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 Abstract - Fusion of perception information for perceptual 
robotics is described. The visual perception is mathematically 
modelled as a probabilistic process obtaining and interpreting 
visual data from an environment. The visual data is processed in 
a multiresolutional form via wavelet transform and optimally 
estimated via extended Kalman filtering in each resolution level 
and the outcomes are fused for each data block. The 
measurement involves visual perception in the virtual reality 
which has direct implications prominently in both design and 
perceptual robotics including navigation issues of actual 
autonomous robotics. For the interaction with the environment 
and visual data acquisition, the laser beams approach in robotics 
is considered and implemented by means of an agent in virtual 
reality which plays the role of robot in reality. 
 

I.  INTRODUCTION 

Visual perception is one of the important information source 
playing role on human’s behavior. This behavior manifests 
itself clearly on many human activities. One such activity is 
design, in particular architectural design where the perception 
aspects in this domain are prominent to make optimal 
decisions about the form of the building or shaping its 
volumes for the achievement of high performance in actual 
use. The high performance includes effective functionality as 
well as high quality of life while the building is in actual use. 
Another activity comes into play when human-like behavior is 
to integrate with a human-like robot where robot is expected 
to mimic, to some extend, human behavior. The area is called 
perceptual robotics and in the last decade it received a 
growing interest for various applications spanning toys where 
especially emotions are expected to manifest and perceptual 
robotics. Perception measurements in architecture are another 
application for the purpose of design enhancement. By means 
of these examples, it is easy to realize that to integrate 
perceptual information into a machine-based system is a 
desirable achievement. Today, systems simulating vision, 3D 
scanners for instance, are quite well developed. However, the 
relation of perception to vision is not well described in 
mathematical terms in the literature. In this research, it is 
intended to shed some light on this relation and consequently 
better understanding the mechanism of perception for 
effective integration to interesting applications such as 
architectural design, perceptual robotics, as examples. The 
basic starting point is the nature of perception concept, which 

distinguishes itself from the concept of being able to “see”. 
The seeing is a definitive process in contrast to the 
probabilistic concept of perception. The work is also intended 
to point out that, the overlapping areas of disciplines are 
growing in the modern era and the advanced methods of exact 
sciences, such as Kalman filtering and multiresolutinal 
decomposition can find applications in many diverse areas. To 
exemplify this, mention may be made of both architecture and 
mathematics and perceptual robotics. The organisation of the 
paper is as follows. Section two describes the 
multiresolutional filtering using wavelet transform. Section 
three gives the outcomes of experiments for fusion of 
perceptions investigating the merits of multiresolutional 
approach for perception fusion. This is followed by 
conclusions in section four. 
 

II. PROBABILISTIC MODEL OF VISUAL PERCEPTION  

We start with the basics of the perception process with a 
simple yet a fundamental visual geometry. This is shown in 
figure 1. 
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Fig. 1  The geometry of visual perception from a top view where P 
represents the position of eye, looking at a vertical plane with a distance lo 

to the eye; fz(z) is the probability density function in z-direction 
 
In figure 1, the observer is facing and looking at a vertical 
plane from the point denoted by P. By means of looking 
action the observer pays visual attention equally to all 
locations on the plane in the first instance. That is, the 
observer visually experiences all locations on the plane 
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without any preference for one region over another. Each 
point on the plane has its own distance within the observer’s 
scope of sight which is represented as a cone. The cone has a 
solid angle denoted by  θ. The distance of a point on the plane 
and the observer is denoted by x and the distance between the 
observer and the plane is denoted by lo. Since the elements of 
visual openness perception are determined via the associated 
distance, it is straightforward to proceed to express the 
distance of visual perception in terms of θ and l. From figure 
1, this is given by 

)cos(θ
= olx  (1) 

Since we surmise the observer pays visual attention equally to 
all locations on the plane in the first instance, the probability 
of getting attention for each point on the plane is the same so 
that the associated probability density function (pdf) is 
uniformly distributed. This positing ensures that there is no 
visual bias at the beginning of visual perception as to the 
differential visual resolution angle dθ. Assuming the scope of 
sight is defined by the angle θ = ± π/4, the pdf  fθ is given by 

2
1f
/π

=θ
 (2) 

Since θ is a random variable, the distance x in (1) is also a 
random variable. The pdf fx(x) of this random variable is 
computed as follows. 

