al. (2009),
which is defined as ‘the last stretch of a business to consumer (B2C) parcel delivery to the final
consignee (consumer) who has to take reception of the goods at home or at a cluster/collection point’

(Gevaers, Van de Voorde, & Vanelslander, 2009). Gevaers et al.’s definition however is more

Identification of Last Mile alternatives

focussed on the actual parcel delivery part of the supply chain, where Boer et al.’s definition is

defined in a broader sense. To clarify the last mile process under study, Figure 2-1 is adopted.

G- "m"-‘]

Shipper Pick-up

tih = < A8

Consumer Delivery Arrival-terminal

Figure 2-1. Regular delivery process (Gevaers et al., 2009)

According to Gevaers et al. (2009), the regular operation starts at picking up a parcel at the shipper’s
location and transport the parcel to a nearby sorting centre. From there, a line haul continues the
journey to a sorting centre close to the customer’s location. Then, the 7ast mile’ parcel delivery is
conducted, where the parcel is being delivered to the customer’s location (highlighted in red in Figure
2-1). This last, highlighted part of the last mile will also be the further focus of this study, as that is

the part of the last mile where companies can really differentiate and innovate.

2.2 Alternative last mile delivery processes
Regarding last mile ‘delivery’, Edwards et al. (2010) make a distinction between “home deliveries”

and “personal shopping” and state that personal trips to shopping centres can be more energy-
consuming than the entire upstream supply chain. Instead they conclude that home deliveries are
likely to produce less COs, even after including failed deliveries in the analysis. Hence, home
deliveries can still be seen as a legit sustainable option of last mile delivery, providing that the current

externalities like carbon emissions are mitigated.

The alternative of Collection/Drop-off Points (CDPs) has already been introduced by companies like
PostNL. According to Smit (2018), PostNL uses classic retail locations like Albert Heijn stores as a
CDP, where PostNL collects the items one or a few times a day. Furthermore, PostNL has
operationalised the use of parcel lockers in crowded public areas, where people can collect their
parcels 24/7 at a moment that fits their agendas best. Besides, “Click & Collect” or “Customer Pick-
Up” services have been introduced by Albert Heijn and bol.com, Walmart, Amazon and Tesco, where
products ordered online are directly delivered to the retail location nearby. According to McKinsey
and Company (2017), parcel lockers (and presumably CDPs) have the ability to cut both labour costs

and emissions drastically. However, this highly depends on recipient’s mode of transport.

Another alternative that is increasingly getting attention in literature is the implementation of Urban
Consolidation Centres (UCCs). UCCs are transhipment points just outside the city boundaries that

can be used to consolidate shipments with the same destinations and switch to greener transport

Identification of Last Mile alternatives

modes (Clausen, Geiger, & Poting, 2016). This can result in less traffic in the cities, reduce emissions,
enhance liveability and reduce costs (Gogas & Nathanail, 2017). However, the business case is
depending on a lot of uncertain variables, which makes it unattractive for parties to invest at first and

thereby sensitive for subsidies (Janjevic & Ndiaye, 2017).

However, due to other concerns like the traffic impact of delivery vans and the corresponding
emissions, there is a growing need to change. The first alternative to discuss is one that is receiving
an increasing amount of attention in literature, namely crowdsourcing the logistics services from a
pool of workers (Wang, Zhang, Liu, Shen, & Hay Lee, 2016). Wang et al. (2016) propose a model
based on pick—-own-parcel (pop)-stations as used by Singapore Post. After a parcel arrives at the
pop-station, the delivery job is outsourced as a crowd—task by means of an app. Wang et al. (2016)
state that operational and environmental benefits can be obtained due to reduced labour and handling

costs. However, they excluded the amount of extra transport the crowd will make for each delivery.

Kafle et al. (2017) propose a somewhat similar model to Wang et al. (2016), but they replaced the
pop-station by a conventional delivery van as pickup point for crowd-workers to pick—up parcels at
so—called relay points. Kafle et al. (2017) assume that crowd-workers primarily walk or cycle when
delivering parcels, which has a positive effect on the reduction of traffic movements. This is in
contrast to Wang et al. (2016), whom assume that crowd-workers only use cars for their delivery
tasks. Both studies conclude that the proposed last mile solutions are more environmental and
economically friendly. However, the conclusion only reflects on the (operational) costs and lacks

decent estimates of the traffic impact.

On the side, drone delivery may be an ambitious alternative for a little more into the future. Drones
are an attractive alternative for the conventional delivery van, since they do not have to use roads to
travel (Lohn, 2017). Furthermore, drones are green vehicles due to the use of electronic engines in
most occasions. However, a lot still has to be done before drones can actually be used for parcel

delivery, like changing regulations and apply changes to public spaces (Lohn, 2017).

Most of the alternatives mentioned above are, among many other alternative systems for last mile
delivery, analysed by McKinsey and Company (2017) to provide insight in the most promising
alternatives for the future. The six most promising alternatives according to the outlook are: UCCs,
parcel lockers, load pooling, night delivery, electric vehicles and unmanned automated vehicle
lockers. However, multiple solutions have to be combined to achieve the most success and a
conclusive combination on what would be best is lacking. Besides, the results are primarily

assumption based, thus mainly without quantified results.

Identification of Last Mile alternatives
2.3 Alternatives implemented by PostNL
Some of the aforementioned alternative last mile options have already been implemented by PostNL
as an additional service. These alternatives for the last mile are the result from PostNL signing the
Green Deal Zero Emission ‘Stadslogistiek’ (GDZES) agreement, which is aimed to make city logistics
free of emissions (Green Deal ZES, n.d.). PostNL started research projects into sustainability and city
logistics and as a result, the department “city logistics” has been established to manage these

projects (Tuinhout, 2018).

One of the services is called “Pakje Gemak”’, enabling the customer to define the desired pickup
location (PostNL, n.d.). Beside the existing postal office network, PostNL has extended the service
to partner retailers like Albert Heijn and eventually placed parcel lockers at busy and populated areas
like train stations. This is still a popular alternative and operational at a big scale (Smit, 2018).
Furthermore, Smit (2018) states that both the parcel lockers and retail locations options cause
customer satisfaction to increase, while the number of kilometres driven is decreasing. Hence,

operational emissions are expected to decrease, but there is no clear insight therein.

Next to the “Pakje Gemak” service, PostNL recently started to offer evening delivery as a premium
service (Hiinteler, 2018; van den Berg, 2018). Thereby, PostNL offers to deliver the parcel between
18:00h and 22:00h, so there is a higher probability of the recipient being home. The recipient still
has to physically accept the parcel, and currently there are no plans inside PostNL to combine evening
delivery with parcel lockers. This is in contrast to the night delivery option of McKinsey and Company
(2017), which uses (personal) parcel lockers in the central mail hall of apartment-buildings, or next
to the front door, so that customers do not have to be home to accept the parcel. Thereby, a strong
decrease in operational costs, kilometres driven and the related emissions can be obtained. However,
according to Hiinteler (2018), evening delivery is more expensive than conventional day delivery and

less efficient. That is why evening and night delivery have to be analysed separately.

PostNL has recently conducted a study into the possibilities of making the parcel lockers part of an
unmanned vehicle network (Tuinhout, 2018). According to Tuinhout (2018), vehicles then drive to
certain places in the city closer to the customer, offering more convenience, reducing operational
costs, reducing emissions and reducing traffic in the city. At the moment, this project is awaiting a
business case to be tested on a bigger scale. Also, several regulatory changes and technical

advancements have to be made before this project can be executed.

Lastly, the city logistics department is running a UCC project in cooperation with several companies
within the Green Deal ZES agreement. The UCC is located in Duivendrecht (Deudekom), where

products for the Universities of Amsterdam and the municipality of Amsterdam are collected,

Identification of Last Mile alternatives

consolidated and transhipped onto greener transport modes like electric vans, “goupils”and/or cargo
bikes (Tuinhout, 2018). This is one of the first projects to be executed on this scale (statement
derived from internal presentation). However, there is not a lot of insight in the effects and benefits
of this alternative. Therefore, more research is needed in order to make the business case even

stronger (Tuinhout, 2018).

2.4 Conclusion
So, it can be noted that there are many different alternatives for last mile delivery. However, what

options are worth considering when opting for sustainable city logistics? The aforementioned report
of McKinsey and Company (2017) lists six promising alternatives, but also notes that a combination
between these six may result in even better results. Beside the McKinsey and Company (2017) report,
the alternatives crowdsourcing, CDPs and lockers, UCCs, drones and evening delivery have been

discussed. Of these, the following will be taken into consideration in the remainder of the report:

Table 2—-1- The alternatives taken into consideration

Alternative
Electrification of vehicle fleet
Cargo bikes
Evening and Night delivery
UCCs
CDPs and parcel lockers

Crowdsourcing logistics services

Drones have not been taken into consideration in the analysis, as the opportunities to implement
drones for parcel delivery are very limited. Furthermore, drones have to be further developed and a
lot of regulations still have to be made to make it possible. Hence, the implementation of drones is a
plan for far in the future, and not for now. The load pooling option from the McKinsey and Company
(2017) report is combined with the crowdsourcing option, as they seem very similar in nature
(McKinsey & Company, 2017). The unmanned vehicles from the same report have not been taken

into consideration either, since the same issues apply for these as for drones.

With these conclusions, none of the sub—questions can yet be answered, despite the first block of the
research flow diagram being completed by now. Furthermore, the problem definition should be
clarified by these first two chapters. So, it can be stated that there are many alternative systems and
solutions for the last mile parcel delivery that could make the process more sustainable (i.e. enhance
efficiency and reduce the GHG-emissions), but a lack of insight remains in the costs and benefits of
each of these alternatives with regard to the same set of criteria. Therefore, the next block focusses

on defining the sustainability criteria framework for assessing the last mile alternatives.

Identification of Last Mile alternatives

Defining the sustainable last mile

3 Defining the sustainable last mile

Sustainability is getting an increasing amount of attention in both research and practice, which in the
early days was defined by the so-called Brundtland commission as utilising resources to meet the
needs for the present without compromising the needs for future generations (WCED, 1987).
Problems like environmental pollution, child labour, hunger and extreme poverty are phenomena that
should not be present today. Therefore, countries belonging to the United Nations (UN) defined 17

“Sustainable Development Goals” (SDGs) to tackle these problems for good (United Nations, 2015).

To be able to contribute to the SDGs, the Dutch government has adopted certain policies to enforce
commitment to these SDGs by big companies (Ploumen, 2016). Furthermore, due to the 2014/95/EU
directive from the European Union (EU), big companies like PostNL are forced to become more
transparent about their non-financial bookkeeping. In response to the directive, PostNL is
implementing the Global Reporting Initiative’s (GRI) standards method for environmental reporting in

order to transparently report on their contributions on reaching the SDGs (GRI, 2017).

As more companies and supply chains are concerned about their sustainable performance, research
is trying to define the terms and requirements of sustainability. Hence, research responded with the
terms “corporate sustainability” and “sustainable supply chain management” (Ahi & Searcy, 2013).
What this exactly entails, is covered in 3.1 and 3.2. Furthermore, based on the process of PostNL, a
basic last mile delivery process has been drawn to provide more insight in the stakeholders of the
last mile problem. This is described in 3.3, followed by an assessment of their points of view in the

fourth paragraph. Finally, a short summary is provided in 3.4.

3.1 Corporate sustainability

In the beginning, sustainability definitions primarily focussed on the environmental effects of
companies. However, businesses are increasingly involving the social aspects of their operations as
well (Ahi & Searcy, 2013). Many scholars have defined corporate sustainability in relation with the
triple bottom line approach (Elkington, 2002), with one option being “the creation of resilient

organisations through integrated economic, social and environmental systems” (Bansal, 2010).

For the success of a sustainability strategy in a company, leadership and the commitment of
management is perceived as important (Székely & Knirsch, 2005). Furthermore, companies should
be flexible to adapt to changes regarding sustainability and the strategy should be well aligned with
the core business processes (Engert & Baumgartner, 2015). Lastly, stakeholder engagement is
necessary to develop shared understanding of approaches and expectations (Székely & Knirsch,

2005).

Defining the sustainable last mile

Based on the aforementioned success factors, Székely and Knirsch (2005) have identified several
methods and tools for determining the sustainable performance of companies. Among these,
sustainability indicators as raised by the GRI may be used, which are distinguished in
productivity/efficiency ratios, intensity ratios, and general percentages. These categories include
ratios like the labour productivity, emissions intensity and return on investments ratios and hence,
include indicators from all directions of the sustainability spectrum (Székely & Knirsch, 2005).
Therefore, the indicators defined by Székely and Knirsch (2005) will be used as a first input to the

sustainability framework.

3.2 Sustainable Supply Chain Management (SSCM)

Though, there is a growing recognition that becoming sustainable is not achievable by one company
on its own. As more companies are adopting SCM strategies, there is also a growing interest in SSCM
research (Seuring & Miiller, 2008). Beside the first big literature study of Seuring and Miiller (2008)
into SSCM research and definitions, Ahi & Searcy (2013) conducted a literature review 5 years later
to see if the definition could be extended. By combining corporate sustainability and SSCM, they

came up with the following definition:

“The creation of coordinated supply chains through the voluntary integration of
economic, environmental, and social considerations with key inter—organizational
business systems designed to efficiently and effectively manage the material,
nformation, and capital flows associated with the procurement, production, and
distribution of products or services in order to meet stakeholder requirements
and improve the profitability, competitiveness, and resilience of the organization

over the short— and long—term. (Ahi & Searcy, 2013, p. 339)”

By adopting SSCM strategies, companies and SCs can improve their environmental performance
(Esfahbodi, Zhang, Watson, & Zhang, 2017). Furthermore, Esfahbodi et al. (2017) state that by
exerting the right pressure, governments can successfully motivate companies to adopt SSCM
strategies. Besides, companies with a sustainable reputation can gain a competitive advantage over
competitors, as SSCM practices result in more favourable consumer brand evaluations and more

purchase intentions (Gillespie & Rogers, 2016).

It is also indicated that inter—firm collaboration in SCs in a sustainability context can enhance
sustainable performance (Niesten et al., 2017). Sustainable performance can be further improved by
maintaining relationships and trust with customers, as normative pressures from customers and
markets are key motivations for the adoption of SSCM-practices (Zhu, Feng, & Choi, 2017).

Moreover, collaboration that results in alliances that stimulate the use of sustainable technologies

Defining the sustainable last mile

can result in enhanced legitimacy for the involved firms (Kishna, Niesten, Negro, & Hekkert, 2017).
Hence, collaboration between firms, markets and customers is seen as an important factor for

sustainable performance throughout this research.

However, most of the studies cited above have also indicated the need for research into indicators
and decision variables for environmental and social performance, as clear examples are lacking.
According to Seuring (2013), “carbon emissions”is the only environmental decision variable that is

regularly discussed in SSCM literature.

3.3 The comprehensive last mile delivery process
From the foregoing paragraphs it can be stated that research still has to make some steps in order

to properly define corporate and SC sustainability. As mentioned before, the last mile delivery
problem is part of the SCM literature. However, from SSCM literature it cannot be made clear what
requirements a sustainable last mile has to fulfil. Hence, this chapter proceeds following Kishna et
al.’s (2017) statement that collaboration between firms, markets and customers is required to enhance

sustainable performance.

By firstly defining the last mile delivery process in more detail, important stakeholders can be
identified. In the next paragraph, the stakeholders’ points of view have been assessed. This provides
more insight in the criteria for a sustainable last mile and hence, it becomes clear what aspects of

the last mile are likely to enhance support from stakeholders.

. E-commerce

The process can be separated in two and suppliers 1
parts: one for the e—-commerce and
general suppliers, and a part for !
PostNL (or any other logistics service P°“”;gs“"ery
provider) (Bakr, 2018). Many web v

. —>| Sub-contractor
shops do not have their own transport

Il
services. Therefore, transport services Autobedrijf
o:q,% PostNL
are outsourced to so-called third- T % e o
%8

party logistics (3PL) providers. PostNL
is one of these 3PL providers, since 1
they can offer the complete logistics PosthL
backbone to transport parcels to every v
address in the country (Vaandrager, T

2018).

Defining the sustainable last mile
It all starts with a retailer or consumer placing an order at their supplier or an e-commerce company.
The order is picked and packed before it is being “Pre—notified”. This means it is notified to PostNL
that the parcel is ready for pickup. Besides, there is a possibility for consumers to deliver a parcel
at a retail location. The retail location then takes the responsibility for the “Pre-notification”
procedure. Hence, retailers, e-commerce companies and suppliers have done enough for sending

their parcels.

The next step in the process is “Collection” by PostNL, which is another word for picking up the
parcels at their respective locations (Bakr, 2018). There are three options (shown as blue ovals in
Figure 3—-1), namely by either the PostNL delivery man or a sub—contractor that picks up the parcels
at the beginning/end of his/her shift, or by the “Autobedrijf PostNL”, which picks up the parcels at

the end of the day and delivers them to the nearest DC to be sorted.

After receiving the parcels at the counter of the respective DC, their position in the chain of PostNL
is finally known (Bakr, 2018). Parcels are sorted per destination and shift by means of big sorter
machines. The sorted containers are then sent (by night) to the next DC, where the delivery van is
waiting for its containers to load. During the remaining day, eight to ten different shifts will depart
from the DC that conduct the deliveries. Besides, as mentioned before, the delivery man and sub—
contractor are free to choose when (at the beginning or end of their shift) they want to pick—up

parcels at retail locations.

From the aforementioned process, three different roles are easy to identify: there is always a
“sender”, a “recipient” and (almost always) a “logistics provider” involved. These roles are similar
among most of the different segments of city logistics, which have been defined in Figure 3-2 (Boer,
Kok, Ploos van Amstel, Quak, & Wagter, 2017). From Figure 3-2 it can be noticed that the distribution
of parcels and express goods are only responsible for 4% of the GHG emissions. All others are
concerning B2B deliveries of, for instance, construction sites, maintenance of buildings, or retail.
Hence, the priority of changing Total GHG Emissions (2015) 3.6 Mtonne

the parcel dehvery system to . Parcels and express (4% > 9% in 2050)

reduce congestion could be | Temperature-controlled (13% > 19% in 2050)

questioned. However, as can be B General cargo and retal (39%)

noticed from 3.4, stakeholders B Waste ogistics (6%)

still perceive this sector as an o
| Facility logistics (11%)

important source of the o
. Construction logistics (27%)

congestion problems. Therefore,
all efforts to make it more

sustainable could have a positive

Defining the sustainable last mile

effect on the stakeholders’ perspectives of the problem. Furthermore, solutions found by this study

may also be applicable and interesting for other sectors in Figure 3-2.

Since all of the city logistics segments consist of senders, recipients and logistics providers, these
roles will be considered as three different stakeholder groups in the city logistics context
Furthermore, these roles can be found in all B2B, B2C and C2C deliveries, so all of these markets
will be considered. Hence, a sender could be an e-commerce company that delivers products to
consumers, a supplier to a restaurant or a consumer to another consumer for instance. Recipients
can be then be seen as consumers or businesses in the city. The logistics providers can then be seen

as companies like PostNL or DHL, distributing goods between suppliers and recipients.

Besides the three obvious roles, governmental organisations are important to consider as
stakeholders. National governments and municipalities in particular are affected by the externalities
of city logistics and try to find new ways for mitigating these effects therefore. Municipalities are
introducing new regulations (see for instance the “Uitvoeringsagenda Stedelijke Logistiek
Amsterdam”), while the Dutch national government has implemented national policies to cope with

rising emissions (Ploumen, 2016).

There are also several organisations that represent the 3PL branch in the governmental discussions.
Two examples are “Transport en Logistiek Nederiand” (TLN), and “Evofenedex”, both fighting for
unambiguous policies regarding city logistics (TLN, 2018). They state that tightening the rules
regarding environmental zones (Milieuzones) in some city centres will cause 3PL providers to conduct
unnecessary investments in new material for these areas. Furthermore, the depreciation on this new
material will be way higher than necessary, increasing the risk that many 3PL providers to go

bankrupt (TLN, 2018).

Lastly, “thuiswinkel.org” represents the Dutch e—commerce businesses and offers a quality mark for
its members. Businesses connected to thuiswinkel.org and have the label are guaranteed to offer the
rights services to the consumer (Thuiswinkel.org, n.d.). Furthermore, giants like bol.com and
Coolblue are connected and have started a campaign together to make the consumers more aware of

their ordering behaviour, called “Bewust Bezorgd” (Thuiswinkel.org, 2018).

Concluding this paragraph, a shortlist is created in Table 3-1 to provide a quick overview of what

has been discussed and the stakeholders considered during the analysis.

Defining the sustainable last mile

Table 3—1- Stakeholder shortlist Parcels and Express

Parcels and Express

Supplier E-commerce, general retail and/or consumers
Logistics provider PostNL or 3PL

Customer Consumers and/or other companies
Government Local and domestic

Other TLN and Evofenedex for transport

Thuiswinkel.org for e—commerce

3.4 Assessing stakeholders’ points of view
So, what exactly concerns the previously defined stakeholders regarding the sustainability of their

last mile through the city? To answer that question, each stakeholder group as defined in Table 3-1
(the first column) has been analysed based on research, news articles, social media and interviews

within PostNL. Each stakeholder is covered in a separate paragraph.

According to a survey from the European Commission (2015), the main concern of consumers is the
delivery price. Home delivery has to be free of charge (or a low fee), fast and reliable track and
trace. Some of these findings are underpinned by other research, stating that “delivery costs”is a
dissatisfying factor by many consumers (Lowe & Rigby, 2013). Furthermore, home deliveries are still
highly preferred above other delivery options like “Click and Collect” or “Collection Points” (Lowe
& Rigby, 2013).

There is not much research into the preferences of B2B deliveries. It is assumed that companies that
order their products online or have them delivered, prefer to have them delivered at the company’s
address. Furthermore, delivery costs are assumed to be an important factor of interest as well, as

this may have a negative effect on the end-product’s potential profit.

Suppliers are, in this document, referred to as the suppliers of the different segments as defined in
Figure 2-1, or as the e-commerce companies supplying the end-consumers. A definition that covers
both of types of suppliers and will be used throughout this document is the party that ships or hires

a 3PL provider to ship products to their customers.

On behalf of PostNL, McKinsey and Company recently conducted a survey to identify important
stakeholders of PostNL parcel delivery’'s operations and discover their most important factors of
interest (van Spronsen & Middelburg, 2018). Most respondents are a supplier or business partner of
PostNL. They stated that they find it important for PostNL to focus on carbon free delivery, the well-
being of employees in a good working climate and customer satisfaction. From their own perspective,

carbon free delivery is ranked even higher than from the PostNL perspective, together with customer

Defining the sustainable last mile
satisfaction and well-being of employees (van Spronsen & Middelburg, 2018). Hence, it can be stated

that sustainability issues are high on the stakeholders’ agendas.

The 3PL providers are increasingly trying to become sustainable. PostNL writes that they have the
ambition to become fully carbon neutral (PostNL, 2017). Therefore, PostNL states that more
flexibility in operations and better cooperation with customers is needed. Furthermore, they express

the need for innovative IT projects to support the sustainable developments.

Beside PostNL'’s position paper, DHL has expressed their ambitions for the future in a position paper.
DHL is currently investing heavily in cleaner and electric vehicles to mitigate emissions (van Benten,
2017). Furthermore, DHL expresses their concerns about the labour force that is active in the sector,
as there are a lot of different constructions among the companies. Therefore, they express the need

for ambiguous agreements within the sector that support the increased need for flexibility.

As already mentioned in the introduction, city municipalities and the Dutch national government are
increasingly experiencing the problem of clogging cities. Hence, according to a study that WKPA
conducted on behalf of PostNL, clogging cities and sustainable city logistics were reoccurring themes

in the municipal elections in the Netherlands (PostNL, 2018).

Several parties in the municipal board have expressed their interests in implementing or expanding
the so—called “milieuzones” (PostNL, 2018). Besides, some parties promote to create a car—free city
and make the city better accessible by public transport or bicycle. Regarding parcel delivery in the
city centre, most of the parties in the big cities agree upon the implementation of Urban Consolidation
Centres, where the streams of parcels meant for the city are consolidated outside the city and

delivered by one operator (PostNL, 2018).

In August 2009 the Dutch cooperation for air quality improvements (NSL) was formed to achieve
compliance with the 2008/50/EG7 directive of the EU (Rijkswaterstaat, n.d.). Recently, this
cooperation has been prolonged, since some inner—city roads exceeded the limits for NOs and PMio
instances (Ministerie van Infrastructuur en Waterstaat, 2018). Therefore, new measures have been

identified to aid the achievement of the targets set by the EU directive.

Lastly, many local governments, provinces and municipalities agreed upon making the city distribution
of goods emissions—free by having signed the Green Deal ZES agreement (Green Deal ZES, n.d.).
They will try to achieve this by cooperating with the branch organisations, public-private
partnerships and the transport sector with the aim of achieving a zero—emission city distribution by

2025.

Defining the sustainable last mile

As can be noted from Table 3-1, the other stakeholders are divided in two categories: the logistics
branch organisations and the e-commerce branch organisations. Firstly, TLN and evofenedex are
involved on behalf of the logistics branch, both fighting for ambiguous policies and regulations
domestically (TLN, 2018). Furthermore, they are opponents to the ideas of municipalities to extent
regulations regarding the “milieuzones”, as this provokes wrong investing behaviour at companies.
Besides, TLN and evofenedex are working together towards zero—emission city distribution in 2025,

as they have both signed the Green Deal ZES agreement (Green Deal ZES, n.d.).

On the other hand, thuiswinkel.org is involved on behalf of the e-commerce sector. As
aforementioned, thuiswinkel.org has recently started a campaign to raise awareness of consumers’
online shopping behaviour and have set the goal to make e-commerce and home deliveries more

sustainable (Thuiswinkel.org, 2018).

3.5 Conclusion
Concluding this section, all the opinions and points of view towards city logistics and the last mile

delivery problem have been summarised in Table 3-2.

Table 5-2 Summarising points of view stakeholders

Stakeholder Points of view

End-Consumer and As cheap and fast as possible delivery at the doorstep, with the highest

Customers possible flexibility and security.

3PL providers Become carbon free as fast as possible, increased cooperation between
parties and consumers, maintain good working environment

Suppliers Carbon free delivery, good working conditions and highest possible
customer satisfaction with the service.

Governmental Decrease the negative effect of traffic movements in city, while maintaining

organisations economic growth and benefits of B2B and B2C deliveries. The

implementation of UCCs could be a solution for big cities.

Others Firstly, the logistics branch organisations are fighting for ambiguous
policies and regulations among municipalities, while also taking the GDZES
seriously. Secondly, thuiswinkel.org tries to make consumers more aware
of their online shopping behaviour and make them behave more
sustainable.

Furthermore, based on Table 3-2, the first three sub—questions of this study can be answered. Firstly,
the sustainable last mile is defined as one that considers and improves performance on all three
pillars of the Triple Bottom Line (Elkington, 2002). Hence, it is seen as important that the last mile
complies with the requirements and expectations of all stakeholders from Table 3-2. Thus, the
sustainable last mile should be as cheap, fast, flexible and secure as possible, while coming as close

as possible to the consumers’ doorsteps. The sustainable last mile should therefore enhance the

Defining the sustainable last mile

efficiency of the process, reduce the GHG-emissions and maintain a good working environment for
employees. Finally, the sustainable last mile is insusceptible for changing policies and regulations in

different cities or areas.

The second sub—question can also be answered based on Table 3-2, which was defined as: What are
the most important stakeholders in PostNL's case? The most important stakeholders in the process
of PostNL are defined as different groups. Firstly, PostNL itself is a 3PL provider in the general
process, so other 3PL providers are stakeholders as they are competitors in the field. Then, the
consumers and suppliers are important as PostNL is providing them a service to pick-up and deliver
a parcel. Since PostNL mainly operates in cities, municipalities and other governmental organisations
are important stakeholders. Lastly, PostNL is active in the transport sector, so transport sector
branch organisations are important to consider when analysing different alternative last mile

solutions.

The third sub-question was defined as: What are the current policies steering the sector in a
sustainable direction? Based on the foregoing chapter, one of the most present policies is the
implementation of a ‘Milieuzone’ in certain municipalities. This zone in the city centres tries to fend
off older diesel-powered vehicles in order to improve the air quality and traffic flow in the city.
Hence, transporting companies with many clients in these areas are forced to look for sustainable
transport alternatives to reach their clients in the city. However, as mentioned before, this policy is
also getting some critique for the fact that it is not yet the right time for companies to invest in other
modes of transport. Besides, there are some opportunities for getting subsidies for the investments

in new, electric vehicles. However, these are mainly focussed on the consumers markets.

Defining the sustainable last mile

Analysing the alternatives’ sustainable performance

4 | Analysing the alternatives’ sustainable
performance

Since there is not only one actor that decides about the optimal city logistics system, the perceptions
of all stakeholders have to be included in a set of criteria (Edwards, 1977). Moreover, this is likely
to increase the support of stakeholders for the proposed solutions. Besides, including more
stakeholders is according to the SMART method, which is applied for the first analysis of the
alternatives’ sustainable performance. The SMART method is a simple, yet robust, decision analysis
tool that results in a ranking of the alternatives based on how good they perform on the set of criteria

(Edwards, 1977).

The simplicity of the SMART method is what makes it so attractive for this study, as the first analysis
is aimed to indicate promising alternatives. Furthermore, there is a high uncertainty about the
performance of the alternatives, which would make the robustness of other more intensive methods
questionable. Besides, the linear average method has proven to yield very close approximations to
much more complicated non-linear methods (Edwards, 1977). For the purpose of just providing a

little insight in promising alternatives, the SMART method is expected to be sufficiently accurate.

First, the criteria have been defined in 4.1, which is according to fourth step of the SMART method
(Edwards, 1977). The criteria are mainly based on the outcomes of Table 3-2. This is followed by
the fifth step, defining the weights of the criteria based on a ranking, which is covered in 4.2. The
sixth step is not applied for the sake of simplicity and the already high nature of uncertainty in the
analysis, so step seven is covered in 4.3. Therein, the performance of each of the alternative delivery
methods will be assessed along the criteria. The results will be used as input for the analysis,
following the ninth step of SMART, which is described in 4.4. Finally, some conclusions have been

drawn in 4.5, providing the focus of the remaining chapters.

4.1 Defining the criteria
As already mentioned in 1.4.4, the SMART-method partly overlaps the MAMCA approach with the

first few steps. Moreover, the first three steps of the SMART method have already been conducted
by the foregoing chapters, as the important stakeholders and the alternatives to choose from (issues)
have been identified. However, the fourth step is to identify the ‘dimensions’ (criteria) along which

the alternatives have to be assessed (Edwards, 1977).

To come up with a framework of criteria that are important for all stakeholders, it is important to
first have insight in the issues they value individually. Therefore, Table 3-2 is consulted and based
on the reoccurring issues among stakeholders, criteria can be derived. Each of the stakeholders is

assessed separately to provide a structured overview.

Analysing the alternatives’ sustainable performance

End-consumers and recipients value a fast and cheap delivery at the doorstep, while also flexibility
in the delivery options and product safety and security matter to them (see Table 3-2). From this

sentence, some criteria could be derived. These are summarised in Table 4-1 below:

Table 4—1- Criteria from end—consumers

Criterion Part of the sentence that describes it
Delivery Time They value fast delivery
Delivery Cost They also value cheap delivery, as cheap as possible and

preferably free of charge.

Product Safety and Security As can be noticed from chapter 3.4.1., consumers especially are
concerned with the track and trace of their product. They are
more likely to order at a website that seems reliable (Lowe &
Rigby, 2013).

Flexibility They want to have multiple delivery options to choose from.

The 3PL providers want to become carbon free as fast as possible, increase the cooperation between
parties and consumers while maintaining a good working environment for their employees. Besides,
they want to offer their customers reliable delivery times for the lowest possible costs (Tuinhout,
2018). Hence, the criteria that are important to the 3PL providers can be derived and are shown in

Table 4-2.

Table 4-2: Criteria SPL providers

Criterion Part of the sentence that describes it

Delivery Time They value fast and reliable delivery times

Delivery Cost They also value cheap delivery, as cheap as possible

Emissions Becoming carbon free as fast as possible

Safe working environment They want to maintain a good and safe working environment for

their employees.

Safety and responsibility They would like to increase the cooperation between parties to
realise a more responsible supply chain, providing more safety to
the customers’ products as a result.

Customer satisfaction When offering a service, it is the usual matter that the customer
has to be satisfied with the service, otherwise they will choose for
another provider. Therefore, this is seen as an important factor
for the 3PL providers, although it is not specifically mentioned.

The suppliers value carbon free delivery, good working conditions and the highest possible customer
satisfaction with the service. The latter is assumed to be achieved by offering flexibility in delivery
options to the customer, combined with reliability of delivery times. Furthermore, suppliers are
assumed to always look for the most economical offer (cheap and reliable). Hence, the criteria can

be derived and they are shown in Table 4-3 below.

Analysing the alternatives’ sustainable performance

Table 4-3: Criteria suppliers

Criterion Part of the sentence that describes it

Delivery Time They value fast and reliable delivery times

Delivery Cost They also value cheap delivery, but reliable at the same time
Emissions They value carbon free delivery of the 3PL

Safe working environment They want to maintain a good and safe working environment for

their employees. Furthermore, they value the working conditions
at the 3PL too.

Customer satisfaction When offering a service, it is the usual matter that the customer
has to be satisfied with the service, otherwise they will choose for
another supplier. Therefore, this is seen as an important factor.

Governmental organisations are concerned by the number of traffic movements in the city, which
have to decrease. Therefore, they prefer the option of a UCC, which is increasingly involved in their
discussions. However, there is no interest in the big investments that cities now have to make to
make UCCs feasible. Besides, governmental organisations are trying to mitigate the carbon emissions

of cities. Hence, the criteria from Table 4-4 can be derived.

Table 4—4- Criteria governmental organisations

Criterion Part of the sentence that describes it

Emissions They value carbon free delivery, while also cars are banned in
city centres.

Safe working environment They want to maintain a good and safe working environment, and
also a safe city.

Traffic impact Trying to decrease the number of traffic movements

Investments in Infrastructure They would like UCCs, but without having to make huge
investments.

Finally, logistics branch organisations are fighting for ambiguous policies and regulations among
municipalities, while also taking the GDZES seriously. Furthermore, branch organisations stand for a
safe working environment while they can also support sector-wide investments. Besides,
thuiswinkel.org tries to make consumers more aware of their online shopping behaviour and make
them behave more sustainable. Hence, the following criteria from branch organisations can be

derived:

Analysing the alternatives’ sustainable performance
Table 4-5: Criteria branch organisations

Part of the sentence that describes it
Their commitment to GDZES describes their involvement in

Criterion
Emissions
decreasing carbon emissions.
Safe working environment They want to maintain a good and safe working environment.
Investments in Infrastructure They can support the sector with investing in sustainable
infrastructure solutions.
Policy sensitivity They fight for ambiguous policies, which could also mean that they
value a solution that does not have to deal with these policies at

all (e.g. is not sensitive to current policies or proposed policies)

All stakeholders have to be valued equally to provide a sustainable solution in the sense that it suits
everyone's desires. Therefore, most of the aforementioned criteria will be considered during the
analysis. However, some of these criteria are partly overlapping each other, or have a direct effect
on each other. Therefore, some collective criteria have been defined to cover these overlaps. This
has resulted in the following list of criteria with an explanation for each criterion, which is shown in

Table 4-6.

Table 4-6: Final criteria

Criterion
Delivery Cost

Delivery Time

Emissions

Customer Satisfaction

Safe Working Environment

Security and Responsibility

Traffic Impact

Investments in Infrastructure

Policy Sensitivity

Explanation

Means either the costs for the actual delivery (3PL perspective)
or the costs that customers have to pay. This can be measured in
a percental increase or decrease.

Means both the time it takes to deliver the parcel, but also refers
to the options that the delivery time could be specified. This can
be measured in a percental increase or decrease.

Refers to the possibilities of reducing the GHG emissions. This
can be measured in a percental increase or decrease.

Refers to the effects on the overall satisfaction of customers, in
explicit, does it increase or decrease.

Refers to the extent to which the alternatives mitigate risks at the
working environment or increases risks for accidents.

Refers to the perceived security of personal records and the
product itself. Furthermore, the extent to which the responsibility
in the chain of companies has to be redefined and the value that
1s attached to the responsibility is measured on an increase or
decrease scale.

Refers to the extent to which the alternative is capable of reducing
traffic in the city. This is done on a percental scale and refers to
the number of traffic movements.

Refers to the need for investments, which can either be in
infrastructure or software. These are subjective estimates.
Refers to the extent to which current and intended policies can
affect a certain alternative. If it is affected, then it is perceived as
sensitive.

Analysing the alternatives’ sustainable performance

This list of criteria has been verified by the sustainability officer of PostNL as factors of interest to
PostNL as well. One thing the sustainability officer mentioned though, is that the options for the
circular economy are becoming increasingly important to the stakeholders. However, the alternatives
assessed are not yet defined to handle the circular economy, and the analyses of the municipal
elections do not show any interest in implementing circular economies either. Therefore, circularity

is left out of the analysis, which is accepted by PostNL'’s sustainability officer.

4.2 Determining the weights of the criteria
Not all criteria are valued equally. Their importance in the analysis can differ, which can be noticed

from the fifth step in the SMART method. This step tries to obtain a ranking that shows the relative
importance that stakeholders attach to the criteria (Edwards, 1977). In this study, representatives of
the stakeholder groups have been carefully selected, and have been asked to fill in a form. In this
form, they were asked to rank the criteria with regard to the importance they thought all the

stakeholder groups would attach. An example form is shown in Table 4-7.

Table 4-7: Stakeholder ranking form

Consumers/recipients
Suppliers

Logistics providers
Governments

Branche organisations

Within the company of PostNL there are plenty of people that work with one or more of the
stakeholder groups on a daily basis. Some of them are the managers of the pilot projects (with regard
to logistics), others are sales managers (for suppliers and consumers knowledge), public affairs
managers (governments, branch organisations and consumers concerns) and sustainability managers
(governments, branch organisations and consumers). Since the analysis is mainly meant to provide a
focus for the simulation model, their knowledge seems sufficient to draw conclusions about the

different criteria to take in consideration for the stakeholders.

Furthermore, since people from many different departments and thus different backgrounds have
been asked to participate, many different perceptions have been included in the ranking procedure.
By linking their opinions and perceptions to the researcher’s own interpretation (based on the
foregoing chapters), more accurate estimates on the trends can be made. Hence, the obtained
overview of rankings provides a good representation of the situation and the fifth step of the SMART

method has been completed (Edwards, 1977).

Analysing the alternatives’ sustainable performance

The normal procedure is to proceed with step six, where the stakeholders assign a relative
importance to the previously obtained ranking. However, due to the high uncertainty in the ranking
itself, assigning a relative importance would increase the differences even more, making it harder to
distinguish any subtle differences. Hence, this study proceeds with step seven, where the weights

get assigned directly by calculating the averages over the different stakeholders (Edwards, 1977).

By means of a python (jupyter) notebook, all the different perceptions have been combined. The
notebook can be found in Appendix I. First, the so-called reciprocal values have been calculated,
which is sophisticated English for Z/rank. Then, the sum of the reciprocal values is taken, which in
the case of Figure 4-1 is the sum over the columns. This is followed by calculating the normalised
values for each criterion. If no rank had been assigned, the non-value was replaced by a zero. Finally,
the average normalised value for each criterion/stakeholder combination was calculated. An example

of the calculation procedure is shown in Table 4-8.

