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1 Introduction

In a collaboration with the Department of Education and Psychology at the Erasmus University of
Rotterdam, research was conducted at PRIME (PRogramme of Innovation in Mathematics Education),
resulting in certain hypotheses about the relationships between Perceived Monitoring and Scaffolding
cues, Basic Needs (Autonomy, Relatedness and Competence) Satisfaction and Frustration, Autonomous
and Controlled Motivation, and Academic Performance.
PRIME intends to redesign courses in order to improve study results, improve the connection between
mathematics and engineering, and increase students’ active participation and motivation [21].
Therefore it is interesting to know how the variables mentioned above are related to one another. In
order to examine this, a survey was created at PRIME, consisting of a set of questionnaires concerning
these variables (Academic Performance, however, was not part of the questionnaire, but was measured
with actual study results).

Whilst there are several ways to examine these relationships based on the data from this survey, in
this thesis we use Structural Equation Modelling (abbreviated SEM) in an attempt to answer the re-
search questions about the formulated relationships.
Structural Equation Modelling can be described as a technique used in several sciences in order to anal-
yse structural relationships between variables. It is particularly useful for the analysis of variables that
are not directly observable, the so called latent variables. For this reason, it is especially popular in
social sciences such as Psychology or Educational Sciences, as many constructs in these fields cannot be
measured in a straightforward manner. Whilst social science students and graduates have some statisti-
cal background, it understandably pales in comparison to that of mathematical students and graduates.
However, mathematical students are used to working with a different type of data that is usually very
structured, directly observable and measurable in a straightforward manner. Therefore it is interesting
to work with data from social sciences and apply mathematical techniques to this data.

Whereas some emphasis is placed on answering the research questions formulated, this is not the main
focus of this thesis. The research questions can be viewed as a means to an end which is in this case
examining the specifics of applying Structural Equation Modelling on any given data set.

This thesis can be viewed as complementary to or an enhancement of previous research done by two
bachelor students using the same data set: ‘Estimating links between latent variables using Structural
Equation Modelling in R’ by Plomp [20], and ‘Bayesian Structural Equation Modelling explained and
applied to Educational Science’ by Brouwer [4].
In this thesis, the possibilities of Stuctural Equation Modelling are explored a bit more thoroughly than
was done before. For example, the data set was cleaned and adjusted more thoroughly to meet the basic
assumptions of Structural Equation Modelling to start with. An important part here is concerned with
the way in which missing values are handled. Also, since the data is of ordinal nature, a different type
of estimator is used compared to situations where continuous data is being handled. More emphasis was
placed on modifying the structure of the expected relationships based on the goodness of fit results of the
models created. The construct of Monitoring and Scaffolding was split into two separate constructs in
order to obtain a better model, and finally, not just one, but many models were created for interpreting
several sub parts of the data, resulting in several results with several interpretations that can then be
compared to one another.

In this thesis, a more thorough explanation of SEM will be given in Chapter 2 where we also give
an example of set of constructs, a formulated model, and a corresponding set of equations. We explain
how a model can then be evaluated and in some cases adjusted to obtain a better goodness of fit. A brief
explanation of the implementation in R is also given. In Chapter 3, the latent variables and hypotheses
on the relationships between them, are formulated and a graphical presentation as well as the structural
equations of the model are given. In Chapter 4 the entire questionnaires are given on Perceived Moni-
toring and Scaffolding cues, Basic Needs Satisfaction and Frustration, and finally Motivation. Chapter
5 focuses on meeting the assumptions of the model and cleaning the data set accordingly. A large part
of this Chapter focuses on handling missing values appropriately. Chapter 6 provides more insight into
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the demographics of the population the survey was applied to. Chapter 7 starts with showing the initial
results for the three formulated sub models and for the complete model in terms of the goodness of fit,
after which adjustments are made in order to improve the models step by step. Comparisons are made
between and interpretations are given of the results of the sub models and the ones of the complete model.
The hypotheses are tested and in some cases, new models are formulated based on expected mediation
effects between the latent variables. These mediation effects are of interest as they give more insight in
the nature of the relationships. Chapter 8 provides a conclusion with respect to the main focus of this
thesis, which is creating the models in the first place, but also on the content of the models (the survey
itself). Also, a comparion is made to the results in previous research done by Brouwer [4] and Plomp
[20]. Finally, points of discussion are given in Chapter 9.
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2 Theory: Structural Equation Modelling

2.1 What is Structural Equation Modelling ?

Structural Equation Modelling (SEM) can be described as a diverse set of methods used by scientists in
both experimental and observational research, consisting of computer algorithms and statistical methods
for testing a network of relationships between variables [25]. Structural equation models are often used to
assess so called ‘latent’ constructs: constructs that are not directly observable [10]. These latent variables
are defined by the user in terms of the observed variables that are directly measurable, often by means
of questionnaires or surveys.

SEM is widely used in social sciences, as this is a field in which variables of interest are often not
directly measurable, but can be estimated by a set of questions. If we want to measure, for example,
stress levels in an individual, we can ask them certain questions and combine these answers to get an idea
of how much stress they are experiencing. In this example, ‘Stress’ is the so called latent variable, which
can be measured by combining by multiple questions with respect to aspects of their life. The answers
to these questions are the so called observed variables.
SEM can then be used to test the strength of the relationships between the measured variables and the
latent ones.
Also, as is often the case, multiple latent variables are measured within a single questionnaire, after which
SEM can also be used to assess the relationships between the latent variables.

Most of the time, the user of SEM already has an idea (based on a theoretical framework) about what
items will load onto what latent variable. This is, after all, often how the questions were constructed in
the first place. Therefore, the user already has an idea about what the network looks like. By applying
SEM on this proposed network, the goodness-of-fit of the model can be tested, and suggestions can be
made to improve the model.

2.2 Specifying the model

Basically, the model consists of sets of equations that describe the relationships between all variables. In
order to apply SEM, a model must be formulated first. In general, a model consists of latent variables,
observed variables, and their expected relations.

The latent variables are the variables that are not directly measurable. Stress is a good example of
a latent variable. This might be measured by a set of observations, such as how often a person has
frowned in the last hour, or by a set of questions, such as “How often do you have the feeling you can’t
cope with a situation?” These sets of observations or questions are directly measurable and are therefore
called the observed variables.

Most of the time, a model consists of more than just one latent variable. Also, some latent variables can
be expected to be related to one another or to influence each other. Therefore, a distinction is made be-
tween exogenous and endogenous latent variables. The exogenous latent variables are the latent variables
that are only expected to be influenced by observed variables. The endogenous latent variables, on the
other hand, are expected to be influenced by other (exogenous or endogenous) latent variables as well as
by observed variables.

An example of a simple model is given below:
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Stress at Home

Stress at Work

Fatigue

Negative Thoughts

Loss of Interest

Depression

SH1 SH2 SH3

SW1 SW2 SW3

F1 F2 F3

NT1 NT2 NT3

LI1 LI2 LI3

D1 D2 D3

Figure 1: Example of a model

In this example, Stress at Home (SH) and Stress at Work (SW) are two exogenous latent variables,
each measured by three observed variables. The other four latent variables (F=Fatigue, NT= Negative
Thoughts, LI= Loss of Interest and D=Depression) are endogenous, as they are influenced by other (ex-
ogenous or endogenous) latent variables. The endogenous latent variables are in this case also measured
by three observed variables each.

Note that this example is not based on any scientific research, and is simply an example made up
by the author for illustration purposes.

2.2.1 The sets of equations

In SEM, two types of equations can be distinguished: the measurement equations and the structural
equations.

The measurement equations relate the observed variables to the exogenous latent variables or the en-
dogenous latent variables. Let ξ be vector of exogenous latent variables and X a vector of measurements,
the observed variables that are expected to be related to the elements of ξ. We can define X in terms of
ξ with the following equations:

X = ∆Xξ + δ (1)

where ∆X is a matrix of coefficients explaining how each of the latent variables in ξ is described in terms
of the observed variables in X. Here, δ is an error term and all δi are assumed to be independent of each
other and identically distributed.
Now, let η be a vector of endogenous latent variables and Y a vector of measurements or observed
variables that are expected to be related to the variables in η. We can define Y in terms of η with the
following equations:

Y = ∆Y η + ε (2)

where ∆Y is a matrix of coefficients explaining how each of the latent variables in η is described in terms
of the observed variables in Y . Here, ε is another error term, where i are assumed to be independent of
each other for all i and are identically distributed.

Note that we could also choose to have Y = X and let this vector consist of all measurements in
the model, but this would result in larger matrices for ∆X = ∆Y as they would include many zeroes
for those measurements that are not related to the endogenous latent variables or the exogenous latent
variables, respectively. Therefore, we choose to distinguish between X and Y .
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Besides the measurement equations, the model also consists of structural equations. The structural
equations are of most interest, as these are the equations that explain how the latent variables are related
to each other. They are defined as follows:

η = Bη + Γξ + ζ (3)

where B is a matrix explaining how the endogenous latent variables are related to the other endogenous
latent variables, and Γ is a matrix explaining how the endogenous latent variables are related to the
exogenous latent variables. Here, ζ is an another error term, for which ζi is assumed to be independent
of ζj for all i, j and they are identically distributed.

Together, equations 1, 2 and 3 form the general model.

In order to illustrate these equations, the example from Figure 1 can be written in matrix notation
as follows: 

SH1
SH2
SH3
SW1
SW1
SW3

 =


∆X11 0
∆X21 0
∆X31 0

0 ∆X42

0 ∆X52

0 ∆X62


(

SH
SW

)
+


δ1
δ2
δ3
δ4
δ5
δ6

 (4)

corresponds to equation 1,

F1
F2
F3
NT1
NT2
NT3
LI1
LI2
LI3
D1
D2
D3



=



∆Y 11 0 0 0
∆Y 21 0 0 0
∆Y 31 0 0 0

0 ∆Y 24 0 0
0 ∆Y 25 0 0
0 ∆Y 26 0 0
0 0 ∆Y 37 0
0 0 ∆Y 38 0
0 0 ∆Y 39 0
0 0 0 ∆Y 4,10

0 0 0 ∆Y 4,11

0 0 0 ∆Y 4,12




F
NT
LI
D

+



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12



(5)

corresponds to equation 2,
and finally

F
NT
LI
D

 =


0 0 0 0
B21 0 0 0
B31 0 0 0
0 B42 B43 0




F
NT
LI
D

+


Γ11 Γ12

0 0
0 0
0 0

( SH
SW

)
+


ζ1
ζ2
ζ3
ζ4

 (6)

corresponds to the most important equation, the structural equation as stated in 3.

Note that the position of the zeroes in the matrices in equation 6 depends on how the model is specified.
If we add, for example, an arrow between Fatigue and Depression, B41 would not be 0.

From this matrix notation it becomes clear that it is actually the parameters in the matrices ∆Xij ,∆Y kl, Bmn
and Γop that we aim to find.

As mentioned before, the error terms in δ, ε, and ζ are assumed to be independent and identically
distributed, and it is also assumed that δi, εj and ζk are independent of each other for all i, j, k [27].
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2.2.2 Mediation effects in SEM

Depending on the research question or hypothesis, it is sometimes important to consider mediation effects
of latent variables. In words, a mediation model is used to obtain and explain the underlying mechanism
of an observed relationship between a dependent and an independent variable by including a third ex-
planatory variable: the mediator variable [16]. However, the hypothesis is not about a causal relationship
between the dependent and independent variable, but it assumes that the independent variable has a
cause on the mediator variable, which then results in the dependent variable. Therefore, one could say
that the mediator variable is an explanation of the nature of the relationship between the dependent
variable and the independent variable.