To find the pdf of the variable x denoted fx(x) for a given x 
we consider the theorem on the function of random variable 
[1] and solve the equation  

x= g(θ) (3) 

for θ in terms of x. If  θ1 , θ2 ,…., θn , .. are all its real roots, 
x=g(θ1) = g(θ2) =……= g(θn) = …. 
then 
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     According the theorem above,  
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Between  θ= -π/4 and θ= +π/4,  
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has two  roots, which are equal and given by 
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Using (7) in (5), we obtain 
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Substituting (2), (7) and (8) into (4), we obtain 
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for the interval   
oo l2xl ≤≤ . For this interval, the 

integration below becomes 
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as it should be as pdf. The sketch of fx(x) vs x is given in 
figure 2. As to (9), two observations are due. Firstly, it is 
interesting to note that for the plane geometry in figure 1, the 
visual perception is sharply concentrated close to  θ ≅ 0, that 
is perpendicular direction to the plane. This striking result is 
in conformity with the common human experience as to visual 
perception.   
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Fig. 2  Sketch explaining the relative importance of the    viewing direction for 

visual perception 
 
Namely, for this geometry the visual perception is strongest 
along the axis of the cone of sight relative to the side 
directions. This is simply due to the fact that, for the same 
differential visual resolution angle dθ, one can perceive 
visually more details on the infinite plane in the perpendicular 
direction as this is sketched in figure 3. 
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Fig. 3  Sketch explaining the relative importance of the viewing 

direction for visual perception. 
 
 Secondly, the visual perception is given via a probability 
density at a point. If we consider the stimulus of perception is 
due to the light photons, it is the relative number of photons as 
stimulus at infinitesimally small interval, per unit length. 
Integration of these photons within a certain length gives the 
intensity of the stimulus, which is a measure of perception. 

 
. 



This implies that, perception is a probabilistic concept and 
therefore it is different than “seeing”, which is goal-oriented 
and therefore definitive. It is noteworthy to emphasize that the 
perception includes the brain processes to interpret an image 
of an object on the retina as existing object. That is, the image 
of an object on the retina cannot be taken granted for the 
realization of that object in the brain. Normally such a 
realization might most likely happen while at the same time it 
might not happen too depending on the circumstances 
although the latter is unlikely to occur. The brain processes 
are still not exactly known so that the ability to see an object 
without purposely searching for it is not a definitive process 
but a probabilistic process and we call this process as 
perception. The perception is associated with distance. This 
distance is designated as lo in (9).  From visual perception, one 
can obtain several visual perception derivatives, such as visual 
openness perception [2,3], visual privacy, visual accessibility 
etc. 
       For visual perception measurements, one can use a laser 
source at the location of robot vision system. The vision is 
simulated by sending random laser beams to the environment 
and receiving the backscattered beams afterwards. The 
probability density of such beams out of the laser source and 
received after backscattering is given by (9) as to the 
geometry in figure 1. These backscattered beams and the 
associated distances are recorded. These beams with respect to 
their backscattering distances are mapped to visual openness 
perception via a mapping function. In particular, in this 
research, this function is given by 

τ−−= /)()( txe1ty   (11) 

where x(t) represents the backscattering distance associated 
with beam. This is schematically shown in figure 4 with the 
associated probability density functions fx(x) and fy(y). 
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Fig. 4.   Schematic representation of the probabilistic perception process via 

an exponential mapping(cognition) function y=f(x). 
 