Table 4-8- Weights calculation example

N
& \&{é @é
R & B S
& X3 RS & &
‘00 O 4\‘ O &
Y L& Q K & Q
D) [& x X D
g @Q’ 2 2 (\% > g o &
< S & <° & & <& S N
N N o© & W & & & <
@e &\40 & <O @ R & e&} -\C\ &
& F & o < £ <@ S © ¥
Consumers rank 1 1 4 2 3 4
Consumers reciprocal 1 1 0,25 0,5 0,33333333 0,25 3,33333333
Consumers normalised 0,3 0,3 0,075 0,15 0 0,1 0,075 0 0 1

Based on the table that was obtained by the previous step of averaging the normalised values, the
average weight for each criterion was calculated. Furthermore, the standard deviation was calculated
to be able to generate different cases that take the standard deviation into account. Hence, the
robustness of the alternatives can be measured among the different cases. First, the standard
deviation of an alternative was subtracted from the average and the difference was added equally to
the other criteria. Second, the standard deviation of an alternative was added to its average and the
difference was added equally to the other criteria. That resulted in a table with many different cases

with different weights for the criteria.

4.3 Assessing performance of the alternatives
The eighth step in the SMART method is about measuring the performance of each of the measures

(or alternatives) regarding all the identified criteria (Edwards, 1977). The performances are gathered
from both literature and expert interviews within PostNL, as not all dimensions were covered in
literature. The expert interviews result in a higher uncertainty in the obtained performances and
hence, the final analysis. However, as already mentioned, this analysis is only meant to structure the

choice of delivery model that promises the most benefits, despite the high uncertainties. The final

Analysing the alternatives’ sustainable performance

model mitigates these uncertainties by calculating in more detail the effects the chosen alternative

last mile delivery model has compared to the current delivery model.

This paragraph covers the performance of each alternative last mile delivery model as presented in
Table 2-1 on page 17 separately, providing an overview of literature and statements from the
interviews that support the numbers listed. Finally, a table with the numeric values that will be used

in the analysis of the next paragraph, will be provided.

What would be the effect if, from tomorrow onwards, all vehicles will be replaced by electric
equivalents? That is the question that was raised before analysing the performance of this alternative.
This has not been done yet, so there is also not a lot of information available about this rigorous
alternative. Hence, the analysis contains a lot of assumptions, based on educated guesses and have

been well discussed.

Firstly, the assumption is that the delivery costs for a parcel will remain similar to what it is now.
However, that is under the assumption that the investment costs for the EVs are not directly passed
on to the customers. Furthermore, it is assumed that EVs have a similar performance to the

conventional diesel vans and hence, delivery time will remain comparable.

EVs are sold with the message that they do not emit any COs, but that is only partly true. Depending
on the way electricity is generated, the carbon emissions can be reduced drastically, noting a 30%
decrease in emissions if grey electricity (coal) is used and 70% if a green source is used (Verbeek,
Bolech, van Gijlswijk, & Spreen, 2015). Furthermore, this is based on a life cycle of 220.000 km, due

to the emissions—intensive manufacturing process of the batteries.

Since there are no structural changes in the system of delivering the parcels, it is assumed that the
safety of the working environment and the perceived security and responsibility are not changed
either. Furthermore, the service remains the same, so it is assumed that the customer satistaction
will remain similar too. It may be that the customer satisfaction increases slightly though, since a

(assumed) small share of customers values the efforts of a company to become sustainable.

The traffic impact is assumed to be similar to the current system with conventional vans. However,
the range and capacity of the EVs should be similar, or fast charging facilities should be available at
the distribution centre. If either capacity or range is smaller than the current vans, more vehicles will
be needed to deliver the same amount of goods, leading to more traffic movements and hence, more

traffic in the city.

Analysing the alternatives’ sustainable performance
The main drawback of switching to EVs is the need for high investments in both vehicles and in
charging infrastructure. Not only the new vehicles have to be purchased, but the old fleet has to be
written off, which is going to cost the companies a huge amount of money. It is assumed, that these
costs will not be included in the price customers pay. Besides, there are subsidies for the purchase

of vehicles or charging infrastructure in some big cities that will make it a little bit cheaper to change'.

The main benefit of switching to EVs is that they are not sensitive for the differing policies among
municipalities. The so-called “Milieuzones” do not apply for EVs, enabling PostNL for instance to
still get into the city centres without hurdles. By combining all the foregoing statements, Table 4-9

is created for EVs:

Table 4-9: EVs Performance

Criterion Description or score Source
Delivery costs Similar, meaning a 0% Assumption
increase or decrease
Delivery time Similar, meaning a 0% Assumption
increase or decrease
Emissions reduction Depending on generation of (Verbeek, Bolech, van
electricity, 30-70% decrease Gijlswijk, & Spreen, 2015)
Safe working environment Similar, due to the lack of Assumption
changes in the system
Security and responsibility Similar Assumption
Customer satisfaction Similar or a slight increase, Assumption
due to sustainable image
Traffic impact reduction Similar or a slight increase, Assumption
depending on capacity and
range of the EVs
Investments in infrastructure Very high Assumption and footnote
Policy sensitivity Not sensitive, but depends on Assumption

available subsidies

(E-)Cargo bikes (further referred to as cargo bikes) are increasingly being used by 3PL providers
like PostNL and DHL to deliver parcels in busy cities (PostNL, 2017). According to PostNL (2017),
cargo bikes are able to reduce delivery costs by 8-10% (Nijhuis, 2018). Moreover, according to other

research, the total costs could be reduced by 40% (Arnold, Cardenas, Sérensen, & Dewulf, 2018).

I'See https://www.amsterdam.nl/parkeren-verkeer/amsterdam-elektrisch/subsidie/ and
https://www.laadkabelwinkel.nl/over-ons/subsidie-laadpaal -thuis

Analysing the alternatives’ sustainable performance

The delivery time is highly dependent on the location of the delivery points in the city, but Nijhuis
provided an estimation that delivery time could be reduced by 50% in heavily congested city centres.
However, delivering parcels by cargo bikes that depart from the current depots is unfeasible, since
the depots are too far from the city centres in most cases (Nijhuis, 2018). Therefore, Maes and
Vanelslander (2012) chose to deliver the parcels from small depots in the city that are replenished
by delivery vans. The last mile of the last mile is then conducted by cargo bike. This alternative
seems feasible but is assumed to only have a slight impact on the emissions. Nijhuis provided an
estimation of 10%, but that is highly dependent on the share of cargo bike deliveries and the amount

of delivery points in the city.

Furthermore, cargo bikes are presumed to be more vulnerable than vans for accidents. Besides,
accidents are more likely to lead to bigger injuries as a result. Hence, the safety of the working
environment is assumed to decrease. Since the deliveries are still conducted by the same company
and only the modality has changed, the perceived product security and responsibility is assumed to

be similar.

According to Nijhuis, customer satisfaction increases by implementing cargo bikes as a delivery
option. Customers respond surprised but satisfied by the efforts of PostNL to provide more
sustainable delivery options. Furthermore, the reliability of the delivery time and the flexibility in

time slots increases, which has a positive effect on customer satisfaction as well (Nijhuis, 2018).

Depending on the point of view one takes at traffic reduction, traffic could be drastically reduced, or
traffic could increase. By applying cargo bikes, traffic on the roads for cars reduce However, for
each delivery van two bicycles are needed, which also depends on the density of delivery points in
the city (Arnold, Cardenas, Sorensen, & Dewulf, 2018). Hence, bicycle paths are likely to be flooded
by cargo bikes. However, the focus in this study is the reduction of traffic on roads for cars, so this
effect is left out of consideration in this part of the analysis. Nijhuis assumed that in the best case,

50% reduction of car traffic is achievable.

Compared to the other alternatives, investment costs are relatively low. Cargo bikes only require
smaller depots (but a higher number of depots), and their price is way less than an electric van.
Furthermore, cargo bikes are insensitive for policies in the city, for instance the “milieuzones” do
not apply for cargo bikes. Hence, Table 4-10 can be created, summarising the performance of cargo

bikes.

Analysing the alternatives’ sustainable performance

Table 4-10. Performance cargo bikes

Criterion

Delivery costs

Delivery time

Emissions reduction

Safe working environment

Security and responsibility

Customer satisfaction

Traffic impact reduction

Investments in infrastructure

Policy sensitivity

Description

10-40% reduction possible,
depending on implementation
In the best case, 50%
reduction is feasible
Depending on the
implementation, approximately
10%

Decreases due to the
increased risk of harmful
accidents

Perceived similar, as the same
parties conduct deliveries
Increases due to increased
flexibility

Strongly decreases, depending
on the point of view. Assumed
to be 50% reduced

Relatively low

Insensitive

Source

Arnold et al. (2018), Nijhuis
(2018)

Maes and Vanelslander (2012)
Nijhuis (2018)

Maes and Vanelslander (2012)
Nijhuis (2018)

Assumption, Nijhuis (2018)

Assumption, Nijhuis (2018)

Maes and Vanelslander (2012)
Nijhuis (2018)
Assumption, Nijhuis (2018)

Assumption, Nijhuis (2018)
Assumption, Nijhuis (2018)

Evening and night delivery are still mentioned in one sentence, as they are quite alike. However,
according to Hiinteler (2018), there are structural differences if the performance of the two systems
are analysed. Evening delivery is conducted in less available time, since PostNL only conducts
deliveries between 18:00h and 22:00h. In contrast, night delivery is designed to be operational all
night, where parcels are being delivered in personal parcel lockers next to the front door. Hence,
recipients do not have to be awake to receive the parcel, and more benefits can be obtained.

Therefore, the two options have now been analysed apart, which has resulted in two separate tables.

Firstly, evening delivery as it is currently done by PostNL is 50-100% more expensive than their
operations at daylight (Hiinteler, 2018). This is mainly due to the lower volume and the premium price
that has to be paid for the service (Hiinteler, 2018). Delivery time could be reduced by approximately
10-25%, depending on the used modality and the traffic situation in the city. In contrast, according
to McKinsey and Company (2017), night delivery is capable of cutting delivery costs by 40% and

delivery time by 50%.

Analysing the alternatives’ sustainable performance

Due to the increased efficiency in both the evening and night deliveries, emissions could in potential
be reduced by 70% (McKinsey & Company, 2017). PostNL admits not to have correct numbers for
the possible emission reductions, but they state that 70% seems a little high for the current

implementation of evening delivery. Hence, a possible reduction of 0-50% is assumed.

Since traffic is a lot less intense in the evenings compared to daytime, it is assumed that the risks
for accidents decrease. However, this is depending on the modality used to conduct the evening and
night deliveries. Hence, it is assumed that the safety of the working environment slightly increases

by applying either night or evening deliveries.

Since the customer still has to physically accept the parcel with the current implementation of evening
delivery, it is assumed that the security and responsibility factor is perceived similar compared to
the current system. However, it is assumed that for night delivery, customers act a little more
reserved and require more safety from their parcel locker at home. Hence, the security and

responsibility factor is assumed to decrease for the night delivery alternative.

As these alternatives can both be linked to an increase in flexibility regarding delivery options, it is
assumed that customer satisfaction will increase. Furthermore, the first hit rate is likely to increase,
which has a positive effect on the traffic impact. It is assumed that night delivery is capable of
reducing traffic in the city by 50%. However, evening delivery is not that efficient and has not the
same amount of time. Hence, completely shifting towards evening delivery is expected to have a

catastrophic effect on the traffic system (Hiinteler, 2018).

The investments in infrastructure that are needed differ among the two alternatives. If night delivery
is the way to go, huge investments have to made into parcel lockers for the customers that are secure
enough. In contrast, the investments for evening delivery highly depend on the scale of
implementation. If the scale is increased, more depots and vehicles are needed to be capable of
delivering the demand within the four—hour time window. Therefore, a wide range of options is

considered for both the alternatives, from small investments to very high investments.

Lastly, both the alternatives are assumed to be insensitive for the current policies in the cities. The
only aspect that could cause trouble in the future is the emission of sound by the current diesel-
powered vans. As they drive through the streets by night, their sound levels become more noticeable,

people can start complaining and problems may arise. However, that is of future concern.

Analysing the alternatives’ sustainable performance

Table 4-11- Performance evening delivery

Criterion

Delivery costs
Delivery time
Emissions reduction

Safe working environment

Security and responsibility

Customer satisfaction

Traffic impact reduction

Investments in infrastructure

Policy sensitivity

Description

Increase by 50-100%
Decrease by 10-25%

Could possibly decrease by 0-
50%

Slight increase, but it depends
on the modality

Similar

Slightly increases, due to the
increase in flexibility
Depends on the scale, but it
will only increase

Small to very big investments,
depending on scale
Insensitive, until sound

emissions become a problem

Table 4-12: Performance night delivery

Criterion

Delivery costs

Delivery time

Emissions reduction

Safe working environment

Security and responsibility

Customer satisfaction

Traffic impact reduction

Investments in infrastructure

Policy sensitivity

Description

40% reduction possible
50% reduction

Could reduce 70% of the
emissions in the best case
Could slightly increase
Decreases, as it may feel
strange not to accept the
parcel in person

Could either increase or
decrease, depending on the
perceived security

Could reduce by 50% in the
best case

High investments needed for
lockers

Insensitive

Source
Hiinteler (2018)
Hiinteler (2018)
Assumption

Assumption, Hiinteler (2018)

Assumption, Hiinteler (2018)
Hiinteler (2018)

Hiinteler (2018)

Assumption, Hiinteler (2018)

Assumption

Source

McKinsey and Company (2017)
McKinsey and Company (2017)
McKinsey and Company
(2017), Hanteler (2018)
Assumption

Assumption

Assumption

Assumption, Hiinteler (2018)

Assumption, Hiinteler (2018)

Assumption

Analysing the alternatives’ sustainable performance

As already mentioned, UCCs have become a popular city logistics alternative to implement by
municipalities. Furthermore, during the Dutch municipal elections of 2018, UCCs were a major point
of discussion in the big cities. According to McKinsey and Company (2017), UCCs could cut delivery
costs by 25%. Delivery time is assumed to be similar, or in a good case slightly decreased compared
to the current system, due to the extra step in the chain. However, due to more efficient modes of
transport in the city, it has the potential to decrease the delivery time considerably (Bakr, 2018).

Hence, numbers between 0-25% have been applied.

Since it is such a popular alternative, this was one of the only systems that has been studied a few
times, mostly on the reduction of emissions. If only conventional vehicles are applied, emissions could
be cut by 20% (Clausen, Geiger, & Poting, 2016). However, the definition of a UCC is that it tranships
goods to green transport modes and hence, if only green transport modes are applied, emissions
could be cut by 100%. Therefore, a range of 20-100% is applied, to find out at what reduction the

UCC becomes an attractive alternative.

The safety of the working environment is slightly compromised, as there is an extra step in the
process. The risk of damaging products during transhipments increases and since the volumes
handled by a UCC are presumed to be high and the available space is limited (Bakr, 2018). Hence, it
is assumed that the safety of the working environment slightly decreases. Security and responsibility
is also an issue, as the UCC is meant to consolidate shipments from multiple transporters as well.
Hence, the question about which party is responsible for the parcel in what step of the chain remains
an open end in the discussion. As this is still work in progress and not yet defined for all UCCs run

by PostNL, it is left in the middle. So, it neither increases or decreases.

By implementing a UCC, more flexible delivery options can be offered, as transport from this UCC is
better equipped for city delivery. Hence, it is assumed that customer satisfaction increases and the
company image improves (Bakr, 2018). Furthermore, as green transportation modes are applied to
transport goods from the UCC, the traffic impact is likely to decrease. According to the report of

McKinsey and Company (2017), about 45% of the kilometres driven in the city could be reduced.

However, a UCC comes with a cost. New facilities are needed at the expensive ground near the city
centre. Furthermore, mvestments in IT-systems that enable all the companies to work together are
needed, as this is not a common thing yet. Therefore, it is assumed that the investment costs are
high for the involved companies. The height of the investment costs is highly dependent on the
policies and subsidies of cities. As mentioned before, many municipalities express their interest in

UCCs and are willing to cooperate. If they are also willing to invest, the business case for a 3PL may

Analysing the alternatives’ sustainable performance

become stronger. Hence, it is assumed that a UCC is highly sensitive to policies. Based on the

information above, Table 4-13 is constructed.

Table 4-13. Performance of UCC

Criterion
Delivery costs
Delivery time

Emissions reduction

Safe working environment

Security and responsibility

Customer satisfaction

Traffic impact reduction

Description

Reduced by 25%

Reduced by 0-25%

Could be reduced by 20-100%

Similar to slightly decreasing
Similar, due to the remaining
discussions

Increases due to the better
street image

Cut by 45%

Source

McKinsey and Company (2017)
Assumption, Bakr (2018)
Clausen, Geiger & Poting
(2016), Bakr (2018)
Assumption, Bakr (2018)
Assumption, Bakr (2018)

Assumption, Bakr (2018)

McKinsey and Company (2017)

Investments in infrastructure High to very high investments, Assumption, Bakr (2018)
depending on who invests

Policy sensitivity Highly sensitive Assumption, Bakr (2018)

Customers are increasingly demanding more flexible delivery options. One of the alternatives that
definitely offers more flexibility, is a CDP or a parcel locker. There is one important difference
though, CDPs of PostNL are retail location and customers are bound to opening hours to pick up or
drop off their parcel (Smit, 2018). However, a parcel locker is located at a public place that can be
used 24/7. The logistics concept could be combined however, enabling the 3PL to deliver the parcels

with a (almost) 100% hit rate at whatever time they like.

Firstly, delivery costs could be reduced by 35% (McKinsey & Company, 2017). This is under the
assumption that the investment costs are not directly passed on to the customer. Besides, the delivery
time and the time a delivery man is handling the package can be reduced by 70% (McKinsey &
Company, 2017). However, the customer has to pick—up the parcel himself, which also costs some

time. This is however left out of the delivery time.

By implementing the CDPs and parcel lockers as a more convenient delivery option, there is aen
emissions reduction potential of 70% (McKinsey & Company, 2017). However, this is only seen
through the 3PL provider’s perspective and does not consider the movement of the customer to the
parcel locker or retail location. The net reduction could therefore be a little lower, but this is out of

the scope of PostNL (Smit, 2018).

Analysing the alternatives’ sustainable performance

Since the operator saves a lot of time in the city, there is less time available for hazardous situations.
Hence, it is assumed that implementing CDPs and parcel lockers has a positive effect on the safety
of the working environment. However, the perceived security and responsibility at the parcel locker
location could be reduced, which highly depends on the location of the parcel locker. Furthermore, it
is still a question if customers trust the parcel locker system. According to Smit (2018), customers

are still concerned about criminals breaking in to the lockers. Who is then responsible?

Despite the reduced perceived security, customer satisfaction is increasing (Smit, 2018). There is
however no insight in the effects of completely changing the delivery options to only CDPs and parcel
lockers. Since 89% of the customers still chooses for home delivery, while only 16% chooses (or
sometimes chooses) for parcel lockers, some resistance is to be expected (Lowe & Rigby, 2013).
Hence, customer satisfaction is assumed to slightly increase, only if customers are able to choose

for their option.

The traffic impact of this alternative is estimated at a 40% reduction of kilometres driven in the city
centres. However, the activities of the customer are left out of the assumption. Hence, the traffic

impact is highly depending on the modality the customer uses to pick—up his parcel.

The investments in infrastructure that are needed are highly dependent on what is needed, as CDPs
require way less money than placing parcel lockers throughout the city. Hence, a range between low
till high investments has been applied in the analysis of 4.4. Furthermore, the same reasoning applies
for the policy sensitivity, as CDPs are not influenced by policies, while parcel lockers that are placed

in public areas have to comply with certain regulations (Smit, 2018).

Analysing the alternatives’ sustainable performance

Table 4-14- Performance CDPs and parcel lockers

Criterion

Delivery costs
Delivery time
Emissions reduction

Safe working environment

Security and responsibility

Customer satisfaction

Traffic impact reduction

Investments in infrastructure

Description

Reduced by 35%

Cut by 70%

Potentially reduced by 70%
Increased safety of the
working environment
Could slightly reduce
Could either slightly decrease
or increase

40% reduction

Can both be low and high

Source

McKinsey and Company (2017)
McKinsey and Company (2017)
McKinsey and Company (2017)
Assumption, Smit (2018)

Assumption, Smit (2018)
Assumption, Smit (2018)

McKinsey & Company (2017)
Assumption, Smit (2018)

investments, depending on
implementation
Assumption, Smit (2018)

Policy sensitivity Depending on implementation,

low or high sensitivity

Crowdsourcing is getting an increased amount of attention in both research and in business, with
companies like Uber and Airbnb it is more visible than ever. Also, in logistics, crowdsourcing is
developing itself as a promising alternative for the current last mile problem. In theory, crowdsourcing
logistics services for the last mile could lead to a 25% reduction in delivery costs (McKinsey &
Company, 2017). However, depending on the applied system, delivery costs could increase if the fine
system of Kafle et al. (2017) is used. Therefore, a range between a O till 25% reduction is applied in

the analysis.

Kafle et al. (2017) furthermore state that the delivery time could be comparable, or even increase,
compared to the conventional home deliveries. Hence, no points are assigned for a possible reduction
in delivery time. However, depending on the provider of the service, the used modality and the chosen

crowdsourcing system, emissions could be cut by approximately 30% (McKinsey & Company, 2017).

The working environment with regards to the normal delivery man increases in safety, as
approximately less kilometres are needed in the city and the risk of accidents decreases. However,
product security and responsibility is perceived worse, since it is unclear which party is responsible
for the product after it is handed over to the crowd-worker. Furthermore, the risk of damages
increases. Furthermore, if this model is forced into operation and customers are obliged to choose

for delivery by a crowd-worker, customer satisfaction is assumed to decrease.

Analysing the alternatives’ sustainable performance

The traffic impact depends, as most of the other criteria for this alternative, on the implementation
of the system and the modality that is used by the crowd-worker. There are possibilities to reduce
the traffic impact by 24-30% (McKinsey & Company, 2017; Wang, Zhang, Liu, Shen, & Hay Lee,
2016).

Besides, the assumption is made that implementing a crowdsourcing system requires a moderate
investment in a new [T-platform, since no changes in vehicle fleet or other infrastructure are needed.
Since the sharing economy is currently under the policy-making microscope, it is furthermore
assumed that the crowdsourcing alternative is currently highly sensitive for the coming policies.
Hence, a crowdsourcing alternative should be well overthought before actually implementing it. Its

overall performance has been used to construct Table 4-15.

Table 4—15. Performance crowdsourcing logistics services

Criterion Description Source

Delivery costs Could reduce by 0-25% McKinsey and Company
(2017), Kafle et al. (2016),
Wang et al. (2016)
Delivery time Should be similar, or may take Kafle et al. (2016)
slightly longer, depending on

crowd—worker

Emissions reduction

Safe working environment

Security and responsibility

Customer satisfaction

Traffic impact reduction

Investments in infrastructure

Policy sensitivity

Possible reduction of 30%
Slightly increased safety due
to less kilometres in the city
Decreases due to risks of
damage by crowd—-workers
Could decrease

About 24-30%

Moderate investments in [T

Highly sensitive

McKinsey and Company (2017)

Assumption

Assumption

Assumption

Wang et al. (2016), McKinsey
and Company (2017
Assumption

Assumption

As the performance of all the alternatives is known, a numeric table has to be constructed in order
to conduct the analysis. For this table, a few remarks have to made. Firstly, for some criteria a
numeric scale has already been used in the sense of the reduction percentage. This means that the
higher the percentage, the better the score. The percentages are translated to numbers between O
and 1. Secondly, some criteria are very rough estimates, like that the safety will increase. For the

decrease-increase scale there is also a numeric scale that is used. If, for instance, the objective is

Analysing the alternatives’ sustainable performance

to have the lowest possible investments, then “no investments” scores 1, while “very high
investments” scores O points. Furthermore, the scores will be divided over a five—points scale. This

1s shown in more detail in Table 4-16.

Table 4-16. 5-points scale scores

Target:

As low as Nothing Small Moderate High Very high

possible 1 0.75 0.5 0.25 0

Should Strongly Slightly Similar Slightly Strongly

decrease decrease decrease increase increase
1 0.75 0.5 0.25 0

Should Strongly Slightly Similar Slightly Strongly

increase increase increase decrease decrease
1 0.75 0.5 0.25 0

As many scores from the previously defined alternatives fall within certain ranges, it is hard to assign
one specific number for the test. Therefore, the Best-Worst method is applied, which defines worst,
average and best—case scenarios for each of the alternatives (Rezaei, 2015). By means of this method,
more consistent and reliable results can be obtained, while also respecting the uncertainty ranges
from the previous chapters. The cases are shown in Table 4-17. How and why the different cases

are defined the way they are has been further explained in Appendix II.

Analysing the alternatives’ sustainable performance

Table 417 Performances input table

Alternative / EVs Cargo CDPs and UCCs Evening Night Crowd-
Criterion bikes lockers delivery Delivery sourcing
Costs 0;0;0 0.1; 0.1; 0.35; 0.35; 0.25; 0.25; 0;0; 0 0.4; 0.4; 0;0;0
0.1 0.35 0.25 0.4
Time 0;0;0 0.2; 0.35; 0.7; 0.7; 0; 0.125; 0.1; 0.175; 0.5; 0.5; 0;0;0
0.5 0.7 0.25 0.25 0.5
Emissions 0.3; 0.5; 0.1; 0.2; 0.4; 0.55; 0.2;0.6;1 0.25; 0.7; 0.7; 0; 0.15;
0.7 0.3 0.6 0.375; 0.5 0.7 0.3
Customer 0.5 05 | 15 15 1 0,785 0,755 | 15 15 1 0.5; 0.625; 0.5; 0.5; 0.25;
T 0.5 0.75 0.75 0.5 0.25; 0.25
Safety at 05,05 0;0;0 0.5; 0.5; 0.25; 0.25; 0.75; 0.75; 0.5; 0.625; 0.75;
work 0.5 0.5 0.25 0.75 0.75 0.75; 0.75
Security & 0.5:05 0;0;0 0; 0.125; 0.5; 0.5; 0.75;0.75; 0;0;0 0;0; 0
responsibility 0-° 0.25 0.5 0.75
Traffic 0; 05 O 0; 0.25; 0.2; 0.3; 0.45; 0.45; 0; 05 0 0.25; 0.2; 0.25;
impact 0.5 0.4 0.45 0.375: 05 0.3
Investments 0;0;0 0.75; 0.25; 0.5; 0; 0.125; 0;0;0 0;0;0 0.25;
infrastructure 0.75; 0.75 0.75 0.25 0.375; 0.5
Policy 0.5; 151 0.5; 0.625; 0.25; 15151 0.25; 0.25; 05 0; 0
sensitivity 0.75; 1 0.75 0.375; 0.5 0.25

4.4 Conducting the analysis
Now, the analysis can be conducted, which is according to the ninth step of the SMART method

(Edwards, 1977). The so—called utility of each alternative has been calculated and the alternatives
have been ranked accordingly. The higher the utility, the better the alternative fits the criteria of the

stakeholders. The corresponding Python notebook can be found in Appendix III.

The notebook takes the separate Excel-sheets of the best—, intermediate— worst case as inputs,
together with the sheet that contains the cases with different weights for the criteria. By multiplying
the score with the weight, a utility is calculated. The total utility of an alternative is the sum of the
utilities for every criterion. This calculation is done for every case separately and hence, a dictionary

with outcomes for all cases is returned.

The outcomes of each individual case have then been used as input for calculating the average scores
of the alternatives and their standard deviations. For all different kind of weights for the criteria, it
now becomes clear which alternatives perform better than others. The outcomes of the averages and

standard deviations can easily be plotted by Python. The code yields three different plots: one for

Analysing the alternatives’ sustainable performance
the best scenarios, one for the intermediate scenario and one for the worst scenario. These plots are

shown in Figure 4-3, Figure 4-4 and Figure 4-5.

Figure 4-1. Analyse the average utilities

Best Case In Between Case
05 -
05 -
04 -
04 -
05 03-
02- 02-
. N I
0.0 - ' ' ' ’ ' ' . 0.0 - ' ' '
0 “ = o n 0 o 0 “ o " e 9 o
g g g g 8 & § £ g 2 8 g & §
(V] = = = [v} = = =
3 2 0z 2 3 3 3 2
= o £ B 2 £ o B
o] =] H o = e 3
g o =z 5 & = g 5
g 2 5 .
Figure 4-2. Best case scores Figure 4-5. Intermediate case scores
Worst Case

N

04 -
03-
02-
0.0 -

Figure 4-4. Worst case scores

CDPs and Lockers -
Night Delivery -
CBs -

Evening Delivery -
UCCs |

Evs -
Crowdsourcing -

The outcome is that CDPs and parcel lockers are the most promising alternative in all possible cases.
Another alternative that is performing very well, is the UCC. However, there are large differences
between the best— and worst case regarding UCCs. This is due to the large range that is applied for
the emissions reduction. The combination of a large range and a high weight cause the total utility to
differ quite a lot. Lastly, night delivery performs steady among the different cases, which is mainly
due to a lack of applied ranges in the analysis. Furthermore, it cannot be seen as a dominant

alternative, since cargo bikes and evening delivery have a very comparable score for all cases.

Analysing the alternatives’ sustainable performance
4.5 Conclusions
From Figure 4-3, Figure 4-4 and Figure 4-5 it can be noticed that the CDPs and parcel lockers are
dominant in all defined scenarios. However, looking more closely to the numbers, it has to be pointed
out that it is only dominating by a very small margin. Hence, a combination between CDPs and parcel
lockers, UCCs and night deliveries however, seems to provide a more solid base for sustainable city
logistics. This is following the statement of McKinsey and Company (2017) that a combination of

alternatives is probably leading to more benefits than drawbacks.

UCCs perform bad in comparison to the other alternatives in the worst case. The worst-case data is
coming from studies that have analysed the performance of UCCs that applied conventional vehicles
for their deliveries. The 20% reduction in emissions is not enough to compete with the other
alternatives. Therefore, the UCC in the remainder of this study has to apply sustainable vehicles like
cargo bikes, stints and electric vans for all deliveries. However, as can be noticed from the foregoing
analysis, especially EVs (vans) are not competitive and their application should be limited to a

minimum.

Looking back to the fourth sub—question that is being answered in this chapter: “What are the most
promising last mile delivery alternatives, given the sustainability requirements and perceptions of the
stakeholders?” the answer is that a combination between home deliveries and deliveries to a CDP
or parcel locker from a UCC is taken as base for the remainder of this study. Besides, night deliveries
can be combined with the replenishment of parcel lockers, since McKinsey and Company’s night

delivery alternative is not yet feasible for large scale adoption.

Analysing the alternatives’ sustainable performance

Modelling sustainable city logistics

5 | Modelling sustainable city logistics

So, a more sustainable last mile delivery process at least contains a more robust and present parcel
locker infrastructure, a city hub for consolidating the shipments of multiple transporters and offers
options for night deliveries. However, insight is still lacking how these alternatives all work together,
and what would be the combined benefits if they are applied for the parcel delivery sector? That is
why a simulation model has been created, to get more insight in the effects of these combinations for

companies like PostNL.

According to White and Ingalls (2009), a model is a simplified representation of reality for systems
of interest. These models can be used for representing systems that only exist in concept, are
expensive to implement and test for the outcomes. Hence, simulation models provide opportunities
to aid decision—-makers with insights in variables that affect the modelled system, by generating
outcomes for different settings of the input variables. The simulation model of this study is created
following the Sargent modelling cycle (Sargent, 2010). The aim of the Sargent cycle is to create more
valid simulation model, in explicit, models that actually answer the questions decision—makers have.
The cycle consists of the following steps: Conceptualisation, Specification, Model Building,

Verification, Validation, Experimentation.

Conceptualisation is all about trying to model the problem situation and the variables that affect this
situation. Specification is a detailed software description of how the simulation software is going to
work. After this, the Simulation Model can be built. This building phase is then followed by the
Verification of the model, which is an iterative approach of testing whether or not the model works
right and according to the rules. If the model finally works properly and the complete specification
has been incorporated, the model can be Validated. In explicit, does the model do the right things
according to its stakeholders? Finally, Experiments can be conducted to investigate the model

behaviour for different settings of the input variables.

Each of the phases of Sargent’s (2010) modelling cycle will be covered in the following paragraphs,

in the same order as they are explained above.

5.1 Conceptualisation
The simulation model that is created in this chapter has to provide more insight in the performance

of the parcel delivery system in the city of Amsterdam when multiple new alternative systems are
being combined. To get these insights, certain parts of the original process as shown in Figure 5-1
have to be modelled. The purpose of this paragraph is to determine a scope for the model to prevent

the simulation model to become overcomplicated.

Modelling sustainable city logistics

The process as shown in Figure 5-1
incorporates all actions conducted by both e- ;C(;):::sris:s 1
commerce and other suppliers and PostNL.
Since the alternative systems only describe y
PostNL delivery

the logistical processes, the actions related to T man
e—commerce can be left out of the simulation.) R —
The simulated process therefore only has to 1 o
describe the actions as taken by PostNL or any Fostt
other transporting company. :

!
Furthermore, the processes of collection and PostNL
sorting are different depending on the !
transporting company under investigation. N

Therefore, the simulation model excludes
these processes and starts with the parcels
arriving at the sorting centre close to the city

under study.

Normally at PostNL, parcels are sorted per shift and drivers have the freedom to decide what parcels
to include in their route. When it is really busy and a lot of parcels have to be delivered, PostNL also
offers the option to sort the parcels per route. Despite it being unusual to sort the parcels per route,
the simulation model has to calculate a route for the parcels in advance of the simulation, since it has
to be known if the route fits within all the limits. Moreover, there is no driver that can make this
calculation in the simulation, so the system has to decide. How the route planning exactly works, is

explained in further detail in 5.2.

Besides, PostNL drivers have the freedom to decide when to collect parcels at the

collection points. There are several of these points within their routes, but whether l

they collect the parcels at the beginning or the end of the route is up to them.

However, most of the drivers choose to collect the parcels at the end of the route,

since their vehicles are empty and most of the parcels will fit. Similar to the

delivery of parcels, the simulation does not contain drivers that can make these

decisions and therefore, collection is included in the route planning. Furthermore, l

the collection is added to the end of each route so there will always be enough L

space in the vehicle to store the planned parcels. Hence, the process to model can

be summarised as in Figure 5-2.

Modelling sustainable city logistics
Figure 5-2 provides more insight in the process to translate into a simulation model. However, little
insight is yet being provided in the variables that influence this process and therefore have to be
included in the simulation. The simulation model is further being presented as a hlack box model and
the remainder of this paragraph focusses on the information going in and the information going out
of this black box. Besides, the user can have certain control over the behaviour of the model by

means of settings, which will be defined in this paragraph too. The black box model is presented in

Figure 5-3.

Inputs Outputs

Controls

Figure 5-3- Black box representation simulation model

Before the simulation model can actually simulate the parcel delivery process in the city of
Amsterdam, it requires some information in advance. What this information entails, is further
explained in this paragraph. Beginning with the most obvious data that the simulation model requires:
the geographical data of Amsterdam. These data could be postal codes, postal code areas or road
networks for instance. It is decided to only use the postal code areas (4 digits). A rough level of detail
for individual parcel deliveries, but it is expected that otherwise the model will become too extensive
to conduct experiments with. Thus, the simulation model requires shapefiles of the city of Amsterdam,

dividing the city into the postal code areas®.

Next, the model requires demographic data of Amsterdam’s population. At first it was assumed that
the distribution of inhabitants among the postal code areas was a good predictor for the demand of
parcels to deliver. This assumption has been confirmed by analysing PostNL data of parcel deliveries
conducted in Amsterdam, indicating that the distribution of delivered parcels is significantly similar
to the distribution of inhabitants (see Appendix IV for detailed analysis). Therefore, the distribution
of inhabitants is still being used as a predictor of parcel delivery demand and treated as input for the

simulation model.

2 Retrieved from: http://geoplaza.vu.nl/data/dataset/postcode

Modelling sustainable city logistics
In order to determine the starting point of the vehicles from where the deliveries can be conducted,
the geographical locations of the transporters’ sorting centres have to be known. PostNL’s location
of its sorting centre near Amsterdam is known within the company, but for the other transporting
companies Google Maps has been used to find out where their sorting centres near Amsterdam are.
It is assumed that their distribution centres near Amsterdam are also responsible for the deliveries
in Amsterdam, but more research is needed to really be sure from where they conduct deliveries.
For now, these locations are good to provide insight in the effect of the city hub and are therefore

being useful, despite the uncertainty if they are chosen right.

Following up on locations, the simulation model needs the locations of the parcel lockers in the city
if these are being used. The locker locations are fixed and can only be changed outside of the
simulation model to ensure that always the same locations are being used. However, if the user
desires to change the number of lockers, it could be achieved by changing some of the control

variables. This is explained in more detail in 5.1.2.

Following up on the number of transporting companies to include in the analysis, it is important to
know their market share. In explicit: for what share of the generated demand is the respective
company responsible to deliver? Based on a report from the Dutch Authority for Consumer and Market

(ACM), Table 5-1 is created with the market shares for each of the parcel delivery companies.

Table 5-1. Market shares of transporters (ACM, 2016)

Transporter Market Share
PostNL 65%

DHL 25%

DPD 5%

GLS 4%

UPS 1% (raw estimate)

However, before the demand can be split up among the five companies defined in Table 5-1, an
indication for the average demand the system has to deliver should be provided. By analysing the
PostNL data about parcel delivery in Amsterdam, the model will be tuned for a demand between

25,000 and 50,000 parcels per day (see Appendix IV for detailed analysis).

Finally, the model takes the vehicle data from the different companies as input. This can be divided
into two different categories: the vehicle fleet and the individual vehicle data. In explicit, the vehicle
fleet provides the model with information about how many vehicles a certain company has, while the

individual data about the vehicle provides data about emissions, range and capacity for instance.

Modelling sustainable city logistics
Based on the provided inputs for the simulation model, Figure 5-3 can be expanded as presented in

Figure 5-4. In Figure 5-4, the inputs are incorporated in the black box model.

Average demand Inputs Outputs
City shapefile

City demographics
Locations DC /
Locations Lockers

Market shares

Vehicle Data

Controls

Figure 5-4- Extended black box model imputs

Before determining the model outputs, it is important to reflect on the purpose of the simulation
model. As mentioned in 1.4.5, the simulation model is created to provide more insight in the
sustainable performance of the alternative last mile delivery systems combined. Therefore, the
simulation model outputs have to be related to the sustainability criteria as defined in 4.1. From the
list of criteria, the traffic impact, transport costs and transport time per parcel are perceived as most
important for stakeholders. Furthermore, these criteria are easy to calculate numerically, so what

indicators could be used to reflect on these criteria?

Firstly, the distance travelled in total and the number of kilometres per parcel are seen as important
outcomes of the simulation model, since the traffic impact of parcel delivery was one of the main
motivations to conduct this study. Secondly, the total time needed in sense of vehicle use is taken as
outcome of interest, as each vehicle needs an employee to drive it. Moreover, employee-related cost
is one of the most important factors of the delivery costs, so this outcome could support the reflection
on delivery costs. Lastly, GHG emissions of the system are perceived as an outcome of interest,
since GHG-emissions reduction is a good indicator for environmental sustainability. Hence, Figure

5-4 can be expanded with the model outputs as shown in Figure 5-5.

Modelling sustainable city logistics

Average demand Inputs Outputs Distance per parcel [km]
City shapefile Distance total [km]
City demographics GHG Emissions per parcel [kg]
Locations DC GHG Emissions total [kg]
Locations Lockers Time per parcel [h]
Market shares Time total [h]
Vehicle Data
Controls

Figure 5-5. Extended black box model outputs

Since the simulation model is used to compare different alternative last mile delivery systems, it is
important to enable the user to choose between different configurations. Hence, the simulation model
is provided with certain control variables that are controllable by the user before the simulation run
is initiated. For instance, the user has the freedom to decide the time horizon for which the simulation

will be run by means of the control variable ‘Simulation Time Limit’. By default, it is set to 24 hours.