If we again look at the previous example in Figure 1 we might for example want to know whether
the effects of Stress at Home (X) on Negative Thoughts (Y ) are mediated (explained) by Fatigue (M).
A graphical presentation of this is shown in Figure 2:

X

M

Y

X Y

a b

c′

c

Figure 2: Graphical presentation of a general mediation model

In a mediation model of this form, the a−coefficient represents the effect of the independent variable X
on the mediator variable M . Similarly, the b−coefficient represents the effect of the mediator variable
M on the dependent variable Y . The difference, however, is that b was adjusted for the independent
variable X. This means that given the effect a of X on M , the effect of M on Y is b.
Finally, the c′−coefficient represents the direct effect of X on Y , whereas the product of a and b is called
the indirect effect of X on Y .

The sum of ab and c′ is equal to c, which we call the total effect of X on Y :

c = ab+ c′

In the example hypothesis “The effect of Stress at Home (X) on Negative Thoughts (Y ) is mediated
(explained) by Fatigue (M)”, we want to know whether the relationship between Stress at Home and
Negative Thoughts has been significantly reduced after inclusion of the mediator variable Fatigue, in
which case we speak of a mediation effect.

There are three possibilities:

1. If we find that a > 0 and b > 0, but c′ = 0, we conclude that there is a full mediation effect: X has
no effect on Y when we take the mediator variable M into account.

2. We can speak of a partial mediation effect if a > 0, b > 0 and c′ > 0, but c′ < c. In this case, we see
that we have a mediation effect ab > 0 but also still a direct effect c′ > 0. The relationship between
X and Y is reduced by including the mediator, but the mediator does not explain everything.
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3. Finally, there is no mediation effect at all when |c′− c| ≈ 0. (the absolute difference between c′ and
c is not significant) In this case, ab ≈ 0.

Also, a distinction can be made between a positive and a negative mediation effect. If we have c′ < c,
we say there is a positive mediation effect: the mediated or indirect effect ab is positive. If a situation
occurs where c′ > c, such that we have ab < 0, we call this a negative mediation effect. This could occur
if we find that, for example, Stress at Home attributes to someones Fatigue (there is a positive effect) but
because of the Fatigue, someone has less negative thoughts (a negative effect). In this case, the direct
effect could be larger than the total effect.
Note that, in the explanation above, it is assumed that c′ and c are positive.

2.3 Identifying the model

The next step is to make sure that the model is identified. We say that a model is identified if there
exists at least one solution for all of the model’s parameters [11]. A minimum condition of identifiability
is that the number of known values must equal or exceed the number of free parameters in the model .
We call this the t−rule:

1

2
p(p+ 1) ≥ 2p+ z (7)

where p is equal to the number of measured variables and z equals the number of relations between the
latent variables.
Note that the left-hand side 1

2p(p+ 1) equals the number of covariances (the number of elements in the
covariance matrix minus the redundant elements above the diagonal (or below, as the matrix is symmet-
rical)). The right-hand side equals the number of free parameters or unknowns. We know from linear
algebra that there can be no solution, exactly one solution, or infinitely many solutions. If the t−rule is
not met, no solution exists for the equations. In this case we say the model is not identified; if a unique
solution exists, equation 7 becomes an equality, but most often in SEM the model is over-identified (there
is a strict inequality), as there are more knowns than there are free parameters. In this case there are
infinitely many solutions.
It is our goal to find the ‘best’ solution out of these solutions by minimizing the error terms.

In our example shown in Figure 1 we have 18 measured variables and 6 relationships, and therefore
the t− rule holds:

1

2
(18)(19) = 171 ≥ 42 = 2(18) + 6

and we see the model is over-identified.

2.4 Estimating the model

The next step is to estimate the free parameters in the model. The most commonly used estimation
method is that of Maximum Likelihood. However, in SEM, one of the assumptions of this estimator
is that the data is normally distributed. (More about this and other assumptions will be discussed in
Section 5.1).
We know beforehand that our data is not normally distributed, as our data is ordinal, and therefore we
needed to look for other options.

Even though our data is ordinal, in SEM analysis, it is often assumed that a continuous variable un-
derlies an ordered categorical variable [19]. This underlying continuous variable is categorized into the
ordered categorical variable. Under this assumption, the measure of association that is of interest in the
Modelling is the correlation between the underlying continuous variables, which is termed the polychoric
correlation.
For ordered or categorical data, Diagonally Weighted Least Squares (DWLS) estimation makes use of
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these polychoric correlations and has become the most popular method to obtain the parameters we are
interested in using SEM[22].

Weighted Least Squares can be seen as a specialization of Generalized Least Squares, in which knowledge
of the variance of observations is incorporated into the regression. The general form of a fit function can
be written as

F̂ = (S − Σ̂(θ))TW−1(S − Σ̂(θ)) (8)

Here, S and Σ̂(θ) are correlation vectors of the data and the implied model respectively, θ is a vector of
parameters, and W is a weight matrix with 1

2p(p+ 1) rows and columns that is specific to the estimation
method [8].
The fit function characterizes the discrepancy between Σ̂(θ) and S . The vector θ is estimated by mini-
mizing F .

If we take W = n · Diag(Γ), where n is the sample size, Γ is the asymptotic variance and covariance
matrix of polychoric correlations, and diag(Γ) is a diagonal matrix with all the diagonal elements the
same as the diagonal elements in Γ, F becomes the Diagonally Weighted Least Squares fit function. The
detailed calculation of n ·Diag(Γ), is described in [19].

2.5 Evaluating the model

In applications of structural equation Modelling, a critical step is to evaluate the goodness-of-fit of the
proposed model with the data. In order to test the goodness-of-fit of the model, several mathematical
measures are used.

The chi-square statistic is used to perform a test of perfect model fit. It is essentially a measure of
deviance between the model-implied covariance matrix, and the observed covariance matrix [6].

Definition 2.5.1. The Chi-Square (χ2) statistic is defined as

χ2
df =

∑
i

(Oi − Ei)2

Ei
(9)

where Oi are the observed values and Ei are the expected values.

The chi-square test is a test of statistical significance where the chi-square value and the degrees of free-
dom are used to calculate a p−value. The null hypothesis that the predicted model and observed data are
equal is tested. Because you want your predictions to match the actual data as closely as possible, you
do not want to reject this null hypothesis, meaning that a good model fit is indicated by a non-significant
result for this test.

In our case, the χ2 statistic is not very reliable, however.
This mostly has to do with the fact that the chi-square test is very sensitive to sample size [2],[9]. The
larger the sample size, the greater the chances of obtaining a statistically significant chi-square. And
given that it is agreed upon that SEM should only be conducted with large sample sizes, the chi-square
test is almost guaranteed to be significant, even at higher significance cutoffs (e.g. 0.001). This turns out
to be the case even more when ordinal data is used instead of continuous normally distributed data [11].
For these reasons this statistic does not provide any useful information, and other measures of fit need
to be considered.

Alternative goodness-of-fit measures have been developed in an attempt to provide additional infor-
mation about the usefulness of the hypothesized model [24]. Many of these fit indices are developed
based on the chi-square test, and are based on a comparison with a so called ‘null model’ that assumes
there are no correlations between the variables at all.
One needs to keep in mind, however, that the issues with the Chi-square test are not entirely resolved by
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looking at these alternative measures, as they still involve the Chi-square statistic.

Definition 2.5.2. The Bentler-Bonett Index [3] or Normed Fit Index (NFI) is an incremental measure
of fit defined as

NFI =
χ2
N − χ2

M

χ2
N

where N is the null model, and M is the model as proposed by the user.

The null model can be interpreted as the ‘independence model’, where the covariances are assumed to be
zero in the model.
The Bentler-Bonett Index looks at how much the χ2-value has improved with respect to the null model.
However, there is no correction for the number of parameters. Therefore, an improved version of the
Bentler-Bonett Index is the Tucker-Lewis Index (TLI)[3], [26], measuring a relative reduction in misfit
compared to the Null model, taking into account the degrees of freedom:

Definition 2.5.3. Let FM be the the minimized fit function of the proposed model, and FN the minimized
fit function of the Null model, at the population level. The unscaled Tucker Lewis Index is defined as

TLIU = 1−
FM

dfM
FN

dfN

(10)

= 1− FM · dfN
FN · dfM

(11)

Here, the fit function is as described in equation 8.

In modern software like R, however, the scaled version of the TLI is used, estimating parameters α,
a scaling parameter, and β, a shifting parameter, for an estimation of the sample TLI [30]:

TLIS = 1− α̂M (n− 1)F̂M + β̂M − dfM
α̂N (n− 1)F̂N + β̂N − dfN

· dfN
dfM

(12)

Here, n refers to the sample size.

In general, TLI ≥ 0.95 is a commonly used cutoff criterion for the goodness-of-fit [9],[28].

Since both the NFI and the TLI are comparisons with the Null model, we expect high values of NFI
and TLI in case we have high correlations in our proposed model, since this increases the χ2-value and

therefore also the χ2

df -value of the proposed model.

Very similar to the TLI, we also have the CFI:

Definition 2.5.4. Let FM be the the minimized fit function of the proposed model, and FN the minimized
fit function of the Null model, at the population level. The unscaled Comparative Fit Index (CFI) is defined
as

CFIU = 1− FM
FN

(13)

Again, the fit function is as described in equation 8.

Note that the CFI is very similar to the TLI, with the only difference that there is no correction for
the degrees of freedom. As with the TLI, the scaled version of the CFI is used in R, estimating parame-
ters α, a scaling parameter, and β, a shifting parameter, for an estimation of the sample CFI [30]:

CFIS = 1− α̂M (n− 1)F̂M + β̂M − dfM
α̂N (n− 1)F̂N + β̂N − dfN

(14)
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Again, n refers to the sample size.

Since we have that dfN < dfM (correlations are fixed to 0 in the Null model), and therefore dfN
dfM

< 1, we
always have CFI > TLI.
As the CFI ranges between 0 and 1, it is considered a normed fit index, with higher values indicating a
better fit. The most commonly used criterion for a good fit is CFI ≥ 0.95 [28].

The way α̂ and β̂ are estimated is described in detail in [1] and is beyond the scope of this thesis.

Whereas the TLI and the CFI both compare the proposed model to the Null model, there are also
fit measures that do not make such a comparison. An commonly used measure of fit is the RMSEA [5].

Definition 2.5.5. The unscaled Root Mean Square Error of Approximation (RMSEA) can be defined as

RMSEAU =

√
FM
dfM

(15)

at the population level.

Here, we have that FM is the minimized fit function as described in equation 8. As the fit function was
minimized, this indicates that a lower value of the RMSEA indicates a better fit.

As is the case with the TLI and CFI, the RMSEA is also usually scaled in modern software like R

[30]. Therefore, the scaled function is normally used:

RMSEAS =

√
α̂M (n− 1)F̂M + β̂M

(n− 1)dfM
− 1

n− 1
(16)

The RMSEA is usually reported with a confidence interval. An RMSEA ≤ 0.06 is considered to indicate
a good fit [9]. On the other hand, an RMSEA of ≥ 0.10 is indicative of a very bad model [5].

Another absolute measure of fit, this time without a penalty for the number of parameters, is the SRMR:

Definition 2.5.6. The (Standardized) Root Mean Square Residual (SRMR) is an absolute measure of
misfit and is defined as the standardized difference between the residuals of the sample covariance matrix
and the hypothesized model, and is quantified by

SRMR =

√√√√2Σi,j

(
Σ̂(θ)i,j−Si,j

Si,iSj,j

)2

p(p+ 1)
(17)

where we sum over all rows i ∈ (1, ..., k) and columns j ∈ (1, ...., l) of the model-implied covariance matrix
Σ̂(θ)i,j and the sample covariance matrix Si,j.