The actual implementation of this research is made in the 
virtual reality where a virtual agent plays the role of human 
robot. All perceptual robot behaviour is simulated in this 
environment to exercise the research outcome extensively 
without hardware or environmental limitations. However, the 
transfer of the perception technology being developed to the 
robotics is the final goal. A typical visual openness perception 
measurement with the virtual agent in real-time is shown in 
figure 5 where the vision beams underlying the measurements 
together with the plot of real-time measurement outcomes are 
clearly seen. 

 
Fig. 5.   Visual openness perception measurements via an agent in virtual 

reality playing the role of a robot in reality. The rays interact with the 
environment and provide the measurement data. 

 
The visual openness perception is computed via exponential 
averaging [4] of the distances associated with the 
backscattered and mapped beams. A typical measurement is 
shown in figure 6 where the delay of the measurement due to 
the time constant (τ) of the exponential averaging is clearly 
seen.   
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Fig. 6 The perception data (upper) and visual openness 

perception measurement outcome (lower) which is obtained 
by mapping the data for visual openness perception which is 
exponentially averaged with a time-constant τ for smoothing. 

 



In real time perception measurements, the measurements 
should have minimum delay next to accurate determinations. 
This is accomplished by first decomposing the perception data 
into multiresolutional form by wavelet transform and at each 
resolution the extended Kalman filtering is applied for 
respective estimations. The estimated perceptions are fused to 
obtain the accurate perception determination at the highest 
resolution. At the same time, the delay due to time constant τ 
is eliminated and swift adaptation of the measurement system 
to the changing scenes in real time is achieved. In the 
measurement system, the mapping function plays important 
role since it contains the non-linear brain processes integrated 
to the backscattered data; that is the final interpretation of 
perception is made after the mapping function outcome which 
represents the final interpretation in human brain. It is 
important to note that, such a mapping function can be 
determined experimentally via experiential statements of a 
group of human in the framework of a cognition research. In 
this case, approximation of this curve by fuzzy logic has 
prominent importance where the placement of membership 
functions reflect the precise implementation of these research 
outcomes. This is exemplified in figure 7. The efficiency of 
fuzzy logic for stochastic modelling is discussed in another 
research [5]. 
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Fig. 7   Using four fuzzy sets, the fuzzy logic approximation of the mapping 

function representing the cognition process for perception in brain 

  

II. MULTIRESOLUTIONAL FILTERING USING WAVELET TRANSFORM  

In this section the multiresolutional filtering (MF), as 
proposed by Hong [6] will be briefly explained and presented. 
However, since Kalman filter underlies the MF algorithm 
firstly, a brief description of Kalman filter is presented.  
 
A. The Kalman Filter 
 
Consider a linear stochastic system to describe the 
propagation in time of a state vector  Xt: 
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where 
kt

X is an n-vector state process, ),( 1kk tt −Φ  is n×n 

system dynamics matrix, B(tk) is an n×r input matrix , 
kt

u ia an 

r-vector deterministic input, G(tk) ia an n×p noise input matrix 
and 

kt
w is a p-vector white Gaussian noise process. 
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Measurements are available at times points t1,t2, ..and are 
modelled by 

kk tkkt VtXtZ += )()(C         (14) 

where 
kt

Z is the c-vector measurement process, t(C k) is c×n 

measurement matrix and 
kt

V is an c-vector white Gaussian 

noise process with statistics 
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The optimal state estimate is propagated from measurement 
time tk-1 to measurement time tk by the equations 
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where P is the covariance matrix. At measurement time tk, the 
measurement 

kt
Z becomes available. The estimate is updated 

by the equation 
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K is the filter gain. Since (11) is a non-linear, linear model 
does not provide a valid description. Therefore, we consider a 
non-linear stochastic system 
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where ),,( 1kkt ttX
k −Φ   is an n-vector describing the system 

dynamics. The measurements are modelled by the non-linear 
equation 
 

kkk tktt VtXZ += ),(Τ                      (19) 

 
where ),( kt tX

k
Τ  is a vector describing the relation between 

the state and the measurements. For a reference trajectory 

kt
x the state equation (18) can be linearized by Taylor 

expansion around the point 1,, −kkt ttX
k

, so that it yields 

 