Furthermore, the configurations can be changed by flipping a switch, so the existing system can be
combined with the city hub, or only with the parcel lockers infrastructure, or both the city hub and
parcel lockers infrastructure, it is up to the user. Besides, the user has the freedom to choose
between two city hub configurations: one that only delivers parcels inside the ‘Milieuzone of the city,
or in all of the city. Lastly, the user has the possibility to change the number of transporting companies
included in the simulation, to see whether or not the number of companies affects the outcomes.

Hence, Figure 5-5 can be expanded by including these controls in the figure, shown in Figure 5-6.

Average demand Inputs OUtPUtS Distance per parcel [km]
City shapefile Distance total [km]
City demographics GHG Emissions per parcel [kg]
Locations DC GHG Emissions total [kg]
Locations Lockers Time per parcel [h]
Market shares Time total [h]
Vehicle Data
Controls
City hub option Lockers option

City hub milieuzone option Locker density

Simulation time Number of companies

Figure 5-6. Expanded black box model controls

Modelling sustainable city logistics

5.2 Specification

As already decided in 1.4.5, the model will be developed according to the Discrete—Event Simulation
(DES) modelling ‘language’ (Behiri, Belmokhtar—-Berraf, & Chu, 2018; Simoni & Claudel, 2018; White
& Ingalls, 2009). DES describes a system’s behaviour over time by means of a series of events that
occur (Allen, et al., 2015; Tako & Robinson, 2012). These events are triggered by entities that are
flowing through the system. All these entities in the system are defined and assessed individually
and all have unique properties (Tako & Robinson, 2012). Besides, discrete event models use
statistical distributions to generate randomness in the events, which makes it an interesting technique

for processes with high uncertainties regarding the variables.

This paragraph discusses the specifications of the simulation with regard to the DES modelling
language. Furthermore, the black box as presented in Figure 5-6 is now opened to see how the model
is going to work underneath. There is a wide variety of software packages to conduct DES
experiments, but in 5.2.1 it is explained why the simulation model is written entirely in Python. Then,
the classes needed to conduct the simulation are defined in 5.2.2. Finally, some more comprehensive
diagrams of the processes and activities the simulation model will simulate have been described in

5.2.3.

Of course, the market offers software solutions to companies, universities and enthusiasts that like
to create DES models from scratch. Examples are Simio® and Arena®, both extensive and expensive
software packages. The advantage of such a software package is that it often offers a clear graphical
user interface, which usually makes it more pleasant and easier for the user to work with.
Furthermore, in Simio for instance, it is possible to create nice visualisations while running the model,

which makes it easy to spot mistakes and give more meaning to the results.

However, visualisations require more computing power than plain programming. Hence, conducting
experiments with these models can be time consuming. Furthermore, one has to completely
understand the syntax (the details of how to use the software, which buttons to use) before being
able to create robust models. This itself is not the problem, but these software companies exist due
to the provided courses on how to use their software. Hardly any information is for free. Hence, plain

programming in any other language seems way more attractive, as this is often open-source.

The world of programming languages consists of many different and unique options. Probably the
most used, or most well-known languages are C, C++, Java, Python and R, of which each of them

has their own advantages and disadvantages. All of the programming languages have in common that

3 https://www.simio.com/index.php

4 . . .
https://www.arenasimulation.com/

Modelling sustainable city logistics

they are cross—platform (so can be used on Mac, Windows and Linux most of the time), open—source

(information is freely available) and offer almost unlimited freedom.

Instead of making a comparison between all of the available programming languages and list their
advantages and disadvantages, the motivation of why to choose for the Python programming language
is provided. Python is arguably the fastest growing major programming language out there (Robinson,
2017), which makes it almost trending on forums like StackOverflow, a website where programmers
meet to solve each other’s problems. Hence, it is easy to find solutions for problems encountered
when programming in Python. Furthermore, Python is known as a very easy language to understand,
easy to read syntax and a lot of libraries that can—-do amazing stuff. All these libraries are easy to

find and install with Python’s own package manager (pip).

As Python is one of the most used programming languages taught in the curriculum of the Engineering
and Policy Analysis master, and the skills have already been mastered before the start of the thesis
project, the choice was easy. Besides, in order to make a comprehensive simulation model as intended
by this study, a heavy—duty computer is needed to run the experiments in a considerable time when
using Simio (which was the software package taught in the curriculum). A similar model in plain
Python is expected to run considerably faster, which makes it of course more attractive to run for
multiple experiments. One argument against the use of Python would again be ‘speed’, as it is
considerably slower than other languages, according to various internet sources. However, these
other languages are way harder to read, understand and program from scratch. Hence, Python is the

language of choice to program the DES—-model for this study.

The simulation model is defined as a Class in Python, which can be instantiated when intended to be
used. Within Python classes, variables can be defined as a part of the class, making them accessible
by all the different functions within and outside the class. For simplicity, the simulation model class
is called Mode! in Figure 5-7 and only the most important properties are shown. The properties of
the class are mostly the settings for the configurations, like the City hub, Lockers and the Milieuzone.
Furthermore, the Model class stores the Clock variable that keeps track of the simulation time and

the Parcels variable that provides insight in all the parcels that are currently available in the system.

The model also has certain operations, or Python Functions, attached to it. Firstly, the Model class
generates the demand of parcels to be delivered on a daily basis, with the GenerateDemand()
operation. This will be generated for each of the Distribution Centre instances individually. If a city
hub configuration is used, all demand is consolidated at the city hub and transported by a line haul to
the city hub. An Origin—Destination Matrix (ODM) is generated for each Distribution Centre instance

by executing the Create_odm() operation (Ekowicaksono, Bukhari, & Aman, 2016).

Modelling sustainable city logistics

As mentioned above, the Model consists of (multiple) instances of the Distribution Centre class. Each
distribution centre instance is unique and is defined based on the number of transporting companies
to include in the simulation. The most important properties of this class are the Name of the instance,
its Location, its Market share, the Vehicles in the fleet, a reference to the Model class and the Parcels
to be delivered. Then, after demand has been generated, the distribution centre instance initiates the

RoutePlanning() operation, which calls the route planning operation for each vehicle in its fleet.

As already mentioned, the Distribution Centre class contains (multiple) instances of the Vehicles
class. Vehicles take care of the transportation of parcels between their distribution centre and the
destinations and there are five different types of vehicles defined. Important properties of the
Vehicles class are the Name, the unique Vehicle data, the Shift that the vehicle is planned to operate,
a list of Routes, a reference to the Model and Distribution Centre, and the Parcels loaded onto the
vehicle. Furthermore, the 7ruck diesel/ and the Van diesel instances can be used for a line haul

service, if a city hub configuration is used.

The Vehicle class has the most operations from all classes, as they are executing all the work. First,
the Load() operation, where the parcels for the planned route are loaded onto the vehicle. The
following event is Drop(), where the parcels are dropped at the next destination. Collection() takes

care of picking up the parcels, while ReturnAndUnload() handles the picked up parcels and unloads

them at the Distribution

Model
. City hub : bool
Centre. Besides, L
Lockers : bool
. . . . Milieuzone : bool
following the Distribution Clock - float
. Parcels : int
Centre class, the vehicle T ——
. Create_odm ()
has a RoutePlanning()
operation that generates
Distribution Centre
the routes within the RameplEting
Location : array City hub
limits of the vehicle. The Markstsharelintil i Line aullJbol
Vehicles : dict Milieuzone : bool
complete process is ModeliMocel
Parcels : int -
Sorting centre
RoutePlanning ()

explained in more detail in

5.2.3. Vehicles / \

Name : string = " - = = = =
% Truck diesel Van diesel Van electric Bike electric Stint electric
VehicleData : DataFrame =
. Line haul : bool Line haul : bool
Shift : array
Route : array

O/
Model : Model
DC : Distribution Centre %
Parcels : int
Load ()
Drop ()
Collection ()
ReturnAndUnload ()
RoutePlanning (shift, shifttype)

Modelling sustainable city logistics

The processes executed during the simulation have been summarised
in so—called flowcharts. These processes use the classes’ operations
as defined in Figure 5-7 in a certain way. Starting with the model class,
the general process that is being executed is shown in Figure 5-8. In
explicit, all events of the different instances are stored centrally and
the model executes these sequentially. So, as long as the simulation
time limit has not been exceeded, the model looks for the next
scheduled event and executes the respective operation. Looking at the
operations that are only available to the Model class itself, Figure 5-9
can be created. As long as the simulation time limit has not been
exceeded, the model generates demand and the ODM at the scheduled

times. The Python code can be found in Appendix V.

The operations of the Distribution Centres class are even simpler than
the model, as there is only one operation inside this class:
RoutePlanning(). As mentioned before, the route planning gets called
right after the demand has been generated and the ODM has been
created and will continue regardless of the simulation time being
exceeded. Hence, the flowchart is defined as shown in Figure 5-10.

The Python code can be found in Appendix VI.

Finally, the process of the Vehicle class is explained in more detail, the
process that mainly steers the simulation. The route planning operation
gets called by the route planning operation of the distribution centre
the vehicle belongs to. The route planning is based on the parcels that
have to be delivered, so as long as there are parcels that are not
included in a route and no vehicle limit has been exceeded, the route
planning operation is executed. Then, vehicles are loaded with the
planned number of parcels for the route and the parcels are dropped
sequentially, as long as there are parcels left to drop. After dropping

all parcels, the parcel to collect can be collected. Finally, if the route

I

No

e

Yes
Yes
Yes
No

1 15 UL L U

has been completed, the vehicle returns to the distribution centre and unloads the collected parcels.

This sequence of steps is repeated as long as the vehicle has routes planned. If all routes are

completed, the shift of the vehicle is updated to the next day. This process is summarised in the

flowchart of Figure 5-11. The Python code can be found in Appendix VII.

(

Modelling sustainable city logistics

As mentioned in the conceptualisation of 5.1, the

simulation should yield at least six different outcomes.

In this paragraph, the calculations of each of these

outcomes are explained in further detail.

Firstly, the route planning already provides insight in the

expected number of kilometres that will be driven.

However, due to unforeseen events, this actual distance

travelled might differ after the simulation (a detour for ¥

instance). Therefore, the travelled distance during the

simulation will be measured for each route from the time

the parcels get loaded onto the vehicle. When the -
vehicle returns, the number of kilometres the vehicle No
has driven gets updated by the distance of the route.
After the simulation, the total distance travelled gets Yes
updated by assessing all of the vehicles. In order to
No

calculate the distance per parcel, the total number of

kilometres is divided by the total number of parcels

delivered. The total number of parcels delivered also
includes the collected parcels that are dropped off at the

sorting centre.

Secondly, the GHG emissions. The vehicle data as entered in the Model class contain at least the
number for the average emission of COs per kilometre travelled for each type of vehicle and the
average emission of NOy/PMig per kilometre travelled. The emissions are updated similarly to the
kilometres travelled per route and can thereby be easily calculated by multiplying the distance
travelled by the average emissions per kilometre. Furthermore, after the simulation time limit has
been exceeded, the total emissions are assessed from all vehicles. To calculate the emissions per

parcel, the total emissions are divided by the total number of parcels delivered.

Lastly, the time consumed for the delivery of parcels is calculated by keeping track of the starting
time and ending time of a particular route. Hence, only the time a vehicle is operative is considered
in the analysis. Then, after the simulation time limit has been exceeded, the total time is calculated
by assessing the time operative for each individual vehicle. Furthermore, the operative time per

parcel is calculated by dividing the total time by the total number of parcels delivered.

Modelling sustainable city logistics
5.3 Simulation model
As mentioned in the foregoing paragraphs, the simulation model is written entirely in Python and only
uses some external files like the shapefiles for instance. However, this paragraph tries to explain
how the model is stored and setup among different files and scripts, so a follow—up study can easily
start from this point onwards. First, the parcel locker locations are set—up by a separate script, which
is covered in 5.3.1. Then, the model setup script is discussed in 5.3.2, followed by a brief description

of the model usage in 5.3.3. Finally, a brief explanation of the model dashboard is provided in 5.3.4.

Initially, the parcel locker locations are distributed randomly across the city of Amsterdam, based on
the values entered in the model dashboard (see 5.3.4) regarding the willingness to walk a certain
time to a locker and the average walking speed. Hence, the average number of parcel lockers to yield
a desired average distance in-between these lockers can be calculated and can be randomly
distributed among the postal code areas. The algorithm used for the distribution of lockers among
the postal code areas is further explained in Appendix VIII and can be found in the setup lockers.py

file.

The algorithm for distributing the parcel lockers as mentioned above takes quite some calculation
time. Therefore, setting up these parcel locker locations is done in advance of setting up the
simulation model. Furthermore, in order to make a reliable comparison between different
configurations, it is important that the parcel lockers’ locations remain the same, so all configurations
use the same parcel locker infrastructure. To see the effects of more or less parcel lockers, the
setup script has to run again to store the new parcel locker locations. The parcel locker locations are

stored in a file called ZockerLocations.xlsx’, and is called each time a Model-instance is created.

The model setup script is stored in a separate file than the model script itself, so the code of the
model script stays clean and tidy. The model setup script is called each time a Model instance is
created. The setup script then reads the required files into memory and stores them in the right
formats. More explicitly, the setup script processes and stores the shapefile, the data—file about
Amsterdam, the parcel locker locations, the ‘Milieuzone '—area and the dashboard file (see 5.3.4), and
returns this to the model instance. The files can be found in the Data—directory attached to the Model-

directory. The Python code can be found in Appendix IX and in the file called setup.py.

The simulation model script is created to be used to instantiate and run the simulation model and can
be found in the Model py file. Furthermore, settings can be changed, so different experiments can be
executed (see 5.6 for further explanation). The simulation model script calls the setup script in the
initiation step, resulting in a defined set of variables that have been processed in advance. Then,

based on the dashboard, the configuration of the model is determined, and the model is ready to run.

Modelling sustainable city logistics

The model can be run by calling the Modelrun() function. The run function executes the
Model next_event() function as long as the simulation time limit has not been exceeded (see Figure
5-8). Afterwards, the model returns the results of the outcomes of interest: Parcels Delivered,
Distance Travelled, Operative Time and Emissions. The outcomes can be both printed on the screen,

or stored in an Excel file for instance, for further analysis.

The model dashboard has been referred to a few times before in this report. The model dashboard
is an Excel file that contains all the input variables and controls as defined in 5.1 to influence the
simulation model’s behaviour. Moreover, the dashboard can be seen as the user interface of the
simulation model, the easiest way to change the settings and variables in the Model. However,
changes have to be made before the model is instantiated, otherwise it should be done via a Python

script.

The model dashboard is stored in the Data—directory as Dashboard. xlsx. It contains sheets with Basic
[nformation, Vehicle Information, Vehicle Fleets, Locations, and Settings. The basic information sheet
is mainly filled with data about the simulation time, demand, maximum route times and shift times.
Also, the share of demand to deliver in parcel lockers and in the evening can be set in this sheet.
Vehicle information contains all info about the individual vehicles, like their range, capacity and
average stop time for instance. Vehicle fleets lists all vehicles a certain location as defined in the
Locations sheet owns. Lastly, the Settings sheet can be used to change the configuration of the model.

In explicit, the city hub and parcel locker configurations can be switched on or off.

5.4 verification

Creating the simulation model is one thing, checking whether or not the model works correctly is
second. Hence, verification is defined as ‘the evaluation whether or not the product or service
complies with regulations, requirements and specitications’ IEEE, 2013). In contrast to validation,
verification looks to the inside of the simulation model to check the correctness. Hence, a few

different approaches have been discussed in this paragraph.

First, one parcel is traced through the system, with different configurations, to check whether or not
the parcel has been delivered and no vehicle got stuck. Second, an extreme number of parcels is
entered in the dashboard, to see whether or not vehicles get stuck transporting the amount, or that
parcels just keep waiting until they are being transported. Lastly, a sensitivity test with extreme
values for other simulation variables has been conducted to see whether or not the simulation models’

behaviour or outcomes change extraordinary.

Modelling sustainable city logistics

The single parcel trace verification test is conducted twice, one time without the city hub
implemented, and one time with the city hub implementation. From these two tests, it can be
concluded that the parcel was delivered correctly two times and that the outcomes match the
expectations. Moreover, the outcomes only show the results of one vehicle being utilised to deliver
one parcel to one destination. All other vehicles were on standby, ready to be used the next day. The

results of both tests are shown in Figure 5-12 and Figure 5-13.

HUB option is False HUB option is True

LOCKER option is False LOCKER option is False

LOCKER percentage is 10 LOCKER percentage is 10

EVENING percentage is 10 > EVENING percentage is 10

Included forwarders: ['PostNL', 'DHL', 'DPD'] —--> Included forwarders: ['PostNL', 'DHL', 'DPD']
Total simulated time [h]: 24.00 Total simulated time [h]:
Parcels in system [pcs]: 1.00 Parcels in system [pcsl]:
Parcels delivered [pcs]: 1.00 Parcels delivered [pcsl:
Total distance driven [km]: 43.94 Total distance driven [km]:
Distance per parcel [km]: 43.94 Distance per parcel [km]:
Total time operative [h]: 1.43 Total time operative [h]:
Average time/parcel [h]: o Average time/parcel [h]:
Total emissions CO2 [kgl: . Total emissions CO2 [kgl: 12273.56
C02 emissions/parcel [kgl: 5493.10 CO02 emissions/parcel [kgl: 12273.56
Total emissions NOx [kgl: 23.95 Total emissions NOx [kgl: 136.87
NOx emissions/parcel [kgl: 23.95 NOx emissions/parcel [kgl: 136.87

Figure 5-12: 1 parcel trace, no city hub Figure 5-13. 1 parcel trace, 1 city hub

NOTE: The unit for the emissions in the figure above should be grams, not kilograms.

The extreme number of parcels test is also conducted twice, the first time without the city hub
implemented and the second time with a city hub implemented. Just like the single parcel trace test,
the extreme number of parcels test yields promising results, as all vehicles are fully utilised in both
the day and evening shifts and conduct all possible deliveries. Parcels that did not fit in the planning,
as the current capacity is too low, are still in the system waiting for the next day to be delivered.
The only not so realistic part of this simulation is that in the normal configuration (without city hub),

the diesel trucks are also planned to deliver parcels. This almost never happens in the real world.

HUB option is False HUB option is True

LOCKER option is False LOCKER option is False
—--> LOCKER percentage is 10 LOCKER percentage is 10
—---> EVENING percentage is 10 EVENING percentage is 10
—-=> Included forwarders: ['PostNL', 'DHL', 'DPD'] ——=> Included forwarders: ['PostNL', 'DHL', 'DPD']
Total simulated time [h]: 24.00 Total simulated time [h]: 24.00
Parcels in system [pcsl]: 91773.00 Parcels in system [pcsl: 68982.00
Parcels delivered [pcsl: 33627.00 Parcels delivered [pcsl: 56418.00
Total distance driven [km]: 10081.13 Total distance driven [km]: 20401.26
Distance per parcel [km]: 0.30 Distance per parcel [kml: 0.36
Total time operative [h]: 1969.46 Total time operative [h]: 3499.25
Average time/parcel [h]: 0.06 Average time/parcel [h]: 0.06
Total emissions CO2 [kgl: 1823972.78 Total emissions CO2 [kgl: 1880630.26
C02 emissions/parcel [kgl: 54.24 CO2 emissions/parcel [kgl: 33.33
Total emissions NOx [kgl: 9543.09 Total emissions NOx [kgl: 11013.69
NOx emissions/parcel [kgl: 0.28 NOx emissions/parcel [kgl: 0.20

Figure 5-14 Extreme numbers, no city hub Figure 5-15° Extreme numbers, city hub

NOTE: If the number of parcels is too large, there is a risk that the computer returns a memory error.

Modelling sustainable city logistics

The extensive sensitivity test of the model can be found in Appendix X. This paragraph only discusses
the most outstanding results from this analysis. Firstly, it turned out that changing the number of
parcels to deliver per day heavily influences the outcomes of the simulation. By an approximate 90%
decrease in the number of parcels, the distance and time per parcel increase by about 350%
(estimated), indicating that the results are sensitive to the number of parcels entered. Furthermore,
the higher the number of parcels entered in the dashboard, the longer the simulation takes to

complete.

The next variable that showed surprising effects on the outcomes, was the capacity of the vehicles.
By increasing the capacity with 50%, the distance per parcel can be reduced by 16% and the time
per parcel by approximately 2.5%. Besides, decreasing the capacity by 50% leads to a 21% increase
in distance per parcel and about 5% increase in time. However, this is only true for the system
including a city hub. For the small vehicles used, the capacity is usually the limiting factor and an
increase mitigates these drawbacks. However, in the normal system, neither increasing nor

decreasing the capacity heavily influences the distance and time per parcel.

Lastly, the number of transporters included in the analysis can heavily affect the simulation outcomes.
For all the foregoing analyses, three transporting companies have been included (PostNL, DHL and
DPD). The first effect that can be noticed after including more transporting companies into the
analysis, is that the total number of kilometres decreases when the city hub gets implemented.
Moreover, this effect gets stronger when multiple smaller companies with only a few destinations are
included. For the transporters available in the dashboard file however, the maximum benefit that can

be achieved by implementing a city hub is only about 2% distance and time per parcel.

Concluding the paragraph, it can be stated that the model is verified for further use in the analysis.
The model shows predictable behaviour under extreme conditions without failures. Tracing one
parcel was successful in multiple configurations, while an extremely high number of parcels resulted
in a large number of parcels that could not be included in a route planning. These parcels were stored
to be delivered the next day. Under all other extreme value tests, the model also showed predictable

behaviour and hence, the model is verified for further use in this study.

5.5 Vvalidation

Since the model is built upon many assumptions and based on a Euclidian ‘road’ network, the
simulation results can only be indicative. Analysing real-world data from PostNL to validate the
simulation model would yield high inaccuracies and therefore, the model is validated by conducting

expert interviews. The interviewees were experts from PostNL.

Modelling sustainable city logistics

The conceptual model has been validated by interviewing the experts from PostNL. They all
confirmed the correctness of the process, despite some assumptions that make it easier to model.
The simulation model provides PostNL sufficient insight in the performance of the alternative delivery
systems and thereby, the model is valid to use for further experimentation to reach the conclusions

for this study.

The only noted drawbacks of this simulation model are the night delivery not being implemented yet
and neither is the obligation for PostNL to pick—up a parcel the same day is not an obligation in the
simulation model. Both these issues would over—-complicate the simulation model in its current state,
which is the main reason why they have not been implemented. However, these issues do not have a

big effect on the outcomes, as can be noticed from the sensitivity analysis in Appendix X.

5.6 Experimentation
The last step in Sargent’s modelling cycle is to set—up experiments to conduct with the simulation

model. These experiments have been defined with focus on the last mile delivery alternatives. In
explicit, by conducting the experiments this study aims at providing more insight in how the chosen
alternatives combined yield the most promising outcomes. This is done by changing One Factor At
the Time (OFAT), since it is expected that this results in sufficient insights with less time needed for
the design of experiments (Kleijnen, 2001). Hence, Table 5-2 is constructed, containing all different

cases.

Table 5-2: Simulation experiments

Case name City Hub option Lockers option — Lockers percentage Evening percentage
Case 0 False False 10
Case 1 False True - 10 10
Case 2 False True - 30 10
Case 3 False True - 50 10
Case 4 False True - 70 10
Case b False True - 10 30
Case 6 False True - 10 50
Case 7 False True - 40 50
Case 8 True False 10
Case 9 True True - 10 10
Case 10 True True - 30 10
Case 11 True True - 50 10
Case 12 True True - 70 10
Case 13 True True - 10 30
Case 14 True True - 10 50

Case 15 True True - 40 50

Modelling sustainable city logistics

The base case (Case 0) has been executed 10 times in advance of the analysis. With the outcomes
of interest, an estimation about the preferred number of replications can be made (van Soest, 1992).

For the total distance, total time operative and the emissions, van Soest’s formula is applied:

Ntestrun ¥ 0

05+ max(test run) = 0.05

n

In the formula, n2is the desired number of replications, s run 1S the number of replications done for
the test run, o equals the half width confidence interval of the set and max (test run) represents the
maximum value of the variable in the set. Van Soest’s formula has been applied for the total distance,
total time operative and the total COs—emissions of the outcomes of the base case test runs. Based
on the maximum COs-emissions and its standard deviation from the average in the set, it can be
stated that the following experiment need at least 5 experiments to yield the desired accuracy (van

Soest, 1992). The calculation is shown below, the complete procedure can be found in Appendix XI.

_ 10%25789
"= 05%2179,608+0,05

4.7

Despite the cases as defined in Table 5-2 being fairly straightforward, some further notifications
about some assumptions have to be made. Firstly, the city hub configuration is based on the
requirement to shift to smaller vehicles. Therefore, the focus of the city hub is on cargo bikes and
stints, and electric vans are used when all other vehicles are utilised. Secondly, all the cases with a
parcel locker infrastructure use the same reference file that contains the locations. Furthermore, in
the file all lockers are placed within 500 metres of distance between each other. It is assumed that
this is a reasonable distance, based on the willingness to walk and the average walking speed. The
calculation and distribution of lockers is further explained in Appendix VIII. Lastly, the experiments

will all use the same daily demand of 27000 parcels.

5.7 Conclusion
So, it is possible to create a DES-model for the parcel delivery system in Amsterdam that works

according to the processes of PostNL. Furthermore, the simulation model provides reliable, yet
indicative, data about the performance costs and benefits that can be obtained by implementing
several of the last mile delivery alternatives as chosen in the fourth chapter. The outcomes of the
experiments will show the real costs and benefits however, which will be discussed in the next
chapter. Hence, it is yet impossible to answer the fifth sub—question of this study: What benefits can

be obtained by implementing one of these alternatives? The following chapter will provide the answer.

Modelling sustainable city logistics

Analysing simulation results

6 Analysing simulation results

The experiments as defined in Table 5-2 have been conducted. Furthermore, based on the outcome
of van Soest’s formula, each case has been run at least five times to ensure the desired accuracy of
the outcomes (van Soest, 1992). The first paragraph analyses the results to find out which of the
alternatives influences the system’s behaviour most beneficial. Then, the settings used can be
analysed with regard to the sustainability factors as defined in paragraph 4.1. Finally, some

conclusions have been drawn and the fifth sub—question can be answered.

6.1 Analysis

As mentioned in 5.6, the first case (Case 0) is defined as the base case. In explicit, the base case is
not using a city hub nor parcel lockers and about 10% of the daily demand is delivered in the evening.
The performance of all the other cases is compared with the base case to see whether or not
performance gains can be obtained by implementing the delivery alternatives in the defined way. In
order to easily notice the differences in performance, the percental differences are shown in Figure
6-1. Furthermore, positive outcomes, or percental decreases, are highlighted in green, while negative

outcomes, or percental increases, are highlighted in red. The analysis can be found in Appendix XIII.

Table 6—-1- Percental outcomes of the experiments

Variable Total Distance/ Total Time / Emissions Emissions
distance [km] parcel [km] time [h] parcel [h] CO2 [g] CO2/parcel [g]

Case O 100 100 100 100 100 100

Case 1 95 95 95 94 92 92

Case 2 87 85 82 81 97 96

Case 3 86 84 68 67 88 86

I R R N S N

Case 5 _— 98 98 100 100

Case 6 91 100 69 76 87 95

Case 9 48 50
Case 10 48 50
Case 11 45 46
Case 12 45 46
Case 13 54 56
Case 14 55 57
Case 15 55 57

Analysing simulation results

To make it a little simpler to read the table, the following division could be used: first, the share of
parcel lockers is increased (Case 1-4), then the share of evening deliveries (Case 5-6) and ending
with a combined case (Case 7). From Case 8, the same division is used together with a city hub
implementation. So, with this division in mind, it can be stated that the parcel lockers implementation
has the largest influence on decreasing the travelled distances and the operative times when no city
hub is being used. Hence, the GHG-emissions reduce as a result of the number of kilometres

decreasing.

In contrast, the high share of smaller vehicles that is being used by the city hub, large reductions in
GHG-emissions can be obtained at the costs of more kilometres and operative time. Furthermore,
the positive effect lockers have on decreasing the time operative in the regular case, operative time
only seems to increase for an increasing share of parcel locker use. This is caused by the fact that
the parcel lockers on average have more parcels to store than the capacity of the smaller vehicles.
Hence, more vehicles are being utilised to replenish only one parcel locker unit. Evening delivery
causes operative time to increase even more, as more vehicles are needed due to the loss of

efficiency as mentioned in 4.3.3.

So, from the basic implementation of the alternatives as presented in Table 6-1, it can be concluded
that only the parcel lockers alternative provides solid performance gains when its use is enhanced.
This statement can be motivated by Case 4, which applies a 70% share of parcel locker deliveries,
10% evening deliveries and no city hub. Thereby, a 20% reduction in both travelled distance and its
related GHG-emissions can be obtained, while also reducing about 45% of the operative time can be
realised. The standard deviations of these variables remain within a 1% range and thereby, the

outcomes provide an accurate estimation of the benefits

The implementation of a city hub in combination with a 70% share of parcel locker deliveries could
reduce GHG-emissions by 55%, while increasing the travelled distance and operative time 10% and
55% respectively. Since smaller vehicles are being used that can travel via bicycle lanes, it is assumed
that most of these travelled kilometres are having less impact on the traffic system in the city
compared to the application of (electric) delivery vans. However, the division of these kilometres

should be further investigated before more conclusive insights can be provided.

6.2 Reflecting upon the sustainability factors

The simulation model does not yield outcomes for all the sustainability factors as defined in 4.1.
Therefore, the outcomes of the experiments from Table 6-1 will be used to reflect upon the remaining
sustainability factors to see whether or not the case can be called sustainable. Furthermore, the
reflection is based on the outcomes of Case 4, since it is able to enhance the performance of all

outcomes of interest, in contrast to the best city hub configuration.

Analysing simulation results

Firstly, the implementation and enhancement of parcel locker use is expected to decrease both the
traffic impact, delivery time and delivery costs massively. Furthermore, due to the decrease in
distance travelled per parcel, the GHG emissions in the city are expected to decrease as well, as
shown in Table 6-1. Hence, if sold appropriately to the public, the customer satisfaction in the city

may increase due to the increased flexibility the services offer.

Furthermore, as vehicles spend less time and distance on the road, the safety of the working
environment may increase, due to the mitigated risks for accidents on the road. Security and
responsibility are then perceived similar as what it was before, since no extra transhipment points
are implemented in the system (like a city hub). Moreover, parcels are still being transported by the

assigned companies, so no transfer between companies is required, mitigating legal obstacles.

However, Case 4 as it is presented in Table 5-2 is not sustainable yet. It is highly policy sensitive
with regard to the so-called ‘Milieuzones’, since polluting diesel vans are still being used. As
mentioned earlier in this report, these vans are about to be abandoned from the city centres, so
companies are encouraged to electrify their vehicle fleet. Hence, it can be concluded that Case 4 is

not yet sustainable and some changes in the setup have to be applied before it is.

Besides, the size of parcel locker growth requires large investments in the infrastructure. Since
parcel lockers are assumed to be publicly owned, it remains unclear which party (or parties) have to
cover for these expenses. Furthermore, the electrification of the vehicle fleet could be an expensive
change as well, since electric delivery vans are not widely produced and thus used either. One way
to handle this hurdle is to gradually electrify the vehicle fleet by not buying new diesel vans, but
replacing old vans with new electric variants when the lease contracts are exceeded. However, this
seems only feasible for big transporting companies with dense city networks like PostNL, which still

leaves the question how smaller transporting companies could reach their clients in the city centre?

6.3 Conclusions
From the three alternatives implemented in the simulation model (parcel lockers, a city hub and

evening delivery), parcel lockers seem to provide the most reductions regarding the average distance
per parcel. By cutting the distance per parcel, emissions per parcel thus also decrease. Furthermore,
parcel lockers lead to less time per parcel to be delivered, cutting on the employment costs as well.

Hence, implementing a parcel lockers infrastructure is expected to yield the best results.

In contrast, the city hub option focussing on transhipment to smaller vehicles yields a less efficient
system, though more environmentally friendly due to the electrification of city centre deliveries.
However, concerns about this configuration are the large increase in expected delivery costs and the

shift from the road to the bicycle lanes. Will there be enough space for this number of small vehicles?

Analysing simulation results

Lastly, it can be stated that evening delivery yields even less efficient results in both configurations
(with and without city hub). This conclusion is following Hiinteler (2018), stating that the distance to
the city plays a bigger part in the evening delivery due to the less available time to conduct the
deliveries. Since the available time for evening delivery is one of the only reasons causing the
inefficiency, the further development of night delivery can be seen as a solution to also gain more

reductions.

This chapter is aimed at answering the fifth sub—question of this study: What benefits can be obtained
by implementing one of these alternatives? Based on the foregoing conclusions, implementing and
enhancing parcel locker deliveries yields the largest benefits in terms of efficiency. Numerically
speaking, 20% of the kilometres in the city and the GHG emissions and 45% of the time in operation
could be spared. However, parcel locker deliveries cannot be sustainable if not being conducted by
electric vehicles. By implementing a city hub, smaller, electric vehicles are applied for the deliveries,
yielding large benefits with regard to reducing the GHG—-emissions (about 55% reduction) at the costs
of increasing the travelled distance and time in operation (about 10% and 55% respectively). Lastly,
evening delivery only reduces the system’s efficiency, but due to the fact that cities are less

congested in the evening, the perceived traffic impact is assumed to may decrease too.

So, each of the alternatives has some positive and negative sides to them. In order to make the parcel
delivery more sustainable and thereby providing a satisfying answer to the main research question,
more reflection on the implementation of each of the alternatives is required. This is done in the

following chapter.

Reflecting on real-life implementation

/ | Reflecting on real-life implementation

So, a more sustainable last mile delivery process is defined as one that reduces the number of
kilometres driven in the city, drastically reduces the GHG-emissions whilst also be profitable for the
involving companies. According to the analysis in the foregoing chapter(s), this process consists of
a more present and denser parcel locker infrastructure, optionally a city hub for transhipment on
smaller, electric vehicles that also enables delivery by night. But, practically speaking, what would

this system be like? What are the findings that make it (more) sustainable?

7.1 Parcel lockers
Firstly, the use of parcel lockers has to be expanded. However, before implementing the parcel locker

infrastructure, a good analysis has to be conducted on the optimal distance between each locker. In
explicit, what is the willingness to walk of consumers that optimise the use of lockers, and what
capacity do the lockers need to have? Furthermore, as the capacity per locker increases, companies
have to consider a re—design of the devices, as very big walls of lockers seem undesirable. They
have to disappear from the streets and therefore, empty stores or garage—-boxes are proposed as
alternative locations to place big walls full of lockers. Or, following the garbage-disposal market
and/or bicycle storage in Japan (see Figure 7-1 and Figure 7-2), the lockers may be placed
underground as a sort of underground warehouse. However, this last option may make the

infrastructure very expensive.
A

. . .) . 9. . . 6
Figure 7-1. Underground bicycle storage’ Figure 7-2: Underground disposal containers

Besides, the more parcel lockers are being used, the more interesting it becomes to replenish them
by night, as no one has to stay awake to accept their parcel. Since most of the inhabitants are asleep,
it is assumed that the impact on the city reduces, so does the risk of hitting a traffic jam, while the
route efficiency increases. However, in order to mitigate the noise emissions of diesel vans driving
through the streets at night, night delivery is only perceived acceptable if electric vehicles are to be

used.

% Retrieved from: https://www.outdoordesign.com.au/news-info/automated-bicycle-parking-system/5392.htm
6 Retrieved from: http://www.prommenz.nl/locatiestudie-ondergrondse-containers—en-clusterplaatsen

Reflecting on real-life implementation

/.2 City Hub

That is where the city hub comes into play. Since the city hub is located so near the city, the range
of battery powered vehicles becomes much less of an issue. Besides, as more deliveries are intended
for parcel lockers and the replenishment of these parcel lockers take place at night, the number of
parcels to deliver by day reduce. During the night, electric vans can be used to consolidate the parcels
destined for lockers, as these vans have no impact on city traffic at this time of day. In contrast, day
deliveries can be divided among the electric vans and smaller EVs, like cargo bikes and stints, to

reduce the overall traffic impact by day.

However, this research has already shown that the city hub option is not efficient for big transporting
companies in the current parcel delivery market. The number of parcels to be delivered is too big to
make the transhipment at the city hub interesting. Instead, one of the propositions is that these parties
facilitate the city hub for smaller transporters. That is, smaller transporters can drop their parcels at
the city hub and the big transporters pick them up, as there is a high probability that the big
transporters are passing by the destination of the small transporter anyway. This can be arranged in

two different ways, as shown in Figure 7-3 and Figure 7-4.

| Sotes L2 Cre ool [Ciy s
O000 — & =8 —— L0 V‘
BT B g
g

A"

>

(U ZoRC ZORC 0]
. @J@J@\

Figure 7-3: City hub with line haul

/-
N

| oot Cae S I Cis b
00000 — (E ——HAm @

@\ |
ANl %%%ﬂ

NE | \)

-

Figure 7-4- City hub as pick—up point

Reflecting on real-life implementation

Firstly, the city hub can be used as intended: PostNL and other parties deliver their parcels by means
of a line haul to the city hub. The city hub is facilitated by PostNL and PostNL tranships the parcels
to electric and/or smaller vehicles (see Figure 4-3). This structure also offers opportunities for other
big transporters, as other big transporters are also able to facilitate their own city hubs and enter

the competition to compete for clients.

On the other hand, the city hub can be used by PostNL as a sort of pick—up point, while the city hub
is facilitated by a third party (see Figure 4-4). The smaller transporters still deliver their parcels at
the city hub, but PostNL also includes them in their route planning. Hence, PostNL'’s loading process
can be split up between their sorting centre and the city hub. It is assumed that this does not take as
long as loading a van twice. Besides, the city hub can provide the smaller vehicles for unforeseen or

custom shipments, while the regular shipments are transported by PostNL’s electric vans.

The latter is particularly interesting for the bigger transporting companies as they themselves do not
have to own and operate the city hub, since this is done by a third party. They only have to focus on
the electrification of their own fleet. Furthermore, the big transport companies could use the same
facility together, which makes the use of separate city hubs unnecessary and saves space. A third
party that could be interested in operating the city hub, could be a local government, a municipality

or an entrepreneur with a very bright business idea.

7.3 Conclusions
With the proposed solutions in this chapter, the best of the alternative last mile systems can be

combined. One of the most important success factors of the city hub now is to include more smaller
transporting companies and engage them in the dense delivery networks of the bigger companies.
Furthermore, by making the parcel locker infrastructure public property, all delivery companies can
use them, making it a more interesting delivery alternative to invest in. Hence, both efficiency and

sustainability of the parcel delivery sector in cities enhance.

This chapter aims at reflecting on the last sub—question: How could the alternatives be implemented?
Based on the success of underground garbage containers, underground parcel lockers seem to
provide a solid starting point for large-scale implementation without disrupting the beloved street
image. Furthermore, combining the parcel locker infrastructure with a city hub that combines the
dense networks of big transporting companies with smaller ones offers incentives for the big
companies to electrify their fleet. Obliging all companies to consolidate their shipments at a city hub
is unfeasible, due to the enormous scale of parcel delivery these days. Lastly, a city hub with small
electric vehicles offers a good base for the (further) development of night-replenishment of parcel

lockers. However, that is a plan for the future, as there is currently little insight in its effects.