(as with the RMSEA, lower values indicate a better fit) The RMR and SRMR provide estimates of
the average misfit for each estimated versus observed variance/covariance parameter. It quantifies the
square root of the average of the squared residuals comparing the model-implied covariance matrix and
observed covariance matrix.
The SRMR ranges between 0 and 1, thus it is standardized, where a value 1 indicates that the residuals
of the elements of the model-induced covariance matrix are on average as large as the elements of the
sample covariance matrix. Hence, a value close to 0 is desirable.
A good fit is obtained when the SRMR ≤ 0.05, but a fair fit is obtained when the SRMR ≤ 0.08.[9] [18].
A value ≥ 0.1 is considered poor.

In this research, all models will be tested for goodness-of-fit. The following table provides an overview of
how each of these values can be interpreted, based on a combination of research mentioned above.
Note that the cut-off values in table 1 are commonly used in Structural Equation Modelling, but they
are largely based on intuition and experience rather than on statistical justification [17]. However, this
table provides an anchor we can use to interpret our results.
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Goodness-of-fit measure perfect good acceptable bad
CFI ≥ 0.95 ≥ 0.9
TLI ≥ 0.95 ≥ 0.9

RMSEA 0 ≤ 0.05 ≤ 0.06 ≥ 0.1
SRMR 0 ≤ 0.05 ≤ 0.08 ≥ 0.1

Table 1: Interpretation of goodness-of-fit measures

2.6 Modifying and improving the model

If the values discussed in the previous Chapter are not what is considered good enough, a modification
to the model can be made in order to obtain a better fit [15]. Modification Indices are a way of im-
proving the model by identifying parameters which, if included, would improve model fit. However, it
is important that the use of Modification Indices should be informed by theory, as Modification Indices
may suggest paths that don’t make theoretical sense. If paths are added to the model based only on the
data, overfitting is likely to occur. Therefore, we need to consider carefully which paths to add to the
model and which paths we should leave out.

To discover what parameters are most useful additions to our model, we consult R. This will be ex-
plained more thoroughy in the next section.
Another way of improving the model might be to remove some parameters. This can be done by manually
using the SRMR from equation 17 to discover in which cases the misfit is reduced. If it turns out that
the SRMR is much lower when a certain item is removed, it might be a good idea to delete this item
from the survey entirely. Again, it is important that we always consider the content of the item before
we remove it, as it has to make sense theoretically as well.

2.7 Structural Equation Modelling in R

In general, we transform the measurement and structural equations into a model. Recall equations 1, 2
and 3:

X = ∆Xξ + δ

Y = ∆Y η + ε

η = Bη + Γξ + ζ

Based on our expectations of what these equations should look like, we tell R what measured variables
are related to what latent variables, and what latent variables are related to each other. We do not need
to define the exact relationships (i.e. the expected coefficients of the matrices). These are calculated by
R.
We use R to test our proposed model, and give us the coefficients for the matrices ∆X ,∆Y , B and Γ.
When the model is tested, an output is generated, producing among others the goodness-of-fit measures
described in Section 2.5 and the coefficients for the matrices. Based on this output, we can redefine our
model if the goodness-of-fit measures turn out to be very bad, or we can adjust the model slightly, either
by adding regressions between observed variables, or by removing some observed variables.

In R, a specific package for Latent Variable Analysis (LaVaAn, in R: lavaan) is used.
Special attention needs to be given to some matters concerning our specific topic:

1. First, we are dealing with ordinal data. The specific nature of our data is discussed in Chapter 4.
The fact that our data is ordinal, needs to be specified in lavaan, as one of the assumptions of the
standard method is that the data is continuous. Without specifying that the data is ordinal, the
standard Maximum Likelihood estimator is used to compute the coefficients of the matrices. In
our case, this is not the right estimator: we need to use the so called Diagonally Weighted Least
Squares (DWLS) estimator. The DWLS estimator yields more accurate factor loading estimates
than the maximum likelihood estimator when data is categorical or ordinal, as it incorporates extra
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(non-negative) weights associated with each data point, into the fitting criterion. [18].
The DWLS estimator is used automatically when we include the simple command “ordered=TRUE”
to the model.

2. Also, we need to specify how missing values are handled. In our data set, we are dealing with
a lot of missing values. Most of them could be dealt with by inspecting the data manually, as
will be explained in Section 5.3. The much smaller number of missing values that remain, can
be dealt with by R, and we let it handle them in a pairwise manner by specifying the command
“missing=‘‘pairwise’’.” Handling missing values by pairwise deletion allows us to use more data
as opposed to when listwise deletion is used. With listwise deletion, whenever R detects there is a
missing value, the entire subject (student) is removed from the analysis. With pairwise deletion,
however, only the variable with missing values is removed, but all other variables are still used for
this subject.

3. Sometimes R has trouble computing standard errors, even though it is not always clear why. As
this was the case in some of our models as well, bootstrapping was used by applying the command
“se=‘‘boot”, in order to compute standard errors. The bootstrap method was applied only to
those models where a problem occurred with computing standard errors, not to all models.
When bootstrapping was used, 1000 samples were taken from the data in order to produce standard
errors for the estimates. This had to be done, because without standard errors it is impossible to
know whether the regressions obtained are statistically significant, in which case no meaningful
interpretations can be given to the regressions obtained. Some attention will be given to this
shortcoming in the Discussion in Chapter 9.

4. Often, the initially proposed model does not meet the goodness-of-fit requirements right away,
which also turned out to be the case in most of our models. Therefore, modifications to the models
needed to be made in order to improve these measures. In order to know what modifications
could be useful, Modification Indices were used. These are obtained in R by using the function
“modindices(fit, sort=TRUE).” The output of this function is then a sorted list of Modification
Indices per parameter. A higher Modification Index suggests a better improvement to the model if
this specific parameter is added to the model. The parameter on top of the list is, since we sorted the
list, the most useful parameter to add to the model. However, the addition of the parameter needs
to make sense theoretically and should therefore be manually checked. By adding the suggested
parameters to the model (which are all regressions in our case), we allow the regressions between
survey items not to be fixed to 0.
There is, however, a risk of overfitting. After all, we could choose to add all possible regressions
to our model in which case we obtain the best goodness-of-fit measures possible. The Modification
Index is the χ2

1 value, by which the model fit would improve if a particular path was added. Values
bigger than 3.84 indicate that the model would be ‘improved’, and the p−value for the added
parameter would be < 0.05, and values larger than 10.83 indicate the parameter would have a
p−value < 0.001 [29]. In this research, we therefore decided to add only those regressions with a
MI larger than 10.83, with the extra condition that they make sense theoretically. The process of
adding parameters to our models is described in detail in Section 7.2.

2.8 Interpreting the results

Results will be obtained, mainly, in the form of the goodness-of-fit measures we discussed earlier: the
CFI, TLI, RMSEA and SRMR. These measures, as explained before, indicate whether the model is a
good fit for the data.
Once we have these results, it is also interesting to see how each of the variables contribute to the model.
For this, we look at the parameters, or coefficients, that describe the relationships between the latent
variables. Finally, we aim to test a set of hypotheses and consider the conclusion with respect to these
hypotheses a result as well.
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3 The Model

3.1 Latent variables used in the model

This research revolves around the relationship between 11 latent variables:

1. Monitoring (Mon), expected to be measured by part of the survey as described in Chapter 4.1

2. Scaffolding (Scaf), expected to be measured by part of the survey as described in Chapter 4.1

3. Autonomy Satisfaction (AS), expected to be measured by part of the survey as described in Chapter
4.2

4. Autonomy Frustration (AF), expected to be measured by part of the survey as described in Chapter
4.2

5. Relatedness Satisfaction (RS), expected to be measured by part of the survey as described in
Chapter 4.2

6. Relatedness Frustration (RF), expected to be measured by part of the survey as described in Chapter
4.2

7. Competence Satisfaction (CS), expected to be measured by part of the survey as described in
Chapter 4.2

8. Competence Frustration (CF), expected to be measured by part of the survey as described in
Chapter 4.2

9. Autonomous Motivation (AM), expected to be measured by part of the survey as described in
Chapter 4.3

10. Controlled Motivation (CM), expected to be measured by part of the survey as described in Chapter
4.3

11. Academic Performance (AP), measured by the final grade for the course the survey was about:
Calculus (CSE1200) at the Bachelor program ‘Computer Science and Engineering’ at TU Delft.

Note that the variables Monitoring and Scaffolding are measured by one part of the survey and together
are called ’Monitoring and Scaffolding Cues’ or ‘MSC.’ Similarly, Autonomy Satisfaction, Autonomy
Frustration, Relatedness Satisfaction, Relatedness Frustration, Competence Satisfaction and Competence
Frustration are referred to as the ‘Needs’ and are also part of the same questionnaire. Finally, the Mo-
tivation part of the survey measures the two types of Motivation: Autonomous and Controlled Motivation.

3.2 Hypotheses

In order to answer the research question

“What are the relationships between student perceptions of teacher cues in Monitoring
and Scaffolding, Satisfaction and Frustration of Needs for Relatedness and Competence,
Motivation, drop-outs, and Academic performance?”

Among others, the following hypotheses were formed:

1. Perceived teacher Scaffolding and Monitoring cues are positively related to Competence and Relat-
edness Satisfaction and negatively related to Competence and Relatedness Frustration

2. Autonomy Satisfaction is positively related to Autonomous Motivation and negatively to Controlled
Motivation
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3. Autonomy Frustration is positively related to Controlled Motivation and negatively to Autonomous
Motivation

4. Competence and Relatedness Satisfaction is negatively related to Controlled Motivation

5. Competence and Relatedness Frustration are negatively related to Autonomous Motivation, but less
strongly than the relationships between Competence and Relatedness Satisfaction and Autonomous
Motivation, and Competence and Relatedness Frustration and Controlled Motivation

6. Competence and Relatedness Satisfaction positively mediate the relationship of perceived teacher
cues and Autonomous Motivation

7. Competence and Relatedness Frustration negatively mediate the relationship of perceived teacher
cues and Controlled Motivation

8. there is a positive relationship between Autonomous Motivation and performance and a negative,
but less strong, relationship between Controlled Motivation and performance
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3.3 Graphical presentation of the model

Based on some hypotheses formulated in Chapter 3.2, the following graph can be drawn to present our
expectation of what the model should look like:

Scaffolding

Monitoring

Autonomy Satisfaction

Autonomy Frustration

Relatedness Satisfaction

Relatedness Frustration

Competence Satisfaction

Competence Frustration

Autonomous Motivation

Controlled Motivation

Academic Performance+

+

-

-

+

+

-
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-

+

-

-

-

-

-

+

-

Figure 3: Graphical Presentation of the hypothesized model

Positive relationships are colored green, whereas negative relationships are colored red. With respect
to the fifth hypothesis, it is unclear whether some of the relationships are expected to be positive or
negative, so these arrows are colored black.
Note that some of the hypotheses involve the strengths of the relationships, mediation effects or moder-
ation effects. These are not represented in this graph.
Also, note that this Figure represents the total model. In the next Chapter, we will see that it can be
convenient to split up the model into three parts.
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3.4 Structural equations for the model

The model presented in Figure 3 can be presented in matrix notation as follows:

RS
RF
CS
CF
AM
CM
AP


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
β5,1 β5,2 β5,3 β5,4 0 0 0
β6,1 β6,2 β6,3 β6,4 0 0 0

0 0 0 0 β7,5 β7,6 0





RS
RF
CS
CF
AM
CM
AP



+



γ1,1 γ1,2 0 0
γ2,1 γ2,2 0 0
γ3,1 γ3,2 0 0
γ4,1 γ4,2 0 0
0 0 γ5,3 γ5,4

0 0 γ6,3 γ6,4

0 0 0 0




Mon
Scaf
AS
AF

+



ζ1
ζ2
ζ3
ζ4
ζ5
ζ6
ζ7


Again, this set of equations represents the total model. For the three separate models discussed in the
next chapter, similar, somewhat more simplistic sets of equations can be set up.