,)()(),,(

),,(),,(

kk1k

1k1k1k1kk

tktk1kkt

t1kktt1kktt

WtGutBttx

xttxXttXX

+++

−=

−

−−

−

−−−−

Φ

ΨΨ
        (20) 

 

ktkkkkkk Vkttkttktt txxtxXtxZ +Τ+−= ),(),(),( ΜΜ        (21) 

where 

[ ] ( )
jt

ik1kt

ijttt
k

1k

k1k1k x
ttx

x
)(

),,(
)( ,, ∂

∂
= −−

−−

Φ
Ψ              (22) 

[ ] ( )
jt

ikt

ijkt
k

k

k x
tx

tx
)(

),((
),(

∂

∂
=

Μ
Μ                (23) 

and the approprimate linear observation equation 
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Given the linearized model described, the standard Kalman 
filter is used to obtain the estimate of the state 

kt
X and it 

covariance matrix. For the reference trajectory, the obvious 
choice is 
 

k1kk tkk1ktt utBttxx )(),,( += −−
Φ                     (25) 

 
so that the reference trajectory is completely determined by 
the prior estimate of the state. This estimator is called the 
linearized Kalman filter. More information about the Kalman 
filter, can be found in [7-11]. 
 
B. The Wavelet Transform 
 
The functions given by discrete data of the form f(xi)=di, 
i=1,2,...m , can be represented in multiresolutional form in a 
dyadic structure as a counterpart of the continuous wavelet 
transformed time-frequency representation. The 
multiresolution theory can be conveniently described by the 
theory of function spaces. A function space is made of 
embedded subspaces Vm the limit of their union is L2(R)  
where for each function  f(x)  ∈ Vm  we can write that 
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In  L2(R) , the functions    
)2(2)( 2/

, nxx mm
nm −= −− φφ                             (26) 

form an orthonormal basis for Vm. These are called scaling 
functions and for m=0, we basically write 
 

)()(,0 nxxn −= φφ                                            (27) 
 
The function f(x)  in each subspace can be expressed by these 
orthogonal base functions as approximation in such a way that 

mm Vxf ∈)(   and  
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m
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All functions in Vm can be represented by using linear 
combinations of the scaling functions. In other words, fm(x) is 
an orthogonal projection of f(x) onto Vm, 

∑ ><=
n

nmnmm xxfxxf )()(),()( ,, φφ   

 ∑=
n

nmnm xc )(,, φ                             (29) 

where >< )(),(, xfxnmφ  is the inner product:  
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The difference spaces can be represented by Wm and are 
defined as the orthogonal complement of the spaces Vm with 
respect to Vm-1, 
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where Vm and  Wm  are orthogonal to each other. Now, let 

)()( 0,0 xx ψψ =  be a basis function of Wo. Note that  

100,0 )( −⊂∈ VWxψ  and therefore can expressed in terms of 

basis functions  )(,1 xn−φ  and therefore, we can also define 

functions )(, xnmψ that are shifted and dilated versions of one 

prototype function ψ(x) of the form 
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The functions )(, xnmψ  are identical to the wavelets described 

before, after the discretization. There are strong relations 
between φ(x) and )(xψ . The introduction of the wavelet 
functions enables us to write any function f(x) in  L2(R ) as a 
sum of projections on Wj, j∈ R, of the form 
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Considering a certain scale m, the function f(x) can be written 
as the sum of a low resolution part  fm(x) ∈ Vm  and the detail 
part which is constituted by the wavelets wj(x) ∈ Wj  so that 
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which can be expressed as 
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Above, the coefficients dj,k are known as the wavelet 
coefficients. From the preceding equation multiresolution 
decomposition is represented by an approximation i.e., the 
first term with φm,n(x) functions, and the detail part i.e., the 
second term with the )(, xkjψ functions. The variable m 