Reflecting on real-life implementation

Conclusions and reflection

3 | Conclusions and reflection

In order to provide an answer to the main research question, the sub—questions as defined in Table
1-1 have to be answered. Moreover, these have already been answered in the foregoing chapters of
this report. The objective of this study was to identify sustainable alternatives for the last mile parcel
delivery and implement these in a simulation model to see their costs and benefits. However, it turned
out that sustainable parcel delivery was not yet properly defined. Besides, the last mile alternatives

did not report on the same factors of interest. Therefore, the following sub—questions were defined:

Table 5—1: Research sub—questions

Number Question

1. How is a sustainable last mile delivery defined?

2. What are the most important stakeholders in the PostNL case? And, what are their
points of view regarding a more sustainable last mile delivery process?

3. What are the current policies steering the sector in a sustainable direction? And, are
they effective?

4, What are the most promising last mile delivery alternatives, given the sustainability
requirements and perceptions of the stakeholders?

5. What benefits can be obtained by implementing one of these alternatives?

6. How could this alternative be implemented?

8.1 Answering the sub-questions
Firstly, sustainable last mile delivery was defined by analysing research on sustainability, corporate

sustainability and sustainable supply chain management. The reoccurring theme among this line of
research is the so—called Triple Bottom—Line (3BL) theory, stating that a sustainable future considers
both environmental, social and economic aspects (Elkington, 2002). If a product or project gains on
one of these aspects by losing on another, it cannot be called sustainable. Based on this principle,
popular themes and issues among stakeholders have been assessed. This led to a shortlist of criteria
that are important to at least one of the stakeholders. The (more) sustainable last mile has to score

better than the current process on as many criteria as possible. The shortlist is shown in Table 8-2.

Table §-2: Shortlist of criteria

Criterion:
Delivery cost Emissions (COz, NOx and/or PM1)
Delivery time Customer satisfaction
Safe working environment Security and responsibility
Traffic impact Investments in infrastructure

Policy sensitivity

Conclusions and reflection

Secondly, the most important stakeholders have been defined as a part of defining the sustainable
last mile. Since the last mile distribution of parcels can be closely linked to city logistics, the
governmental organisations are included in the analysis (Boer et al., 2018). Furthermore, a
transportation assignment involves at least a sender and recipient and often a logistics provider,
which can be of any kind (consumer, local store, companies, restaurants, etc.). Besides, branch
organisations try to influence domestic policy to improve the transport sector. Examples that have

been included are ‘Transport en Logistiek Nederiand’ (TLN) and ‘Evofenedex’.

Summarising their points of view, a visible trend could be noticed from the ranking sheets the
representatives had to fill in (see Table 4-1 for an example). Delivery cost and delivery time are
perceived as very important by the consumers or other recipients, suppliers and the transporting
companies, whereas GHG-emissions, traffic impact and safe working environment are ranked high at
the governmental organisations and the branch organisations. Besides, suppliers and logistics
providers value their customers’ satisfaction highly as well. All other factors are somewhere in-

between.

The third sub—question can also be answered by the same stakeholder analysis. As a part of their
point of view regarding parcel delivery in cities, municipalities announced their intended policies as
part of their run for the elections. From PostNL’s analyses of these election programmes it could be
noticed that the municipalities of big cities are looking at ways to either implement a so-called
‘Milieuzone’, or to extend it. This means that (older) diesel vans and trucks are not allowed to enter
the inner city, so logistics providers are incentivised to change to electric vehicles. Furthermore, to
make electric transport more interesting to invest in, many governmental organisations express their
interest in a so—called city hub. How to implement the city hub is still an open end to the discussion.
Lastly, (local) governments also provide subsidies and/or tax arrangements for electric vehicles to

make their purchase even more attractive. However, these policies differ among municipalities.

PostNL is already experimenting with new methods for last mile parcel delivery on a small scale. For
instance, they have trial projects for a parcel locker infrastructure, evening delivery and cargo bike
deliveries. However, PostNL had little insight in how these projects perform compared to each other,
especially on the sustainability factors as defined by the first sub—question. Therefore, interviews
have been conducted with the project managers, so more insight in the performance was obtained.
Based on their individual scores in best-worst—-case scenarios, a SMART-analysis has been
conducted. This revealed that CDPs and parcel lockers perform best under all scenarios, followed by
night deliveries and the city hub. Regarding the city hub, it is important to note that they only provide
good results when electric vehicles are used. Otherwise the impact is nil. Hence, the optimal and

more sustainable last mile parcel delivery system consists of these three options.

Conclusions and reflection
The three alternatives have been implemented in a discrete—event simulation (DES) model. The DES-
model is written in the Python programming language, based on the processes as explained by Bakr
(2018). The outcomes of the experiments show that again parcel lockers provide the best results
with regard to reducing the number of kilometres driven per parcel in the city. By implementing a
city hub this effect can be obtained too, but it will cost more time per parcel to conduct the deliveries.
This is mainly due to the fact that smaller vehicles are being used, thus more vehicles and personnel
are needed to deliver the same number of parcels. Furthermore, a city hub for B2C parcel delivery
is unfeasible, as the volumes are too big to consolidate. However, the main benefit of the city hub is
that the GHG emissions reduce drastically due to the use of electric vehicles. Evening delivery shows

to be less efficient, following the comments of Hiinteler (2018), due to the less available time.

Lastly, an optimal sustainable last mile delivery combines the simulated alternatives, with evening
delivery being extended to night delivery in the future. Parcel lockers and pick—-up points have to be
present throughout the city, without disrupting the street—-image. In explicit, nobody is expected to
accept big walls of lockers at the corner of their street. Instead, lockers may be placed underground,
or in empty garage boxes and buildings. Besides, the city hub will be implemented near big cities to
consolidate shipments destined within the ‘Milieuzone’. However, companies still have to investigate
the best business case for their implementation of the city hub (either Figure 7-3 or Figure 7-4), as
either of them has advantages and disadvantages. Furthermore, as lockers will increasingly be used
and night delivery will develop further, replenishment of the lockers can take place at night to further

decrease the traffic impact.

8.2 Answering the main research question
So, with all the answers on the sub—questions, an answer to the main research question of this study

can be provided. The main research question was:

How could the last mile delivery process become more sustainable, I.e.
minimising tratfic impacts and emissions, while maintaining the social and

economic benefits of e-commerce and home deliveries?

The last mile delivery process of parcel delivery can become more sustainable by implementing or
expanding multiple alternative systems. Especially the implementation of parcel lockers reduces the
total distance travelled in the city and time needed for delivery and thereby, reduces the traffic impact
and personnel related costs of parcel deliveries. Furthermore, parcel lockers can easily be
replenished by night, providing a more solid base for night delivery to develop and reduce the traffic

impact even more.

Conclusions and reflection

The UCC-option, or city hub as called in this study, turned out to be less sustainable for the parcel
delivery market than perceived in advance by most of the stakeholders. Despite the large potential
of reducing GHG-emissions, the city hub causes the total time and distance travelled to increase
significantly due to the use of smaller vehicles that have to deliver multiple routes instead of one.
Hence, the traditional idea of a city hub is found not feasible in combination with the parcel delivery

market. Instead, the design of Figure 7-4 is proposed for parcel deliveries in cities.

With the proposed city hub design, big transporting companies are responsible for the electrification
of their vehicle fleet that conducts deliveries in cities. The city hub can then be used to consolidate
the shipments of smaller transporters and tranship them onto the dense routes of the big transporters.
The effect of the city hub on the distance driven per parcel becomes stronger, the more small
transporting companies are using the city hub. Thereby, traffic, time and especially GHG-emissions
can be reduced significantly. Moreover, the city hub could then also provide smaller vehicles for
special deliveries, like cargo bikes and stints, to enhance instant delivery services caused by

unknowing companies for instance.

By implementing the three proposed options, performance can be enhanced on most of the
sustainability criteria. The system offers more flexibility for customers and thereby customer
satisfaction is expected to increase. By the application of electric vehicles, the system is less
sensitive to the ‘Milieuzone’ policies of the municipalities. Furthermore, the implementation of the
city hub and the reduction of kilometres in the city reduces the traffic impact in the city significantly.
However, serious negotiations have to be done in order to align the responsibilities of stakeholders

with regard to the high investments have to be made to create the infrastructures.

8.3 Scientific reflection
So yes, the proposed system is more sustainable than the current way parcel delivery is conducted.

But, have these conclusions been based on solid research, and could the assumptions have any effect
on the outcomes of this research? What could have been done differently? What if other data becomes
available? Is the answer to the main research question really the answer to all problems, or, what is
needed extra to provide a more solid answer? All these questions are part of the reflection that is

presented in this paragraph.

First of all, the research got an early focus on the city hub option, since the city hub is one of the
projects PostNL was working on with other companies. Furthermore, the city hub is a reoccurring
theme among several municipal election programmes, while it is presumed that the municipalities do
not even know the implications for the parcel delivery market. In the first intension, the city hub will

only be used for deliveries inside the ‘Milieuzone’, whereas other areas of the city remain being

Conclusions and reflection

delivered by diesel vans. This has been included in the simulation and hence, the city hub might be

capable of reducing the emissions even further than simulated.

However, a city hub that can handle more than 30,000 parcels a day on average (average of PostNL
in Amsterdam plus the remainder of the market) requires a lot of space, man—-power and automation
to make it work. Moreover, the city hub looks more like a new sorting centre, with different parcels
from different companies. Hence, the intension of combining these streams is unfeasible, and other

options of designing the processes have to be considered.

Another assumption, or way of implementation, that could have affected the outcomes of this study,
is the ignorance of so—called route factors. The simulation model is built upon the Euclidian distances
between destinations, whereas in real-life normal roads would have been used. These routes are
always longer than the Euclidian distance, which is sometimes defined by a certain factor for certain
cities. Furthermore, there are reasons to assume that this factor smaller for bicycles compared to
cars, since bicycles are assumed to be able to drive through small alleys and shorter bicycle-lanes.
Hence, using a cargo bike might as well be faster in the city than currently defined in the simulation
model. Thereby, the case for a city hub focussed on these small electric vehicles might become even

stronger than shown by this research.

Furthermore, this study does not yet really provide insight in the impact on city congestion. Yes, by
implementing the alternative systems and combining them in an optimal way, the time and distance
parcel delivery vans drive in the city decrease and thereby, their impact on the traffic system reduces.
However, the parcel delivery and express market is only accountable for 4% of the GHG-emissions
in cities. The remaining GHG-emissions are from other sectors and the inhabitants themselves.
Hence, the question is raised whether or not reducing the distance and time parcel delivery vehicles
drive in cities helps solving the congestion problems. At least the sector is becoming more sustainable

and the focus may have to shift to another sector, or personal mobility, to mitigate city congestion.

Lastly, the simulation model is based on regular delivery assignments that look mostly like the normal
home delivery (small number of parcels per stop, average sized parcels). This implies that special
deliveries are left out of the simulation, in explicit, deliveries with 4+ parcels or deliveries that
contain washing machines and have to be connected. Hence, the simulation only provides insight in
the average situation and not in exceptions. If parcel dimensions are considered while creating the
demand, a more accurate estimation of the vehicle capacity can be made. This may lead to benefits
for electric vans in the process, as they are less sensitive for large-sized parcels. In explicit, the
bigger and heavier the parcel, the lower the probability that it fits in a cargo bike. Thereby, the

applicability of cargo bikes for the complete process of parcel deliveries becomes questionable.

Conclusions and reflection
8.4 Recommendations for further research
To conclude this chapter, and this thesis, some recommendations for further research are proposed.
First, following the two different propositions made in 7.2, different operational structures for the
city hub should be studied in more detail. In explicit, it should be defined what the responsibilities
are for each of the stakeholders, so an organisational structure can be designed around it. Besides,

this clarifies the requirements for new [T-systems that could be implemented.

Second, it is advised to further investigate the traffic flows in cities in relation to city logistics. How
do they develop over time, and how are they related to (personal) mobility? Thereby, the current
simulation model can be integrated with the traffic model to see the effects on traffic and congestion
by changing different professional sectors. Furthermore, bicycle networks should be included in the
analysis, as city logistics alternatives are moving towards these vehicles for transportation. Despite

the benefits, bicycles can also cause congestion, thus getting more insight therein is important.

Third, related to the second recommendation, it is advised to study the route factors of cities in the
Netherlands for both (electric) vans and bicycles. Thereby, more accurate results of the analyses as
conducted in this study can be obtained. To obtain these factors, the road network in relation to the
locations of physical addresses has to be analysed. Then, the route factor is defined as the average
factor of the physical route distance (by road) being longer than the Euclidian distance between all
locations in the area. As already mentioned, it is expected that the route factor of bicycles is smaller

than the route factor for (electric) vans, which could strengthen the case for city hubs with bicycles.

Fourth, logistics service providers and municipalities should investigate how to design a universal
locker infrastructure that can be used by multiple parties. The assumption is that many lockers will
be placed in public areas. So, just like the garbage collection points in Dutch cities, which is managed
by the municipality itself, (underground) lockers could be located near these points. Hence, the
investment in lockers becomes a public investment and publicly owned as a solution to a mainly public
problem. The main aspects to study are still the design and IT-system behind these lockers, so that

all different parties have access to these lockers.

PostNL
Lastly, with regard to PostNL, the company supporting this research, some follow—up actions have

been proposed. Namely, company has to investigate the investments to be made before they would
be able to establish the sustainable last mile system as proposed in this study. What is possible by
themselves, and what is needed from other stakeholder in order to achieve it all? Also, PostNL is
advised to think of ways to facilitate the city hub. Important to consider is the importance of remaining
the front-runner in the subject. If the feasible organisation has been found, it is key to spread the

system among the big cities in order to comply to the Green Deal ZES (Green Deal ZES, n.d.).

References

References

Caliskan, A., Kalkan, M., & Ozturkoglu, Y. (2017). City logistics: Problems and recovery proposals.
International Journal of Logistics Systems and Management, 26(2), 145-162. doi:DOI:
10.1504/1JL.SM.2017.081497

ACM. (2016). Post- en pakkettenmonitor 2016.

Ahi, P., & Searcy, C. (2013). A comparative literature analysis of definitions for green and sustainable
supply chain management. Journal of Cleaner Production, 52, 329-341.

Ahold Delhaize. (n.d.). Bol.com pick—up points expand to almost all Albert Heijn stores. Retrieved 03
06, 2018, from Ahold Delhaize: https://www.aholddelhaize.com/en/media/media—
releases/bolcom-pick—-up-points—expand-to—-almost—all-albert—heijn—stores/

Allen, M., Spencer, A., Gibson, A., Matthews, J., Allwood, A., Prosser, S., & Pitt, M. (2015). Right cot,
right place, right time: improving the design and organisation of neonatal care networks — A
computer simulation study. Health Services and Delivery Research, X20).

Ampe, J., & Macharis, C. (2008). The use of multi—criteria decision analysis (MCDA) for the evaluation
of transport projects: a review. Journal of Multi—Criteria Decision Analysis, XX.

ANWRB. (2017, December 27). Files nauwelijks toegenomen in 2017. Retrieved March 02, 2018, from
ANWB: https://www.anwb.nl/verkeer/nieuws/nederland/2017/december/files—nauwelijks-
toegenomen—-in-2017

Arnold, F., Cardenas, 1., Sorensen, K., & Dewulf, W. (2018). Simulation of B2C e—-commerce
distribution in Antwerp using cargo bikes and delivery points. EFuropean Transport Research
Review, 10(2), 1-13.

Bakr, S. (2018, 04 19). Interview UCCs. (J. Daleman, Interviewer)

Bansal, T. (2010). Network for Business Sustainability. Retrieved March 30, 2018, from
http://nbs.net/wp-content/ uploads/Primer_Business_Sustainability.pdf

Behiri, W., Belmokhtar-Berraf, S., & Chu, C. (2018). Urban freight transport using passenger rail
network: Scientific issues and quantitative analysis. 7ransportation Research Part E, 115,
227-245.

Boer, E. d., Kok, R., Ploos van Amstel, W., Quak, H., & Wagter, H. (2017). Outiook City Logistics
2017. Topsector Logistics.

Brown, J., & Guiffrida, A. (2014). Carbon emissions comparison of last mile delivery versus customer
pickup. International Journal of Logistics Research and App/lications, 176), 503-521.
Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the Box: a participatory computer—assisted

approach to scenario discovery. 7Technology Forecast for Societal Change, 34-49.

Cardenas, 1., Beckers, J., & Vanelslander, T. (2017). E-commerce last-mile in Belgium: Developing

an external cost delivery index. Research in Transportation Business & Management, In

Press.

References

CBS. (2016). Meer Nederlanders shoppen online. Retrieved March 02, 2018, from CBS:
https://www.cbs.nl/nl-nl/nieuws/2016/24/meer—nederlanders—-shoppen-online

CBS. (2017a, May 16). Hogere CO2-uitstoot in het eerste kwartaal 2017. Retrieved March 02, 2018,
from CBS: https://www.cbs.nl/nl-nl/nieuws/2017/20/hogere-co2-uitstoot—-in—het-eerste-
kwartaal-2017

CBS. (2017b, August 16). Lagere COZ2-uitstoot in het tweede kwartaal 2017. Retrieved March 02,
2018, from CBS: https://www.cbs.nl/nl-nl/nieuws/2017/33/lagere—co2-uitstoot-in—het-
tweede—kwartaal-2017

CBS. (2017c, November 14). COZ2-uitstoot vijwel even hoog in derde kwartaal 2017. Retrieved March
02, 2018, from CBS: https://www.cbs.nl/nl-nl/nieuws/2017/46/co2-uitstoot-vrijwel-even—
hoog-in—-derde-kwartaal-2017

CBS. (2018, February 14). Lagere CO2-uitstoot in het vierde kwartaal 2017. Retrieved March 03,
2018, from CBS: https://www.cbs.nl/nl-nl/nieuws/2018/07/lagere—co2-uitstoot—-in—het-
vierde—kwartaal-2017

CBS. (2018b, March 09). Kerncijfers wijken en buurten 2017. Retrieved 07 25, 2018, from Statline:
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83765NED/table?ts=1529053570930

Christopher, M. (1998). In Logistics and Supply Chain Management — Strategies for reducing costs
and improving services (2nd Edition ed., p. p. 15). London.

Clausen, U., Geiger, C., & Poting, M. (2016). Hands—-on testing of last mile concepts. 7Zransportation
Research Procedia, 14(2016), 1533-1544.

De Marco, A., Mangano, G., & Zenezini, G. (2018). Classification and benchmark of City Logistics
measures: An empirical analysis. /International Journal of Logistics: Research and
Applications, 21(1), 1-19.

Edwards, J., McKinnon, A., & Cullinane, S. (2010). Comparative analysis of the carbon footprints of
conventional and online retailing: A "last mile" perspective. /nternational Journal of Physical
Distribution and Logistics, 40X1/2), 103-123.

Edwards, W. (1977). How to use multiattribute utility measurement for social decision making. /EEE
Transaction on Systems, Management and Cybernetics, A5), 326-340.

EIA. (2017). International Energy Outlook 2017. Retrieved September 30, 2017, from US
Environmental Information Administration:
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

Ekowicaksono, 1., Bukhari, F., & Aman, A. (2016). Estimating Origin—Destination Matrix of Bogor City
Using Gravity Model. /OP. Conf. Series. Earth and Environmental Science, 31, 1-5.

Elkington, J. (2002). Cannibals with forks: the triple bottom line of 21st century business. Oxford:
Capstone.

Engert, S., & Baumgartner, R. (2015). Corporate sustainability strategy - bridging the gap between

formulation and implementation. Journal of Cleaner Production, 1132016), 822-834.

References

Esfahbodi, A., Zhang, Y., Watson, G., & Zhang, T. (2017). Governance pressures and performance
outcomes of sustainable supply chain managment — An empirical analysis of UK manufacturing
industry. Journal of Cleaner Production, 155, 66-78.

European Commission. (2015). Summary of Responses to the European Commission's 2015 Public
Consultation on Cross—border Parcel Delivery. European Union.

European Union. (2013). General Union Environment Action Programme to 2020: Living well, within
the limits of our planet. Brussels: European Union.

Gevaers, R., Van de Voorde, E., & Vanelslander, T. (2009). Characteristics of innovations in last mile
logistics. University of Antwerp, Department of Transport and Regional Economics, Antwerp.

Gillespie, B., & Rogers, M. M. (2016). Sustainable Supply Chain Management and the End User:
Understanding the Impact of Socially and Environmentally Responsible Firm Behaviors on
Consumers' Brand Evaluations and Purchase Intentions. Journal of Marketing Channels, 23(1-
2), 34-46.

Gogas, M., & Nathanail, E. (2017). Evaluation of Urban Consolidation Centers: A Methodological
Framework. Procedia Engineering, 1758(2017), 461-471.

Green Deal ZES. (n.d.). Doel Retrieved March 05, 2018, from Zero Emission Stadslogistiek:
https://greendealzes.connekt.nl/doel/

GRI. (2017). Reporting on the SDGs. Retrieved March 02, 2017, from Global Reporting:
https://www.globalreporting.org/information/SDGs/Pages/Reporting—on-the—-SDGs.aspx

Hiinteler, R. (2018). Informatie—uitwisseling avondbelevering. (J. Daleman, Interviewer)

Hadavi, S., Macharis, C., & Van Raemdonck, K. (2018). The Multi-Actor Multi—-Criteria Analysis
(MAMCA) Tool: Methodological Adaptations and Visualizations. Advances in Intelligent
Systems and Computing, 572 39-53.

Hedges, A. (2002). Finding distances based on Latitude and Longitude. Retrieved 07 30, 2018, from
Andrew Hedges: https://andrew.hedges.name/experiments/haversine/

[EEE. (2013). IEEE Guide - Adoption of the Project Management Institute (PMI) Standard A Guide to
the Project Management Body of Knowledge (PMBOK) Guide.

Janjevic, M., & Ndiaye, A. (2017). Investigating the financial viability of urban consolidation centre
projects. Research in Transportation Business & Management, 24(2017), 101-113.

Johnson, D., & McGeoch, L. (1995). The Travelling Salesman Problem: A Case Study in Local
Optimization. In E. Aarts, & J. Lenstra, Local Search in Combinatorial Optimization (pp. 215-
310). London: John Wiley and Sons.

Kafle, N., Zou, B., & Lin, J. (2017). Design and modeling of a crowdsource—enabled system for urban
parcel relay and delivery. 7ransportation Research Part B, 99, 66-82.

Kelton, D., Sadowski, R., & Sturrock, D. (2003). Simulation with Arena.

References

Kenniscentrum InfoMil. (n.d.). Shapefile en csv-bestand. Retrieved 07 25, 2018, from Kenniscentrum
InfoMail: https://www.infomil.nl/onderwerpen/lucht-water/luchtkwaliteit/slag/monitoren-
nsl/handleiding/monitoringstool/exporteren/shapefile-csv/

Khan, D., Varshney, P., & Quadeer, M. (2011). E-commerce: from shopping carts to credit cards.
IEEE International Conference on Communication Software and Networks (ICCSN). Xi'an:
IEEE.

KiM. (2016). Mobiliteitsbeeld 2016. Den Haag. Retrieved March 02, 2018, from
http://web.minienm.nl/mob2016/index.html

Kishna, M., Niesten, E., Negro, S., & Hekkert, M. (2017). The role of alliances in creating legitimacy
of sustainable technologies: A study on the field of bio—plastics. Journal of Cleaner Production,
155(1), 7-16.

Kleijnen, J. (2001). Experimental Design for Sensitivity Analysis of Simulation Models. Tilburg.

Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source toolkit for exploratory
modeling, scenario discovery and (multi—objective) robust decision making. Environmental
Modelling & Software, 96(2017), 239-250.

Lee, S., Avanchi, A., & Abourisk, S. (2010). Modeling Framework and Architecture for Hybrid System
Dynamics and Discrete Event Simulation for Construction. Computer-Aided Civil And
Infrastructure Engineering, 26(2), 77-91.

Ligterink, N., van Zyl, P., & Heijne, V. (2016). Dutch COZ2 emissions factors for road vehicles. Earth,
Life and Social sciences. Utrecht: TNO.

Lohn, A. J. (2017). What's the Buzz? City—scale Impacts of Drone Delivery. Santa Monica: RAND
Corporation.

Lowe, R., & Rigby, M. (2013). The Last Mile — Exploring the online purchasing and delivery journey.
Conlumino.

Macharis, C., Turcksin, L., & Lebeau, K. (2012). Multi actor multi criteria analysis (MAMCA) as a tool
to support sustainable decisions: State of use. Decision Support Systems, 54(2012), 610-620.

Maes, J., & Vanelslander, T. (2012). The use of bicycle messengers in the logistics chain, concepts
further revised. Procedia — Social and Behavioral Sciences, 39, 409-423.

McKinsey & Company. (2017). An integrated perspective on the future of mobility. Center for
Business and Environment. McKinsey & Company.

Ministerie van Infrastructuur en Waterstaat. (2018). Aanpassing Nationaal Samenwerkingsprogramma
Luchtkwaliteit (NSL) 2018. Den Haag.

Nijhuis, M. (2018, 04 24). Prestaties fietsnetwerk. (J. Daleman, Interviewer)

Page, J. (n.d.). Centroid of a triangle (Coordinate geometry). Retrieved 07 25, 2018, from Math open
reference: https://www.mathopenref.com/coordcentroid.html

PBL. (2016). Trends in global COZ2 emissions: 2016 report. Den Haag: PBL.

References

Ploumen, E. M. (2016, September 30). Brief van de Minister voor Buitenlandse Handel en
Ontwikkelingssamenwerking [Kamerbrief]. Den Haag.

PostNL. (2017). Position Paper Pakketten. PostNL.

PostNL. (2017, 05 17). PostNL replaces 100 car rides with e—cargo bicycles in Amsterdam. Retrieved
05 31, 2018, from PostNL: https://www.postnl.nl/en/about-postnl/press—
news/news/2017/postnl-replaces—100-car-rides—with-e—cargo-bicycles—in—
amsterdam.html

PostNL. (2018). Accelerating transformation: Annual report 2017. Den Haag: PostNL.

PostNL. (2018). Analyse PostNL gemeenteraadsverkiezingen 2018. Den Haag.

PostNL. (n.d.). Uw pakket ophalen bij een PostNL-locatie. Retrieved 03 07, 2018, from PostNL:
https://www.postnl.nl/ontvangen/pakket—-ontvangen/ophalen-op—een-postnl-locatie/

Pruyt, E. (2013). Small Systems Dynamics Models for Big Issues. Delft.

Rezaei, J. (2015). Best—worst multi—criteria decision—making method. Omega, 53, 49-57.

Rijkswaterstaat. (n.d.). NSL. Retrieved March 27, 2018, from InfoMil:
https://www.infomil.nl/onderwerpen/lucht-water/luchtkwaliteit/regelgeving/wet-
milieubeheer/nsl/

Robinson, D. (2017, 09 06). /ncredible growth python. Retrieved 07 25, 2018, from StackOverflow:
https://stackoverflow.blog/2017/09/06/incredible-growth—-python/

Sargent, R. G. (2010). Verification and Validation of Simulation Models. Proceedings of the 2010
Winter Simulation Conference (pp. 166-183). IEEE.

Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management.
Decision Support Systems, 54, 1513-1520.

Seuring, S., & Miiller, M. (2008). From a literature review to a conceptual framework for sustainable
supply chain management. Journal of Cleaner Production, 16, 1699-1710.

Simoni, M., & Claudel, C. (2018). A simulation framework for modeling urban freight operations
impacts on traffic networks. Simulation Modelling Practice and Theory, 86, 36-54.

Smit, C. (2018). Uitleg Lockers. (J. Daleman, Interviewer)

Stadtler, H. (2004). 1 Supply Chain Management — An Overview. In H. Stadler, & C. Kilger, Supply
Chain Management and Advanced Planning (Third Edition ed.). Berlin: Springer.

Stein, D. M. (1978). An asymptotic, probablistic analysis of a routing problem. Mathematics of
Operations Research, 32), 89-101.

Székely, F., & Knirsch, M. (2005). Responsible Leadership and Corporate Social Responsibility:
Metrics for sustainable performance. European Management Journal, 236), 628-647.

Tako, A., & Robinson, S. (2012). The application of discrete event simulation and system dynamics
in the logistics and supply chain management context. Decision Support Systems, 52, 802-

815.

References

Thuiswinkel waarborg. (2017, September 01). Online bestedingen stijgen in de eerste zes maanden
van 2017 met 13% naar €10,66 miljard Retrieved March 02, 2018, from Thuiswinkel:
https://www.thuiswinkel.org/nieuws/3532/online-bestedingen—-stijgen—-in—eerste—zes-
maanden-van—-2017-met-13-naar-10-66-miljard

Thuiswinkel.org. (2018). Bewust Bezorgd. Retrieved from Thuiswinkelwaarborg:
https://bewustbezorgd.thuiswinkel.org/wat—-is—bewust—-bezorgd/

Thuiswinkel.org. (n.d.). Wat 1is Thuiswinkelwaarborg? Retrieved March 27, 2018, from
Thuiswinkelwaarborg: https://www.thuiswinkel.org/consumenten/wat-is—-thuiswinkel-
waarborg

TLN. (2018, March 20). Harde afspraken milieuzones voor vrachtverkeer. Retrieved March 26, 2018,
from TLN: https://www.tln.nl/actueel/nieuws/Paginas/Harde—afspraken-milieuzones-voor-
vrachtverkeer.aspx

TLN. (2018, March 20). Harde afspraken milieuzones voor vrachtverkeer. Retrieved March 27, 2018,
from TLN: https://www.tln.nl/actueel/nieuws/Paginas/Harde—afspraken-milieuzones-voor-
vrachtverkeer.aspx

Tuinhout, L. (2018, March 05). Interview City Logistics. (J. Daleman, Interviewer)

United Nations. (2015). Sustainable development goals. Retrieved March 20, 2018, from United
Nations: http://www.un.org/sustainabledevelopment/sustainable-development-goals/

Vaandrager, M. (2018, 02 19). Rondleiding in Houten. (J. Daleman, Interviewer)

Vaandrager, M. (2018b, August 02). Update gesprek model. (J. Daleman, Interviewer)

van Benten, W. (2017). Position Paper DHL. DHL Nederland.

van den Berg, B. (2018, 04 26). Avondbezorging gesprek. (J. Daleman, Interviewer)

van Soest, J. (1992). Elementaire statistiek. Delft: VSSD.

van Spronsen, M., & Meijer, E. (2018, August 01). Bespreken uitkomsten model. (J. Daleman,
Interviewer)

van Spronsen, M., & Middelburg, D. (2018, Febuary 02). Material topics, SDG's en jaarverslag. Den
Haag.

Verbeek, R., Bolech, M., van Gijlswijk, R., & Spreen, J. (2015). Energie— en milieu-aspecten van
elektrische personenvoertuigen. Delft: TNO.

Vincke, P. (1992). Multicriteria Decision—aid. New York: John Wiley & Sons.

Vrije Universiteit van Amsterdam. (2017). Postcode map of the Netherlands. Retrieved 07 25, 2018,
from Geoplaza: http://geoplaza.vu.nl/data/dataset/postcode

Vyt, D., Jara, M., & Cliquet, G. (2017). Grocery pickup creation of value: Customers' benefits vs.
spatial dimension. Journal of Retailing and Consumer Services, 39X2017), 145-153. doi:DOL:
http://dx.doi.org/10.1016/j.jretconser.2017.08.004

References

Walker, W. E., Marchau, V., & Kwakkel, J. (2013). Uncertainty in the Framework of Policy Analysis.
In W. Thissen, & W. Walker, Public Policy Analysis (pp. 215-261). New York: Springer
Science+ Business Media.

Wang, Y., Zhang, D., Liu, Q., Shen, F., & Hay Lee, L. (2016). Towards enhancing the last—mile
delivery: An effective crowd-tasking model with scalable solutions. 7ransportation Research
Part E, 953 279-293.

WCED. (1987). Our Common Future. Oxford: Oxford University Press.

White, K., & Ingalls, R. (2009). Introduction To Simulation. Proceedings of the 2009 Winter Simulation
Conference (pp. 12-23). IEEE.

Wiegerinck, A. (2018, July 31). Model validatie Jasper. (J. Daleman, Interviewer)

Zhu, Q., Feng, Y., & Choi, S.-B. (2017). The role of customer relational governance in environmental

and economic performance improvement through green supply chain management. Journal of

Cleaner Production, 1552), 46-53.

References

Appendices

Appendices

APPENDIX I: Determining Weights Of the Criteria.....c.cccceeiiuueriiuieiiuerirniereeerrreiereeerernesreenessenssennes 99
APPENDIX II: Determine the Best—-Worst case scenarios of the alternatives’ performance.......... 109
APPENDIX ITT: MAMCA=ANALYSIS coeeieeetiiiinnieeeeeeeetiieenuieeeeeeeetteeennieeseseeeeememnnnanessseeeereeesnnnssssseeseee 113
APPENDIX IV: Analysing Amsterdam—PostNL Data........ccccueieiuieirueriinirrinerereeereeerenneereeererneseees 121
APPENDIX Vi MOAEL Class...cceuuueiiiiinenieiiiee ettt eetieeeeetteiee s ettt s eetenaeesetanneeseeteneeseetennessenennensens 129
APPENDIX VI: Distribution Centre ClasS.....cciciuuiiiiiiumii ettt et eettenee e eeteneeeetenaeeeeeenneaees 143
APPENDIX VII: VERICIE ClaSS ceeuuiiiiiiiiiiiiiaeieiiiee ettt tetteee et sttt eeettenee s eetenaeseetenaseeannensens 149
APPENDIX VIII: Setup the Parcel LOCKErS...c.cuuuuiiiiiiiiieiiice ettt cetteee s eetene s eereneeeeeenneee 173
APPENDIX IX: Setup the simulation modelccoiiiimiiiiiiiiiiiiii ettt eeeeeae e 181
APPENDIX X: Sensitivity ANalySiS..ieu. ettt et eeteeeeeetteneeseeteneeseetenaseerannensees 187
APPENDIX XI: Determining the number of replications (Van S0€st)........ccccceeeeeeerriviereeeeeereenssnnnnns 201
APPENDIX XII: How to set—up the simulation model to conduct experiments?.........cceeeeeurerernnnnnns 205

APPENDIX XIII: AnalySing the @XDerimMENtS . iuu i ieiiieeneiienetietereererereenerernererncrersersesesesesncsesnsenes 209

Appendices

APPENDIX I: Determining Weights of the criteria

APPENDIX I: Determining Weights of the criteria

Determining the weights of the criteria

The weights of the criteria are based on the individual assessments of experts' opinions. The experts have
been asked to fill in a form and rank the criteria for each of the stakeholders. Thereby, several perceptions on
the same problem have been gathered and have been analysed in this notebook.

Reading the Excel-sheets

Each of the experts' opinions have been stored in a separate sheet in an Excel file. Each sheet is read into
memory separately and stored in a Pandas DataFrame to make the next steps easier.

In [1]:

Imports of necessary libraries
import numpy as np
import pandas as pd

In [2]:

Names of the experts that have been interviewed
names = ['Marielle', 'Marien', 'Sam', 'Valerie', 'Mark', 'Rogier', 'Ruben’']

Dictionary to store the DataFrames
AllRankings = {}

By iterating through the names defined above, the Excel-sheets are opened.
for name in names:

df = pd.read_excel('Criteria%s.xlsx' %name) # Open Excel-sheet

df.name = name # Assigning the name to the DataFrame

AllRankings[name] = df # Store DataFrame in previously defined dictionary

In [3]:

Showing one example DataFrame
AllRankings['Marielle’]

Out[3]:
Safi
Delivery | Delivery | Emissions | Customer rkiae Se
Cost Time | reduction | satisfaction .wo n9 Res
environment
Consumers/recipients (2.0 1.0 NaN 3.0 NaN Nah
Suppliers 2.0 2.0 3.0 1.0 3.0 2.0
Logistics providers 2.0 2.0 3.0 2.0 3.0 1.0
Governments NaN NaN 1.0 NaN 1.0 NaN
Branche NaN [NaN 1.0 NaN NaN Nah
organisations

APPENDIX I: Determining Weights of the criteria

The universal weight function

The weight function contains three different parts:

1. Calculating the reciprocal values
2. Calculate the normalised values of the cells
3. Determine the means of each column

Reciprocal Values
The reciprocal values are equal to 1/rank in the corresponding cell.

Normalised Values
First, the sum of the rows is calculated, followed by dividing the reciprocal value by the row-total

Means speak for itself.

In [4]:

def Weighing(df):

Calculating the Reciprocal values

reciprocal = 1/df

reciprocal.replace(np.nan, 0, inplace=True)

Summing the rows

totals = reciprocal.sum(axis=1)

Calculating the normalised DataFrame

normalised = reciprocal.copy()

for index, row in reciprocal.iterrows():
temp = row/totals[index]
normalised.loc[index] = temp

Calculating the averages

avg = normalised.mean(axis=0, skipna=False)

avg.name = 'Averages'

Make one DataFrame that will be returned

normalised = normalised.append(avg)

return normalised

In [5]:

Applying the function for each DataFrame in the dictionary
NormalisedMeans = {}

for name in names:
temp = AllRankings[name]
temp = Weighing(temp)
NormalisedMeans[name] = temp

APPENDIX I: Determining Weights of the criteria

In [6]:

Show example
NormalisedMeans|['Marielle']

Oout[6]:

Delivery | Delivery | Emissions| Customer ool Se:

workin
Cost Time | reduction | satisfaction . 9 Resj
environment

Consumers/recipients |0.240000 |0.480000 (0.000000 |0.160000 0.000000 0.00

Suppliers 0.146341 |0.146341 |0.097561 |0.292683 0.097561 0.14

Logistics providers 0.126582 |0.126582 (0.084388 |0.126582 0.084388 0.25!

Governments 0.000000 |0.000000 |0.285714 |[0.000000 0.285714 0.00!

Branche

s 0.000000 |0.000000 [0.333333 |0.000000 0.000000 0.00
organisations

Averages 0.102585 |0.150585 (0.160199 |0.115853 0.093533 0.07

Determine the mean of all the average weights

Now, the mean of all the average weights can be determined. Hence, it becomes clear what criterion is
valued higher on average than others among the different experts' perceptions.

In [7]:

APPENDIX I: Determining Weights of the criteria

avgdf = pd.DataFrame(columns=NormalisedMeans|['Marielle'].columns)

for name in names:
df = NormalisedMeans[name]
avg = df.loc['Averages']

avg.name =

'Averages_'+name

avgdf = avgdf.append(avg)

avgdf

Out[7]:

Delivery | Delivery | Emissions | Customer worlsciar:: Securi

Cost Time | reduction |satisfaction environment Respons

Averages_Marielle |0.102585 [0.150585 |0.160199 [0.115853 0.093533 0.079901
Averages_Marien |0.141394 [0.081501 |0.228049 |0.168403 0.048134 0.039401
Averages_Sam 0.142129|10.137584 |0.117343 |0.142129 0.103057 0.09650(
Averages_Valerie |0.109145 [0.125037 |0.160574 |0.159899 0.065499 0.10999¢
Averages_Mark 0.261030 |0.105353 [0.111692 |0.152169 0.062221 0.06806¢
Averages_Rogier |0.181379|0.212149 |0.138602 |0.090690 0.080030 0.08003(
Averages_Ruben |0.226718 [0.109061 |0.085294 [0.147345 0.156577 0.11931(

In [8]:

average_criteria
average_criteria

Out[8]:

Delivery Cost
Delivery Time

= avgdf.mean(axis=0)

Emissions reduction
Customer satisfaction

Safe working environment

Security and Responsibility

Traffic impact

Investments in infrastructure
Policy sensitivity

dtype: floaté64

.166340
.131610
.143108
.139498
.087007
.084744
.107025
.065548
.075120

OO0 OO0 O0OO0 OO0 Oo

APPENDIX I: Determining Weights of the criteria

In [9]:

stdev_criteria = avgdf.std(axis=0)
stdev_criteria

out[9]:

Delivery Cost 0.059697
Delivery Time 0.042100
Emissions reduction 0.046234
Customer satisfaction 0.027148
Safe working environment 0.036002
Security and Responsibility 0.026928
Traffic impact 0.037619
Investments in infrastructure 0.017458
Policy sensitivity 0.024613

dtype: floaté64

Approach 2

Now, a different approach is applied to see whether that makes a difference in the average weights of the
criteria that the experts filled in. Instead of taking the average of all average scores, the comparison will now
take the average ranking into account. Hence, maybe a more accurate estimation of the weights can be
obtained.