3.5 Programming the model

A complete overview of how the model was programmed in R is given in the appendix in section 9.
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4 The Survey

The analyses in this thesis are based on the following survey, consisting of three parts:

4.1 Perceived Monitoring and Scaffolding cues

The first part of the survey consists of 30 questions regarding perceived Monitoring and Scaffolding cues.
Perceived Monitoring and Scaffolding cues were measured with an adapted version of the Student Assess-
ment for Learning Questionnaire (SAFL-Q; Pat-EL, 2013) which has been used by Cabo and Klaassen
(2019). The questionnaire comprises sixteen Monitoring items and fourteen Scaffolding items which are
presented as statements. Participants were asked to indicate on a Likert scale whether they agreed (1 =
strongly disagree, 5 = strongly agree).

1. The lecturer encourages me to reflect on how I can improve on my assignments.

2. After examining the test results, the lecturer discusses the answers given to the test in class.

3. Whilst working on my assignments, the lecturer asks how I think I am doing.

4. The lecturer stimulates us to think about what we want to learn in university.

5. The lecturer gives me the opportunity to decide on my own learning strategies.

6. The lecturer inquires about what went well and what went badly in my work.

7. The lecturer encourages me to reflect on my learning process.

8. The lecturer stimulates me to think about how to improve next time.

9. The lecturer shows how to find my strengths concerning my study skills.

10. The lecturer shows how to identify my weaknesses concerning my study skills .

11. I am encouraged by the lecturer to improve my learning process.

12. The lecturer gives me guidance to assist my learning.

13. The lecturer discusses assignments to help me understand the subject matter better.

14. The lecturer discusses with me the progress I make.

15. After each assessment the lecturer informs us on how to improve the next time.

16. The lecturer discusses how to make full use of my study skills to improve my assignment.

17. I am aware of my weak points in the application of study skills.

18. The lecturer offers strategies to improve my study skills.

19. When I do not understand a topic, the lecturer tries to explain it in a different way.

20. The lecturer provides me with hints to help understand the subject matter.

21. During class I have an opportunity to show or share what I have learned.

22. The lecturer asks questions in a way I understand.

23. The lecturer asks questions that help me gain understanding of the subject matter.

24. The lecturer allows for my contribution during the lesson.

25. I have the opportunity to ask my classmates questions during class.

26. The lecturer makes me aware of the areas I need to work on to improve my results.
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27. There is an opportunity to ask questions during class.

28. I am aware of the criteria by which my assignment will be evaluated.

29. When I receive an assignment it is clear to me what I can learn from it.

30. The assignments allow me to show what I am capable of.

Items 1-16 are expected to measure the latent variable ‘Monitoring,’, whereas items 17-30 are expected
to measure the latent variable ‘Scaffolding.’
In later chapters, the items are referred to as MSC1, MSC2, ..., MSC30.

4.2 Basic Needs: Satisfaction and Frustration

The basic Needs were measured with an adjusted version of the Basic Psychological Need Satisfaction
and Frustration Scale (BPNSNF; Chen et al., 2015). This questionnaire consists of 24 statements for
which participants can indicate the degree to which the statements are true for them at this point in their
life on a Likert scale of 1 (not true at all) to 5 (completely true). The 24 statements are divided into 6
subscales which contain 4 items each: Relatedness Satisfaction (RS) and Frustration (RF), Competence
Satisfaction (CS) and Frustration (CF), and Autonomy Satisfaction (AS) and Frustration (AF):

In the context of this course..

1. I feel a sense of choice and freedom in the things I undertake.

2. Most of the things I do feel like “I have to”.

3. I feel that the fellow students and lecturers I care about also care about me.

4. I feel excluded from the group I want to belong to.

5. I feel confident that I can do things well.

6. I have serious doubts about whether I can do things well.

7. I feel that my decisions about course activities reflect what I really want.

8. I feel forced to do many things I wouldn’t choose to do.

9. I feel connected with fellow students and lecturers who care for me, and for whom I care.

10. I feel that fellow students and lecturers who are important to me are cold and distant towards me.

11. I feel capable at what I do.

12. I feel disappointed with many of my performance.

13. I feel my choices about course activities express who I really am.

14. I feel pressured to do too many things

15. I feel close and connected with other fellow students and lecturers who are important to me.

16. I have the impression that fellow students and lecturers I spend time with dislike me.

17. I feel competent to achieve my goals.

18. I feel insecure about my abilities.

19. I feel I have been doing what really interests me.

20. My daily activities feel like a chain of obligations.
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21. I experience a warm feeling with fellow students and lecturers I spend time with.

22. I feel the relationships I have with my fellow students and lecturers are just superficial.

23. I feel I can successfully complete difficult tasks.

24. I feel like a failure because of the mistakes I make.

Autonomy Satisfaction is expected to be measured by items 1, 7, 13 and 19.
Autonomy Frustration is expected to be measured by items 2, 8, 14 and 20.
Relatedness Satisfaction is expected to be measured by items 3, 9, 15 and 21.
Relatedness Frustration is expected to be measured by items 4, 10, 16 and 22.
Competence Satisfaction is expected to be measured by items 5, 11, 17 and 23.
Competence Frustration is expected to be measured by items 6, 12, 18 and 24.

In later chapters, the items are referred to as Needs1, Needs2, ..., Needs24.

4.3 Motivation

This part of the questionnaire can be divided into a part concerning so called ‘Autonomous Motivation,’
and a part about so called ‘Controlled Motivation.’ Motivation was measured with an adapted version
of the academic self-regulation scale (Ryan & Conell, 1989).
The items were presented as statements for which students could indicate whether they were true for
them or not on a Likert scale of 1 (Completely not important) to 5 (Very important). Initially, the sur-
vey intends to measure four types of Motivation: intrinsic Motivation, introjected regulation, identified
regulation and external regulation. All four were all assessed with 4 items each, leading to 16 items in
total. The intrinsic Motivation and identified regulation subscales were combined to form an Autonomous
Motivation part and the introjected regulation and external regulation subscales were combined to form
a Controlled Motivation composite (Sheldon, Ryan, Deci, Kasser, 2004):

Why are you studying in general? I’m studying ...

1. Because I want others to think I’m a good student.

2. Because I enjoy doing it.

3. Because I’m supposed to do so.

4. Because I want to learn new things.

5. Because I would feel ashamed if I didn’t study.

6. Because others (parents, friends, etc.) oblige me to do so.

7. Because it’s an exciting thing to do.

8. Because it’s a meaningful choice to me.

9. Because that’s what others (e.g., parents, friends) force me to do.

10. Because that’s what others (parents, friends, etc.) expect me to do.

11. Because I’m highly interested in doing this.

12. Because I would feel guilty if I didn’t study.

13. Because it is personally important to me.

14. Because I want others to think I’m smart.
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15. Because it’s fun.

16. Because this is an important life goal to me.

The latent variable ‘Autonomous Motivation’ is expected to be measured by items 2, 4, 7, 8, 11, 13, 15
and 16, whereas the latent variable ‘Controlled Motivation’ is expected to be measured by items 1, 3, 5,
6, 9, 10, 12 and 14.

In later chapters, the items are referred to as M1, M2, ..., M16.

Note that all items were answered in the context of one specific course: ‘Calculus (CSE1200)’ for the
Bachelor “Computer Science and Engineering.”
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5 Cleaning and Preparing the Data

Before we start with applying SEM on the data, we need to examine the data and clean/prepare it. This
needs to be done because we first of all have to meet the basic assumptions of SEM that are given below:

5.1 Basic Assumptions of the Model

1. The data is multivariate normally distributed
Normality of observations is the first assumption before building the model and checking its fit
indices. The observations must draw from a continuous and multivariate normal population. How-
ever, in reality, normality of data is a condition that happens rarely [13].
Whereas it is not impossible to fit a SEM to non-normal data, it can result in inflated model test
statistics (for example a lower CFI or a higher RMSEA) and under-estimated standard errors when
the standard Maximum Likelihood Estimator is used [7]. We are dealing with ordinal data, as
subjects answered questions on a scale (as is clear from the Survey described in Chapter 4). As
we discussed thoroughly in section 2.4, the Diagonally Weighted Least Squares Estimator has be-
come the most popular estimation technique to obtain parameters in case the data is ordinal, and
therefore it is still possible to use SEM on our data.

2. There is no missing data.
Another assumption is that there is no missing data. However, this is a rather unrealistic assumption
when human beings are used to obtain data and therefore there is almost always at least some
missing data. A way to deal with this, is to test that if there is some missing data, it is missing at
random (MAR) [13]. It is however problematic if the number of missing data is large.
This assumption appears to also be violated in the original data set. By inspection, there is a large
number of missing values, and also, they do not appear to be at random. We will look at this more
closely in subsection 5.3.

3. The data contains no outliers.
We do meet the assumption that there are no outliers. The constructs of Monitoring and Scaffolding,
Basic Needs, and Autonomous/Controlled Motivation are all measured on a scale from (1) to (5),
which leaves no room for outliers. Also, Academic Performance is measured by grades on a scale
from (1) to (10), so the same applies here.

4. The relationships between all constructs are linear.
The relationships between the observed variables and their constructs and between one construct
and another is expected to be linear. This is an assumption that is not checked, but simply assumed
by applying SEM. The linearity of the model becomes especially clear from the matrix notation as
is shown in section 2.2.1.

5.2 The data set

In the original data set, 222 students participated in the survey. These students were selected from a
Calculus course for the Bachelor “Computer Science and Engineering” at the Technical University in
Delft, and were asked to fill in this survey manually by one of the lecturers. Afterwards, all data was
read and collected in one large .csv-file.
However, not all students gave their consent to be part of the data analysis (10 students did not give
consent), which left in total 212 students to work with.

In total, all students received the survey items as described in Chapter 4. Other than the questions
on Monitoring and Scaffolding, Basic Needs and Motivation, however, also some demographic questions
were asked. Students were asked to give their age, gender, highest level of education, country of highest
education, past performance in mathematics and grade-goal for the final exam.
These are analyzed in Chapter 6.

Information about which of the lecturers the students had lessons from was also collected, as there
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were eight lecturers in total and the Monitoring and Scaffolding questions specifically revolve around how
the students perceive the behaviour of the lecturer.
In order to measure Academic Performance, the grades that the students achieved afterwards, were added
to the data set as well. From the perspective of PRIME, it is interesting to know how all variables in the
survey are related one another but especially to Academic Performance, as, based on the outcome, it may
be possible to make changes in the way education is given, in order to improve Academic Performance
of students.

5.3 Handling Missing Values and inconsistent data

Before we give an overview of the demographics, it is important to clean the data set. This was first of
all done by inspection. It appeared to be the case that the number of missing values was very high for
one of the lecturers compared to the others. Almost all of this lecturer’s students had a large number of
missing data:

Lecturer A B C D E F G H
# Students with consent 16 14 21 29 22 36 30 44

# Missing 1 2 220 20 51 3 0 2

Table 2: Number of Missing Values per Lecturer for 30 items on Monitoring and Scaffolding

Based on table 2 we decided to remove all students from lecturer C from the data set as the number of
missing values is disproportionately large.