indicates the scale and is called scale factor or scale level. If 
the scale level m is high, it indicates that the function in Vm is 
a coarse approximation of f(x), so the details are neglected. 
On the contrary, if the scale level is low, a detailed 
approximation of f(x) is achieved. More information about the 
wavelet transform, can be found in [12-14]. 
 
C. Signal Decomposition and Reconstruction Using Haar 
Wavelets 
 
The time series signal first decomposed to lower resolution 
levels using Haar wavelet. Haar wavelet is a two-tap high pass 
filter given by 
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The two-tap Haar low pass filter coefficients are 
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The signals at the lower levels constitute the respective 
measurements and at each level extended Kalman filter is 
applied. Note that, these are calculated measurements and 
they contain less information than the original measurements.  
However, they can better capture certain information at lower 
resolutions as result of low-pass filtering during 
decomposition. The measurements at different resolution 
levels is shown in figure 8 and the decomposition of state 
variables at higher resolution level to lower resolution levels 
is shown in figure 9.  
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Fig. 8   Measurements at different resolution levels i  for i=1,2,3 

 
Note that, the update of the states is executed when a data 
block is ready. In this research, the number of resolution 
levels is N=3, and each data block contains 4 samples at the 
highest resolution level. The basic scheme for dynamic 
multiresolutional filtering is shown in figure 10. 
 

data block

x[1](k1)

x[2](k2) x[2](k2+1)

x[3](k3) x[3](k3+1) x[3](k3+2) x[3](k3+3)

i=1

i=2

i=3

time index ki  
Fig. 9   Decomposition of the state variables at highest resolution level i=3 to 

lower resolution levels, i=1,2. 
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Fig. 10   Multiresolutinal decomposition during filtering 
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The fused estimate ][
|

NF
1m1mX ++ is a weighted summation of 

both predicted ][
|

N
m1mX + and updated ],[
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I=1,2,..,N. The sum of the weight factors equal to the identity 
I. This can be seen by substitution of ][
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1m1mP ++ given 

above into the expression of ][
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1m1mX ++ in (39). 

  
III.  EXPERIMENTS FOR FUSION OF PERCEPTIONS  

The perception data subject to decomposition and information 
fusion is obtained by means a visual agent in the virtual reality 
environment. The rays stemming from the agent’s eye interact 
with the environment and return back as result of 
backscattering. The distance associated with these rays is used 
in the mapping function to estimate the perception as depicted 
in figure 4. The average number of backscattered rays is the 
measure of perception in the form of intensity. This intensity 
can be calculated by means of integration of the associated 
probability density. The exponential averaging described in 
the preceding section delivers the average value of this 
intensity.  Such a system is established for real-time visual 
openness perception measurements. The perception data is a 
set of random samples and it is colored data due to 
correlations peculiar to the space subjected to measurement. 
The experiments presented below are for 100 samples. In the 
virtual reality environment the frame rate is about 20 
frames/sec so that the experiments take approximately 5 
seconds. For a stationary viewing position, the perception 
data, its Kalman filtered counterpart and the input signal to the 
system is shown in figure 11. Apparently, the stationary input 
provides a stationary output. 
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         Fig. 11  Visual openness measurement for a stationary viewing position. 