First, a new function to determine the average rank is defined. This uses the reciprocal values of each
criterion and determines an average.

APPENDIX I: Determining Weights of the criteria

In [10]:

Takes the Normalised dictionary as base

def avg_rank(dic):
new_dict = {}
Ist = []
for key in dic['Marielle'].columns:
new_dict[key] = pd.DataFrame(index=dic['Marielle’].index)

for key in dic.keys():

df = dic[key]

for crit in df.columns:
newdf = new_dict[crit]
ser = df[crit]
ser.name = crit+' '+key
newdf = pd.concat([newdf, ser], axis=1)
new_dict[crit] = newdf

Determine average over the columns

avg = {}

for key in new_dict.keys():
averages = new_dict[key].mean(axis=1)
stdev = new_dict[key].std(axis=1)
averages = averages.drop('Averages')
stdev = stdev.drop('Averages')
averages|['Average'] = averages.mean()
stdev['Average'] = stdev.mean()
averages.name = 'Average’
stdev.name = 'Standard Deviation'
avg[key] = pd.concat([averages, stdev], axis=1)

return avg

In [11]:

avg = avg_rank(NormalisedMeans)
avg['Delivery Cost']

Out[1l1l]:

Average | Standard Deviation

Consumers/recipients [0.227952 [0.143048

Suppliers 0.251559 | 0.077309

Logistics providers 0.231229 | 0.087464

Governments 0.026700 |0.034560

Branche organisations |0.094260 |0.126737

Average 0.166340 | 0.093823

APPENDIX I: Determining Weights of the criteria

As can be noticed, the average of all the stakeholders taken together is exactly the same as the approach 1.
However, since the mean of the standard deviation of each individual actor is taken, the standard deviation
of the second approach is slightly higher than before. So, it can be concluded that there is slightly more
variation in the results than the former approach reflected. Hence, the results from the second analysis will
be used throughout the remainder of the analysis.

Create different outcomes

Now it is time to create different outcomes for the average weights of the criteria, since there is a large
deviation in the data. Hence, alternatives will be weighed according to different schemes that will be created
by the following code.

The assumption is made that if one criterion is changed according to its standard deviation, this difference is
equally compansated among the other criteria.

APPENDIX I: Determining Weights of the criteria

In [113]:

def definitive weights(dic):
keys = dic.keys()
df = pd.DataFrame(columns=['Average', 'Standard Deviation'])
for key in keys:
crit = dic[key]
avgs crit.loc['Average']
avgs.name = key
df = df.append(avgs)

base_case = df['Average']

If weight decreases by stdev, the other criteria's weights increase
First the lowering scenarios

lowered = pd.DataFrame(columns=base_case.index)

1l = len(df) - 1 # Divider for remaining criteria

for key in df.index:
temp = df.copy()
lower = temp.loc[key, 'Average'] - temp.loc[key, 'Standard Deviation']
temp.loc[key, 'Average'] = lower
remaining = df.loc[key, 'Standard Deviation'] / 1

temp2 = temp.loc[temp.index != key, 'Average'] + remaining

for key in temp2.index:
temp.loc[key, 'Average'] = temp2.loc[key]

lowered = lowered.append(temp['Average'])

increased = pd.DataFrame(columns=base_case.index)

for key in df.index:
temp = df.copy()
higher = temp.loc[key, 'Average'] + temp.loc[key, 'Standard Deviation']
temp.loc[key, 'Average'] = higher
remaining = df.loc[key, 'Standard Deviation'] / 1

temp2 = temp.loc[temp.index != key, 'Average'] - remaining

for key in temp2.index:
temp.loc[key, 'Average'] = temp2.loc[key]

increased = increased.append(temp['Average'])
all cases = pd.concat([lowered, increased], axis=0)
all cases = all_cases.append(base_case)

all cases.reset_index(drop=True, inplace=True)

return all_cases

APPENDIX I: Determining Weights of the criteria

In [114]:

all cases = definitive_weights(avg)
all cases

Oout[114]:
Delivery | Delivery | Emissions| Customer worls:r:: Security and Traffic
Cost Time | reduction | satisfaction environment Responsibility | impact
0 |0.072517 |0.143338 (0.154836 |0.151226 0.098735 0.096472 0.118753
1 [0.174658 |0.065069 |0.151425 |0.147816 0.095325 0.093062 0.115343
2 |0.175260 |0.140530 (0.071747 |0.148418 0.095927 0.093664 0.115945
3 |0.175136 |0.140406 (0.151904 |0.069129 0.095804 0.093540 0.115821
4 |0.173285 (0.138554 [0.150052 |0.146443 0.031449 0.091689 0.113970
5 |0.173771|0.139041 [0.150539 |0.146930 0.094439 0.025294 0.114456
6 |0.174284 |0.139554 (0.151052 |[0.147442 0.094951 0.092688 0.043474
7 |0.171550|0.136819 |0.148317 |0.144708 0.092217 0.089954 0.112235
8 |[0.172664 [0.137934 [0.149432 |0.145823 0.093332 0.091068 0.113349
9 |0.260164 |0.119882 (0.131380 |0.127770 0.075279 0.073016 0.095297
10 (0.158022 [0.198151 |0.134790 |0.131181 0.078690 0.076426 0.098707
11 [{0.157420 |0.122690 |0.214468 |0.130578 0.078087 0.075824 0.098105
12 (0.157544 |0.122814 |0.134312 |0.209868 0.078211 0.075948 0.098229
13 {0.159395 |0.124665 |0.136163 |0.132554 0.142565 0.077799 0.100080
14 {0.158909 [0.124178 |0.135676 |0.132067 0.079576 0.144194 0.099594
15 (0.158396 |0.123666 |0.135164 |0.131554 0.079063 0.076800 0.170576
16 ({0.161130 |0.126400 |0.137898 |0.134289 0.081798 0.079534 0.101815
17 [{0.160016 |0.125285 |0.136783 |0.133174 0.080683 0.078420 0.100701
18 ({0.166340 [0.131610 |0.143108 |0.139498 0.087007 0.084744 0.107025
In [115]:

Store them in a new Excel file to be accessed later
all cases.to_excel('Weights_cases.xlsx')

APPENDIX I: Determining Weights of the criteria

APPENDIX II: Determine the Best—Worst case scenarios of the alternatives’ performance

APPENDIX II: Determine the Best-Worst case
scenarios of the alternatives’ performance

In this appendix, the procedure of setting up the best—, middle- and worst—-case scenarios for the
MAMCA-analysis has been further explained. First, a short recap to the foregoing research is
provided, introducing the alternative last mile delivery systems to choose from and the stakeholders’

criteria. Based on this recap, the best—, middle- and worst—case scenarios can be determined.

Research recap:
In advance of the scenario development, this study has identified several interesting alternative

systems to conduct last mile deliveries. These alternatives are summarised in Table O-1.

Table O—1- Alternative last mile systems

Alternative
Electrification of vehicle fleet
Cargo bikes
Evening and Night delivery
UCCs
CDPs and parcel lockers

Crowdsourcing logistics services

As the last mile delivery includes many different stakeholders, a stakeholder analysis has been
conducted. Based on this analysis, an assessment of their different points of view with regard to the
last mile problem has been conducted. These points of view have been translated into a set of criteria

by which each of the alternative systems as defined in Table O-1 can be analysed.

Before the analysis can be executed, the individual performance of each of the alternatives has to be
known. The performance numbers have been obtained by both desk research and interviews to clarify
the findings. Hence, each of the alternatives had an own Table in chapter 4, describing the individual

performance with regard to the critiria.

However, some of these performance numbers were defined as a range. These numbers were
uncertain and could only be treated as rough estimates. Hence, only conducting one analysis based
on numbers with high uncertainty would yield uncertain and unreliable outcomes. Therefore, it was
determined to apply a Best-Worst method with regard to the performance numbers, so that in both

scenarios it would become clear what would be an optimal alternative (Rezaei, 2015).

APPENDIX II: Determine the Best—Worst case scenarios of the alternatives’ performance
Determining the Best-Worst scenarios:
As mentioned before, the Best-Worst method was adopted to cover the uncertain variables along
their complete range. Hence, the best case is defined as the case where the performance on the
respective criterion is highest, while the worst case is defined as the case where the performance
on the respective criterion is the lowest. Furthermore, a medium scenario has been defined to provide

some more insight in the utilities if the ranges are averaged out.

Another important fact to mention is how the qualitative performance numbers are handled. Some of
the performances could only be described by a qualitative assessment of the expert that was
interviewed. However, these qualitative assessments also had to be translated to numerical values

for the SMART analysis. Therefore, the following Table 0-2 was constructed:

Table 0-2: Qualitative values translation

Target:

As low as Nothing Small Moderate High Very high

possible 1 0.75 0.5 0.25 0

Should Strongly Slightly Similar Slightly Strongly

decrease decrease decrease increase increase
1 0.75 0.5 0.25 0

Should Strongly Slightly Similar Slightly Strongly

increase increase increase decrease decrease
1 0.75 0.5 0.25 0

Based on the numerical performance and Table 0-2 for the qualitative performances, Table 0-3 was

constructed:

APPENDIX II: Determine the Best—Worst case scenarios of the alternatives’ performance

Table O-3- Performances input table

Alternative / EVs

Criterion
Costs 0;0;0
Time 0; 050
Emissions 0.3; 0.5;
0.7
Customer 0.5; 0.5;
satisfaction 0.5
Safety at 0.5; 0.5;
work 0.5

Security & 0.5 0.5;
responsibility 0-°
Traffic 0; 0; 0
impact

Investments 0; 050

infrastructure
Policy 0.5;
sensitivity 0.75; 1

Cargo
bikes
0.1; 0.1;
0.1

0.2; 0.35;
0.5

0.1; 0.2;
0.3
15151

0; 0; 0

0; 0; 0

0; 0.25;
0.5

0.75;
0.75; 0.75

1; 1

CDPs and UCCs

lockers
0.35; 0.35;
0.35

0.7; 0.7;
0.7

0.4; 0.55;
0.6

0.75; 0.75;
0.75

0.5; 0.5;
0.5

0; 0.125;
0.25

0.2; 0.3;
0.4

0.25; 0.5;
0.75

0.5; 0.625;
0.75

0.25; 0.25;
0.25

0; 0.125;
0.25

0.2; 0.6; 1

0.25; 0.25;
0.25

0.5; 0.5;
0.5

0.45; 0.45;
0.45

0; 0.125;
0.25

0.25;
0.375; 0.5

Evening
delivery

0; 0; 0

0.1; 0.175;
0.25
0.25;
0.375; 0.5
0.5; 0.625;
0.75

0.75; 0.75;
0.75

0.75; 0.75;
0.75
0; 0; 0

0; 0; 0

;1 1

Night
Delivery
0.4; 0.4;
0.4

0.5; 0.5;
0.5

0.7; 0.7;
0.7

0.5; 0.5;
0.5

0.5; 0.625;
0.75

0; 0; 0

0.25;
0.375; 0.5

0; 0; 0

0.25; 0.25;
0.25

Crowd-
sourcing

0; 0; 0

0; 0; 0

0; 0.15;
0.3

0.25;
0.25; 0.25

0.75;
0.75; 0.75

0; 0; 0

0.2; 0.25;
0.3

0.25;
0.375; 0.5

0; 0; 0

What can be noticed from Table 0-3 is that for some alternatives on certain criteria only one value

is defined for all three the cases (best—, middle- and worst—case). This is due to the fact that these

numbers were obtained by the desk research and have a proper reference in literature. Hence, there

was no reason to presume these estimates were false. Neither was there an indication for the margin

to consider. Therefore, only the value found in literature has been applied in Table 0-3. For all other

rough estimates, the best-worst cases have been defined as previously explained.

APPENDIX II: Determine the Best—Worst case scenarios of the alternatives’ performance

APPENDIX III: MAMCA-Analysis

APPENDIX III: MAMCA-Analysis

Conducting the analysis

Based on the different cases generated in the foregoing notebook, this notebook tries to generate the results
for all the different cases and tries to identify the most robust performing alternatives.

Importing libraries

In [1]:

import pandas as pd
import numpy as np

Reading the cases

In [2]:

WorstCase = pd.read_excel('Performance.xlsx', sheet name='WorstCase')
BestCase = pd.read excel('Performance.xlsx', sheet name='BestCase')
InBetween = pd.read excel('Performance.xlsx', sheet name='InBetween')

In [3]:
WorstCase
Out[3]:

Evs [CBs CDPs and UCCs Eve_nmg N'ght Crowdsourcing

Lockers Delivery | Delivery

Delivery Cost 00 [0.10]0.35 025 [0.00 040 |0.00
Delivery Time 0.0 |0.20|0.70 0.00 (0.10 0.50 0.00
Emissions 03 |0.10 |0.40 020 |0.25 070 0.0
reduction
Customer 05 [1.00]0.75 1.00 |0.75 0.50 0.25
satisfaction
Safe working 05 [0.000.50 025 [0.75 075 |0.75
environment
Security and 05 0.00(0.00 050 |0.75 0.00 0.00
Responsibility
Traffic impact |0.0 |0.50|0.20 0.45 [0.00 0.25 0.20
Investmentsin | 15 75025 0.00 |0.00 000 025
infrastructure
Policy sensitivity |0.5 |1.00|0.50 025 |[1.00 0.25 0.00

APPENDIX III: MAMCA-Analysis

In [4]:
BestCase
Out[4]:
CDPs and Eveni Night
Evs |CBs S an UCCs ve'mng '|g Crowdsourcing
Lockers Delivery | Delivery

Delivery Cost 00 |0.10035 025 [0.00 0.40 0.00
Delivery Time 00 [0.500.70 025 [0.25 0.50 0.00
—

missions 07 |0.30|0.70 1.00 |0.50 070 |0.30
reduction

Cust

ustorner 05 [1.000.75 1.00 |0.75 0.50 0.25
satisfaction

Safe working 05 |0.000.50 025 [1.00 1.00 |0.75
environment

Security and 05 |0.000.00 050 |0.75 000 |0.00
Responsibility

Traffic impact |0.0 |0.50 |0.40 0.45 [0.00 0.50 0.30
Investmentsin 1575075 025 |0.50 000 |0.50
infrastructure

Policy sensitivity |1.0 |1.00{0.50 0.50 [1.00 0.25 0.00

APPENDIX III: MAMCA-Analysis

In [5]:
InBetween
Out([5]:

DP d E i Night

Evs |CBs CDPs an UCCs ve.nmg .|g Crowdsourcing

Lockers Delivery | Delivery
Delivery Cost 0.00|0.10]0.350 0.250 [0.000 0.400 0.000
Delivery Time 0.00 |0.35|0.700 0.125 [0.175 0.500 0.000
EmISSI.ons 0.50|0.20|0.550 0.600 [0.375 0.700 0.150
reduction
Customer 050 |1.00 |0.750 1.000 (0500 |0.500 [0.250
satisfaction
Safeworking | .16 00 0500 0250 |0875 [0.625 |0.750
environment
Secunty.ar?(.’ 0.50|0.00|0.125 0.500 [0.750 0.000 0.000
Responsibility
Traffic impact 0.0010.50 |0.300 0.450 |[0.000 0.375 0.250
Investmentsin ;5 0.75 | 0.500 0125 [0.000 [0.000 [0.375
infrastructure
Policy sensitivity |0.75|1.00 (0.625 0.375 [1.000 0.250 0.000

Beside these scorecards, the different cases with weights for the criteria have to be loaded

APPENDIX III: MAMCA-Analysis

In [6]:
Cases = pd.read_excel('Weights_Cases.xlsx')
Cases
out[6]:

Delivery | Delivery | Emissions| Customer woriiar:; Security and Traffic

Cost Time | reduction |satisfaction environment Responsibility | impact

0 |0.072517|0.143338 [0.154836 |0.151226 0.098735 0.096472 0.118753
1 |0.174658 [0.065069 |0.151425 |0.147816 0.095325 0.093062 0.115343
2 |0.175260|0.140530 [0.071747 |0.148418 0.095927 0.093664 0.115945
3 |0.175136|0.140406 [0.151904 |0.069129 0.095804 0.093540 0.115821
4 [0.173285|0.138554 |0.150052 |0.146443 0.031449 0.091689 0.113970
5 |0.173771|0.139041 [0.150539 |0.146930 0.094439 0.025294 0.114456
6 [0.174284|0.139554 |0.151052 [0.147442 0.094951 0.092688 0.043474
7 |0.171550|0.136819 [0.148317 |0.144708 0.092217 0.089954 0.112235
8 [0.172664 |0.137934 |0.149432 |0.145823 0.093332 0.091068 0.113349
9 |0.260164 |0.119882 (0.131380 |(0.127770 0.075279 0.073016 0.095297
10|0.158022 (0.198151 |0.134790 |0.131181 0.078690 0.076426 0.098707
11]0.157420 (0.122690 |0.214468 |0.130578 0.078087 0.075824 0.098105
12|0.157544 (0.122814 |0.134312 |0.209868 0.078211 0.075948 0.098229
13 |0.159395 [0.124665 |0.136163 |0.132554 0.142565 0.077799 0.100080
14|0.158909 (0.124178 |0.135676 |0.132067 0.079576 0.144194 0.099594
15|0.158396 [0.123666 |0.135164 |0.131554 0.079063 0.076800 0.170576
16 |0.161130 [0.126400 |0.137898 |0.134289 0.081798 0.079534 0.101815
17 |0.160016 [0.125285 |0.136783 |0.133174 0.080683 0.078420 0.100701
18 |0.166340 (0.131610 |0.143108 |0.139498 0.087007 0.084744 0.107025

1. lterating through weights' cases

The first step in the analysis is to generate the utilities of the alternatives for each of the different cases of the
weights. Thereby, for each performance case (Best, Medium, Worst), 18 different outcomes are calculated.
These are analysed further in step 2.

Anyway, step 1 first defines the analysis function. This function does the same calculations for all the three
performance cases. First, it defines an empty dictionary in which the calculated outcomes are stored. Then,
the function iterates through the cases with the weights for the criteria, and the utilities of each alternative
are calculated for each case. These outcomes are finally stored in the dictionary and returned for later
reference.

APPENDIX III: MAMCA-Analysis

In [7]:

Small preparation
WorstCase.index = BestCase.index = InBetween.index = Cases.columns

In [8]:

def analysis(performances, weights):

outcomes_dict = {}

for idx, row in weights.iterrows():
outcomes = performances.multiply(row, axis=0)
scores = outcomes.sum(axis=0)
scores.name = 'Total Score'
outcomes = outcomes.append(scores)
outcomes_dict['Case%s' %idx] = outcomes

return outcomes_dict

In [9]:
BC_out = analysis(BestCase, Cases)
WC_out = analysis(WorstCase, Cases)

IB_out = analysis(InBetween, Cases)

Analyse the outcomes

So, for all of the alternatives the utilities for all different cases have been calculated and stored in the
corresponding dictionaries. However, these outcomes have to be analysed a second time. Moreover, this
second step of the analysis calculates the mean and the standard deviation of the alternatives.

The function is shown below.

In [10]:

def analyse_scores(outcomes):
scoredf = pd.DataFrame (columns=outcomes['Casel'].columns)
for case in outcomes.keys():
df = outcomes|[case]
scores = df.loc['Total Score']
scoredf = scoredf.append(scores)
avg_score = scoredf.mean(axis=0)
stdev = scoredf.std(axis=0)

return avg_score, stdev

In [11]:

BC_scores, BC_dev = analyse scores(BC_out)
WC_scores, WC_dev analyse_scores (WC_out)
IB_scores, IB_dev analyse_scores(IB_out)

APPENDIX III: MAMCA-Analysis

In [12]:

BC_scores

out[12]:

Evs 0.330921
CBs 0.442663
CDPs and Lockers 0.528179
UCCs 0.523326
Evening Delivery 0.467540
Night Delivery 0.461565
Crowdsourcing 0.207944

dtype: float64

In [13]:

BC_dev

Oout[13]:

Evs 0.024623
CBs 0.026588
CDPs and Lockers 0.016469
UCCs 0.022668
Evening Delivery 0.028068
Night Delivery 0.018789
Crowdsourcing 0.016944

dtype: floaté64

Lets show all the results in separate figures to see the dominant alternatives

In [14]:

import matplotlib.pyplot as plt
$matplotlib inline

Plot the outcomes

In [15]:

def plot(scores, devs):
df = pd.concat([scores, devs], axis=1)
df.columns = ['Scores', 'Standard Deviations']
df.index = scores.index

df = df.sort_values(by='Scores', ascending=False)
X = np.arange(0, len(df)*2, 2)

plt.style.use('ggplot')

plt.xticks(rotation=90)

plt.title(scores.name)

plt.bar(x, df['Scores'].values, tick_label=df.index, width=1.5, yerr=df['Sta
ndard Deviations'].values)

APPENDIX III: MAMCA-Analysis

In [16]:

BC_scores.name = 'Best Case'
plot (BC_scores, BC_dev)

Best Case

05 -

04 -

03-

02-

01-

00 - ' ' , '] ; '
Pl %] el v w o
E g 3
©
c o e -
s € 5 8
& o - S
8 &

In [17]:

IB_scores.name = 'In Between Case'

plot (IB_scores, IB_dev)

In Between Case

05

04 -
03 -
0 -
0 | I
00 -

~N w

-

CDPs and Lockers -
UCCs -

Night Delivery -
CBs -

Evening Delivery -
Evs -
Crowdsourcing -

APPENDIX III: MAMCA-Analysis

In [18]:

WC_scores.name = 'Worst Case'
plot (WC_scores, WC_dev)

Worst Case

04 -
03 -
02 -
| | .
00 -

~N

—

CDPs and Lockers -
Night Delivery |
(Bs -

Evening Delivery -
UCCs -

Evs -
Crowdsourcing -

APPENDIX IV: Analysing Amsterdam-PostNL Data

APPENDIX IV: Analysing Amsterdam-PostNL Data

Analysing parcel delivery in Amsterdam

In this notebook, the file with data provided by PostNL is analysed to see what a 'normal’ day of parcel
delivery in Amsterdam looks like. Furthermore, it is investigated where most of the parcel are delivered and if
this distribution matches the distribution of inhabitants as found in the Amsterdam population data. After
reading this Notebook it becomes clear how many parcels are being delivered on a daily basis in each postal
code area in Amsterdam, and how these parcels are distributed among the postal code areas.

Importing the necessary libraries
In [1]:

import numpy as np
import pandas as pd

Import and process the file

In [2]:

Define the file name to open

fn = '../data/postnl_data_improved.csv'
In [3]:

Store the file in a pandas DataFrame
df = pd.read_csv(fn, index_col=0)

/anaconda3/1lib/python3.6/site-packages/IPython/core/interactiveshel
l.py:2698: DtypeWarning: Columns (1) have mixed types. Specify dtype
option on import or set low _memory=False.

interactivity=interactivity, compiler=compiler, result=result)
/anaconda3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:472:
FutureWarning: elementwise comparison failed; returning scalar inste
ad, but in the future will perform elementwise comparison

mask |= (arl == a)
In [4]:
Reset the columns names to readible names
df.columns = ['year sequence', 'year iso', 'month sequence', 'month iso',
'day sequence', 'date', 'landcode', 'postcode', 'woonplaats',
'straatnaam', 'huisnummer', 'huisnummer toevoeging', 'aantal coll
i',

'gemiddeld gewicht', 'gemiddelde lengte', 'gemiddelde breedte',
'gemiddelde hoogte', 'gemiddeld volume')]

Extract only the necessary ones for the analysis

df = df[['date', 'postcode', 'woonplaats', 'straatnaam', 'huisnummer',
'aantal colli', 'gemiddeld gewicht', 'gemiddelde lengte',
'gemiddelde breedte', 'gemiddelde hoogte', 'gemiddeld volume']]

APPENDIX IV: Analysing Amsterdam-PostNL Data

Calculating obvious statistics

For this research, we are mainly interested in the average values regarding colli per address (humber of
parcels), parcels per day and the average dimensions. Therefore, these statistics are calculated first, as
these are the most straightforward based on the data in the DataFrame.

In [5]:

Colli per address

max_colli = df['aantal colli'].max()
min_colli = df['aantal colli'].min()
avg_colli = df['aantal colli'].mean()
std_colli = df['aantal colli'].std()

In [6]:

Dimensions per address

avg_lengte = df['gemiddelde lengte'].mean()
std_lengte df['gemiddelde lengte'].std()
avg_breedte df['gemiddelde breedte'].mean()
std_breedte df['gemiddelde breedte'].std()
avg_hoogte = df['gemiddelde hoogte'].mean()
std_hoogte = df['gemiddelde hoogte'].std()

In [7]:

Weight and volume

avg_weight = df['gemiddeld gewicht'].mean()
std _weight = df['gemiddeld gewicht'].std()
avg_volume df['gemiddeld volume'].mean()
std_volume = df['gemiddeld volume'].std()

Determine macro statistics

In explicit: What is the average number of parcels that is being delivered in the city of Amsterdam each day?
Furthermore, what is the distribution of parcels among the postal code areas? To get more insight in the
demand for postal code areas, the postal codes will be transformed to pc4-format, as this matches the
simulation model.

First, the data has to be sorted by date. Then, pandas can group the data by date and sum all the parcels
per date. Hence, the average number of parcels per day can be calculated.

In [8]:

df = df.sort_values(by='date')

APPENDIX IV: Analysing Amsterdam-PostNL Data

In [9]:

colli_per day = df.groupby('date')['aantal colli'].sum()
avg_colli per day = round(colli per day.mean())
std_colli per day = round(colli_per day.std())
max_colli per day = colli per day.max()
min_colli_per day = colli_per_day.min()

In [10]:

Check the minimum and maximum values for outliers
print('Minimum:', min_colli per day)
print('Maximum:', max_colli per day)
print('Average:', avg_colli per_ day)

Minimum: 0.0
Maximum: 60189.0
Average: 24429

More than 60.000 parcels per day seems a little bit too much, but still reasonable considering that the
average is already about 24.000. This may be a special celebration day or something, like christmas, and
therefore this number is still reasonable. However, a minimum of 0 could just as well be excluded from the
sample. Moreover, there may be more days that 0 parcels were registered to be delivered. These will be
excluded from the analysis. Other low values may also be special deliveries which can be taken into
account.

In [11]:

todrop = colli per day[colli per day == min_colli per day].index.values
idx = df[df['date'].isin(todrop)].index

df .drop(idx, inplace=True)

In [12]:

Recalculate the average

colli_per _day = df.groupby('date')['aantal colli'].sum()
avg_colli per day = round(colli per day.mean())

std colli per day = round(colli per day.std())
max_colli_per day = colli per_ day.max()

min colli_per day = colli_per day.min()

In [13]:

Check the minimum and maximum values for outliers
print('Minimum:', min_colli per day)
print('Maximum:', max_colli per_ day)
print('Average:', avg colli per day)

Minimum: 35.0
Maximum: 60189.0
Average: 27121

APPENDIX IV: Analysing Amsterdam-PostNL Data

In [14]:

print('Average colli per day:', avg_colli_per_day)
print('Standard deviation:', std_colli_per_day)

Average colli per day: 27121
Standard deviation: 14573

Furthermore, since this is a large enough dataset, we can check whether or not the data is normally
distributed. We can use the scipy library for that, since it includes the shapiro test.

If the data is normally distributed, the model will be applied with a normal distribution to sample the daily
demand from. If not, the demand will be sampled from a uniform distribution instead.

In [15]:

Check if sample is normally distributed
from scipy.stats import shapiro

stats, p = shapiro(colli_per day.values)
alpha = 0.05
if p > alpha:
print('Data set is likely to be normally distributed', p)
else:
print('Data set is likely not to be normally distributed', p)

Data set is likely not to be normally distributed 4.309885917120129e
-14

So now, the maxima and minima of the obvious variables have to be determined again.

In [16]:

Colli per address

max_colli = df['aantal colli'].max()
min_colli = df['aantal colli'].min()
avg_colli = df['aantal colli'].mean()
std_colli = df['aantal colli'].std()

Dimensions per address

avg_lengte = df['gemiddelde lengte'].mean()
std_lengte = df['gemiddelde lengte'].std()
avg_breedte = df['gemiddelde breedte'].mean()
std_breedte = df['gemiddelde breedte'].std()
avg_hoogte = df['gemiddelde hoogte'].mean()
std_hoogte = df['gemiddelde hoogte'].std()

Weight and volume

avg_weight = df['gemiddeld gewicht'].mean()
std_weight = df['gemiddeld gewicht'].std()
avg_volume = df['gemiddeld volume'].mean()
std_volume = df['gemiddeld volume'].std()

Transforming the postal codes to 4pp

APPENDIX IV: Analysing Amsterdam—-PostNL Data

In [17]:

cp = df['postcode']

cp = cp.str.slice(0, 4)
In [18]:

df['postcode'] = cp
df_pcs = df.groupby('postcode')['aantal colli'].sum()

Now, a distribution can be calculated, which is equal to normalising the data

In [19]:

distribution = df_pcs/df_pcs.sum()

In [20]:

Combine them together (normal and normalised) in a DataFrame
df_pcs.name = 'absolute numbers'
distribution.name = 'normalised'’

df_pcs_distributed = pd.concat([df_pcs, distribution], axis=1)

Compare the distribution to distribution of population

Setting up this part of the analysis is pretty similar to the start of the notebook. Opening the specified file
and filter the right data out of it. That is it.

In [21]:

First, read the original file into memory

And copy the analysis of the model setup

adam_file = '../data/bevolkingscijfers_amsterdam.xls'
adamdf = pd.read_excel(adam_file, header=[0,1])
adamdf .columns = adamdf.columns.droplevel(-1)

In [22]:

Filter for the right informatino in the df
adamdf = adamdf[adamdf['Soort regio'] == 'Buurt']

Assess all the available postal code

pcs = adamdf['||Meest voorkomende postcode'].unique()

Postal codes with missing information will be deleted
pcs = pcs[np.where(pcs != '.")]

adamdf = adamdf.replace('.', np.nan)

APPENDIX IV: Analysing Amsterdam-PostNL Data

In [23]:

Preparing the df for the calculated variables

variables = ['Population', 'Population density',6 'Horeca',
'Horeca density', 'Companies', 'Company density']

Define the empty df

newdf = pd.DataFrame(columns=variables)

for pc in pcs:

recs = adamdf[adamdf[‘||Meest voorkomende postcode'] == pc]

inw = recs['||Aantal inwoners'].sum()

hor = recs['|||G+I Handel en horeca'].sum()

ovb = (recs['||Bedrijfsvestigingen totaal'] - recs['|||G+I Handel en horeca'
1) .sum()

area = recs['Oppervlakte land'].sum()

inw_dens = inw/area
hor_dens = hor/area
ovb_dens = ovb/area

s = pd.Series([inw, inw_dens, hor, hor_dens, ovb, ovb_dens],
index=variables, name=pc)
newdf = newdf.append(s)

newdf.sort_ index(inplace=True)
Calculate the distribution of inhabitants
for var in ['Population', 'Horeca',6K 'Companies']:

newdf [var+' distribution'] = newdf[var] / newdf[var].sum()

Change the order of columns for correctness

cols = ['Population', 'Population density', 'Population distribution',
'Horeca', 'Horeca density', 'Horeca distribution',
'Companies', 'Company density', 'Companies distribution']

newdf = newdf[cols]

Select the same postal codes as the PostNL file

In [24]:

The postal codes of the Amsterdam file have already been filtered properly.
Therefore, these postal codes will be taken as base

pcs_to_select = newdf.index.values

pcs_to_select = pcs_to_select.astype(str)

newdf.index = pcs_to_select

df _pcs_distributed = df pcs_distributed.loc[pcs_to_select]

In [25]:

df _pcs_distributed = pd.concat([df_pcs_distributed,

newdf ['Population distribution']], axis=1)
In [26]:

df pcs_distributed['distribution differences'] = (df_pcs_distributed['normalise
d'] - df_pcs_distributed['Population distribution']).abs()

APPENDIX IV: Analysing Amsterdam-PostNL Data

The Scipy library also offers a function to check the similarities between the distribution of two samples. This
is shown below.

In [28]:

from scipy.stats import ks_2samp

res = ks_2samp(df_pcs_distributed['normalised'].values,
df _pcs_distributed['Population distribution'])
res

out[28]:

Ks_2sampResult(statistic=0.1375, pvalue=0.40877808861325815)

From these results, it turns out that both the distributions are statistically significant the same. Therefore, it is
right to use either one of the distributions in the model to predict the demand in certain areas. Hence, the
model remains unchanged in regard to the distribution of parcels.

APPENDIX IV: Analysing Amsterdam—-PostNL Data

APPENDIX V: Model class
APPENDIX V: Model class

Defining the Model class and its operations

The Model class is the most high level class in the simulation model and also represents the simulation model
in Python. The Model class basically controls the instances and their events as they are defined within the
model. This Notebook explains in detail how the Model class is defined, what information is needed and what
operations and events can occur during the simulation.

Normally, a class is defined in only one block of code. This Notebook divides the class and its functions
however among multiple code blocks to emphasize more on the functions in the class. Hence, this Notebook is
for educational purposes only and cannot be used to run simulations on its own.

Import the necessary libraries

In []:

import numpy as np

import pandas as pd

import geopandas as gpd

from shapely.geometry import Polygon, MultiPolygon, Point

import setup # The setup script, covered in another Notebook.

As can be noticed from the imported libraries, one of the imports is the setup script. This script has been
created especially for this simulation model to keep the initiation function clean and tidy. The setup script can
be found in the file setup.py, which is provided in the Model directory of this study. Furthermore, the setup
script is covered in another Notebook within this study.

Initialising the Model class

Anyway, the setup script provides the simulation model with the necessary data to conduct the simulation
experiments. These are the following variables, dictionaries or DataFrames:

* The Dashboard

* The Shapefile

* The Population data

« Postal codes and their locations
» Locker locations

* The eventual 'Milieuzone'

Based on these variables, different settings with regard to the configuration of the simulation model will be set
in the initiation function. This is covered in the code block below:

APPENDIX V: Model class

In []:

class Model:
def init_ (self, *args): # The args are provided with the experiments
First, store the outcomes of the setup in memory
self.db, self.shapes, self.data, self.pcs,
self.locker locs, self.milieuzone = setup.main()

This should actually be executed in the setup, but anyway
the format of the postal codes has to be changed

self.pcs = np.array(self.pcs)

self.pcs = self.pcs.astype(str)

Extract information from the dashboard, depending on the args
provided
if len(args) ==
self.BasicInfo = args[0]
self.Settings = args([1l]
self.VehicleInfo = self.db['VehicleInfo')]
elif len(args) ==
self.BasicInfo = args[0]
self.Settings = args[1l]
self.VehicleInfo = args[2]
else:
self.BasicInfo = self.db['BasicInfo']
self.Settings = self.db['Settings']
self.VehicleInfo = self.db['VehicleInfo')]

Storing the locations of Sorting Centres and City Hub
self.sc_locs = self.db['Locations']

Set the switches for City Hub, Parcel Lockers and Milieuzone
if self.Settings['Setting'][self.Settings['Var']\
== 'City Hub'].values[0] == 'True':
self.switch_CH = True
else: self.switch CH = False

if self.Settings['Setting'][self.Settings['Var']\
== 'Parcel Lockers'].values[0] == 'True':
self.switch_PL = True
else: self.switch PL = False

if self.Settings['Setting'][self.Settings['Var']\
== 'Milieuzone'].values[0] == 'True':
self.switch MZ = True
else: self.switch_MZ = False

Call the function to create the Distribution Centre instances
self.create_dcs()

Define the different shifts throughout the day
self.dayshift = np.array([self.BasicInfo['Value'][self.BasicInfo['Variable'
== 'Start day shift'].values[0],
self.BasicInfo['Value'][self.BasicInfo['Variable'
== 'End day shift']])
self.eveningshift = np.array([self.BasicInfo['Value'][self.BasicInfo['Varial
== 'Start evening shift'].values[0],
self.BasicInfo['Value'][self.BasicInfo['Varial
== 'End evening shift']])
self.lineshift = np.array([self.BasicInfo['Value'][self.BasicInfo['Variable
== 'Start line shift'].values[0],

APPENDIX V: Model class

self.BasicInfo['Value'][self.BasicInfo['Variable
== 'End line shift']])

Define the model variables
self.ParcelsInSystem = 0
self .ParcelsDelivered = 0

self.clock = 0
Define timing variables for the Model's events
self.t_demand = 0

self.t _event = 0

Setup the model events
self.setup_events()

Functions defined for initialisation

As can be noticed from the foregoing init function, initialising the Model instance requires two other functions.
Firstly, the create_dcs() function, which defines the Sorting Centre instances and the optional City Hub.
Secondly, the setup_events() function, which assesses all the events from the different instances (either
Distribution Centre or Vehicle class) and stores them inside the model instance. Both of these functions are
explained in the code blocks below.

In []:

def create_dcs(self):

First, assess the number of transporters to include
n_trans = self.Settings['Setting'][self.Settings['Var'] \

== 'Transporters'].values[0]
scs = self.sc_locs.iloc[:n_trans]

Check if a City Hub has to be implemented
if self.switch_CH:
ch = self.sc_locs[self.sc_locs|['Location'].str.contains('City Hub')]

Define empty dictionaries for further reference
self.SortingCentres = {}
self.CityHubs = {}

for i in range(len(scs)):
Get the correct row in the DataFrame
sc = scs.iloc[i)
Create the DC instance
SC = DistributionCentre(sc['Location'], sc[['Lat', 'Lon']],
sc['Market share'], self)
Store a reference to the instance in the dictionary
self.SortingCentres[SC.name] = SC

if self.switch_CH:
Create the City Hub instance
CH = DistributionCentre(ch['Location'], ch[['Lat', 'Lon']].values[0],
ch['Market share'], self)
Store a reference to the instance in the dictionary
self.CityHubs[CH.name] = CH

APPENDIX V: Model class

In []:

def setup events(self):

First, define the Model's own events

self.events = [self.GenerateDemand]

Add Sorting Centres' events to the list

for sc in self.SortingCentres.values():
self.events += sc.events
Add the events of the corresponding vehicles
for v in sc.vehicles.values():

self.events += v.events

Add the City Hub's events to the list
for ch in self.CityHubs.values():
self.events += ch.events
Add the events of the corresponding vehicles
for v in ch.vehicles.values():
self.events += v.events

Defining the Model's events

The initialisation functions of the Model class have been properly addressed. So now, it is time to define the
simulation events of the Model class. To make it easy, there is only one event that occurs within the Model
class itself: The GenerateDemand() event.

This event generates the demand for one day of parcel deliveries, based on the data PostNL provided about
their deliveries in Amsterdam. The dashboard offers a lower limit and an upper limit of demand to fill in by the
user. The simulation model then draws a number from a uniform distribution between the lower and upper limit.
This number represents the total demand for the day. The demand is then split among the different transporters
that are included in the simulation. The demand per transporting company is then split further in day demand,
evening demand, locker demand and collection demand.

The demand for lockers is then distributed among the defined lockers based on the probability distribution
(based on the distribution of the population) of the parcel having to be delivered in the respective postal code
area the parcel locker is placed in.

The demand for day deliveries, evening deliveries and collection is distributed randomly among the postal code
areas, based on the same (population) distribution. For simplicity, either 1, 2 or 3 parcels will be delivered per
destination, since the average number of parcels per address according to PostNL is about 1.4. Finally, each
destination gets a unique name and location for further reference.