We then continued to look at the number of missing values per item. We decided that for Moni-
toring and Scaffolding, item 2 (“After examining the test results, the lecturer discusses the answers given
to the test in class”) resulted in a lot of missing values as well. Some students placed comments with
this question, stating there had not been a test yet. Therefore, we decided to remove question 2 from
the Monitoring and Scaffolding construct.
For the other items, no significantly large numbers of missing values were detected.

After examining the number of missing values per item, we also looked at the students individu-
ally. Based on this, we decided to remove five students who had between 15 to 24 missing values on the
construct for Basic Needs, which consists in total of 24 items. These students were removed from the
entire data set, not just from the Basic Needs construct.
For the Motivation part of the questionnaire, which consists of 16 items, there were three students with
all missing values. Therefore, these students were also removed from the entire data set.
Finally, one person did not seem to have answered the questions seriously. He did not have a valid
studentnumber, said he was age 65, and had repeating patterns in his answers, such as (1,2,3,4,5,4,3,2,1).
This person was also removed from the data set.
When it comes to the inconsistency in the data, some decisions were made as well:

• Comments placed behind a clear response were removed to make the data set more readable.
Examples of these comments are “not sure” or “between 2 and 3”.

• Some students answered (2.5), (3.5) or (4.5) instead of an integer from (1) to (5). Since the answer
(3) denotes a neutral answer, and there is a tendency to remain neutral, we decided to round down
all answers below 3, and round up all answers above 3, to decrease the neutrality of the answers a
little bit. This is a choice that was made that needs to be considered when analyzing the results.

• When answers to the demographic part of the questionnaire were unclear, they were removed and
thus set to missing. Spelling errors were corrected.

• For Gender, all answers there were not a clear ‘Male’ or ‘Female’ were set to ‘Other.’
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The next step is to test whether the missing values that still remain, are so called ‘Missing At Random
(MAR).’
This was tested in several ways:

• First, a Fisher’s Exact Test was performed to see whether there was a gender difference in the
frequencies of the number of students with certain numbers of missing values. The result was that
there is no significant difference, with p ≈ 0.35, for the following frequencies:

# Missing Values 0 1 2 3 4 5 6 7 8 9 11 12 13 20
# Males 6 35 64 13 2 2 0 12 7 6 2 1 1 1

# Females 1 3 8 3 0 0 1 3 3 2 0 0 0 0
# Other 0 3 4 0 1 0 0 1 0 1 0 1 0 0

Table 3: Frequencies of numbers of total missing values for each gender

and p ≈ 0.41 for the frequencies of missing values for the survey items only:

# Missing Values 0 1 2 3 4 5 10 11 20
# Males 124 17 3 4 1 0 1 1 1

# Females 18 4 1 0 0 1 0 0 0
# Other 9 1 0 0 1 0 0 0 0

Table 4: Frequencies of numbers of missing values for survey items only for each gender

Note that, even though the frequencies may seem to differ much between males and females, we need to
take into account the fact that we have many more males in our student population than females. More
about this will be presented in Chapter 6.

• A correlation between Age and the number of missing values was examined, too. We find Pearson’s
r ≈ 0.18 for Total Missing (p ≈ 0.013), and r ≈ −0.04 for Survey Missing, with p ≈ 0.51. The correlation
plots (Jittered) can be seen in Figure 4:
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Figure 4: Number of Missing Values against Age

Note that Jittering (the addition of small noise to both Age and the number of Missing Values) was
applied to the plots for visibility purposes.
Even though the correlation coefficient for the Total Missing Values appears to be significant, the plot
does not show an obvious effect for Age.
For the survey items only, there is clearly no significant relationship between Age and Missing Values.

• A similar analysis was done for the relationship between Past Math Performance and the number of
Missing Values.
Here, we found no correlation at all: r ≈ −0.13, p >≈ 0.06 and r ≈ −0.04, p ≈ 0.55 for Total Missing
Values and Survey Missing Values respectively.

• We also tested whether there was a difference between students with different levels of highest education
in the number of missing values. The frequencies were compared, similar to what was done before for
Gender. Fisher’s Exact Test showed no significant difference, with p ≈ 0.86 and p ≈ 0.84 for Total
Missing and Survey Missing respectively.

• Finally, we tested whether the country of highest education was a predictor in the number of missing
values. Here, only the NL/non-NL comparison was made, as there are too many countries to consider
otherwise. Fisher’s Exact Test showed a significant difference for the total number of missing values
(p ≈ 0.04). However, the difference in means turned out to be very small: NL students have on average
3.25 total missing values and Non-NL students have on average 3.33 average total missing values.
When we look only at the survey items, there was no difference between NL and Non-NL students with
p ≈ 0.86.
This implies that students with their highest education outside of the Netherlands tend to skip some
demographic questions more than students from the Netherlands, but for the survey items the missing
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values do appear to be MAR, so this should not be a problem for the model.

We conclude that the missing values are Missing At Random and therefore, the second assumption of
SEM is satisfied after cleaning the data in the way that we did.
Figures 5 and 6 show the distribution of the total number of missing values and the number of missing
values for the survey items only, respectively:

Figure 5: Distribution for the Total number of Missing Values
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Figure 6: Distribution for the Total number of Missing Values

We see that there appear to be some outliers. For example, there is still one student with 20 missing
values, 1 with 12 missings, and 1 with 11. However, we decided not to remove these students, since the
missing values do appear to be evenly distributed over all constructs, and therefore can be considered
missing at random.
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6 Demographics

The data used in this research was collected by PRIME at a Calculus course for the Bachelor ‘Computer
Science and Engineering’ at TU Delft.

After cleaning the data, the total data set consists of 187 students.

Gender: In total, 181 students identified their gender to be either ‘male’, ‘female’ or ‘other.’
Out of these, there were 152 males, 24 females, and 5 others. The 6 missing values were also set to
‘other’, resulting in a total of 11 others.

Age: 187 students reported their age (1 missing value). The minimum age was 17 and the max-
imum age was 29. Means and standard deviations are found in table 5

Overall Males Females Other
Mean 18.9 18.8 18.9 18.9

SD 1.7 1.8 1.4 1.4

Table 5: Means and standard deviations for age

Education Level: 186 students reported their education level (2 missing values). 168 participants’
highest education level was secondary education, followed by 5 who completed higher vocational
education (HBO), and 12 who entered ‘Other’.

Country of highest education: All 187 students reported the country in which they com-
pleted their highest level of education. There were 36 different number of countries reported. Most of
the students came from the Netherlands (n = 74), followed by Romania (n = 17), and Belgium and
Bulgaria (both n = 8).

Also, a new column was created in the data set, transforming the country of highest education
to NL/non-NL. As stated before, 74 students reported the Netherlands as the country of their highest
education. The remaining 113 students reported a country other than Netherlands.

Past Math Performance: 185 students reported the final grade from their highest level of ed-
ucation for mathematics (2 missing), with 10 being the highest possible grade and 1 being the lowest
possible grade. Students’ reported score was used as an indicator of their past math performance. Table
6 shows the distribution of the grades students achieved:

Grade 10 [9, 10) [8, 9) [7, 8) [6, 7) [0, 6)
Students 34 47 50 37 12 6

Table 6: Past math performance

Note: Past Math Performance needed to be transformed into numerical values for some students (A
Was changed to 10, B was changed to 7.5, 6/7 was changed to 6.5, 7/8 to 7.5, etc. Unclear entries were
deleted and thus set to missing.

Self-efficacy score: 80 students reported their level of confidence in scoring an 8 or higher in
the final exam of this course (107 missing), with 10 being highly certain and 0 being not certain at all.
This score was used as an indicator of self-efficacy. Table 7

Self-Efficacy Score 10 9 8 7 6 5 4 3 2 1
Students 0 0 0 0 0 33 17 12 13 5

28



Table 7: Self-Efficacy Scores
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7 Results

Before we take a look at the results with respect to the correlations obtained by the model, we need to
make sure the that the t−rule holds for each model, and also that the goodness-of-fit measures are in
the right ranges. For a complete description of the model we refer to Chapter 3, and for an explanation
of the t−rule and the goodness-of-fit measures, we refer to Chapter 2, Sections 2.3 and 2.5 respectively.

The following Table shows what survey items are initially used to define our latent variables.
The content of these items can be found in Chapter 4. We will need the information from Table 8 to
determine whether the t−rule holds.

Latent variable # items (p) Items used
Monitoring 15 SM1, SM3, SM4, SM5, SM6, SM7, SM8, SM9,

SM10, SM11, SM12, SM13, SM14, SM15, SM16
Scaffolding 14 SM17, SM18, SM19, SM20, SM21, SM22, SM23,

SM24, SM25, SM26, SM27, SM28, SM29, SM30
Autonomy Satisfation 4 Needs1, Needs7, Needs13, Needs19
Autonomy Frustration 4 Needs2, Needs8, Needs14, Needs20

Relatedness Satisfaction 4 Needs3, Needs9, Needs15, Needs21
Relatedness Frustration 4 Needs4, Needs10, Needs16, Needs22

Competence Satisfaction 4 Needs5, Needs11, Needs17, Needs23
Competence Frustration 4 Needs6, Needs12, Needs18, Needs24
Autonomous Motivation 8 M2, M4, M7, M8, M11, M13, M15, M16

Controlled Motivation 8 M1, M3, M5, M6, M9, M10, M12, M14
Academic Performance 1 Final Result

Table 8: Survey items initially used to define latent variables

In order to have a better understanding of the nature of the relationships between the latent variables,
the complete model was split up into three parts. The first part concerns Monitoring and Scaffolding,
and their relationships with four Needs: Relatedness and Competence, both Satisfaction and Frustration.
The second part is about the relationships between all six Needs and the two types of Motivation. The
third part relates the two types of Motivation to Academic Performance. Finally, the complete model is
shown, combining all three parts of the model. Note that in the complete model, we expect different
results for the relationships, as the complete model includes many mediation effects, as explained in
Chapter 2, Section 2.2.2.

In the next Section, all models will be analyzed separately.

7.1 Results for the initial models

7.1.1 Part 1: Monitoring, Scaffolding and Needs

The first part of the model is about the perceived Monitoring and Scaffolding cues, and the relationships
with the Needs. This is presented in the following graph:
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Figure 7: Graphical Presentation of the first part of the hypothesized model

We start with checking the minimal condition of identifiability, which is the t−rule as stated in equation
7 explained in Chapter 2.3. From Table 8 and Figure 7 we deduce that p = 45 and z = 8 and therefore
we obtain

1

2
(45)(46) = 1035 ≥ 98 = 2(45) + 8 (18)

and so the t−rule holds.

After implementation, the model was tested, which resulted in the following goodness-of-fit measures:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.879 0.871 (0.069,0.079) 0.109

Table 9: Goodness-of-fit measures for the original model considering Monitoring, Scaffolding and the six
Needs

The p−value for the χ2-statistic is 0, but this was to be expected, as explained in Chapter 2.5. However,
the other goodness-of-fit measures are also not good enough. The CFI, TLI and RMSEA are not
acceptable, and the SRMR can even be considered bad (see Table 1 in Chapter 2.5).
Adjustments to this part of the model need to be made in order to make the model fit the data better
by making use of the modification indices and, if necessary, by removing some items from the survey to
improve the SRMR.
This is done in Chapter 7.2.