 
For the case the measurements are not stationary while the 
scene is changing during the constant movement of the agent, 
a varying measurement outcome is shown in figure 12. There 
are three lines plotted in this figure. The solid line is the 
Kalman filtering estimation at the highest resolution of the 
perception measurement data. The cross symbols connecting 
the lines represent the measurement data set. The outcome of 
the multiresolutional fusion process is given with the dot-
dashed line. The upper plot in figure 12 is zoomed and 
presented in the lower plot for explicit illustration of the 
experimental outcomes. The same figure as figure 12 with a 
different zooming range and the zooming power is given in 
figure 13. 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

am
pl

itu
de

measurement(x), Kalman(thick line)

45 50 55 60 65

0.3

0.35

0.4

0.45

0.5

am
pl

itu
de

measurement(x), Kalman(thick line), fusion (.-)

data samples with unit sampling rate
 

  Fig. 12  Visual openness measurement outcome from a moving virtual agent   
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Fig. 13  Visual openness measurement outcome from a moving virtual agent   
 
From the experiments it is seen that, the Kalman filtering is 
effective to model the noise of the perception signal and give 
accurate estimation of the perception measurement. From a 



stationary measurement position the estimated perception is 
also stationary and the statistical variations are minimized. For 
a non-stationary observation, the scene is not stationary and 
the perception measurements are subject to varying. The 
filtered perception measurements provide the optimal 
estimation of the visual perception where the estimation error 
is minimized so that the noise on the measurement data greatly 
alleviated. At the same time swift adaptation is obtained with 
the result that the delay in adaptation occurring in exponential 
averaging is eliminated. It is interesting to note that the 
multiresolutional fusion outcomes do not present any 
significant improved estimation as compared with the Kalman 
filtering estimation at the highest resolution level, in this case. 
However, a slight difference between these two estimates is 
noticeable in favor of the multiresolutional case. It is 
noteworthy to mention that, the multiresolutional approach 
presented here uses calculated measurements in the lower 
resolutions. Therefore, since the information content is the 
same in both cases, a non-significant difference in these 
results is not surprising. However, the multiresolutional fusion 
is still important alternative for improved estimation since it is 
possible to use different sensors at each resolution level and to 
obtain independent information subject to fusion. In the 
virtual environment, this means different independent virtual 
agents at each level and this can easily be added to the present 
measurement system to improve the measurement system 
performance. 
 

IV. CONCLUSIONS  

Fusion of perceptions is investigated for perception 
measurements where accurate estimations are aimed. For this 
aim, several measurements in different resolutional levels are 
considered where each outcome at each level is combined 
with the others and a final outcome is obtained. This is 
commonly referred to as data/sensor fusion. In this research, 
measurements are the perception of human where human 
perception is modelled with probabilistic considerations so 
that the measurements are in the form of random data. For 
accurate estimations using the measurement samples, optimal 
filtering, namely extended Kalman filtering is applied at each 
multiresolutional level. The multiresolutional sensor fusion 
outcomes are compared with the Kalman filtering outcomes at 
the highest resolution level. The difference between the 
outcomes is found to be noticeable but not significant. This is 
attributed to “calculated” sensors rather than independent 
sensors in the lower resolutions. In the present research, the 
virtual agent provides the measurement data so that in the 
multiresolutional case to increase the number of agents is 
another alternative for accurate perception measurements. 
Next to optimality of Kalman filtering for estimation of 
perception in a fixed observation location, it is fast enough to 
follow the perception variations of a moving agent with 
changing scenes, maintaining the same performance. 
Following the theoretical considerations developed in this 
research, the present experiments are carried out in the virtual 
reality environment, in real-time. However, the same 

executions can be made in real life environment exercised by 
an autonomous robot. Therefore, the implication of this 
research extends to autonomous robotics as well as perceptual 
robotics. At the same time from the design viewpoint, visual 
perception is an important concept in building design in 
architecture and quantification of visual perception in the form 
of measurements is an important step for design enhancement.  
It is noteworthy to mention that, as the scientific disciplines 
are getting more and more overlapping in their field of 
interests due to due increasing need of interdisciplinary 
cooperation, the present research is an exemplary endeavour 
to integrate advanced exact science methodologies into design 
environment that refers to architectural design as well as 
engineering design. 
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