Besides, if a City Hub is used, the demand for each of the Sorting Centres will be consolidated at the City Hub.
In explicit, all the individual demand DataFrames will be combined. However, if the City Hub is only to be used
to deliver inside the 'Milieuzone', then only the demand within this zone is combined in one demand
DataFrame. This can be found at the bottom of the following code block.

APPENDIX V: Model class

In []:

def GenerateDemand(self):
Assess the lower and upper limit for demand from the dashboard
lower limit = self.BasicInfo['Value'][self.BasicInfo['Variable']\
== 'Minimum parcels'].values[O0]
upper limit = self.BasicInfo['Value'][self.BasicInfo['Variable']\
== 'Maximum parcels'].values[O0]

Draw the sample

amount = np.random.randint(lower limit, upper limit)
Define the probability distribution

probs = self.data['Population distribution'].values

Define the percentages of demand to split
collection perc = self.BasicInfo['Value'][self.BasicInfo['Variable']\
== 'Percentage afroming demand'].values[0]
collection_amount = int(round(collection perc /100 * amount))
evening perc = self.BasicInfo['Value'][self.BasicInfo['Variable']\
== 'Percentage evening deliveries'].values[0]

if self.switch_PL:
locker_perc = self.BasicInfo['Value'][self.BasicInfo['Variable']\
== 'Percentage lockers demand'].values[0]
else: locker perc = 0

Generate the demand for each individual Sorting Centre
for sc in self.SortingCentres.values():

Determine the resulting amounts per type/shift

d = int(round(sc.marketshare / 100 * amount))

dloc = int(round(locker perc / 100 * d))

deve = int(round(evening perc / 100 * d))
dday = d - dloc - deve
dcol = int(round(sc.marketshare / 100 * collection_amount))

Update the Parcels in stock in the SC
sc.ParcelsInStock += (dloc + dday + deve)

Update Parcels in system of whole model
self.ParcelsInSystem += (dloc + dday + deve + dcol)

Generate locker demand, sampling postal codes

pcloc = np.random.choice(self.pcs, size=dloc, p=probs)
tv, ¢ = np.unique(pcloc, return counts=True)
demand_lockers = dict(zip(tv, c))

Divide locker demand among the lockers
for pc in demand_lockers.keys():
n = demand_lockers[pc]
Filter the lockers in the selected postal code area
lockers = self.locker locs[self.locker locs['Postcode'] = int(pc)]
Randomly choose the lockers in this area
lockers = np.random.choice(lockers['Name'].values, size=n)
tv, ¢ = np.unique(lockers, return_ counts=True)

Create the DataFrame with Locker Demand
for i, t in enumerate(tv):
name = '{} {}'.format(sc.name.split(' ')[-1], t)
if name in sc.DayDestinations.index:
sc.DayDestinations['Amount'].loc[name] = sc.DayDestinations|
else:
locs = self.locker locs[['LAT', 'LON']][self.locker locs['N:

APPENDIX V: Model class

s = pd.Series([locs[0], locs[l], pc, c[i]],
index=['LAT', 'LON', 'Postal Code', 'Amount'],
name=name)

sc.DayDestinations = sc.DayDestinations.append(s)

Generate day demand

pcday = np.random.choice(self.pcs, size=dday, p=probs)
tv, ¢ = np.unique(pcday, return_counts=True)

demand day = dict(zip(tv, c))

for pc in demand day.keys():
n = demand_day[pc]
Assess the polygon from shapefile, generate random points inside
poly = self.shapes['geometry'][self.shapes['pcédtxt'] == pc]
If it is a Polygon object points can immediately be generated
For a MultiPolygon, these actions have to be executed
multiple times
if isinstance(poly, Polygon):
Extract the outer coordinates of the Polygon
xmin, ymin, xmax, ymax = poly.bounds
i=0
while n > 0: # i.e. as long as there's demand left
¢ = np.random.choice([1,2,3], p=[0.8, 0.15, 0.05])
if ¢ > n:
Last parcels

c =n
Generate random point
point = [np.random.uniform(xmin, xmax),

np.random.uniform(ymin, ymax)]
p = Point(point)
Check if the point is within the Polygon
if p.within(poly):
n -=c
lon = point[0]
lat = point[1]
name = '{} Destination {} day {}'.format(sc.name.split(
pc, i)
Prevent same names from entering the DataFrame
if name in sc.DayDestinations.index:
i+=1
name = '{} Destination {} day {}'.format(sc.name.sp:
pc, i)
s = pd.Series([lat, lon, pc, c],
index=['LAT', 'LON', 'Postal code', 'Amou:
name=name)
sc.DayDestinations = sc.DayDestinations.append(s)
i+=1
else: # Instance is MultiPolygon
i=0
for part in poly:
xmin, ymin, xmax, ymax = poly.bounds
n2 = int(round(n/len(poly)))
while n2 > 0:
¢ = np.random.choice([1,2,3], p=[0.8, 0.15, 0.05])
if ¢ > n2:
Last parcels

c = n2
Generate random point
point = [np.random.uniform(xmin, xmax),

np.random.uniform(ymin, ymax)]
p = Point(point)

APPENDIX V: Model class

Check if the point is within the Polygon
if p.within(poly):
n2 -= ¢
lon = point[0]
lat = point[1]
name = '{} Destination {} day {}'.format(sc.name.sp:
pc, i)
Prevent same names from entering the DataFrame
if name in sc.DayDestinations.index:
i+=1
name = '{} Destination {} day {}'.format(sc.name
pc, 1)
s = pd.Series([lat, lon, pc, c],
index=['LAT', 'LON', 'Postal code', 'I
name=name)
sc.DayDestinations = sc.DayDestinations.append(s)
i+=1
The same algorithm is repeated twice more to generate
the evening and collection demand

The evening demand is stored in the EveningDestinations DataFrame
The collection demand is appended to DayDestinations

After that, the names in the DataFrames are made unique
once again by the following lines of code.

nun

sc.DayDestinations.index = self.DayDestinations.index \
+ sc.DayDestinations.groupby(level=0).cumcount
sc.EveningDestinations.index = self.EveningDestinations.index\
+ self.EveningDestinations.groupby(level=0

sc.linehaulremaining = 0

Check if the City Hub option is switched on
if self.switch_CH:
ch = self.CityHubs['City Hub']
for sc in self.SortingCentres.values():
Distinguish the Milieuzone cases
if self.switch MZ:
day ta sc.DayDestinations[sc.DayDestinations. index.map (lambda
eve_ta = sc.EveningDestinations[sc.EveningDestinations.index.maj
Calculate line haul
suml = day_ta['Amount’'].sum()
suml += eve_ta['Amount'].sum()

sc.linehaulremaining = suml

sc.DayDestinations.drop(day_ta.index, inplace=True)
sc.EveningDestinations.drop(eve_ta.index, inplace=True)

ch.DayDestinations = ch.DayDestinations.append(day_ta)
ch.EveningDestinations = ch.EveningDestinations.append(eve_ta)

else:
ch.DayDestinations = ch.DayDestinations.append(sc.DayDestinatio:
ch.EveningDestinations = ch.EveningDestinations.append(sc.Evenii

sc.linehaulremaining = sc.ParcelsInStock
Reset SC demand

APPENDIX V: Model class

dfcols = sc.DayDestinations.columns
sc.DayDestinations = pd.DataFrame(columns=dfcols)
sc.EveningDestinations = sc.DayDestinations.copy()

Make names unique
ch.DayDestinations.index = ch.DayDestinations.index \
+ ch.DayDestinations.groupby(level=0).cumcount
ch.EveningDestinations.index = ch.EveningDestinations.index \
+ ch.EveningDestinations.groupby(level=0) .c

Then the Origin-Destination matrices can be generated
This is covered in the following code block
self.create_odm()

Update the timing for the event
self.t_demand += 24

As mentioned in the GenerateDemand() event, the operation is not yet completely defined. A so-called origin-
destination matrix (ODM) has to be created that defines all the distances between all destinations/locations in
the current system. Since the create_odm() function is part of the GenerateDemand() event, the function is
explained in the code block below.

However, before showing the code of the create_odm() function, some important notifications have to be made.
Firstly, the distances are based on the Euclidian distances between the locations. Thus, no road network is
taken into account in the simulation. The Euclidian distances can be calculated with the Haversine formula,
which calculates the distance between two (Latitude, Longitude) coordinates on the earth, compensating for
the spherical shape of the earth (Hedges, 2002). This function has been processed into the simulation model as
well and the code is shown first.

In []:

def distances(self, arr):
"""The function gets a 4xn matrix with the Latitudes/Longitudes of
the destinations and the Latitude/Longitude of the origin.
It calculates the distances between the origin and all destinations

r = 6371 # Radius of the earth

a = (np.sin(arr[:,4]/2))**2 + np.cos(arr[:,2]) * np.cos(arr[:,0])\
* (np.sin(arr[:,5])/2)**2

c = 2 * np.arcsin(np.sqrt(a))

d=1xr * c

return d

APPENDIX V: Model class

In []:

def create_odm(self):

Check for the city hub option

if self.switch_CH:
ch = self.CityHubs['City Hub']
ch.dayremaining = list(ch.DayDestinations.index)
ch.eveningremaining = list(ch.EveningDestinations.index)
Specifically store the LATS/LONS
day = ch.DayDestinations[['LAT', 'LON']]
evening = ch.EveningDestinations[['LAT', 'LON']]

Store information as a Series for later use

s = pd.Series([ch.location[0], ch.location[1l]],
index=['LAT', 'LON'], name=ch.name)

day = day.append(s)

evening = evening.append(s)

Do the same for all the sorting centres
for sc in self.SortingCentres.values():
s = pd.Series([sc.location[0], sc.location[1l]],
index=['LAT', 'LON'], name=sc.name)
day = day.append(s)
evening = evening.append(s)
sc.dayremaining = list(sc.DayDestinations.index)
sc.eveningremaining = list(sc.EveningDestinations.index)

Defining the empty odm

The day variable contains all the lat/lon coordinates
day_odm = np.zeros((len(day), len(day)))

eve_odm = np.zeros((len(evening), len(evening)))

for i, row in enumerate(day.index):
Store the lat/lon of the origin
orig_lat = day.loc[row]['LAT']
orig lon = day.loc[row]['LON"]
day['OR_LAT'] = orig_lat
day['OR_LON'] = orig_lon

Transform the lat/lons to radians for the calculation
arr = day.as_matrix()
arr = np.radians(arr)

Calculate the differences between the lats/lons
dlat = arr[:,0] - arr([:,2]
dlon = arr[:,1] - arr([:,3]

Add the differences above as columns to the matrix
arr = np.concatenate((arr, np.array([dlat]).T), axis=1)
arr = np.concatenate((arr, np.array([dlon]).T), axis=1)

Calculate the distances
dist = self.distances(arr)
day_odm[:, i] = dist

Store the odm in the Sorting Centre instance
ch.day_odm = pd.DataFrame(day_odm, index=day.index, columns=day.index)

for i, row in enumerate(evening.index):
Store the lat/lon of the origin

APPENDIX V: Model class

orig_lat = day.loc[row]['LAT']
orig_lon = day.loc[row]['LON']
evening['OR_LAT'] = orig_lat
evening['OR_LON'] orig_lon

Transform the lat/lons to radians for the calculation
arr = evening.as_matrix()
arr = np.radians(arr)

Calculate the differences between the lats/lons
dlat = arr[:,0] - arr[:,2]
dlon = arr[:,1] - arr[:,3]

Add the differences above as columns to the matrix
arr = np.concatenate((arr, np.array([dlat]).T), axis=1)
arr = np.concatenate((arr, np.array([dlon]).T), axis=1)

Calculate the distances
dist = self.distances(arr)
eve_odm[:, i] = dist

Store the odm in the Sorting Centre instance
ch.eve_odm = pd.DataFrame(eve_odm, index=day.index, columns=day.index)

If the Milieuzone is applied, SCs have their own demand that
has to be included too.
if self.switch_MZ:
for sc in self.SortingCentres.values():
day = sc.DayDestinations[['LAT', 'LON']]
evening = sc.EveningDestinations[['LAT', 'LON']]

s = pd.Series([sc.location[0], sc.location[1l]],
index=['LAT', 'LON'], name=sc.name)

day = day.append(s)

evening = evening.append(s)

day_odm np.zeros((len(day), len(day)))
eve_odm = np.zeros((len(evening), len(evening)))

for i, row in enumerate(day.index):
Store the lat/lon of the origin
orig_lat = day.loc[row]['LAT']
orig_lon = day.loc[row]['LON"']
day['OR_LAT'] = orig_lat
day['OR_LON'] = orig_lon

Transform the lat/lons to radians for the calculation
arr = day.as_matrix()
arr np.radians(arr)

Calculate the differences between the lats/lons
dlat = arr([:,0] - arr[:,2]
dlon arr[:,1] - arr[:,3]

Add the differences above as columns to the matrix
arr = np.concatenate((arr, np.array([dlat]).T), axis=1)
arr = np.concatenate((arr, np.array([dlon]).T), axis=1)

Calculate the distances
dist = self.distances(arr)
day_odm[:, i] = dist

APPENDIX V: Model class

Store the odm in the Sorting Centre instance
sc.day_odm = pd.DataFrame(day_odm, index=day.index, columns=day

for i, row in enumerate(evening.index):
Store the lat/lon of the origin
orig_lat = day.loc[row]['LAT']
orig_lon = day.loc[row]['LON']
evening['OR_LAT'] = orig_lat
evening['OR_LON'] = orig_lon

Transform the lat/lons to radians for the calculation
arr = evening.as_matrix()
arr = np.radians(arr)

Calculate the differences between the lats/lons
dlat = arr[:,0] - arr[:,2]
dlon = arr[:,1] - arr[:,3]

Add the differences above as columns to the matrix
arr = np.concatenate((arr, np.array([dlat]).T), axis=1)
arr = np.concatenate((arr, np.array([dlon]).T), axis=1)

Calculate the distances
dist = self.distances(arr)
eve_odm[:, i] = dist

Store the odm in the Sorting Centre instance
sc.eve_odm = pd.DataFrame(eve_odm, index=day.index, columns=day

Otherwise, the ODM is only being calculated for the Sorting Centres
else:
for sc in self.SortingCentres.values():
sc.dayremaining = list(sc.DayDestinations.index)
sc.eveningremaining = list(sc.EveningDestinations.index)

day = sc.DayDestinations[['LAT', 'LON']]
evening = sc.EveningDestinations[['LAT', 'LON']]

s = pd.Series([sc.location[0], sc.location[1l]],
index=['LAT', 'LON'], name=sc.name)

day = day.append(s)

evening = evening.append(s)

day_odm = np.zeros((len(day), len(day)))
eve_odm np.zeros((len(evening), len(evening)))

for i, row in enumerate(day.index):
Store the lat/lon of the origin
orig lat = day.loc[row]['LAT']
orig_lon = day.loc[row]['LON']
day['OR_LAT'] = orig_lat
day['OR_LON'] = orig_lon

Transform the lat/lons to radians for the calculation
arr = day.as_matrix()
arr np.radians(arr)

Calculate the differences between the lats/lons
dlat = arr[:,0] - arr([:,2]
dlon arr[:,1] - arr([:,3]

APPENDIX V: Model class

Add the differences above as columns to the matrix
arr = np.concatenate((arr, np.array([dlat]).T), axis=1)
arr = np.concatenate((arr, np.array([dlon]).T), axis=1)

Calculate the distances
dist = self.distances(arr)
day odm[:, i] = dist

Store the odm in the Sorting Centre instance
sc.day_odm = pd.DataFrame(day_odm, index=day.index, columns=day.ind¢

for i, row in enumerate(evening.index):
Store the lat/lon of the origin
orig_lat = day.loc[row]['LAT']
orig_lon = day.loc[row]['LON']
evening['OR_LAT'] = orig_lat
evening['OR_LON'] = orig_lon

Transform the lat/lons to radians for the calculation
arr = evening.as_matrix()
arr = np.radians(arr)

Calculate the differences between the lats/lons
dlat = arr([:,0] - arr[:,2]
dlon = arr[:,1] - arr[:,3]

Add the differences above as columns to the matrix
arr = np.concatenate((arr, np.array([dlat]).T), axis=1)
arr = np.concatenate((arr, np.array([dlon]).T), axis=1)

Calculate the distances
dist = self.distances(arr)
eve odm[:, i] = dist

Store the odm in the Sorting Centre instance
sc.eve_odm = pd.DataFrame(eve_odm, index=day.index, columns=day.ind¢

The SIMULATION functions

Lastly, the model has two main functions for running the simulation. The first is determining what the next event
will be. This is called next_event() in the Model class. Based on all the timing variables that all the instances
have, the next event is determined and executed. Eventually, the model clock is updated as a consequence of
executing the event.

Secondly, the run() function calls the next_event() function as long as the simulation time limit has not been
exceeded. Both of these functions are defined below:

APPENDIX V: Model class

In []:

def next_event(self):
First, all timing variables are assessed
times = [self.t_demand]
for sc in self.SortingCentres.values():
times += [sc.t_tsp]
for v in sc.vehicles.values():
times += [v.t_load, v.t_drop, v.t_collect, v.t_unload]

for ch in self.CityHubs.values():
times += [ch.t_tsp]
for v in ch.vehicles.values():
times += [v.t_load, v.t_drop, v.t_collect, v.t_unload]

self.t_event = min(times)
idx = times.index(self.t_event)

Update the clock
self.clock = self.t_event

Execute the next event
self.events[idx] ()

In []:

def run(self):
end = self.BasicInfo['Value'][self.BasicInfo['Variable'] == 'Simulation time
while self.clock < end:
self.next_event()

Optional functions to call:
self.get_results()
self.print_results()

References

Hedges, A. (2002). Finding distances based on Latitude and Longitude. Retrieved 07 30, 2018, from Andrew
Hedges: https://andrew.hedges.name/experiments/haversine/
(https://andrew.hedges.name/experiments/haversine/)

APPENDIX V: Model class

APPENDIX VI: Distribution Centre class

APPENDIX VI: Distribution Centre class

Defining the DistributionCentre class and its
operations

This Python Notebook is for reference only and will be added to the report as appendix. Running the code
will only yield errors, as it is not set-up properly for running. It is for descriptive purposes only and aims to
explain the DistributionCentre class in the simulation model in more detail.

Normally, a class is defined in only one block of code. This Notebook divides the class and its functions
however among multiple code blocks to emphasize more on the functions in the class.

The DistributionCentre class is created to provide a little structure to the model with regard to the base
locations of the vehicles. This class provides a little more flexibility in the route planning possibilities of the
vehicles and the distinction between a Sorting Centre and the City Hub.

Import the necessary libraries

In []:

import numpy as np
import pandas as pd
import geopandas as gpd

from shapely.geometry import Polygon, MultiPolygon, Point

Initialising the DistributionCentre instance

The DistributionCentre instance takes a few variables as input before it can be instantiated:

* Name

» Location [LAT, LON]

» Market share (Sorting Centre)

» Reference to the Model instance

These will first be stored inside the instance before proceeding with other functions within the class. The init
function is shown in the code block below in more detalil, followed by the setup_vehicles() function and
sort_vehicles function, which are also used in the initialisation.

APPENDIX VI: Distribution Centre class

In []:

class DistributionCentre:
def _ init__ (self, name, loc, marketshare, model):
self.name = name
self.location = loc
self.marketshare = marketshare
self.model = model

Setup the time variables for DC-related events
self.t_tsp = 0

Setup the DC-related events
self.events = [self.TSP]

Define the empty demand DataFrames to be filled later on

self.DayDestinations = pd.DataFrame(columns=['LAT', 'LON',
'Postal code',
'Amount'])

self.EveningDestinations = self.DayDestinations.copy()

Setup the vehicles as defined in the Vehicle Fleet tab
of the model dashboard
self.setup_vehicles()

The setup_vehicles() function creates instances of the Vehicle class, based on the VehicleFleet tab in the

model dashboard. The code is shown below:

APPENDIX VI: Distribution Centre class

In []:

def setup vehicles(self):
self.vehicles = {}
Store the vehicle fleets
vfs = self.model.db['VehicleFleet')]
Extract the fleet for the respective SC
self.VehicleFleet = vfs[vfs['Location'].str.contains(self.name))]

vehicles = self.VehicleFleet[['Truck diesel', 'Van diesel', 'Van electri

'Bike electric', 'Stint electric']]
self.lineshifts = self.VehicleFleet[['Line shift truck diesel',
'Line shift van diesel',
'Line shift van electric',
'Line shift bike electric',
'Line shift stint electric']]
prefs = self.VehicleFleet[['Planning preference truck diesel',
'Planning preference van diesel',
'Planning preference van electric',
'Planning preference bike electric',
'Planning preference stint electric']]
Assign a plannning preference to the vehicle
for col in vehicles.columns:
for i in range(vehicles[col].values[0]):
for j in prefs.columns:
if col.lower() in j:
pref = prefs[j].values[0]
break
else:
pref = len(prefs.columns)
Extract vehicle info of specific model
v = self.model.VehicleInfo.loc[self.model.VehicleInfo['Vehicles'
].str.contains(col)].values[0]
c = list(self.model.VehicleInfo.columns)
vd = pd.Series(v, index=c)

Create vehicle instance
v = Vehicle(col+' {}'.format(i), vd, pref, self, self.model)
self.vehicles[v.name] = v

Sort vehicles according to their planning preference
self.sort_vehicles()

The sort_vehicles function offers the functionality to sort vehicles according to their assigned planning
preference. Thereby, the route planning takes vehicles according to their preference before the planning
procedure is started. So, if all bikes have to be utilised before the electric vans, this function causes the
planning to do so.

APPENDIX VI: Distribution Centre class

In []:

def sort_vehicles(self):
vehs = list(self.vehicles.keys())
prefs = []
for v in self.vehicles.values():
prefs.append(v.planning_preference)

df pd.Series(prefs, index=vehs)
df = df.sort_values()
self.tsp_order = df.index.values

Defining the DC related events

The DistributionCentre class only has one specific event that occurs during the simulation, which is creating
a route planning for all its vehicles based on the demand. The route planning provides a shifttype and shift
for the vehicle before calling the Vehicle-related TSP() function.

Furthermore, in the DistributionCentre class' TSP() function, both the day and evening shifts are planned
until the full capacity of the vehicles is reached, and all of the vehicles are being used in both the day and
evening shift. The route planning is done in the order as obtained by the sort_vehicles() function defined
above. The code is shown below.

APPENDIX VI: Distribution Centre class

In []:

def TSP(self):
First the day planning if the City Hub has to be used
if self.model.switch CH and not self.model.switch_ MZ:
lineswitch = False
for veh in self.tsp_order:
v = self.vehicles[veh]
for col in self.lineshifts.columns:
As there is a line haul remaining -> plan line shift
if v.name[:-2].lower() in col and self.lineshifts[col].value
s[0] == 'yes' and self.linehaulremaining > 0:
st = 'Line'
s = self.model.lineshift
lineswitch = True
break
Otherwise, assign a regular shift for planning
if not lineswitch:
if len(self.dayremaining) > 0:
st = 'Day'
s = self.model.dayshift
elif len(self.eveningremaining) > 0:
s = self.model.eveningshift

st = 'Evening'

else:
s = self.model.dayshift + 24
st = 'Useless'

v.TSP(s, st)

Then, if necessary, another planning for the evening
if len(self.dayremaining) > 0 or len(self.eveningremaining) > 0:
print('——————mmmm e > FILLING UP THE EVENING SHIFTS <-======-

for veh in self.tsp order:
v = self.vehicles[veh]
if len(v.shifts) >= 0 and len(v.shifts) < 2 and np.array_equ
al(v.shifts[0], self.model.dayshift) and len(self.eveningremaining) > 0:
v.TSP(self.model.eveningshift, 'Evening')
elif len(v.shifts) >= 0 and len(v.shifts) < 2 and np.array_e
qual(v.shifts[0], self.model.dayshift) and len(self.dayremaining) > 0:
v.TSP(self.model.eveningshift, 'DayDelayed')
else: pass

elif self.model.switch_CH and self.model.switch MZ:
lineswitch = False
for veh in self.tsp order:
v = self.vehicles[veh]
for col in self.lineshifts.columns:
if v.name[:-2].lower() in col and self.lineshifts[col].value
s[0] == 'yes' and self.linehaulremaining > 0:
#print(self.linehaulremaining)
st = 'Line'
s = self.model.lineshift
lineswitch = True
break
if not lineswitch:
if len(self.dayremaining) > 0:
st = 'Day'
s = self.model.dayshift
elif len(self.eveningremaining) > 0:

APPENDIX VI: Distribution Centre class

st = 'Evening'

s = self.model.eveningshift
else:

st = 'Useless'

s = self.model.dayshift + 24
v.TSP(s, st)

if len(self.dayremaining) > 0 or len(self.eveningremaining) > 0:
print('=——-mmmm e > FILLING UP THE EVENING SHIFTS <========

for veh in self.tsp order:
v = self.vehicles[veh]
if len(v.shifts) >= 0 and len(v.shifts) < 2 and np.array_equ
al(v.shifts[0], self.model.dayshift) and len(self.eveningremaining) > 0:
v.TSP(self.model.eveningshift, 'Evening')
elif len(v.shifts) >= 0 and len(v.shifts) < 2 and np.array_e
qual(v.shifts[0], self.model.dayshift) and len(self.dayremaining) > 0:
v.TSP(self.model.eveningshift, 'DayDelayed')
else: pass

else:
for veh in self.tsp_order:

v = self.vehicles[veh]

if len(self.dayremaining) > 0:
v.TSP(self.model.dayshift, 'Day')

elif len(self.eveningremaining) > 0:
v.TSP(self.model.eveningshift, 'Evening')

else:
v.TSP(self.model.dayshift + 24, 'Useless')

if len(self.dayremaining) > 0 or len(self.eveningremaining) > 0:
print ('————mmmm e > FILLING UP THE EVENING SHIFTS <====—==-

for veh in self.tsp order:
v = self.vehicles[veh]
if len(v.shifts) >= 0 and len(v.shifts) < 2 and np.array_equ
al(v.shifts[0], self.model.dayshift) and len(self.eveningremaining) > 0:
v.TSP(self.model.eveningshift, 'Evening')
elif len(v.shifts) >= 0 and len(v.shifts) < 2 and np.array_ e
qual(v.shifts[0], self.model.dayshift) and len(self.dayremaining) > 0:
v.TSP(self.model.eveningshift, 'DayDelayed')
else: pass

self.t_tsp += 24

References

APPENDIX VII: Vehicle class

APPENDIX VII: Vehicle class

Defining the Vehicle class and its operations

This Python Notebook is for reference only and will be added to the report as appendix. Running the code
will only yield errors, as it is not set-up properly for running. It is for descriptive purposes only and aims to
explain the Vehicle class in the simulation model in more detail.

Normally, a class is defined in only one block of code. This Notebook divides the class and its functions
however among multiple code blocks to emphasize more on the functions in the class.

Importing the necessary libraries

First of all, the simulation model in general, but also the Vehicle class, use specific Python libraries and their
functions. These are imported first.

In [1]:

import numpy as np
import pandas as pd

Furthermore, it is assumed that the Model class has already been defined, together with its 'structural’
variables and DataFrames. Moreover, it is assumed that the following variables and DataFrames are defined
in the Model class:

* The Dashboard

* The Shapefile

The Population data

Postal codes and their locations
« Locker locations

* The eventual 'Milieuzone'

The Model instance also sets the switches that define a configuration of the simulation and define the
Distribution Centre instances to take into account.

Then, the Model instance has to be linked to the Vehicle class, together with the instance of the Distribution
Centre class. Finally, some Vehicle class specific variables are entered and the initiation of the Vehicle
instance can start.

APPENDIX VII: Vehicle class

class Vehicle:
def init_ (self, name, data, planning preference, dc, model):

First, the basic variables are stored and linked in/to the instance
self.name = name
self.vehicle data = data
self.planning preference = planning preference
self.dc = dc
self.model = model

Then, some empty lists that will be filled during the route planning
have to be defined

self.shifts = [] # The vehicle can have multiple shifts assigned
self.shifttypes = []

self.dayroutes [1]

self.everoutes [1]

self.allroutes [1]

self.loads to_drop = []

self.loads_to_collect = []

self.charges = [] # To store when the vehicle has to be charged

Defining some individual vehicle data
self.ParcelsOnBoard = 0
self.ParcelsDelivered = 0

self.EmissionsC02 = 0
self.EmissionsNOx =
self.TotalKms = 0
self.TotalTime = 0

|
o

Setting up the timing variables

self.t load = 0 # Time indication for the next loading event
self.t_drop = 0 # Time indication for the next drop event

self.t collect = 0 # Time indication for the next pick-up event
self.t unload = 0 # Time indication for whn the next unloading event

Setting up the events
self.events = [self.Load, self.Drop, self.Collect, self.Unload]

Based on the implementation of the City Hub (or not), the initial
route of the vehicle can be determined. This is done by a separate
function, covered in the following code block.
self.determine_initial routes()

The function to determine the initial routes checks the option whether or not the vehicle can be used for a
line haul. The line haul is defined as a service that transports parcels between a Sorting Centre and the City
Hub. If the vehicle is not to be used as line haul, it will get a regular route assigned.

APPENDIX VII: Vehicle class

In []:

def determine_initial routes(self):
First, the switches for the line haul shift have to be extracted
from the dashboard
shifts = self.dc.VehicleFleet[['Line shift truck diesel',
'Line shift van diesel',
'Line shift van electric',
'Line shift bike electric',
'Line shift stint electric']]
Check if the City Hub option is switched ON
if self.model.switch CH:
if 'City Hub' in self.dc.name:
"""Tf the dc.name contains the string 'City Hub', this vehicle
belongs to the City Hub. From the definition, these vehicles
can never be used as line haul.
Therefore, they get the init route as defined below

mwon

self.init route = [self.dc.name, self.dc.name]

else:
"""If it is not the city hub, we have to check what type of vehi
cle
this instance is, and if it is assigned to a line haul shift."""
for col in shifts.columns:
if self.name[:-2].lower() in col and shifts[col].values[0] =
= 'yes':
self.init route = [self.dc.name, 'City Hub', self.dc.nam
e]
break
else:

self.init route = [self.dc.name, self.dc.name]
If City Hub option is switched OFF, then it is just the normal route
No line haul is ever being used
else:
self.init_ route = [self.dc.name, self.dc.name]

Defining the Vehicle's Events

All of the setup functions for the Vehicle class have now been covered. As mentioned in the init function, the
Vehicle class has four different events:

1. Load
2. Drop
3. Collect
4. Unload.

These events play a role in the actual simulation. In the following code blocks, each of these four events will
be highlighted and explained in further detail.

LOADING THE VEHICLE

APPENDIX VII: Vehicle class

Loading the vehicle is usually the initiation of the simulated day for the vehicle. The route time and distance
are reset to 0 and the vehicle is made ready to load the parcels for its route.

First, the shifttype has to be determined. Based on this shifttype, an Origin-Destination Matrix from the
Distribution Centre can be assigned. These are split into a day_odm and eve(ning)_odm, based on the
demand.

Then, the event only continues if the vehicle has more than 0 routes assigned. Hence, the parcels to load will
be higher than 0 too. The number of parcels defined in the loads_to_drop list will be loaded onto the vehicle.
Furthermore, these parcels will be extracted from dc.ParcelsinStock variable. If the vehicle has to be
charged before it can start with the route, the t_drop will be calculated based on the extra charging time.
Otherwise, the t_drop is calculated based on the average loading time, which is stored in the vehicle_data
DataFrame.

Eventually, the emissions and route kilometres are updated based on the next destination in the route.
Furthermore, the current destination (the DC) is deleted from the route. Been there, done that. Lastly, the
t_load and t_collect are set to the next day, until interrupted otherwise.

Load - Code

APPENDIX VII: Vehicle class

In []:

0']

def Load(self):
First, print some informatino in the terminal
print('%.2f LOADING: '%$self.model.clock, self.name, self.dc.name)
(Re)set the starting time and distance of the current route
self.routestart = self.model.clock
self.routekm = 0
self.collected = 0

Assigning ODM based on shifttype

if self.shifttype == 'Day':
self.odm = self.dc.day_odm
elif self.shifttype == 'Evening':
self.odm = self.dc.eve_odm
elif self.shifttype == 'Line' and self.model.switch_ CH:
self.odm = self.model.CityHubs['City Hub'].day_ odm
elif self.shifttype == 'DayDelayed':

self.odm = self.dc.day_odm

Actually loading the vehicle, if it has a route assigned
if len(self.routes) > 0:
Locally store the current (first) route
r = self.routes[0]
self.ParcelsOnBoard += self.loads_to_drop[0]
self.dc.ParcelsInStock -= self.loads_to_drop[0]

Check if the vehicle needs a charge
if self.charging[0]:
print('----- > CHARGING <----- ")
Set the t_drop variable based on charging time
self.t_drop = self.model.clock \
+ self.vehicle_data['Charging time'] \
+ self.odm[r[0]].loc[xr[1]] \
/ self.vehicle data['Speed average - highway']

else:
Set the t_drop variable based on loading time
self.t_drop = self.model.clock \
+ self.vehicle_data['Fixed loading time'] \
+ self.odm[r[0]].loc[xr[1]] \
/ self.vehicle_data['Speed average - highway']

Update the emissions
self.EmissionsC02 += self.odm[r[0]].loc[r[1]] \
* self.vehicle_data['Emissions highway - CO02']
self .EmissionsNox += self.odm[r[0]].loc[r[1]] \
* self.vehicle data['Emisssions highway - Nox/PM1

Update kilometres

self.routekm += self.odm[r[0]].loc[r[1l]]
Update route, been there, done that
self.routes[0].pop(0)

else:
self.t _drop += 24

Set the new loading time (and collection time)
self.t_load += 24
self.t _collect = self.t_load

APPENDIX VII: Vehicle class

DROPPING THE PARCELS

So, the parcels are loaded onto the Vehicle and it has arrived at its next destination. In other words, t_drop is
reached and the Drop event is called. This event is subject to the hitrate as set in the Dashboard. There is

always a certain change that the client is not answering the doorbell and the parcel has to be returned to the
Sorting Centre / City Hub. Lets just assume that the parcel has to be dropped this time, what happens next?

The destinations can be distinguished in either Day-, Evening- or Locker Destinations. Eitherway, the parcel
is dropped by removing the parcel from the ParcelsOnBoard and model.ParcelsinSystem variables.
Furthermore, the ParcelsDelivered and model.ParcelsDelivered are updated.

Besides, the destinations are defined within the route the vehicle is travelling, so the current and the next
destination are always known. Based on this information, the next Drop event is scheduled by calculating
the t_drop variable.

However, if there are no parcels left to drop, in explicit, none of the aforementioned destinations is
remaining, the activity looks at the next possible event: either Collect parcels as defined in the route, or
Unload the parcels when returned to the Sorting Centre or City Hub.

Eventually, the outcome variables are updated as well. In explicit, the emissions and route distance are
updated, together with the route itself. The current location is removed from the route, and the vehicle
continues its journey to the next destination. The code is shown in the code block below

Drop - Code

APPENDIX VII: Vehicle class

In []:

def Drop(self):
Printing some information in the terminal
print('%.2f DROP: ' %self.model.clock, self.name, self.dc.name,
self.shifttype)

Extract the hit-rate from the model dashboard
hitrate=self.model.BasicInfo['Value'][self.model.BasicInfo['Variable']\
== 'Hit rate percentage'].values[0] / 100

Only proceed if there is a route being scheduled
if len(self.routes) > 0:
Locally store the route
r = self.routes[0]
Determine if the parcel can be dropped or not
toDrop = np.random.choice([True, False], p=[hitrate, l-hitrate])
Dropping day deliveries or lockers, if they fit
if toDrop and 'day' in r[0] or 'Locker' in r[0]:
colli = self.dc.DayDestinations['Amount'].loc[r[0]]
self.ParcelsOnBoard -= colli
self.model.ParcelsInSystem -= colli
self.ParcelsDelivered += colli
self.model.ParcelsDelivered += colli

Check what the next destination is
if len(r) > 1 and 'Sorteercentrum' not in r[1l] \
and 'City Hub' not in r[1]:
Update the t_drop event
self.t _drop = self.model.clock \
+ self.vehicle data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle_data['Speed average - City']
Update the emissions
self .EmissionsC02 += self.odm[r[0]].loc[r[1l]] \
* self.vehicle_data['City emissions - CO2'

self .EmissionsNOx += self.odm[r[0]].loc[r[1l]] \
* self.vehicle_data['City emissions - Nox/

PM10 ']
elif len(r) > 1 and 'collection' in r[1l]:
If the next destination is a collection part, set t_collec
t
self.t collect = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle_data['Speed average - City']
Update the emissions
self .EmissionsC02 += self.odm[r[0]].loc[r[1l]] \
* self.vehicle_data['City emissions - CO2'
]
self .EmissionsNOx += self.odm[r[0]].loc[r[1]] \
* self.vehicle_data['City emissions - Nox/
PM10 ']

Change the t_drop to t_load to prevent interferance
self.t_drop = self.t_ load

elif len(r) > 1 and ('Sorteercentrum' in r[1l] \
or 'City Hub' in r[1]):
Print something in the terminal about returning to DC

y']

ce

PM10 ']

y']

APPENDIX VII: Vehicle class

print('-----> No afroming in this route, returning to base')

Set the t_unload for the next event
self.t_unload = self.model.clock \

+ self.vehicle_data['Fixed stop time'] \

+ self.odm[r[0]].loc[r[1l]] \

/ self.vehicle data['Speed average - highwa

Update both the t_drop and t_collect to prevent interferan

self.t_collect = self.t_load
self.t_drop = self.t_load

Update the route distance, route and demand DataFrame
self.routekm += self.odm[r[0]].loc[r[1]]
self.dc.DayDestinations.drop(r[0], inplace=True)
self.routes[0].pop(0)

Define the same functionality for an evening delivery
elif toDrop and 'evening' in r[0]:
colli = self.dc.EveningDestinations|['Amount'].loc[r[0]]
self.ParcelsOnBoard -= colli
self.model.ParcelsInSystem -= colli
self.ParcelsDelivered += colli
self.model.ParcelsDelivered += colli

Check what the next destination is
if len(r) > 1 and 'Sorteercentrum' not in r[1l] \
and 'City Hub' not in r[1]:
Update the next drop activity
self.t_drop = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \

/ self.vehicle data['Speed average - City']

Update the emissions of the route
self .EmissionsCO2 += self.odm[r[0]].loc[r[1]] \

* self.vehicle_data['City emissions - CO2'

self.EmissionsNOx += self.odm[r[0]].loc[r[1]] \

* self.vehicle _data['City emissions - Nox/

elif len(r) > 1 and ('Sorteercentrum' in r[1] \
or 'City Hub' in r[1]):

Update the model that the next activity is to unload at DC

self.t_unload = self.model.clock \

+ self.vehicle_data['Fixed stop time'] \

+ self.odm[r[0]].loc[r[1]] \

/ self.vehicle data['Speed average - highwa

Update t_drop and t_collect to prevent interferance
self.t_collect = self.t load
self.t_drop = self.t load

else: print('----===--- > MISTAKE <-=-——eee- ")

Update the routekm, demand DataFrame and the route
self.routekm += self.odm[r[0]].loc[r[1]]
self.dc.EveningDestinations.drop(r[0], inplace=True)
self.routes[0].pop(0)

The City Hub as first destination can only occur at the Line Haul

elif 'City Hub' in r[0]:

PM10 ']

PM10 ')

APPENDIX VII: Vehicle class

self.model.CityHubs[r[0]].ParcelsInStock += self.ParcelsOnBoard
self.ParcelsDelivered += self.ParcelsOnBoard
self.ParcelsOnBoard -= self.ParcelsOnBoard

If the line haul has multiple routes, it returns
Otherwise it stays until the end of the day for collection
if len(self.routes) > 1:
self.t_load = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle data['Speed average - highway']
Update t_drop and t_collect to prevent interferance
self.t_drop = self.t load
self.routes.pop(0)
else:
self.t_collect = self.shift[1]
self.t_drop = self.t_load

If the current destination is a collection point:

Change event to collection

elif 'collection' in r([0]:
self.t_collect = self.model.clock # Change immediately
self.t_drop = self.t_load

else: # Not toDrop -> not at home
print('--====-= > {} not home'.format(xr[0]))
Anyhow, update for the next event

if len(r) > 1 and 'Sorteercentrum' not in r[1l] \
and 'City Hub' not in r[1]:

self.t_drop = self.model.clock \

+ self.vehicle_data['Fixed stop time'] \

+ self.odm[r[0]].loc[r[1]] \

/ self.vehicle data['Speed average - City']
self.EmissionsC02 += self.odm[r[0]].loc[r[1]] \

* self.vehicle_data['City emissions - CO2'

self .EmissionsNOx += self.odm[r[0]].loc[r[1l]] \
* self.vehicle_data['City emissions - Nox/

elif len(r) > 1 and 'collection' in r[1]:
self.t_collect = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle_data['Speed average - City']
self.EmissionsCO02 += self.odm[r[0]].loc[r[1l]] \
* self.vehicle_data['City emissions - CO2'

self .EmissionsNOx += self.odm[r[0]].loc[r[1]] \
* self.vehicle_data['City emissions - Nox/

self.t_drop = self.t_load

elif len(r) > 1 and ('Sorteercentrum' in r([1] \
or 'City Hub' in r[1l]):
print('=======- > No collection this route, returning to bas

self.t_unload = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \

APPENDIX VII: Vehicle class

/ self.vehicle_data['Speed average - highwa

self.t_drop = self.t load
self.t_collect = self.t_load

Update the routekm again, and the route
self.routekm += self.odm[r[0]].loc[xr[1]]
self.routes[0].pop(0)

COLLECTION OF PARCELS

The collection of parcels is basically the same function as dropping a parcel. The only difference being that
the ParcelsOnBoard increase and that there exists a risk that parcels do not fit in the vehicle. The collection
procedure always takes place at the end of the route, if (almost) all parcels have been dropped. The only
exception being if a destination was not at home or the parcel did not fit in the parcel locker.