7.1.2 Part 2: Needs and Motivation

The second part of the model is about the Needs and their relationships with Autonomous and Controlled
Motivation. This is presented in the following graph:
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Figure 8: Graphical Presentation of the second part of the hypothesized model

From Table 8 and Figure 8 we deduce that p = 40 and z = 12 and therefore we obtain

1

2
(40)(41) = 820 ≥ 92 = 2(40) + 12 (19)

and so the t−rule holds.

The model was implemented and tested, resulting in the following goodness-of-fit measures:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.934 0.928 (0.048,0.061) 0.079

Table 10: Goodness-of-fit measures for the original model considering the six Needs and Motivation

As expected, the p−value for the χ2-statistic is again 0. However, we see that the TLI and the CFI are
acceptable, and so is the SRMR (see Table 1). The RMSEA is acceptable to good. We expect some
small adjustments need to be made in order for all measures to be acceptable to good. This is done in
Chapter 7.2.

7.1.3 Part 3: Motivation and Academic Performance

The third part of the model is about Autonomous and Controlled Motivation and their relationships with
Academic Performance. This is presented in the following graph:
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Figure 9: Graphical presentation of the third part of the hypothesized model

From Table 8 and Figure 9 we deduce that p = 17 and z = 2 and therefore we obtain

1

2
(17)(18) = 136 ≥ 36 = 2(17) + 2 (20)

and so the t−rule holds.

After implementation, the following results were obtained for the goodness-of-fit measures:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.913 0.899 (0.097,0.122) 0.1

Table 11: Goodness-of-fit measures for the original model considering Motivation and Academic Perfor-
mance

As expected, the p−value for the χ2-statistic is again 0. However, we see that the CFI is acceptable
but the TLI is not. The RMSEA and SRMR are even considered bad. Adjustments are necessary to
improve the goodness-of-fit.
This is described in Chapter 7.2.

7.1.4 The complete model

Finally, the complete model is represented as already shown in Chapter 3.3:
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Figure 10: Graphical Presentation of the hypothesized model

Again, we need to check if the t−rule holds. From Table 8 and Figure 10 we deduce that p = 70 and
z = 20 and therefore we obtain

1

2
(70)(71) = 2485 ≥ 160 = 2(70) + 20 (21)

and so the t−rule holds.

The initial complete model resulted in the following goodness-of-fit measures:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.644 0.640 (0.084,0.09) 0.103

Table 12: Goodness-of-fit measures for the original model considering the complete model

As expected, the p−value for the χ2-statistic is again 0. We see that the CFI and TLI are not even close
to acceptable, and the RMSEA and SRMR are far too high (see Table 1). Adjustments need to be made
to the separate models described above, and then combined to form an improved complete model. This
is described in Chapter 7.2.

7.2 Improving the models step by step

In the next Sections, all parts of the model are improved based on Modification Indices, as explained in
Chapter 2, Section 2.6.
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7.2.1 Part 1: Monitoring, Scaffolding and Needs

As we noted in the previous Chapter, adjustments need to be made to this part of the model. We use
R to obtain modification indices for individual regressions. As explained in Chapter 2.5, the model will
have a poorer fit if the measured variables are heavily correlated to one another. If these regressions
are included in the model, and are therefore taken into account, the goodness-of-fit will improve. A
regression with the highest modification index will produce the best improvement in the goodness-of-fit,
so we start by adding those regressions that give us the highest modification index (we will of course
manually check whether it makes sense to add these regressions based on the content of the items).
We will proceed with this step wise improving until we see that either the goodness-of-fit is sufficient,
or the goodness-of-fit is no longer improving significantly. Table ?? shows the process of the improvements.

It is important that we do not simply add all suggestions to the model. We need to make sure
that the regressions make sense theoretically, as explained in Chapter 2.7.
For example, we obtain a high modification index for the regression for MSC, items 22 and 23. When
we look at these items, we see that they are both Scaffolding items:

• 22: The lecturer asks questions in a way I understand.

• 23: The lecturer asks questions that help me gain understanding of the subject matter.

When we compare these two items, they are different questions but are similar enough to expect a
correlation between the two. Therefore, we allow this correlation to be a part of our model. Similarly,
the other suggested improvements to the model were checked and added.

# parameters p(χ2) CFI TLI RMSEA SRMR
Initial model 239 0 0.879 0.871 (0.069,0.079) 0.109

Adding regressions (1)
MSC:

22 ∼∼ 23
28 ∼∼ 29 244 0 0.897 0.889 (0.064,0.074) 0.106
29 ∼∼ 30
9 ∼∼ 10

16 ∼∼ 18
Adding regressions (2):

MSC:
28 ∼∼ 30
25 ∼∼ 27
19 ∼∼ 20 249 0 0.904 0.897 (0.061,0.071) 0.103
14 ∼∼ 27

Needs:
15 ∼∼ 21

Adding regressions (3):
MSC:

20 ∼∼ 23
5 ∼∼ 27 254 0 0.911 0.903 (0.059,0.069) 0.100
5 ∼∼ 24

24 ∼∼ 27
5 ∼∼ 14

Table 13: Goodness-of-fit measures for the original model and each improvement considering Monitoring,
Scaffolding and the six Needs (first part of improvements)

Note that the Table resumes on the next page.
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# parameters p(χ2) CFI TLI RMSEA SRMR
Adding regressions (4):

MSC:
21 ∼∼ 24
19 ∼∼ 23 259 0 0.916 0.909 (0.057,0.068) 0.098
23 ∼∼ 24
14 ∼∼ 18
12 ∼∼ 18

Adding regressions (5):
MSC:

24 ∼∼ 25
5 ∼∼ 20 264 0 0.921 0.914 (0.55,0.66) 0.096

13 ∼∼ 23
14 ∼∼ 22

5 ∼∼ 9
Adding regressions (6):

MSC:
22 ∼∼ 25
5 ∼∼ 19 269 0 0.925 0.918 (0.054,0.065) 0.094
5 ∼∼ 23

14 ∼∼ 25
18 ∼∼ 22

Table 14: Goodness-of-fit measures for the original model and each improvement considering Monitoring,
Scaffolding and the six Needs (second part of improvements)

From Tables 13 and 14 we conclude that the CFI is good enough with improvement (2) and the TLI with
improvement (3) (see Table 1 for an interpretation of the values). However, the RMSEA and SRMR are
not improving enough, even at improvement (6) they are still not good enough. Therefore, we move on to
another method of improving the model, based on local fit measures instead of global fit measures. Some
items may need to be removed as they are too inconsistent with the other items within its construct.
We compute the mean residual covariance per item over all items and remove the items with the highest
absolute mean residuals until we obtain acceptable RMSEA and SRMR:

# parameters p(χ2) CFI TLI RMSEA SRMR
Previous model 269 0 0.925 0.918 (0.054,0.065) 0.094

Removing
SM14 (abs.res=2.29) 259 0 0.927 0.920 (0.053,0.064) 0.093

Removing
SM27 (res 2.01) 252 0 0.932 0.925 (0.052,0.063) 0.089

Removing
SM18 (res 1.92) 244 0 0.938 0.932 (0.050,0.061) 0.087

Removing
SM26 (res 1.84) 239 0 0.948 0.942 (0.045,0.058) 0.083

Removing
SM3 (res 1.77) 229 0 0.952 0.946 (0.044,0.057) 0.081

Removing
SM28 (res 1.77) 222 0 0.955 0.950 (0.043,0.057) 0.079

Table 15: Goodness-of-fit measures for each improvement after removing individual items considering
Monitoring, Scaffolding and the six Needs

We note that after the removal of six individual items concerning Monitoring and Scaffolding , we obtain
acceptable results for all four measures of interest. The CFI and TLI can even be considered good now
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(see Table 1).

Since we removed some items, we need to check whether the t−rule still holds. Equation 18 no
longer applies here. We now have twelve items for Monitoring and ten items for Scaffolding instead of
fifteen and fourteen respectively. The four Needs are all still based on four items. This means that we
now have

1

2
(38)(39) = 546 ≥ 84 = 2(38) + 8 (22)

and so the t−rule still holds.

The following graph shows the final model for this first part:
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Figure 11: Graphical Presentation of the first part of the final model
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The values indicate standardized estimates for the factor loadings from the items to the latent variables,
and standardized estimates for the regression coefficients between latent variables.
Statistically significant relationships are denoted with ∗ and ∗∗ at levels α = 0.05 and α = 0.01
respectively.

7.2.2 Part 2: Needs and Motivation

This part of the model was initially almost good enough already. Therefore, we add only two regressions
to the model:

# parameters p(χ2) CFI TLI RMSEA SRMR
Initial model 224 0 0.934 0.928 (0.048,0.06) 0.08

Adding regressions:

Motivation
1 ∼∼ 14 226 0 0.949 0.944 (0.041,0.054) 0.076
5 ∼∼ 12

Table 16: Goodness-of-fit measures for each improvement considering the six Needs and Motivation

We note that these small improvements are indeed sufficient. The RMSEA is now acceptable to good.
The CFI, TLI and SRMR are acceptable.
Since we did not remove any items, we know that the t−rule from equation 19 still holds as the equation
remains unaltered.

The following graph shows the final model for this second part:
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Figure 12: Graphical Presentation of the second part of the final model
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Note that the twenty-four Needs are this time indicated by N1 up to N24 for readability purposes.

The values indicate standardized estimates for the factor loadings from the items to the latent
variables, and standardized estimates for the regression coefficients between latent variables.
Again, statistically significant relationships are denoted with ∗ and ∗∗ at levels α = 0.05 and α = 0.01
respectively.
The reported estimates can also be found later in Table 21, as it may be unclear in this Figure what
estimate belongs to what arrow.

7.2.3 Part 3: Motivation and Academic Performance

Similar to the first two parts of the model, we try to improve the third part of the model by manually
adding regressions based on the modification indices.
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# parameters p(χ2) CFI TLI RMSEA SRMR
Initial model 85 0 0.913 0.899 (0.097,0.122) 0.1

Adding regressions (1):

Motivation
1 ∼∼ 14
5 ∼∼ 12 90 0 0.969 0.963 (0.052,0.081) 0.073
6 ∼∼ 9

6 ∼∼ 12
13 ∼∼ 16

Adding regressions (2):

Motivation
8 ∼∼ 13 92 0 0.982 0.978 (0.034,0.067) 0.067
8 ∼∼ 16

Table 17: Goodness-of-fit measures for each improvement considering Motivation and Academic Perfor-
mance

Table 17 shows that the CFI and TLI are good and the SRMR is acceptable, but the RMSEA is not.
However, the remaining Modification Indices are too small (¡10.83, for an explanation of this, we refer
to Section 2.7), so there is no use in adding more regressions.
Since the SRMR is sufficient, it does not make sense to remove items either.
However, it is possible to adjust our variable Academic Performance.
It is currently defined to be the final result of a student for the course as submitted into Osiris.
However, other possibilities are to convert this result into an ordinal or even binary variable. After all,
the other measured variables are all ordinal in nature. Also, a distinction can be made in how to handle
the missing values. It is possible to omit the students without a final grade, but we could also set their
grade to 0.