Hence, the only important thing to note regarding the function of collecting parcels is that if a parcel does
not fit, the vehicle returns to its DC. The parcel will be collected the next day instead. This differs from
PostNL's approach, as they are obliged to collect parcels the same day. However, without this assumption
this exception would overcomplicate the model for its current purpose. The code is shown in the code block
below.

Collection - Code

APPENDIX VII: Vehicle class

In []:

def Collection(self):
Print something useful in the terminal when running
print('%.2f AFROMING '%self.model.clock, self.name, self.dc.name)

Only proceed when there is a route scheduled.
if len(self.routes) > 0:
Locally store the current route
r = self.routes[0]
if 'collection' in r[0]:
If indeed the parcel has to be collected, it is added onBoard
colli = self.dc.DayDestinations['Amount'].loc[r[0]]
self.ParcelsOnBoard += colli

Check if the parcels fit in the vehicle
if self.ParcelsOnBoard > self.vehicle data['Capacity average']:
self.ParcelsOnBoard -= colli
print('-> No space left in vehicle, coming back tomorrow')
if self.model.switch CH:
Search for the City Hub in the route
base = [i for i in r if 'City Hub' in i)
Schedule the unload event
self.t unload = self.model.clock \
+ self.vehicle data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle_data['Speed average - hig
hway ']
self.t _collect = self.t_load
else:
base = [i for i in r if 'Sorteercentrum' in i)
self.t unload = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle_data['Speed average - hig
hway ']
self.t _collect = self.t_load
Update routekm and emissions
self .EmissionsC02 += self.odm[r[0]].loc[base[0]] \
* self.vehicle_data['Emissions highway - C
02']
self.EmissionsNOx += self.odm[r[0]].loc[base[0]] \
* self.vehicle_data['Emissions highway - N
0x/PM10 "]
self.routekm += self.odm[r[0]].loc[base[0]]

elif len(r) > 1 and 'collection' in r[1l]:
Update the control variable and t_collect
self.collected += self.dc.DayDestinations['Amount'].loc[r[0
1]
self.t _collect = self.model.clock \
+ self.vehicle_data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle data['Speed average - City']
Update emissions and routekm
self.EmissionsC02 += self.odm[r[0]].loc[r[1]] \
* self.vehicle_data['City emissions - CO2'

self.EmissionsNOx += self.odm[r[0]].loc[r[1]] \

* self.vehicle data['City emissions - Nox/
PM10 ']

APPENDIX VII: Vehicle class
self.routekm += self.odm[r[0]].loc[r[1l]]
self.dc.DayDestinations.drop(r[0], inplace=True)
self.routes[0].pop(0)

elif len(r) > 1 and ('Sorteercentrum' in r[1] \

02"]

ox/PM10')

or 'City Hub' in r[l]):
self.collected += self.dc.DayDestinations|['Amount'].loc[xr[0

self.t_unload = self.model.clock \
+ self.vehicle data['Fixed stop time'] \
+ self.odm[r[0]].loc[r[1]] \
/ self.vehicle data['Speed average - highwa

Update emissions and routekm
self.EmissionsC02 += self.odm[r[0]].loc[r[1]] \
* self.vehicle_data['Emissions highway - C

self.EmissionsNOx += self.odm[r[0]].loc[r[1]] \
* self.vehicle data['Emissions highway - N

self.routekm += self.odm[r[0]].loc[r[1l]]
self.dc.DayDestinations.drop(r[0], inplace=True)
self.routes[0].pop(0)

else: print('—------= > MISTAKE <-====w= ")

If, by mistake, the current destination is already the DC:
elif 'Sorteercentrum' in r[0] or 'City Hub' in r[0]:
self.t_unload = self.model.clock
self.t_collect = self.t_load
self.routes[0].pop(0)

else: print('-=-—==-== > AFROMING GONE WRONG <======== ")

else: pass

UNLOADING COLLECTED PARCELS AT DC

The Unload activity returns the collected parcels to the Sorting Centre or City Hub and handles them as
being delivered. Besides, the route statistics are calculated and stored, before continuing the process.

The remainder of the Unload activity is aimed at either setting up the vehicle for the next day, or setting up
the vehicle for conducting the next route scheduled. If there are no routes left in the shift, it checks if the
vehicle is scheduled for an optional following shift. If not, then it is prepared for the following day.

Unload - Code

APPENDIX VII: Vehicle class

In []:

def Unload(self):
Print something useful in the terminal
print('%.2f RETURNED AND UNLOADING: ', %self.model.clock,
self.name, self.dc.name)
self.TotalKms += self.routekm
self.TotalTime += (self.model.clock - self.routestart)

Updating the parcels delivered
self.model.ParcelsDelivered += self.collected
self .ParcelsDelivered += self.collected
self.model.ParcelsInSystem -= self.collected
self.ParcelsOnBoard -= self.ParcelsOnBoard

Check if the current route still exists and delete it
if len(self.routes) > 0:
self.routes.pop(0)
self.loads_to_drop.pop(0)
if len(self.loads_to_room) > 0:
self.loads_to_room.pop(0)
self.charging.pop(0)

If there is another route left, set it up
if len(self.routes) > 0:
self.t_load = self.model.clock
self.t_drop self.t_load
self.t collect = self.shift[1]
self.t_unload = self.t collect

If there is no other route left, but evening routes instead
Set these up and update the dayshift for the next day
elif len(self.allroutes) > 1:
if self.shifttype == 'Day':
self.shift += 24
self.model.dayshift = self.shift.copy()

Delete the day shift
self.allroutes.pop(0)
self.shifts.pop(0)
self.shifttypes.pop(0)
self.charges.pop(0)

self.shift = self.shifts[0]
self.shifttype = self.shifttypes[0]
self.routes = self.allroutes[0]
self.charging = self.charges[0]

self.t load self.shift[0]
self.t _drop = self.t_load
self.t collect = self.shift[1]
self.t _unload = self.t collect

else:
self.shift += 24
Check the type of shift in the model to update

if self.shifttype == 'Line':
self.model.lineshift = self.shift.copy()
elif self.shifttype == 'Day':

self.model.dayshift = self.shift.copy()
elif self.shifttype == 'Evening':

APPENDIX VII: Vehicle class

self.model.eveningshift = self.shift.copy()
elif self.shifttype == 'DayDelayed':

self.model.eveningshift = self.shift.copy()
else:

self.shifts = []

self.shifttypes = []

self.t load = self.shift[0]
self.t drop = self.t_ load
self.t collect = self.shift[1]
self.t_unload = self.t_collect

self.shifts.pop(0)
self.shifttypes.pop(0)
self.allroutes.pop(0)
self.charges.pop(0)

else:
self.shift += 24
self.t load = self.shift[0]
self.t drop = self.t_load
self.t _collect = self.shift[1l]
self.t unload = self.t _collect

self.shifts = []
self.shifttypes = []
self.allroutes = []
self.charges = []

The Route Planning Function

The route planning function is, in contrast to the foregoing functions, not an 'event' of the Vehicle class.
Instead, it is a regular function of the class that gets called by the route planning event of the parent
Distribution Centre. The route planning algorithm is based on the Travelling Salesman Problem (TSP), which
is why it is conveniently called TSP (Stein, 1978). Furthermore, the TSP in the simulation model is build upon
a simple heuristic, namely that the next destination always is the one nearest to the current location. This
way, routes remain within a 25% range of the optimal solution, but it saves a considerable amount of
computing time.

The TSP algorithm is implemented in both the Distribution Centre class and the Vehicles class. Depending
on the destinations remaining (day or evening), a working shift is assigned to the vehicles. Furthermore, if a
city hub is to be used and the option to use a vehicle as line haul is set to ‘yes’, the vehicle gets the line shift
assigned. After assigning a shift to the vehicle and assess the destinations remaining for the shift, the TSP
function of the vehicle is called. This setup however is explained in more detail in the Notebook about the
Distribution Centre events.

APPENDIX VII: Vehicle class

The algorithm is very simple. It follows the following steps:
As long as there is no limit reached AND there are destinations remaining:

. Check what the last destination (or the current location) is.
. Determine the nearest destination.
. Insert the destination in the route (at the end, but before the vehicle has to return to the DC.
. Calculate the current distance, travel time and capacity
. Check if one of the limits is exceeded:
If yes: Delete the last destination and add the route as it is now to the planned routes.
If no: Delete the destination from the list of remaining destinations to visit and start at step 1.
Continue for as long as there is time remaining in the shift.

OB~ ON =

Besides, if the route exceeds the range limit and the City Hub is to be used, the vehicle has to be charged
in-between routes. A charging comment will be inserted in the right list, so the simulation knows when to
charge.

As mentioned above, the planning first considers the parcels to drop. Then, the parcels to collect are
planned. The collection is only conducted in the postal code areas the vehicle has already visited, to prevent
vehicles from randomly driving through the city to collect parcels. This way, it is assumed that the collection
is more connected to the original delivery route. The code is shown in the code block below

APPENDIX VII: Vehicle class

In []:
def TSP(self, shift, shifttype):
Print something useful in the terminal
print('%.2f TSP: ', %self.model.clock, self.name, self.dc.name,
shifttype)
loads = [] # Control list
Setup the lists with shifts and shifttypes
Useless will not be included in the planning
if shifttype == 'Useless':
self.shifts = [shift.copy()]
self.shifttype = [shifttype]
elif len(self.shifts) <= 1:
self.shifts.append(shift.copy())
else:
self.shifts = [shift.copy()]
Setup the line shift vehicles as long as there is work
if shifttype == 'Line':
odm = self.model.CityHubs['City Hub'].day_odm
self.lineroutes = []
pcremaining = []
charges = []
lineroute_times = []
demand = pd.DataFrame()
parcelsleft = self.dc.linehaulremaining
Plan the line haul routes within the limits of
time and capacity
while parcelsleft > 0:
charges.append(False)
self.lineroutes.append(list(self.init_route))
Check if all parcels fit in one vehicle
if parcelsleft <= self.vehicle data['Capacity average']:
self.loads_to_drop.append(parcelsleft)
parcelsleft -= parcelsleft
lineroute_times.append(self.vehicle data['Fixed loading tim
e']l \

* 2\
+ odm[self.init route[0]].loc[self.in
it_route[1]] \
/ self.vehicle data['Speed average -
highway'] * 2)
emptied = True
else:
Otherwise fill up to max_capacity
self.loads_to_drop.append(self.vehicle data['Capacity averag
e'])
parcelsleft -= self.vehicle data['Capacity average']
lineroute_times.append(self.vehicle data['Fixed loading tim
e']l \
* 2\
+ odm[self.init route[0]].loc[self.in
it _route[1]] \
/ self.vehicle_data['Speed average -
highway'] * 2)
charges.append(False)
emptied = False
Calculate if time limit has been exceeded
if len(self.lineroutes) > 1:
tempt = sum(lineroute_times)

APPENDIX VII: Vehicle class

if tempt > (self.model.dayshift[0] \
- self.model.lineshift[0]):

if emptied:
parcelsleft += parcelsleft
self.lineroutes.pop(-1)

else:
parcelsleft += self.vehicle data['Capacity average']
self.lineroutes.pop(-1)

break

self.dc.linehaulremaining = parcelsleft
routes = self.lineroutes
self.shifttypes.append(shifttype)

Setup day shift, if that is the case
elif shifttype == 'Day':
Set time limit for the shift, which is entered in the dashboard
timelimit = self.model.BasicInfo['Value']\
[self.model.BasicInfo['Variable'] \
== 'Maximum route time'].values[0]
Filter the destinations that fit the capacity of the vehicle
pcremaining = [Xx for X in self.dc.dayremaining if \
self.dc.DayDestinations['Amount'].loc[x] \
<= self.vehicle_data['Capacity average']]

Store ODM, demand and routes locally
odm = self.dc.day_odm

demand = self.dc.DayDestinations
self.dayroutes = []

self.daycharges = [False]
self.shifttypes.append(shifttype)

routes = self.dayroutes
charges = self.daycharges

Do the same for the evening shift
elif shifttype == 'Evening':
timelimit = self.model.BasicInfo['Value']\
[self.model.BasicInfo['Variable'] \
== 'Maximum route time'].values[0] / 2
pcremaining = [X for X in self.dc.eveningremaining if \
self.dc.EveningDestinations['Amount'].loc[x] \
<= self.vehicle_data['Capacity average']]

odm = self.dc.eve_odm

demand = self.dc.EveningDestinations
self.everoutes = []

self.evecharges = []
self.shifttypes.append(shifttype)

routes = self.everoutes
charges = self.evecharges

And do the same for day demand that have to be delivered in the evenin

elif shifttype == 'DayDelayed':
timelimit = self.model.BasicInfo['Value']\
[self.model.BasicInfo['Variable'] \
== 'Maximum route time'].values[0] / 2
pcremaining = [x for x in self.dc.dayremaining if \
self.dc.DayDestinations['Amount'].loc[x] \

APPENDIX VII: Vehicle class

T mpu———

<= self.vehicle_data['Capacity average']]

odm = self.dc.day_odm

demand = self.dc.DayDestinations
self.delayedroutes = []
self.delayedcharges = []
self.shifttypes.append(shifttype)

routes = self.delayedroutes
charges = self.delayedcharges

else:
pcremaining = []
routes = []
charges = []
demand = pd.DataFrame()

If there are no destinations remaining, planning procedure is skipped
if len(pcremaining) > 0:

pcr = True
else: pcr = False

Assumed that vehicle is always fully charged for first route

charging = False

First range limit, which is raised every time the vehicle is reloaded
dist_limit = self.vehicle_data['Range average']

times = []
distances = []

HAHH A AHHHH#H#H#H#H# Start planning procedure #H##H#H#H#HH##H##H#H#H#
while pcr:

limit False

route list(self.init_route)

load_limit = self.vehicle_data['Capacity average']

If there are more routes, check if charging is needed
if len(routes) > 0:
ds = sum([sum(x) for x in distances])
if charging:
print('---—-- > CHARGING <----—- ")
times.append(self.vehicle data['Charging time'])
charges.append(True)
dist_limit = ds + self.vehicle data['Range average']

elif self.model.switch_ CH:
times.append(self.vehicle_data['Fixed loading time'])
charges.append(False)
dist_limit = ds + self.vehicle data['Fixed loading time'] \
/ self.vehicle_data['Charging time'] \
* self.vehicle_data['Range average']

else:
times.append(self.vehicle data['Fixed loading time'])
charges.append(False)
else:
times.append(self.vehicle_data['Fixed loading time'])

First plan the delivery route, then the collection route
Handled by setting the switches below.
Furthermore, only collect parcels in postal code areas

APPENDIX VII: Vehicle class

TURLIY Vit Upvs wauas

we've already been
switch_collection = False
pcs_to_collect = []
switch_delivery = True

while not limit:
Check current/last location visited
lc = route[-2]
Retrieve distances to remaining destinations
dists = odm[lc].loc[pcremaining]

if switch_delivery:
Filter the applicable destinations:
dtemp = dists.loc[(dists.index.str.contains('day') \
| dists.index.str.contains('Locker')\
| dists.index.str.contains('evening'))]
if len(dtemp) > 0:
nearest = dtemp.min()
nearest_idx = dtemp.idxmin()
Check postal code of destination
pcv = nearest_idx.split(' ')[2]
if pcv not in pcs_to_collect:
pcs_to_collect.append(pcv)

route.insert (-1, nearest_ idx)

else:
If there is no destination remaining in dtemp,
Start collecting parcels instead
switch_delivery = False
switch_collection = True

pcs_to _collect = [x.split(' ')[2] for x in pcremaining \
if 'Sorteercentrum' not in x \
and 'City Hub' not in x]

if switch collection:
Filter the demand for collection
collection _demand_idx = [x for x in dists.index if 'collecti

in x and pcs_to_collect[-1] in Xx]
if len(collection_demand_idx) > 0:
Get the distances, determine nearest and insert in rou

collection_demand = dists.loc[collection_demand_idx]
nearest = collection_demand.min()

nearest_idx = collection_demand.idxmin()
route.insert (-1, nearest_ idx)

If there is no demand left, but postal code area still has

be visited, the following code is entered.
elif len(collection_demand_idx) == 0 and len(pcs_to_collect)

pcs_to_collect.pop(-1)

if len(pcs_to_collect) == 0:
limit = True
print('---> No afroming left for this route')
else:
print('---> No afroming left for this route')

limit = True

APPENDIX VII: Vehicle class

pcr = False

Start calculating the current route's properties
This is used as input to check whether or not limits are reach

ed
tempd = 0 # Distance
tempt = 0 # Time
templ = 0 # Load

for idx, pc in enumerate(route[:-1]):
Check distance and add to tempd
d = odm[pc].loc[route[idx+1]]
tempd += d
if 'City Hub' in pc or 'Sorteercentrum' in pc:
First stop, so add loading time too, speed is highway
tempt += d/self.vehicle_data['Speed average - highway']
tempt += self.vehicle data['Fixed loading time']
elif 'City Hub' in route[idx+1] or \
'Sorteercentrum' in route[idx+1]:
Last stop back to base, so speed highway
tempt += d/self.vehicle_data['Speed average - highway']
else:
Interdrop simulation, city speed
tempt += d/self.vehicle_data['Speed average - City']

if 'City Hub' not in pc and \
'Sorteercentrum' not in pc:
Can only take demand if not DC type of destination
templ += demand['Amount'].loc[pc]

Start checking if limits have been reached
if tempd > self.vehicle_data['Range average']:
print('-> Range limit reached')
route.pop(-2)
limit = True
charging = True

elif tempt > timelimit:
print('-> Time limit reached')
route.pop(-2)
limit = True
pcr = False # Exit planning, no more time left

elif templ > load_limit:
print('-> Capacity limit reached')
route.pop(-2)
if len(pcs_to_collect) > 0:
switch_delivery = False
switch_collection = True
Start collecting, extra load necessary
load_limit += self.vehicle_data['Capacity average']
else:
limit = True

else:
Check the total time and distance of all the routes
td = 0
tt =0

for d in distances:
if isinstance(d, float): td += d
else: td += sum(d)

APPENDIX VII: Vehicle class

for t in times:
if isinstance(t, float): tt += t
else: tt += sum(t)

Check the total limits
if (td + tempd) > dist_limit:
print('----- > Overall range limit reached')
route.pop(-2)
limit = True
charging = True

elif (tt + tempt) > timelimit:
print('----- > Overall time limit reached')
route.pop(-2)
limit = True
pcr = False

else:
If no limit has been reached: delete destination from
remaining destinations and continue planning
if switch_collection \
and nearest_idx in collection_demand_ idx:
collection_demand_idx.pop(collection_demand_idx.inde
X(nearest_idx))
pcremaining.pop(pcremaining.index(nearest_idx))
if len(collection_demand_idx) != 0:
pass
elif len(collection_demand_idx) == 0 and len(pcs_to_
collect > 0):
pcs_to_collect.pop(-1)
if len(pcs_to_collect) == 0:
print('----- > No afroming left for this rout

limit = True
else: limit = True

elif switch_delivery:
pcremaining.pop(pcremaining.index(nearest_idx))

if len(pcremaining) == 0:
pcr = False
limit = True
Exitting planning loop

Make sure that only meaningful routes are added to the planning

if route != self.init_route:
dists = []
lds_d = []
lds_c = []
tms = []

Calculating route statistics for the final time
for idx, pc in enumerate(route[:-1]):

d = odm[pc].loc[route[idx+1]]

dists.append(d)

if 'City Hub' in pc or 'Sorteercentrum' in pc:
tms.append(d/self.vehicle_data['Speed average - highway'
1)
elif 'City Hub' in route[idx+1] \
or 'Sorteercentrum' in route[idx+1]:
tms.append(d/self.vehicle_data['Speed average - highway'

APPENDIX VII: Vehicle class

1)
else:
tms.append(d/self.vehicle_data['Speed average - City'])

if 'City Hub' not in pc and 'Sorteercentrum' not in pc:
1 = demand['Amount'].loc[pc]
if 'collection' in pc:
lds_c.append(1l)
else:
lds_d.append(1l)

tms.append(self.vehicle_data['Fixed stop time'])
Append the route to the planning
And all other statistics needed for the simulation
routes.append(route)
times.append(tms)
distances.append(dists)
loads.append(sum([sum(lds_c), sum(lds_d)]))
self.loads_to_drop.append(lds_d)
self.loads_to_collect.append(lds_c)

if len(pcremaining) == 0:
print('No destinations remaining')
pcr = False
Exit the planning loop for this vehicle

Update the demand DataFrames in the DC instance
if shifttype == 'Day':
for r in routes:
for pc in r:
if pc in self.dc.dayremaining:
self.dc.dayremaining.pop(self.dc.dayremaining. index(
pc))
elif shifttype == 'Evening':
for r in routes:
for pc in r:
if pc in self.dc.eveningremaining:
self.dc.eveningremaining.pop(self.dc.eveningremainin
g.index(pc))
elif shifttype == 'DayDelayed':
for r in routes:
for pc in r:
if pc in self.dc.dayremaining:
self.dc.dayremaining.pop(self.dc.dayremaining. index(
pPc))

self.allroutes.append(routes)
self.charges.append(charges)

Setup the simulation variables based on the planning
if len(self.shifts) > 0:

self.shift = self.shifts[0]

self.routes = self.allroutes([0]

self.shifttype = self.shifttypes[0]

self.charging = self.charges[0]

self.t load self.shift([0]
self.t_drop self.t_load
self.t _collect = self.shift[1l]
self.t_unload = self.t_collect

else:
self.t load +=
self.t_drop +=
self.t_collect

APPENDIX VII: Vehicle class

+= 24

self.t _unload += 24

Summarising the Vehicle Class

In the code block below, the vehicle class with all its functions and events is summarised. The code of each
function is covered in this Notebook, so this summary only shows an overview of the class

In []:

class Vehicle:
def _ init__ (self, name, data, planning_preference, dc, model):
Statements, calling functions and define variables

def

def

def

def

def

def

Code ...

determine_initial_routes(self):
Based on settings regarding City Hub. Input for TSP()

Code ...

Load(self):
Simulation event
Code ...

Drop(self):
Simulation event
Code ...

Collect(self):
Simulation event
Code ...

Unload(self):
Simulation event
Code ...

TSP(self, shift, shifttype):
Function called by DC instance

Code ...

References

Stein, D. M. (1978). An asymptotic, probablistic analysis of a routing problem. Mathematics of Operations
Research 3(2). 89-101

APPENDIX VII: Vehicle class

APPENDIX VIII: Setup the Parcel Lockers

APPENDIX VIII: Setup the Parcel Lockers

Showing the setup of the lockers - script

This Notebook describes the script that conducts the parcel locker setup. By no means this Notebook can
be used to setup the lockers, as the script is broken into smaller pieces to explain. The script can be found
in the attached setup_lockers.py file.

Import libraries

In []:

import numpy as np
import pandas as pd
import geopandas as gpd

from shapely.geometry import Polygon, MultiPolygon
import tripy

Define the filenames to import

In []:

dashboard = '../data/dashboard.xlsx'
sheet = 'Settings'

In []:

Read the file into memory
settings = pd.read_excel(dashboard, sheet_name=sheet)

Read the settings before setup

The dashboard is similar to the one used in the simulation model. Therefore, also the same settings can be
extracted from the file, which are defined in the Settings sheet. Now, it is checked whether or not the Parcel
Locker setting is switched on and what the settings with regard to the interdrop are.

In []:

settings = settings.loc[['Parcel Lockers',
'Average walking time [min]',
'Average walking speed [km/h]']]

In []:

Check the locker setting

if settings['Setting'].loc['Parcel Lockers'] == 'True':
switch_PL = True

else: switch PL = False

APPENDIX VIII: Setup the Parcel Lockers

In []:
speed = settings['Setting'].loc['Average walking speed [km/h]']

time = settings['Setting'].loc['Average walking time [min]']

Now, the so-called interdrop distance can be calculated. In other words, what is the average distance
consumers are willing to walk to the nearest parcel locker? The i, or the interdrop distance, is calculated by
multiplying the speed by the time willing to walk. This value is used later on in another function.

In []:
i = speed * time
Read the shapefile

First, the filename of the shapefile is defined. Then, the shapefile is read into memory and processed
similarly as done in the normal setup file.

In []:
fn = '../data/openpc4nl2015landonly/PC4 Nederland 2015.shp'
In []:

def get_shapes(fn):
geoframe = gpd.read file(fn)
Select Amsterdam records
adam = geoframe[:86]
Change orientation of the coordinates
adam = adam.to_crs({'init': 'epsg:4326'})

Transform data to km instead of m
adam['Shape Area'] /= 1000000
adam['Shape Leng'] /= 1000

return adam

Process the shapes

Then, the shapes are analysed to setup the distribution of parcel lockers properly. Before the lockers can be
distributed, several variables about the postal code area have to be known/calculated:

1. The number of stops (n)

2. The area of the postal code area

3. The normalised values of the areas

4. The triangles obtained by triangulation

5. The centroids of these triangles

6. The corresponding postal code for later reference

APPENDIX VIII: Setup the Parcel Lockers

These aspects have to be known as a part of the algorithm that will be used to randomly distribute the
parcel lockers among the postal code area. The algorithm was found on a forum
(https://gis.stackexchange.com/questions/6412/generate-points-that-lie-inside-polygon/6419) and goes as

follows:

1. Decompose the polygon into triangles

2. Calculate the areas of these triangles

3. Normalise the areas

4. Sample a fixed number of points with a probability based on the normalised values

Calculating the number of lockers

Lastly, the number of stops in a certain area can be calculated based on the formula shown below. In this
formula, n stands for the number of stops, area stands for the area of the postal code area and i is the
average interdrop distance. This function was provided by a PostNL model.

area

2
distance

Ngstops i

Triangulation of polygon

For decomposing polygon into triangles, the python library tripy can be used. Moreover, this specific library
is used to 'triangulate' the polygons of the postal code areas. This will be based on the so-called earclip
algorithm, which is (of course) integrated in the tripy library. More information can be found here

(https://en.wikipedia.org/wiki/Polygon_triangulation).

Calculating Centroids of a Triangle

Calculating centroids of a triangle is based on the formula below, where Ox is the x-coordinate and Oy is the
y-coordinate of the centroid, or central point of the triangle. Furthermore, these coordinates are calculated
by summing all of the corresponding coordinates of the points of the triangles and divide them by 3. So, for
Ox all x-coordinates of the points A, B and C are summed up, while for Oy all y-coordinates of A, Band C
are summed up.

APPENDIX VIII: Setup the Parcel Lockers

0 A+ B, +C, 0 Ay +By,+C,
x 3 y 3

APPENDIX VIII: Setup the Parcel Lockers

In []:

def process_shapes(shapes, i):
Calculate the number of lockers in an area
n = int(round(shapes['Shape_Area'] / i**2))
n.index = shapes|['pcédtxt']
n.name = 'Lockers’'

Setup the empty lists for the variables to calculate

areas = [] # Areas of triangles
norms = [] # For normalised values
triangles = []

centroids = []

postals = []

Iterate through shapefile to calculate variables
for i in range(len(shapes)):
Get polygon
poly = shapes['geometry'].iloc[i]
Get Postal Code
pc = shapes['pcdtxt'].iloc[1i]
if isinstance(poly, Polygon):
Extract outer coordinates of polygon
X,y = poly.exterior.coords.xy
Generate coordinates
p = [(x[1], y[i]) for i in range(len(x))]
Use earclip algorithm to calculate triangles
tri = tripy.earclip(p)
triangles.append(tri)
Calculate the areas

a = [tripy._ triangle_area(*t[0], *t[1], *t[2]) for t in tri]
areas.append(a)
c=1]

for t in tri:
X = (t[0][0] + t[1][0] + t[2][0]) / 3
y = (t[0][1] + £[1][1] + t[2][1]) / 3
c.append((X,y))
centroids.append(c)
norm = [area / sum(a) for area in a]
norms .append (norm)
postals.append(pc)
else:
for part in poly:
X, y = part.exterior.coords.xy
p = [(x[1], y[i]) for i in range(len(x))]
tri = tripy.earclip(p)
triangles.append(tri)
c =[]
for t in tri:
X = (t[0][0] + £[1][0] + t[2][0]) / 3
y = (t[0][1]) + t[1][1] + t[2][1])) / 3
c.append((x,Y))
centroids.append(c)

a = [tripy._triangle_area(*t[0], *t[1], *t[2]) for t in tri]
areas.append(a)
norm = [area / sum(a) for area in a]

norms.append (norm)
postals.append(pc)
print('PC {} done'.format(i))

return areas, norms, triangles, centroids, postals, n

APPENDIX VIII: Setup the Parcel Lockers
Reshape shape data

As some of the polygons were actually MultiPolygons, some outcomes have a different shape than we would
expect. Therefore, the data obtained by the previous function is being processed again to 'flatten' the
outcomes. Hence, the distribution of parcel lockers can be executed more easily.

In []:
def reshape(data):
Data is a tuple that contains all the variables

areas, norms, tris, centroids, pcs, stops = data

Define new lists to fill up with processed data

a2 = []
n2 = []
t2 = []
c2 =[]

Only store unique postal codes.
pcs2, counts = np.unique(pcs, return_counts=True)

Iterate through postal codes
for i, pc in enumerate(pcs2):
idx = pcs.index(pc)
If postal code only occurs once, data can be stored directly
if counts[i] ==
a2.append(areas([idx])
n2.append(norms|[idx])
t2.append(tris[idx])
c2.append(centroids[idx])
Otherwise, it is from a MultiPolygon and it has to be split up

else:
ta = []
tc =[]
tt =[]

for i2 in range(counts[i]):
ta += areas[idx + 1i2]
tc += centroids[idx + i2)]
tt += tris[idx + i2]

a2 .append(ta)

t2.append(tt)

c2.append(tc)

Normalise again for MultiPolygon
n2.append([a / sum(ta) for a in ta])

return a2, n2, t2, c2, pcs2, stops

Sample locker locations

Now, the data is ready to be used for sampling the locker locations. The locker locations will be sampled
from the Centroid coordinates, based on the normalised values of the areas of the corresponding triangles,
as defined in the algorithm before. The locations can only be sampled once. The size is defined as the
calculated number of stops. These locations will be stored in a DataFrame, so it can easily be stored in Excel
for later reference. The function is shown below:

APPENDIX VIII: Setup the Parcel Lockers

In []:

def sample_locker_ locations(data):
Unpack data tuple
areas, norms, tris, centroids, pcs, stops = data

Define locker locations list and iterate through postal codes
lockerlocs = []
for i in range(len(pcs)):
Sample for Postal code
locs = np.random.choice(np.arange(len(centroids[i])), \
size=int(stops.iloc[i]), \
p=norms[i], replace=False)
Select centroid
locs = [centroids[i][v] for v in locs]
Store location
lockerlocs.append(locs)

Predefine dataframe by list
lockerlocsdf = []

Fill up the list by iterating through locations
for i, 11 in enumerate(lockerlocs):
pc = pcs[i]
for idx, loc in enumerate(ll):
1 = list(loc)
n = 'Locker {} {}'.format(pc, idx)
1 += [str(pc), n]
lockerlocsdf.append(1l)

lockerlocsdf = pd.DataFrame(lockerlocsdf, columns=['LON', 'LAT', 'Postcode',
'Name'])
lockerlocsdf = lockerlocsdf[['Name', 'LAT', 'LON', 'Postcode']]

return lockerlocsdf

APPENDIX VIII: Setup the Parcel Lockers

APPENDIX IX: Setup the simulation model

APPENDIX IX: Setup the simulation model

Describing the model setup - script

In this Notebook, the setup script as used in the simulation model has been further explained. Important to
note is that the code in this Notebook cannot be used to run the setup for the simulation and is only for
educational purposes.

This Notebook is written in a slighlty different order than the other Notebooks that can be found in the report,
as first the main function is explained. In this main function, other functions will be called that will be defined
later in this Notebook too. However, the main function is the one executed in the initiation of the simulation
model and is therefore the most important to know. Besides, it is the simplest one as well.

Import necessary libraries

In []:

import numpy as np
import pandas as pd
import geopandas as gpd

Main

So, in the main function all the references to the files used are defined. Thus, this Notebook does not differ
from that and the files are defined first.

Then, the shapes are read into memory, followed by the population data from the CBS. These are executed
by two different functions that will be covered later in this Notebook.

Then, the similar postal codes are stored and both the shapes and population data are filtered for the similar
postal codes. This, since it makes no sense to include postal code areas without demographic data and
vice-versa.

Finally, the locker locations as defined in the setup_lockers.py script are read into memory and passed on to
the simulation model. This is covered in the main function below.

APPENDIX IX: Setup the simulation model

In []:

def main():
dashboard = '../data/dashboard.xlsx'
shape data = '../openpc4nl2015landonly/PC4 Nederland 2015.shp'’
adam data = '../../../data_and_indicators/bevolkingscijfers amsterdam.xls'
milieuzone file = '../../../data_and indicators/milieuzone_amsterdam.xls'
pc_location file = '../../../data and indicators/4pp-master/4pp.csv'

locker location file = 'LockerLocations.xlsx'

dashboard = read dashboard(dashboard file)

shapes = read_shapes(shapefile)

amsterdam = read population data(adam file)

shapes, amsterdam, similarpcs = check similarities(shapes,

amsterdam)

pc_locs, locker locs = read_location_data(pc_location file,
locker location_ file,
similarpcs)

milieuzone = read milieuzone(milieuzone file)

return dashboard, shapes, amsterdam, similarpcs, pc_locs, \
locker locs, milieuzone

Read Dashboard

Now, we will explain all the functions executed in the main function in the same order. So, first the
read_dashboard function. This is the easiest, as it only opens the simulation model's dashboard file and
passes it on. The code is shown below:

In []:

def read_dashboard(fn):
"""Returns the dashboard as a dictionary with the different sheets
db = pd.read_excel(fn, sheet name=None)
return db

o

Read shapes

The read_shapes function reads the shapefile of the Dutch postal code areas into memory. These postal
codes will be filtered for only the ones in Amsterdam before being passed on to the simulation model.

Besides, the function transforms the projection of the shapefile from Dutch coordinates to the universal
Latitude/Longitude projection and the area/lengths are re-calculated to kilometres (squared).

APPENDIX IX: Setup the simulation model

In []:

def read_shapes(fn):
"""Returns a geoframe with lat/lon coordinates and postal codes
of Amsterdam"""
Store Geoframe
geoframe = gpd.read file(fn)
After inspection it is determined that Amsterdam is present
until line 86
geoframe = geoframe.iloc[:86]
Change the orientation of coordinates to lat/lon
geoframe = geoframe.to crs({'init': 'epsg:4326'})
Transform area and length of shapes to kilometers (squared)
geoframe['Shape Area'] /= 1000000
geoframe['Shape Leng'] /= 1000

return geoframe

Read population data

The read_population_data function reads the Excel file from the Dutch CBS into memory. Only the columns
of interest will be stored and renamed for easier further reference. Also, several density variables are being
calculated, as can be noticed from the code below.

APPENDIX IX: Setup the simulation model

In []:

def read population data(fn):
"""Analyse the data from CBS and store the relevant data in
a separate dataframe. First, all the postal codes have to be
filtered from the file. Then, the combined records for each
postal code have to be created. """
df = pd.read_excel(fn, header=[0,1])
df.columns = df.columns.droplevel(-1)

Filter for 'Buurt', as they only contain the postal codes.

df = df[df['Soort regio'] == 'Buurt']
Then, all postal codes have to be assessed.
pcs = df['||Meest voorkomende postcode'].unique()

If there is still a missing record, we have to drop it.
#These are indicated by a '.'
pcs = pcs[np.where(pcs != '.')]

df = df.replace('.', np.nan)

Now, we have to calculate the needed data for each postal code.

#Data needed is:

Population and Population density

Companies and Company density

Distribution of Population and Companies among postal codes.

variables = ['Population', 'Population density', 'Horeca', 'Horeca density'
'Companies', 'Company density']

First, a new DataFrame has to be defined, to append the new records to.

newdf = pd.DataFrame(columns=variables)

for pc in pcs:

recs = df[df['||Meest voorkomende postcode'] == pc]
inw = recs['||Aantal inwoners'].sum()
hor = recs['|||G+I Handel en horeca'].sum()
ovb = (recs['||Bedrijfsvestigingen totaal'] \
- recs['|||G+I Handel en horeca']).sum()

area = recs['Oppervlakte land'].sum()

inw_dens = inw/area
hor_dens = hor/area
ovb_dens = ovb/area

s = pd.Series([inw, inw dens, hor, hor_dens, ovb, ovb_dens],
index=variables, name=pc)
newdf = newdf.append(s)

newdf.sort_index(inplace=True)
Now the distribution is calculated
for var in ['Population', 'Horeca', 'Companies']:

newdf[var+' distribution'] = newdf[var]/newdf[var].sum()

Change the order of the columns for appropriateness

cols = ['Population', 'Population density', 'Population distribution',
'Horeca', 'Horeca density', 'Horeca distribution',
'Companies', 'Company density', 'Companies distribution']

newdf = newdf[cols]

return newdf

APPENDIX IX: Setup the simulation model

Check similar pcs

As mentioned before, the check_similar_pcs function only checks whether or not the same postal codes are
present in the two different DataFrames of population data and shapes. The code is shown below.