Based on the previous model, several options on how to handle Academic Performance are taken
into account. The results are shown in Table 18:

p(χ2) CFI TLI RMSEA SRMR
Scale unaltered
NA is omitted 0 0.982 0.978 (0.034,0.067) 0.067

Scale unaltered
NA is set to 0 0 0.983 0.979 (0.033,0.066) 0.065

Scale 2 quantiles (≥ 6 Pass/< 6 Fail)
NA is omitted 0 0.989 0.986 (0.018,0.058) 0.081

Scale 2 quantiles (≥ 6 Pass/< 6 Fail)
NA is set to 0 0 0.993 0.991 (0, 0.052) 0.066

Scale 4 quantiles: (0-2.5, 2.6-5, 5.1-7.5, 7.6-10)
NA is omitted 0 0.992 0.990 (0, 0.053) 0.067

Scale 4 quantiles: (0-2.5, 2.6-5, 5.1-7.5, 7.6-10)
NA is set to 0 0.063 0.992 0.990 (0, 0.053) 0.066

Scale 10 quantiles: round up to integer 1-10
NA is omitted 0.045 0.991 0.989 (0.006, 0.054) 0.066

Scale 10 quantiles: round up to integer 1-10
NA is set to 0 0.060 0.992 0.990 (0, 0.053) 0.066

Table 18: Goodness-of-fit measures for several ways to define Academic Performance

Table 18 shows that the last five options all result in sufficiently good fits. However, the best fit is
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obtained when treating Academic Performance as a 4-quantile scale, with NA set to 0 (and therefore set
to 1 due to the scaling). We see here that even p(χ2) > 0.05. We now have a good CFI and TLI, an ac-
ceptable to good RMSEA and an acceptable SRMR (see Table 1). Therefore, students performance is set
to 1 if they have a grade lower than 2.5 or no grade at all; it is set to 2 if they score between 2.6 and 5; it
is set to 3 if they score between 5.1 and 7.5 and finally their grades are set to 4 if they score higher than 7.5.

Since we did not remove any items, we know that the t−rule from equation 20 still holds as the
equation remains unaltered.
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Figure 13: Graphical Presentation of the third part of the final model

Note that the item ‘Res’ is the final result for the course split into four quantiles, as explained above.
The values indicate standardized estimates for the factor loadings from the items to the latent variables,
and standardized estimates for the regression coefficients between latent variables.

To summarize, we have the following goodness-of-fit measures for the three submodels:
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Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
1: Needs ∼∼ Mon/Scaf 0 0.955 0.950 (0.043,0.057) 0.079

2: Motivation ∼∼ Needs 0 0.949 0.944 (0.041,0.054) 0.076
3: AP ∼∼ Motivation 0.063 0.992 0.990 (0,0.053) 0.066

Table 19: Improved goodness-of-fit measures for all individual parts of the model

We are very content with the results, as all goodness-of-fit measures are either acceptable to good or good.

The factor loadings and regression coefficients can be read from the graphical presentations in
Figures 11, 12 and 13. The complete outputs from R can be found in the appendix.

7.3 Results for the final model

Similar to the first part of the model, we need to check whether the complete model is identified by
checking if the t−rule still holds after some items were removed. Equation 21 no longer applies. We now
have

1

2
(63)(64) = 2016 ≥ 146 = 2(63) + 20 (23)

and so the t−rule still holds.

Based on the improvements for the individual parts, as described in the previous subsections, we
have come to the following goodness-of-fit measures for the complete model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.974 0.973 (0.053,0.061) 0.086

Table 20: Improved goodness-of-fit measures for the complete model

We notice that we have obtained very good results for the CFI and the TLI. The RMSEA can be
considered to be acceptable, as it lies with 90% certainty between 0.053 and 0.061. However, the SRMR
is too large, as it exceeds 0.08.
The results are much better than they were before, but still not good enough. We conclude that the
individual parts of the model are more reliable to draw conclusions from. However, we will still present
the result for our final model:
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Scaffolding

Monitoring

Autonomy Satisfaction

Autonomy Frustration

Relatedness Satisfaction

Relatedness Frustration

Competence Satisfaction

Competence Frustration

Autonomous Motivation

Controlled Motivation

Academic Performance

−0.888∗

-0.388

1.074∗

0.958∗

1.429∗

1.001∗∗

−1.440∗

−1.333∗∗

0.550

0.069

-0.510

0.429

0.183

0.126

0.380

0.101

-0.043

0.164

0.211

0.232

0.844∗∗

0.035

Figure 14: Graphical Presentation of the combined model
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Graph 14 can also be presented with the following Table:

Mon Scaf AS AF RS RF CS CF AM CM AP
Mon
Scaf
AS
AF
RS −0.39 1.00∗

RF 0.96∗ −1.33∗

CS −0.89∗ 1.43∗

CF 1.07∗ −1.44∗

AM 0.55 -0.51 -0.04 0.21 0.18 0.38
CM 0.07 0.43 0.16 0.23 0.13 0.10
AP 0.84∗ 0.04

Table 21: Standardized regression coefficients for the total model

Mon Scaf AS AF RS RF CS CF AM CM AP
Mon
Scaf
AS
AF
RS 0.22∗ 0.38∗

RF 0.11 −0.45∗

CS 0.16 0.35∗

CF −0.05 −0.26∗

AM 0.92∗ 0.03 -0.34 -0.05 0.16 0.22
CM 0.24 0.18 0.13 0.42 -0.13 0.01
AP 0.79∗ 0.29

Table 22: Standardized regression coefficients for all three parts of the model combined

Compared to the individual parts, which is presented in Table 22, interesting observations can be
made. First of all, we see completely different numbers. This is not very strange, considering the
much higher number of levels we have in the total model. The total model covers all mediation effects,
which are non-existent in the separate models. For example, for the relationship between Autonomous
Motivation and Relatedness Satisfaction, we obtain β = −0.04 in the total model, but we obtain
β = −0.34 in the second sub-model, considering only the six Needs and Motivation. These numbers
differ greatly, because in the first case, the effect of Relatedness Satisfaction on Autonomous Motivation
was adjusted for the effect of the teacher cues Monitoring and Scaffolding.
This mediation effect will become more apparent in the next subsection where we discuss the hypotheses,
as some of the hypotheses involve mediation effects specifically.

Overall, we do see some interesting similarities, though. We see that the relationship between
Scaffolding and the four Needs RS, RF, CS and CF are similar (despite the numbers, the signs and
significance remain the same). The relationships between the Needs and Motivation are small or
non-existent in both cases (with the exception of Autonomy Satisfaction, having a significant effect on
Autonomous Motivation in the sub-model). Finally, we see that Autonomous Motivation has a lot of
influence on Academic Performance in both cases, where Controlled Motivation seems to be irrelevant.
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We must note though that we need to be careful with our interpretations, considering the goodness-of-fit
for the total model.
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7.4 Testing the hypotheses

Based on the results from Chapter 7.2 we aim to answer the following hypotheses formulated in Chapter
3.2:

1. Perceived teacher Scaffolding and Monitoring cues are positively related to Competence and Relat-
edness Satisfaction and negatively related to Competence and Relatedness Frustration

2. Autonomy Satisfaction is positively related to Autonomous Motivation and negatively to Controlled
Motivation

3. Autonomy Frustration is positively related to Controlled Motivation and negatively to Autonomous
Motivation

4. Competence and Relatedness Satisfaction are negatively related to Controlled Motivation

5. Competence and Relatedness Frustration are negatively related to Autonomous Motivation, but less
strongly than the relationships between Competence and Relatedness Satisfaction and Autonomous
Motivation, and Competence and Relatedness Frustration and Controlled Motivation

6. Competence and Relatedness Satisfaction positively mediate the relationship of perceived teacher
cues and Autonomous Motivation

7. Competence and Relatedness Frustration negatively mediate the relationship of perceived teacher
cues and Controlled Motivation

8. There is a positive relationship between Autonomous Motivation and performance and a negative,
but less strong, relationship between Controlled Motivation and performance

We consult Table 21 and the complete R output (which can be found in the appendix) in order to test
these hypotheses.

Note that hypotheses 6 and 7 involve mediation effects, which was explained in Chapter 2.2.2.

Hypothesis 1: Perceived teacher Scaffolding and Monitoring cues are positively related
to Competence and Relatedness Satisfaction and negatively related to Competence and
Relatedness Frustration

This hypothesis can be tested directly based on the results we have from the first part of the model, as
shown in Figure 11. To discuss the results, this hypothesis is split into eight distinct hypotheses:

We expect

1. A positive relationship between Monitoring cues and Competence Satisfaction

Whereas this may appear to be true, as we obtain a positive coefficient, it is not statisti-
cally significant (β ≈ 0.16, p > 0.05) so we conclude it is not reliable to predict Competence
Satisfaction based on Monitoring cues.

2. A positive relationship between Scaffolding cues and Competence Satisfaction

This is supported by our results: β ≈ 0.35, p ≈ 0.003.

3. A positive relationship between Monitoring cues and Relatedness Satisfaction

This relationship is also obtained in our model: we find β ≈ 0.22, p ≈ 0.014.
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4. A positive relationship between Scaffolding cues and Relatedness Satisfaction

Again, a relationship that is confirmed by our model: β ≈ 0.38, p ≈ 0.001.

5. A negative relationship between Monitoring cues and Competence Frustration

Even though we obtain a negative regression coefficient, the relationship obtained is not
statistically significant: β ≈ −0.05, p > 0.05. We therefore conclude that is not reliable to predict
Competence Frustrationbased on Monitoring cues.

6. A negative relationship between Scaffolding cues and Competence Frustration

This relationship was indeed obtained by our model: β ≈ −0.26, p ≈ 0.038.

7. A negative relationship between Monitoring cues and Relatedness Frustration

Based on our model, no relationship was found between Relatedness Frustration and Moni-
toring cues: β ≈ 0.11, p > 0.05. Also, though there is no significance, the relationship tends to be
positive rather than negative.

8. A negative relationship between Scaffolding cues and Relatedness Frustration

This final part of our hypothesis is supported by our model: β ≈ 0.45, p ≈ 0.001.

Based on our results we can therefore confirm five out of the eight sub-hypotheses. Interestingly,
all four sub-hypotheses with respect to Scaffolding are confirmed, whereas only one out of the four
sub-hypotheses concerning Monitoring is confirmed.

Hypothesis 2: Autonomy Satisfaction is positively related to Autonomous Motivation and
negatively to Controlled Motivation

The second model concerning the six Needs and two types of Motivation, give us standardized regression
coefficients based on all six Needs. We are therefore dealing with a situation of multicollinearity as the
six Needs are not uncorrelated, which complicates how we should interpret the regression coefficients.
The regression coefficient between Autonomy Satisfaction and Autonomous Motivation may be different
when the other five Needs are not taken into account.
Based on the second model though, we can say that the first part of this hypothesis is confirmed
by our results: Autonomy Satisfaction appears to positively influence Autonomous Motivation
(β ≈ 0.92, p ≈ 0.002). However, for Controlled Motivation, we obtain no statistically significant
relationship (β ≈ 0.24, p > 0.05).

However, a separate model, looking only at Autonomy Satisfaction and the two types of Motiva-
tion, will give us more information to answer this hypothesis correctly. This model is given by Figure 15.
Again, we need to check for identification:

1

2
(20)(21) = 210 ≥ 42 = 2(20) + 2 (24)

and so the t−rule holds.

The following goodness-of-fit measures were obtained:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.959 0.953 (0.054,0.078) 0.076
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Table 23: Goodness-of-fit measures for Hypothesis 2

Autonomous Motivation

Controlled Motivation

Autonomy Satisfaction

0.709∗∗

−0.078

Figure 15: Graphical Presentation of the model for Hypothesis 2

We conclude that Autonomous Motivation is positively influenced by Autonomy Satisfaction(β =
0.709, p ≈ 0.000), but Autonomy Satisfaction does not have any significant influence on Controlled
Motivation (β = −0.078, p > 0.05).
Because we have an interval for the RMSEA that is not contained within (0, 0.06), we need to be careful
interpreting our results though.