In []:

def check_similarities(geoframe, populationdf):
"""Check the extent to which the geoframe and dataframes are similar.
If similar, combine the records.
geoPC = geoframe['PC4'].values
popPC = populationdf.index.values

toReturn = []
if np.array equal(geoPC, popPC):
return populationdf.index.values
elif len(geoPC) < len(popPC):
for pc in geoPC:
if pc in popPC:
toReturn.append(pc)
else:
print(pc, 'not in arr')
else:
for pc in popPC:
if pc in geoPC:
toReturn.append(pc)
else:
print(pc, 'not in arr')
geoframe['PC4'] = geoframe['PC4'].astype(int)
geoframe = geoframe[geoframe['PC4'].isin(toReturn)]
populationdf = populationdf.loc[toReturn]

return geoframe, populationdf, toReturn

Read location data

The read_location_data function reads the locker locations and the postal code area locations into memory.
The code is shown below.

In

[

APPENDIX IX: Setup the simulation model

1:

def read location_data(*fns):

mwnn

Open and process the files with all locations of
Postal codes and Lockers"""
pc_locations, locker locations, pcs = fns

Postal code locations
pcdf = pd.read csv(pc_locations, index_col=0)
pcdf = pcdf[pcdf['postcode'].isin(pcs)]

pcdf = pcdf[['postcode', 'latitude', 'longitude']]

pcdf.columns = ['Postcode', 'LAT', 'LON']
pcdf.reset index(drop=True, inplace=True)

Locker locations
lockerlocsdf = pd.read excel(locker locations)

return pcdf, lockerlocsdf

Mileuzone

Lastly, the read_milieuzone file is read into memory. This can be used to select the postal codes to be

delivered from a city hub.

In

[

1:

def read milieuzone(fn):

df = pd.read_excel(fn)

#print(df.head())

milieuzone = df['Milieuzone Postcodes'].values
arr = np.array(milieuzone)

arr = arr.astype(str)

return arr

APPENDIX X: Sensitivity Analysis

APPENDIX X: Sensitivity Analysis

Conducting the Sensitivity analysis

In this Notebook, the sensitivity analysis for this study has been conducted. The sensitivity analysis consists
two main parts: the scripts that define the different cases to run, and this Notebook to analyse the results of
these runs.

The cases are defined as either increasing or decreasing a certain factor or variable in the model dashboard
and run 5 different experiments with these settings. That 5 runs are needed is determined by van Soest's
formula (van Soest, 1992) in chapter 5.6 in the report.

The variables under investigation in this Notebook are:

1. The route time limit

2. Vehicle capacities

3. Loading and stopping times

4. The number of transporters in the simulation
5. Inter-distance between lockers

The cases have already been generated and only their results will be covered in this analysis. The outcomes
are stored in separate Excel files that are provided in the Data directory of this study.
Importing libraries

In [1]:

import numpy as np
import pandas as pd

1. Varying the route time limit

The route time limit is used to make sure that the routes together do not exceed the time of a normal
working day. This normal time is assumed to be 8 hours.

For this analysis however, the effects of shortening and extending this route time is analysed. Furthermore,
the route time limit is shortened to 6 hours and extended to 10 hours. The results are shown below.

In [2]:
fn = '../Data/Outcomes_Routetime.xlsx'

outcomes = pd.read excel(fn, sheet_ name=None)

APPENDIX X: Sensitivity Analysis

The outcomes consist of the following cases:

1. Reference case (8 hours)
2. Regular config (10 hours)
3. Regular config (6 hours)
4. City Hub config (8 hours)
5. City Hub config (10 hours)
6. City Hub config (6 hours)

Each of these is analysed below. First, the statistics are calculated. These statistics are put together in
DataFrames. Then there will be reflected upon the differences and if it strokes with the expectations.

In [3]:

cases = list(outcomes.keys())
cases

out[3]:

['Case 0', 'Case 1', 'Case 2', 'Case 3', 'Case 4', 'Case 5']

In [4]:

Prepare df
df _mean = pd.DataFrame(columns=outcomes[cases[0]].columns)
df_std = df_mean.copy()

In [5]:

for c in cases:
case = outcomes[c]

mean = case.mean(axis=0)
std = case.std(axis=0)

mean.name = C
std.name = c

df mean = df mean.append(mean)
df std = df_std.append(std)

APPENDIX X: Sensitivity Analysis

In [6]:
df mean
Out[6]:
P | Di
Total arcei: Parcels Total lstan(: Total time Average
simulated system delivered distance pa::el operative | time/parcel
time [h] [pcs] | driven [km] [h] [h]
[pcs] [km]
Case
0 24.0 2166.0 [2014.0 1725.108366 | 0.856536 | 179.079072 | 0.088917
Case
1 24.0 2183.8 [1996.2 1550.448885 | 0.776759 | 172.931484 | 0.086635
Case
2 24.0 2170.6 |2009.4 2036.455483 (1.013443 |191.272441 {0.095188
Case
3 24.0 2221.6 |1958.4 1889.204378 | 0.964890 | 494.180944 | 0.252369
Case
4 24.0 2243.4 [1936.6 1758.694288 | 0.908146 | 490.183450 | 0.253118
Case
5 24.0 2213.8 [1966.2 1997.759704 | 1.016034 | 496.286243 | 0.252411
In [7]:
df_std
Out[7]:
Total | Parcels in Parcels . Total| Distance T?tal Average
. i distance per time | .
simulated system | delivered i . |time/parcel
time [h] [pcs] [pcs] driven parcel | operative Ih]
[km] [km] [h]
Case
0 0.0 9.137833 |9.137833 |27.509218 |0.011139|1.927481 |0.000873
Case
1 0.0 11.987493 [11.987493 | 32.119641 | 0.018749 (2.176464 |0.001411
Case
o 0.0 7.700649 |7.700649 |[55.498615 [0.026288 3.522693 (0.001625
Case
3 0.0 20.719556 |20.719556 [42.539060 | 0.030099 |2.521495 [0.003642
Case
4 0.0 6.066300 |6.066300 [53.825535 |0.028105|3.046145 [0.001855
Case
5 0.0 6.833740 |6.833740 (29.585170|0.013093|1.435955 [0.001145

Calculate the advantages in terms of percentages

In [8]:

df perc = df mean / df mean.iloc[0] * 100
In [9]:

df perc = df perc.apply(pd.Series.round)
In [10]:

oois = ['Total distance driven [km]',

'Total time operative [h]',
'Total emissions CO2 [kg]',

df perc[oois]

APPENDIX X: Sensitivity Analysis

'Distance per parcel [km]',
'Average time/parcel [h]',
'CO2 emissions/parcel [kg]']

Oout[1l0]:
Total
dista:cz Distance | Total time Average Total co2
driven per parcel | operative |time/parcel | emissions | emissions/parcel
ki h h 2 [k k
fim] [km] [h] [hl| CO2 k] [kg]
Case
0 100.0 100.0 100.0 100.0 100.0 100.0
Case
1 90.0 91.0 97.0 97.0 98.0 99.0
Case
o 118.0 118.0 107.0 107.0 110.0 110.0
Case
3 110.0 113.0 276.0 284.0 59.0 61.0
Case
4 102.0 106.0 274.0 285.0 56.0 58.0
Case
5 116.0 119.0 277.0 284.0 59.0 61.0

What can be noticed from the table above, is that varying the route time has less of an impact on the City

Hub configuration, compared to the regular configuration.

Increasing the route time limit considerably improves the statistics in both cases, while decreasing the route

time limit drastically worsens the performance.

2. Varying vehicle capacity

The vehicle capacity is defined as the average number of parcels that fit into a specific type of vehicle. In
general it is assumed that bicycles have the lowest capacity, followed by stints and then the (electric) vans.

APPENDIX X: Sensitivity Analysis

What happens with the system performance if the capacity of each of this vehicles is increased? And what
happens if capacity is decreased?

In [11]:
fn = '../Data/Outcomes_Capacity.xlsx'

outcomes = pd.read excel(fn, sheet_ name=None)

The outcomes consist of the following cases:

1. Reference case

2. Regular config High Capacity (+50%)
3. Regular config Low Capacity (-50%)
4. City Hub config

5. City Hub config High Capacity (+50%)
6. City Hub config Low Capacity (-50%)

Each of these is analysed below. First, the statistics are calculated. These statistics are put together in
DataFrames. Then there will be reflected upon the differences and if it strokes with the expectations.
In [12]:

cases = list(outcomes.keys())

In [13]:

Prepare df
df _mean = pd.DataFrame(columns=outcomes[cases[0]].columns)
df _std = df_mean.copy()

In [14]:

for c in cases:
case = outcomes|[c]

mean = case.mean(axis=0)
std = case.std(axis=0)

mean.name = C
std.name = c

df mean = df mean.append(mean)
df std = df_std.append(std)

In [15]:

APPENDIX X: Sensitivity Analysis

df perc = df mean / df mean.iloc[0] * 100

df perc = df perc.apply(pd.Series.round)
df perc[oois]
out[15]:
Total
dista:::ae Distance | Total time Average Total co2
driven per parcel | operative |time/parcel | emissions | emissions/parcel
ki h h CO02 [k k
fim] [km] [h] [h] [kg] [kg]
Case
0 100.0 100.0 100.0 100.0 100.0 100.0
Case
1 99.0 100.0 100.0 101.0 100.0 101.0
Case
o 100.0 101.0 100.0 101.0 101.0 102.0
Case
3 108.0 111.0 277.0 284.0 57.0 58.0
Case
4 99.0 101.0 270.0 278.0 58.0 60.0
Case
5 120.0 123.0 284.0 291.0 60.0 62.0

APPENDIX X: Sensitivity Analysis

In [16]:
df mean
Out[l6]:
P | Di
Total arcei: Parcels Total lstan(: Total time Average
simulated system delivered distance parr::el operative | time/parcel
time [h] [pcs] | driven [km] [h] [h]
[pcs] [km]
Case
0 24.0 2171.0 |2009.0 1720.949570 | 0.856644 | 177.762892 | 0.088485 4
Case
1 24.0 2182.6 |1997.4 1704.101666 |0.853206 | 178.527654 [0.089384 4
Case
o 24.0 2179.4 |2000.6 1722.788987 |0.861158 | 178.513055 [0.089231 4
Case
3 24.0 2225.6 |1954.4 1859.316588 | 0.951427 | 491.849788 [0.251671 2
Case
4 24.0 2223.2 |1956.8 1699.727722 | 0.868627 | 480.759054 | 0.245692 2
Case
5 24.0 2219.2 [1960.8 2063.657816 | 1.052481 |505.730478 | 0.257932 2

What can be noticed from the figures above is that changing the vehicle capacity has no influence on the
outcomes of the model. Both a 50% increase and decrease result in similar figures of the simulation.

However, changing the vehicle capacity for vehicles individually, thus not all at once, might have a bigger
effect on the outcomes. This can be considered in a future research, as it is outside the scope of this study.

3. Loading and stopping times

The average loading time is defined as the average time a vehicle spends at the City Hub or Sorting Centre
to completely fill up with parcels.

The average stop time is defined as the average time the vehicle has to stop at its destination to drop a
parcel.

By varying these variables, the route planning can be made either more efficient, or less efficient, depending
on increasing or decreasing the time for these variables.

The outcomes consist of 15 different cases.
The first case is the regular case, followed by increasing the loading time by 25% and 50%.
Then, loading time is decreased by the same numbers.

This is followed by the same prodedure regarding the stop time. Finally, these same experiments are
conducted with a City Hub configuration.

APPENDIX X: Sensitivity Analysis

In [17]:

fn = '../data/outcomes_loadstop times.xlsx'

outcomes = pd.read excel(fn, sheet name=None)

In [18]:

cases = list(outcomes.keys())

In [19]:

Prepare df
df mean = pd.DataFrame(columns=outcomes[cases[0]].columns)
df std = df _mean.copy()

In [20]:

for ¢ in cases:
case = outcomes[c]

mean = case.mean(axis=0)
std = case.std(axis=0)

mean.name = C
std.name = c

df _mean = df_mean.append(mean)
df std = df_std.append(std)

In [21]:

df perc = df mean / df mean.iloc[0] * 100
df perc = df perc.apply(pd.Series.round)
df perc[oois]

APPENDIX X: Sensitivity Analysis

Out[21]:
dist:(r:::ael Distance | Total time Average Total co2
driven per parcel | operative |time/parcel | emissions | emissions/parcel
ki h h CO02 [k k
fimi] [km] [h] [h] [ka] ko]
gase 100.0 100.0 100.0 100.0 100.0 100.0
Case
1 103.0 103.0 104.0 104.0 103.0 103.0
Case
5 107.0 107.0 107.0 107.0 105.0 105.0
Case
3 98.0 98.0 98.0 98.0 100.0 100.0
Case
4 97.0 97.0 96.0 95.0 99.0 99.0
Case
5 106.0 107.0 115.0 116.0 104.0 105.0
Case
6 108.0 109.0 128.0 129.0 106.0 107.0
Case
7 95.0 95.0 86.0 86.0 98.0 98.0
Case
8 90.0 90.0 72.0 72.0 99.0 99.0
Case
0 101.0 102.0 101.0 101.0 102.0 102.0
Case
10 103.0 103.0 103.0 104.0 102.0 103.0
Case
11 107.0 107.0 107.0 107.0 104.0 104.0
Case
12 96.0 97.0 96.0 96.0 98.0 98.0
Case
13 96.0 96.0 95.0 95.0 98.0 98.0
Case
14 105.0 105.0 115.0 115.0 104.0 104.0
Case
15 114.0 114.0 131.0 131.0 110.0 110.0
Case
16 97.0 96.0 87.0 87.0 99.0 99.0
Case
17 91.0 91.0 72.0 72.0 101.0 101.0

APPENDIX X: Sensitivity Analysis

What can be noticed from the Table above, is that that neither loading or stopping time heavily affects the
performance of the regular system.

4. Changing the number of transporting companies

The simulation model offers the opportunity to change the number of transporting companies to include in
the simulation. For all the former cases, the biggest companies have been included. But what will be the
effects if only one company is included, or what if 5 companies are included?

That are exactly the two cases analysed in this Notebook. Furthermore, these three (including a reference
case) are combined with a City Hub configuration to see if the City Hub has more effect if more transporters
are included.

In [27]:

fn = '../data/outcomes_transporters-2.xlsx'
outcomes = pd.read_excel(fn, sheet name=None)
In [28]:

cases = list(outcomes.keys())

In [29]:

Prepare df
df mean = pd.DataFrame(columns=outcomes[cases[0]].columns)
df std = df_mean.copy()

In [30]:

for c in cases:
case = outcomes|[c]

mean = case.mean(axis=0)
std = case.std(axis=0)

mean.name = C
std.name = c

df _mean = df_mean.append(mean)
df std = df_std.append(std)

APPENDIX X: Sensitivity Analysis

In [31]:
df perc = df mean / df mean.iloc[0] * 100
df perc = df perc.apply(pd.Series.round)
df perc[oois]
Out[31]:
Total
dista:::ae Distance | Total time Average Total co2
driven per parcel | operative |time/parcel | emissions | emissions/parcel
ki h h CO02 [k k
fm] km] [l [h] [kg] [kg]
Case
0 100.0 100.0 100.0 100.0 100.0 100.0
Case
1 117.0 111.0 113.0 107.0 118.0 112.0
Case
o 59.0 86.0 61.0 90.0 56.0 81.0
Case
3 109.0 112.0 276.0 283.0 57.0 59.0
Case
4 108.0 110.0 276.0 281.0 56.0 57.0
Case
5 74.0 108.0 120.0 176.0 35.0 51.0

APPENDIX X: Sensitivity Analysis

In [32]:
df mean
Out[32]:
P | Di
Total arcei: Parcels Total lstan(: Total time Average
simulated system delivered distance parr::el operative | time/parcel
time [h] [pcs] | driven [km] [h] [h]
[pcs] [km]
Case
0 24.0 2178.0 |2002.0 1722.970126 |0.860632 | 178.684171 [0.089253
Case
1 24.0 2294.6 |2105.4 2009.287219 (0.954352 (201.351337 | 0.095637
Case
o 24.0 1491.8 [1368.2 1010.332152 |0.738481 | 109.641178 [0.080140
Case
3 24.0 2224.8 [1955.2 1886.111073 |0.964702 | 493.404444 [0.252360
Case
4 24.0 2214.2 |1965.8 1852.571687 | 0.942462 | 492.539489 [0.250563
Case
5 24.0 1488.8 [1371.2 1278.461931 |0.932506 | 214.984034 [0.156795
Text blabla

5. Varying inter-distance of lockers

Every analysis including the parcel locker infrastructure uses the same reference file. This file has placed

lockers approximately within 500 meters apart from each other.

However, would the locker infrastructure still yield promising alternatives if the distance is changed?

In [33]:

fn =

'../data/outcomes_lockers.xlsx'

outcomes

In [34]:

cases

= pd.read excel(fn, sheet_ name=None)

= list(outcomes.keys())

In [35]:

Prepare df
df _mean =
df_std =

pd.DataFrame(columns=outcomes[cases[0]].columns)
df mean.copy()

APPENDIX X: Sensitivity Analysis

cases:
= outcomes|[c]

In [36]:

for c in
case
mean =
std =

mean.name

case.mean(axis=0)

std.name =

df mean = df mean.append(mean)

C

(e]

case.std(axis=0)

df std = df_std.append(std)

In [37]:
df perc = df mean / df mean.iloc[0] * 100
df perc = df perc.apply(pd.Series.round)
df perc[oois]
out[37]:
Total
dista:cae Distance | Total time Average Total co2
driven per parcel | operative |time/parcel | emissions | emissions/parcel
k h h CO2 [k k
ficm] [km] [h] [l [kg] kgl
Case
0 100.0 100.0 100.0 100.0 100.0 100.0
Case
1 100.0 100.0 100.0 100.0 100.0 100.0
Case
2 99.0 99.0 100.0 100.0 99.0 99.0

In []:

APPENDIX X: Sensitivity Analysis

APPENDIX XI: Determining the number of replications (Van Soest)

APPENDIX XI: Determining the number of
replications (Van Soest)

Analysing outcomes of regular system

In this Notebook, the outcomes of the standard configuration are analysed. Basic statistics like mean and
standard deviations are calculated, so van Soest's (1992) formula can be applied.

First, the necessary imports of libraries and the output file are conducted. This is followed by calculating the
statistical data. Finally, van Soest's formula is applied.

In [1]:

Import necessary libraries
import numpy as np

import pandas as pd

In [2]:

Set file name

fn = 'Outcomes multiple.xlsx'

Open file in pandas DataFrame

cases = pd.read_excel(fn, sheet_name=None)

In [3]:

names = list(cases.keys())

Only extract regular cases
The cases with the regular system (without city hub) are the cases 0-7.

In [4]:

regular = names|[:8]
print(regular)

['Case 0', 'Case 1', 'Case 2', 'Case 3', 'Case 4', 'Case 5', 'Case
6', 'Case 7']

Determine statistical data

In [5]:

Create empty DF for statistical data
df avg = pd.DataFrame(columns=cases['Case 0'].columns)
df_std = df_avg.copy()

In [7]

APPENDIX XI: Determining the number of replications (Van Soest)

for name in regular:

df = cases[name]
avg = df.mean(axis=0)
avg.name = name
std = df.std(axis=0)
std.name = name
df avg = df_avg.append(avg)
df std = df_std.append(std)
In [8]:
df_avg
Oout[8]:
P | Dist
Total arce_s Parcels Total istance Total time Avera
. in . . per . .
simulated system delivered distance parcel operative | time/par«
time [h] [pcs]| driven [km] [h]
[pcs] [km]
Case
0 24.0 29484.2 (26945.8 |9857.419763 [0.365824 |1655.713506 (0.061446
Case
1 24.0 29371.5[27058.5 |9396.025831 [0.347248 |1570.246440 |0.058032
Case
o 24.0 29110.9 [27319.1 |8537.910829 [0.312526 |1352.750407 [0.049517
Case
3 24.0 28863.2 [27566.8 |8445.813159 [0.306376 |1128.138921 (0.040924
Case
4 24.0 28598.6 [27831.4 |8003.766329 [0.287581 |904.995950 |(0.032517
Case
5 24.0 29385.3 [27044.7 |10926.449539 [0.404016 | 1630.512876 [0.060290
Case
6 24.0 31822.9 [24607.1 |8976.062846 [0.364776|1149.924035 |0.046732
Case
7 24.0 32227.5 (24202.5 |9880.527178 [0.408244 |1469.636924 (0.060723

APPENDIX XI: Determining the number of replications (Van Soest)

In [9]:
df_std
Oout[9]:
Total | Di Total
Total | Parcels in Parcels i otal| Distance (_)ta Average
. . distance per time | .
simulated system | delivered . . |time/parcel
time [h] [pcs] [pcs] driven parcel | operative Ih]
[km] [km] [h]
Case
0 0.0 43.865451 |43.865451 | 56.414212 | 0.002106 |5.000673 |0.000183 2!
Case
1 0.0 47.103314 |47.103314 |60.817216 | 0.002133 | 5.223967 |0.000216 2l
Case
2 0.0 38.865723 | 38.865723 | 58.074571 | 0.002201 |4.931453 |0.000190 1!
Case
3 0.0 22.660784 |22.660784 |89.091872 | 0.003246 |4.986828 |0.000182 1
Case
4 0.0 19.811332 (19.811332 |67.044700 | 0.002425 | 3.513421 |0.000126 1
Case
5 0.0 46.984749 |46.984749 |53.213018 | 0.002138 | 5.882406 |0.000272 2l
Case
6 0.0 57.893485 | 57.893485 | 55.054596 | 0.002158 | 3.754589 |0.000177 1
Case
7 0.0 53.219149 |153.219149 | 44.130436 | 0.001612 | 3.593352 |0.000174 1

Determine optimal number of replications

So, van Soest's formula is defined below, where n is the required number of replications, n_testrun is the
number of experiments run for the test run under investigation, sigma is the standard deviation and max(test
run) is the maximum value obtained by the test run.

— Meestrun * 0
0.5 = max(test run) = 0.05

n

The formula is applied for all the outcomes of interest, so the required number of experiments is determined
based on the outcomes that requires the highest number of experiments.

APPENDIX XI: Determining the number of replications (Van Soest)

In []:

avg = df_avg['Total distance driven [km]'].loc['Case 0']
std df std['Total distance driven [km]'].loc['Case 0']

avg, std

In [11]:

Desired number of reps

temp = cases['Case 0']

maxim = temp['Total distance driven [km]'].max()
dnr = 10 * std / (maxim * 0.05 / 2)

dnr

Out[1l1l]:

2.2637222183713113

In [13]:

std = df_std['Parcels delivered [pcs]'].loc['Case 0']
maxim = temp['Parcels delivered [pcs]'].max()

dnr = 10 * std / (maxim * 0.05 / 2)

dnr

Out[1l3]:

0.6498585310273552

In [16]:

std = df_std['Total time operative [h]'].loc['Case 0']
maxim = temp['Total time operative [h]'].max()

dnr = 10 * std / (maxim * 0.05 / 2)

dnr

out[16]:

1.2034370871514184

In [12]:

temp = cases['Case 0']

std = df_std['Total emissions CO2 [kg]'].loc['Case 0']
maxim = temp['Total emissions CO2 [kg]'].max()

dnr = 10 * std / (maxim * 0.05 / 2)

dnr

Out[1l2]:

4.732776039594699

So, from all the applications of van Soest's formula above, it can be concluded that the required number of
experiments for this simulation study is 5 experiments. This number will be used for any further analysis
during this study.

References

Van Soest, J. (1992). Elementaire Statistiek. Delft: VSSD

APPENDIX XII: How to set—up the simulation model to conduct experiments?

APPENDIX XII: How to set-up the simulation
model to conduct experiments?

How to setup experiments for simulation

This Notebook presents the way one could setup different experiments for a simulation study with the
simulation model. This Notebook is for educational purposes only and is not able to run by itself.

Contents

First, the required libraries will be imported, including the .py file that contains the simulation model.
Then, a little more insight in the Model class is provided to understand why the following experiments are
defined in a certain way.

Finally, the experiments will be conducted and stored in a useful way for later reference.

Importing libraries

In []:

import numpy as np
import pandas as pd

from Model import * # Import all classes in script

The Model class

As mentioned before, the Model class is a little more special then shown in throughout the actual report,
since the simulation model can be used in two ways:

1. As normal, based on the model dashboard
2. Based on (a) changed sheet(s) of the model dashboard.

The first is just the normal way, the simulation model is defined by instantiating the Model class from the
script. See the code block below. In this code block, all the settings and variables as set in the dashboard's
Excel file are applied.

In []:

model = Model()

The latter method follows-up on the first, by first copying one or more of the DataFrames of the following
sheets of the model dashboard:

1. model.Basicinfo
2. model.Settings
3. model.Vehiclelnfo

These are the only three options included for experiments at the moment, as no other variations have been
investigated in this simulation study. If other sheets have to be changed for experiments, the init function of
the Model class has to be adapted.

APPENDIX XII: How to set—up the simulation model to conduct experiments?

Anyway, the three sheets above can be changed according to the desired experiment. The experiments then
have to be parsed into the simulation model before conducting the experiment. This can be done by
instantiating the Model class again, but parse the adapted dashboard sheets between the brackets. This
workflow, from the beginning to the instantiation, is shown in the code blocks below:

In []:

Instantiate the initial model
model = Model()

In []:

Copy the BasicInfo and Settings sheet
bi init = model.BasicInfo.copy()
st_init = model.Settings.copy()

In []:

Define two cases:

An initial

case0 = {'BasicInfo': bi_init,
'Settings': st_init}

One with the changed City Hub option

First copy the settings

st 1 = st_init.copy()

st_l.at[0, 'Setting'] = 'True' # Set option to True

Define the case

casel = {'BasicInfo': bi_init,
'Settings': st_1}

In []:
Instantiate the model based on casel

model = Model(casel['BasicInfo'], casel['Settings'])

Now, the model is instantiated with an alternative model dashboard, without having changed the source file
of the model dashboard. Now, more experiments could be defined to include in the simulation study. Say for
instance, that also case2, case3 and case4 have been defined in a similar matter as above and have to be
included. These cases can be inserted in a list of all cases, as is shown below:

In []:

Define a list of cases to go through
cases = [case0, casel, case2, case3, case4]

Setup the simulation

So, all experiments have been defined and are ready to be conducted. However, before the system is ready,
some more preparations have to be done.

APPENDIX XII: How to set—up the simulation model to conduct experiments?

1. First, the number of runs per experiments has to be defined (see van Soest for required number of
experiments)

2. Prepare a DataFrame to store the results

3. Prepare a file to store the results of all different cases

In []:

Define the number of runs per experiments
n_exp =5

In []:

Prepare empty DataFrame

Indices of the Model's outcomes

idx = ['Total simulated time [h]', 'Parcels in system [pcs]',
'Parcels delivered [pcs]', 'Total distance driven [km]',
'Distance per parcel [km]', 'Total time operative [h]',
'Average time/parcel [h]', 'Total emissions CO2 [kg]',
'CO2 emissions/parcel [kg]', 'Total emissions NOx [kg]',
'NOx emissions/parcel [kg]']

Define empty DataFrame

df = pd.DataFrame(columns=idx)

In []:

Prepare the file with a 'Writer' object from Pandas
writer = pd.ExcelWriter('OutcomesFile.xlsx', engine='xlsxwriter')

Conduct the experiments

The time has come to actually conduct the experiments with the defined number of runs per experiment.
This is done in the following order:

1. lterate through the list of cases

2. Instantiate the simulation model with the new dashboard records
3. Run the simulation

4. Store data in DataFrame

5. Store DataFrame in Excel File

6. Close the Excel File

In []:

for i, c in enumerate(cases):
Copy empty DataFrame
oc_df = df.copy()
Conduct the number of experiments
for j in range(n_exp):

Instantiate simulation model

m = Model(c['BasicInfo'], c['Settings'])

Run simulation model

m.run()

s = pd.Series(list(m.Results.values()),
index=list(m.Results.keys()),
name='Run {}'.format(j))

Append outcomes to DataFrame

oc_df = oc_df.append(s)

Store outcomes in
oc_df.to_excel(writer, sheet name='Case {}'.format(i))

writer.save()

APPENDIX XII: How to set—up the simulation model to conduct experiments?

APPENDIX XIII: Analysing the experiments

APPENDIX XIII: Analysing the experiments

Analysing City Hub and non-City Hub
configurations

In this notebook, the two different Excel files will be analysed that contain the outcomes of the simulation
experiments. One file contains all cases, including faulty city hub configurations. These will be replaced by
the outcomes stored in the other file.

Furthermore, the first file contains 10 runs per experiments, while the latter only has the 5 runs required for
the desired accuracy. Comparing the two configurations with these differing number of runs should not
make a difference, as they both comply with the rule of van Soest (1992).

Start-up the analysis

In [1]:

import numpy as np
import pandas as pd

In [2]:

Define the file names

fnl = 'Outcomes multiple.xlsx' # Regular cases

fn2 = 'Outcomes multiple moreVeh.xlsx' # Only City Hub configurations
In [3]:

Open the files and store in a dictionary with DataFrames
regulars = pd.read excel(fnl, sheet name=None)
city hubs = pd.read excel(fn2, sheet_ name=None)

Processing the files

As mentioned before, the regular file also contains faulty city hub cases. These have to be filtered out first.
From experience it can be stated that only the first 8 cases are needed. These will be filtered and stored
separately.

In [4]:

Retrieve the keys of the dictionary
regulars_keys = list(regulars.keys())
Define the keys to extract from the dictionary
to filter = regulars_keys[:8]
Define filtered regulars dictionary and store the desired DataFrames
regulars_ filtered = {}
for key in to_filter:
regulars_ filtered[key] = regulars[key]

APPENDIX XIII: Analysing the experiments

In [5]:

Check if the correct cases are filtered and stored
regulars_filtered.keys()

out[5]:
dict_keys(['Case 0', 'Case 1', 'Case 2', 'Case 3', 'Case 4', 'Case
5', 'Case 6', 'Case 7'])

Then, the averages of the outcomes for each case can be calculated together with the standard deviations.
These will be stored in separate DataFrames for further analyses.

Before this can be executed, a special Python function is defined. Hence, both dictionaries can be
processed by the same function and time and space get spared. The Python function can be found in the
code-block below:

In [6]:

def analyse dictionaries(dic):
First, store the cases in the dictionary
keys = list(dic.keys())
Define an empty DataFrame with the same column names as the DataFrames of
the cases
df mean = pd.DataFrame(columns=dic[keys[0]].columns)
df_std = df_mean.copy()

Iterate through the cases -> determine mean and std -> append to df
for case in keys:

Extract the DataFrame

df = dic[case]

Calculate the mean over the rows

mean = df.mean(axis=0)

Calculate the std over the rows

std = df.std(axis=0)

Set the names of the resulting Series objects
mean.name = case
std.name = case

Append records of the case to the DataFrame
df _mean = df_mean.append(mean)
df std = df_std.append(std)

Return the results
return df mean, df_std
In [7]:

Apply the function above for both files
df mean_reg, df std reg = analyse dictionaries(regulars_ filtered)
df mean ch, df std ch = analyse_dictionaries(city_ hubs)

Calculate the differences to the base case

APPENDIX XIII: Analysing the experiments

Before the differences are calculated, all the DataFrames are combined and stored together. The means are
put together and the standard deviations DataFrames too. Hence, two new DataFrames with all cases will be
generated, replacing the four as obtained above.

In [8]:

df mean = df mean reg.append(df mean ch, ignore_ index=True)
df std = df std reg.append(df std ch, ignore_index=True)

df mean
out([8]:
Total ParceiI: Parcels Total Distar:: Total time Average
sim_ulated system delivered _distance parcel operative | time/parcel
time [h] [pcs] [pcs]| driven [km] [km] [h] [h]
0 |24.0 29484.2 (26945.8 |9857.419763 |0.365824 |1655.713506 |0.061446
1 1240 29371.5(27058.5 [9396.025831 |0.347248 |1570.246440 [0.058032
2 (24.0 29110.9 [27319.1 |8537.910829 |0.312526 |1352.750407 |0.049517
3 |24.0 28863.2 [27566.8 [8445.813159 |0.306376 |1128.138921 [0.040924
4 (240 28598.6 |27831.4 |8003.766329 |0.287581 [904.995950 |0.032517
5 (24.0 29385.3 |27044.7 |10926.449539 | 0.404016 | 1630.512876 | 0.060290
6 |24.0 31822.9 |24607.1 |8976.062846 |0.364776|1149.924035|0.046732
7 |24.0 32227.5|24202.5 |9880.527178 |0.408244 [1469.636924 |0.060723
8 (24.0 30750.6 [25679.4 |13343.102115|0.519605 | 1945.401748 | 0.075758
9 (24.0 30642.0 |25788.0 |13360.740523 [0.518098 | 1912.496389 | 0.074162
10(24.0 30396.0 [26034.0 |12783.384877 (0.491031 (2390.715398 | 0.091822
11|24.0 29866.2 |26563.8 |10731.186047 |0.403978 | 2545.038142 | 0.095809
12124.0 29854.0 [26576.0 [10613.077171 |0.399349 | 2547.081459 (0.095842
13|24.0 30440.2 | 25989.8 |12384.033046 [0.476495 [3134.647242 |0.120612
14|24.0 30418.0 (26012.0 |12487.812330|0.480078 | 3138.284864 | 0.120649
15124.0 30492.4 |25937.6 |12440.165392 [0.479622 | 3136.588253 | 0.120928
In [9]:

Define the outcomes of interest to calculate the percentages from
oois = ['Total distance driven [km]', 'Distance per parcel [km]', 'Total time op
erative [h]',

'Average time/parcel [h]', 'Total emissions CO2 [kg]', 'CO2 emissions/pa
rcel [kg]',

'Total emissions NOx [kg]', 'NOx emissions/parcel [kg]']

In [11]:

APPENDIX XIII: Analysing the experiments

Store the base case

base case =
other_ cases

df mean.iloc[0]

df mean.iloc[1l:]

Define the DataFrame to store the percentages

df perc =
#df perc =

for i in range(len(df mean)):

s =
soi =
perc =

In [12]:

df perc

Out[1l2]:

df mean.iloc[i]
s[oois]

soi / df mean[oois].iloc[0] * 100

df perc = df perc.append(perc, ignore index=True)

pd.DataFrame (columns=o00is)
df perc.append(base case[oois]/base case[oois] * 100)

Total
distance
driven
[km]

Distance
per parcel
[km]

Total time
operative

[h]

Average
time/parcel

[h]

Total
emissions
CO2 [kg]

Cc02
emissions/parcel
kgl

100.000000

100.000000

100.000000

100.000000

100.000000

100.000000

-

95.319323

94.922137

94.838052

94.443190

91.993785

91.610431

86.614054

85.430609

81.701961

80.585587

97.088538

95.761997

85.679756

83.749590

68.136119

66.601167

87.644867

85.670937

81.195348

78.611643

54.658970

52.919666

82.315838

79.696504

110.844925

110.439789

98.477960

98.118187

100.171612

99.806326

91.058949

99.713340

69.451873

76.052928

87.127798

95.410517

100.234416

111.595636

88.761547

98.822681

91.793171

102.197072

135.361002

142.036675

117.496278

123.291125

48.615553

51.014467

O || N[N

135.539937

141.624842

115.508896

120.694487

48.314996

50.484874

-
o

129.682870

134.225920

144.391852

149.435049

48.478771

50.176658

=y
-

108.864047

110.429473

153.712471

155.923000

45.342908

45.994801

s
N

107.665874

109.164185

153.835881

155.976471

44.963156

45.589556

-
(%]

125.631589

130.252491

189.323046

196.288995

54.413926

56.414899

-
H

126.684392

131.231781

189.542747

196.349370

54.966065

56.939989

-
a

126.201031

131.107031

189.440277

196.803660

54.898058

57.031947

APPENDIX XIII: Analysing the experiments

In [13]:

Round the variables in the DataFrame for clarification
df perc = df perc.apply(pd.Series.round)

df perc
Out[13]:

I e B e e e

driven| parcel | operative time/parcel | emissions | emissions/parcel | emission:

[km] [km] i [h]| CO2 [kg] [kol| NOx [kg
0 |100.0 100.0 100.0 100.0 100.0 100.0 100.0
1 (95.0 95.0 95.0 94.0 92.0 92.0 86.0
2 |87.0 85.0 82.0 81.0 97.0 96.0 94.0
3 |86.0 84.0 68.0 67.0 88.0 86.0 76.0
4 |81.0 79.0 55.0 53.0 82.0 80.0 73.0
5 |111.0 110.0 98.0 98.0 100.0 100.0 89.0
6 |91.0 100.0 69.0 76.0 87.0 95.0 79.0
7 (100.0 112.0 89.0 99.0 92.0 102.0 82.0
8 |135.0 142.0 117.0 123.0 49.0 51.0 52.0
9 |136.0 142.0 116.0 121.0 48.0 50.0 52.0
10(130.0 134.0 144.0 149.0 48.0 50.0 52.0
11|109.0 110.0 154.0 156.0 45.0 46.0 49.0
12(108.0 109.0 154.0 156.0 45.0 46.0 49.0
13(126.0 130.0 189.0 196.0 54.0 56.0 57.0
14 (127.0 131.0 190.0 196.0 55.0 57.0 57.0
15(126.0 131.0 189.0 197.0 55.0 57.0 57.0

Store the DataFrame in Excel for further use in the report

In [14]:

df perc.to_excel('Percentages_experiments.xlsx')
References
Van Soest, J. (1992). Elementaire Statistiek. Delft: VSSD

For further reference, the standard deviations are shown below. These are used in the report to sketch the
accuracy of the outcomes

In [16]:

APPENDIX XIII: Analysing the experiments

df std / df mean * 100

Out[l6]:
Total Parce-ls Parcels| . Total| Distance Total time Average T
simulated system delivered d'i:::: par:(: operative | time/parcel | emissi
time [h] [pcs] [pcs] [km] [km] [h] [h]| CO2]
0 |0.0 0.148776 |0.162791 | 0.572302 | 0.575610 |0.302025 |0.298294 [1.2042:
1 0.0 0.160371|0.174080 |0.647265 |0.614149 [0.332685 |0.371608 1.0478°
2 |0.0 0.133509 | 0.142266 | 0.680196 |0.704138 |0.364550 |0.383667 |0.9595¢
3 |0.0 0.078511 |0.082203 | 1.054864 | 1.059558 | 0.442040 |0.445700 |0.9966¢
4 (0.0 0.069274 10.071183 |0.837664 |0.843306 |0.388225 |0.388121 1.1003!¢
5 |0.0 0.159892 |0.173730 | 0.487011 |0.529285 | 0.360770 |0.451706 |0.9405!
6 |0.0 0.181924 |0.235271 | 0.613349 | 0.591681 |0.326508 |0.378668 |0.7725¢
7 (0.0 0.165136 | 0.219891 | 0.446641 | 0.394797 [0.244506 |0.287359 0.8294-
8 |0.0 0.301300 | 0.360801 |0.387544 |0.309631 |0.251720 |0.216351 1.4509°
9 |0.0 0.1392450.165454 |0.327026 | 0.202591 {0.422410 |0.311100 1.1736¢
10|0.0 0.105071|0.122676 |1.215352 | 1.304553 | 10.212521 | 10.095362 |1.3786¢
11|0.0 0.081412|0.091533 |0.210226 | 0.222256 |0.203518 |0.268001 2.0963t
12(0.0 0.111624 |1 0.125392 |1.020228 | 1.046623 [0.223380 |0.245545 1.4465:-
13|0.0 0.378684 |0.443529 | 0.667242 |0.478844 |0.266758 |0.388542 [1.8990:
14|0.0 0.398320 | 0.465789 |1.199976 | 1.084916 |0.220947 |0.383634 |2.0985¢
15)0.0 0.159934 |1 0.188020 | 0.682802 | 0.752936 [0.252442 |0.173635 0.9397¢