Hypothesis 3: Autonomy Frustration is positively related to Controlled Motivation and
negatively to Autonomous Motivation

Based on Figure 12, this hypothesis is not confirmed by our model: we obtain a very small, not statisti-
cally significant standardized regression coefficient for the relationship between Autonomous Motivation
and Autonomy Frustration(β ≈ 0.03.p > 0.05), and another non-significant positive coefficient for
Controlled Motivation and Autonomy Frustration(β ≈ 0.18, p > 0.05).
However, similar to the previous hypothesis, it is better to consider this need separately instead of
together with the five other Needs. The corresponding model is given by Figure 16.
We know the model is identified as the equation for the t−rule is exactly the same as the one for the
previous hypothesis (equation 24).

The following goodness-of-fit measures were obtained:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.958 0.952 (0.055,0.078) 0.078

Table 24: Goodness-of-fit measures for Hypothesis 3

Autonomous Motivation

Controlled Motivation

Autonomy Frustration

−0.436∗∗

0.329∗∗

Figure 16: Graphical Presentation of the model for Hypothesis 3

We see that when we consider Autonomy Frustration separately, we do obtain significant re-
sults as hypothesized: Autonomous Motivation is negatively influenced by Autonomy Frustration
(β = −0.436, p ≈ 0.000), and Controlled Motivation is positively influenced by Autonomy Frustration
(β = 0.329, p ≈ 0.001).
However, we must take into account that the RMSEA is out of bounds.
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Hypothesis 4: Competence and Relatedness Satisfaction are negatively related to Con-
trolled Motivation

Again, the model in Figure 12 does not seem to support these claims, as the apparent negative relationship
for Competence Satisfaction is not statistically significant: β ≈ −0.13, p > 0.05. Also, we do not obtain a
negative relationship between Relatedness Satisfaction and Controlled Motivation: (β ≈ −0.13, p > 0.05).
Also, when we create a separate model as shown in Figure 17 we see the t−rule holds, as we have

1

2
(16)(17) = 136 ≥ 34 = 2(16) + 2 (25)

and we obtain the following results:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.979 0.974 (0.042,0.075) 0.071

Table 25: Goodness-of-fit measures for Hypothesis 4

Competence Satisfaction

Relatedness Satisfaction

Controlled Motivation

-0.194

0.004

Figure 17: Graphical Presentation of the model for Hypothesis 4

We conclude that even when we consider Competence and Relatedness Satisfaction and Controlled
Motivation separately, we do not obtain significant results.
We must note, though, that the RMSEA is again too high, making it more difficult to interpret.

Hypothesis 5: Competence and Relatedness Frustration are negatively related to Au-
tonomous Motivation, but less strongly than the relationships between Competence and
Relatedness Satisfaction and Autonomous Motivation, and Competence and Relatedness
Frustration and Controlled Motivation

Based on the results corresponding to Figure 12 we obtain the following results:
We start by looking at the relationship between Competence and Relatedness Frustration and
Autonomous Motivation and find that the standardized regression coefficients are equal to
β = −0.34, p > 0.05 for Relatedness Frustration and Autonomous Motivation, and β = 0.22, p > 0.05 for
Competence Frustration and Autonomous Motivation. Whereas the first appears to be negative, it is
not statistically significant, so there does not appear to be a relationship.
We then look at Competence and Relatedness Satisfaction and Autonomous Motivation, but find that
these relationships are not statistically significant either (β = 0.16, p > 0.05 and β = −0.34, p > 0.05)
respectively.
Finally, the relationships with Controlled Motivation are also not significant: β = 0.22, p > 0.05 and
β = −0.05, p > 0.05 for Competence and Relatedness Frustration respectively.

We conclude that there is no support for this hypothesis when we take into account all six Needs
together.

However, when we create three separate models, shown in Figure 18, we obtain the following
goodness-of-fit measures:

Table 26: Goodness-of-fit measures for Hypothesis 5
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Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
1: CF, RF, AM 0 0.966 0.959 (0.062,0.091) 0.073
2: CS, RS, AM 0 0.972 0.966 (0.064,0.093) 0.066
3: CF, RF, CM 0 0.960 0.952 (0.058,0.088) 0.080

Competence Frustration

Relatedness Frustration

Autonomous Motivation

-0.055

-0.162

Competence Satisfaction

Relatedness Satisfaction

Autonomous Motivation

0.365∗∗

0.172∗

Competence Frustration

Relatedness Frustration

Controlled Motivation

0.169

0.299∗

Figure 18: Graphical Presentation of the three models for Hypothesis 5

Note that the t−rule again holds, as the equations for all three are the same as the one for hypothesis 4
(equation 25).
Again, the results shown in Figure 18 need to be interpreted carefully, as the RMSEA values are higher
than 0.06 with very high probability.

However, the results appear to be more in line with the expectations than we thought based on
the full model.
We obtain positive relationships between Competence Satisfaction and Autonomous Motiva-
tion (β = 0.365, p ≈ 0.000), between Relatedness Satisfaction and Autonomous Motivation
(β = 0.172, p ≈ 0.044, and finally between Relatedness Frustration and Controlled Motivation
(β = 0.299, p ≈ 0.009).
The other relationships appear to be non-significant.

Hypothesis 6: Competence and Relatedness Satisfaction positively mediate the relationship
of perceived teacher cues and Autonomous Motivation

This hypothesis cannot be tested based on the data we have so far, as we have not considered the
relationship between Monitoring and Scaffolding and (Autonomous) Motivation.
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However, simple models can be created to test this hypothesis.
Note that in this hypothesis, a mediation model is assumed to explain the data. Recall that an
explanation on mediation was given in Chapter 2.2.2.

Since we are interested in two independent variables (Monitoring and Scaffolding ) and also two
mediators (Competence and Relatedness Satisfaction), we will consider four separate models:

1. Model 1: Monitoring, Competence Satisfaction and Autonomous Motivation

First, we check for identification and obtain

1

2
(24)(25) = 300 ≥ 51 = 2(24) + 3 (26)

and so the t−rule holds.

The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.981 0.979 (0.037,0.060) 0.065

Table 27: Goodness-of-fit measures for Mediation Model 1

We see that all measures indicate that the model fits the data well.

The following Figure represents the first mediation model:

Monitoring

Competence Satisfaction

Autonomous Motivation

Monitoring Autonomous Motivation

0.353∗∗ 0.414∗∗

0.097

0.243∗∗

Figure 19: Graphical presentation of Mediation Model 1

We deduce from Figure 19 that we are dealing with a full mediation effect. Whereas we obtain
standardized regression coefficients that are significant (a = 0.353, p ≈ 0.000 for the relationship
between Monitoring and Competence Satisfaction and b = 0.414, p ≈ 0.000 for the relationship between
Competence Satisfaction and Autonomous Motivation), the direct effect of Monitoring on Autonomous
Motivation is significantly reduced to 0 (a non-significant 0.097) when including the mediator Compe-
tence Satisfaction. The mediation effect is significant: ab = 0.146, p ≈ 0.000.

2. Model 2: Scaffolding , Competence Satisfaction and Autonomous Motivation
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Again, we need to check for identification:

1

2
(22)(23) = 253 ≥ 47 = 2(22) + 3 (27)

and so the t−rule holds.

The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.960 0.953 (0.052,0.074) 0.076

Table 28: Goodness-of-fit measures for Mediation Model 2

We note that all measures are sufficient, except for the RMSEA, which is slightly too high. This needs
to be taken into account when interpreting the following results.
The following Figure represents the second mediation model:

Scaffolding

Competence Satisfaction

Autonomous Motivation

Scaffolding Autonomous Motivation

0.436∗∗ 0.357∗∗

0.211∗

0.366∗∗

Figure 20: Graphical presentation of Mediation Model 2

We see here that we are dealing with a partial mediation effect. Whereas the direct effect of Scaffolding
on Autonomous Motivation is still significant, the effect has reduced significantly from 0.366 to 0.211.
We have a significant mediation effect ab = 0.156, p ≈ 0.001.

3. Model 3: Monitoring, Relatedness Satisfaction and Autonomous Motivation

The model is similar to the first model, such that the equation for the t−rule is exactly the
same as equation 26 and so we know that the t−rule holds.
The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.983 0.981 (0.036,0.059) 0.063

Table 29: Goodness-of-fit measures for Mediation Model 1

Here we see that all measures are acceptable or good.
The following Figure represents the third mediation model:
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Monitoring

Relatedness Satisfaction

Autonomous Motivation

Monitoring Autonomous Motivation

0.431∗∗ 0.300∗∗

0.114

0.243∗∗

Figure 21: Graphical presentation of Mediation Model 3

Similar to what we obtained in the first mediation model, we again have a full mediation effect. The
direct effect of Monitoring on Autonomous Motivation has reduced to 0 (0.114, p > 0.05) by including
the mediator Relatedness Satisfaction. Our mediation effect is significant (ab = 0.129, p ≈ 0.002).

4. Model 4: Scaffolding , Relatedness Satisfaction and Autonomous Motivation

The model is similar to the second model, such that the equation for the t−rule is exactly the
same as equation 27 and so we know that the t−rule holds.
The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.966 0.960 (0.050,0.073) 0.075

Table 30: Goodness-of-fit measures for Mediation Model 4

Unfortunately, the RMSEA is not sufficient. This needs to be considered when interpreting the following
results.
The following Figure represents the fourth mediation model:

Scaffolding

Relatedness Satisfaction

Autonomous Motivation

Scaffolding Autonomous Motivation

0.509∗∗ 0.219∗

0.254∗

0.365∗

Figure 22: Graphical presentation of Mediation Model 4

Similar to what we obtained in the second mediation model, we are dealing with a partial mediation. The
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direct effect from Scaffolding on Autonomous Motivation has reduced significantly from 0.365 to 0.254. In
spite of the significant mediation effect ab = 0.111, p ≈ 0.028, the direct effect is, however, still significant.

To summarize, we can conclude that we can confirm this hypothesis based on our results. For
Monitoring, we obtained full mediation effects when taking into account both mediators in media-
tion models 1 and 3. For Scaffolding , we obtained partial mediation effects in models 2 and 4. In
these two models, the RMSEA was unfortunately not sufficient, making these results slightly less reliable.

Hypothesis 7: Competence and Relatedness Frustration negatively mediate the relationship
of perceived teacher cues and Controlled Motivation

Again, this hypothesis cannot be tested based on the data we have so far, as we have not considered the
relationship between Monitoring and Scaffolding and (Controlled) Motivation.
Once again, simple models can be created to test this hypothesis, similar to what was done for the
previous hypothesis.

Since we are interested in two independent variables (Monitoring and Scaffolding ) and also two
mediators (Competence and Relatedness Frustration), we will consider four separate models:

1. Model 1: Monitoring, Competence Frustration and Controlled Motivation

The model is similar to the first model from hypothesis 6, such that the equation for the
t−rule is exactly the same as equation 26 and so we know that the t−rule holds.
The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.983 0.981 (0.032,0.056) 0.071

Table 31: Goodness-of-fit measures for Mediation Model 1

We see that all measures indicate that the model fits the data well.

The following Figure represents the first mediation model:

Monitoring

Competence Frustration

Controlled Motivation

Monitoring Controlled Motivation

−0.193∗ 0.373∗∗

0.092

0.02

Figure 23: Graphical presentation of Mediation Model 1

First of all, we deduce from Figure 23 that there appears to be a negative mediation effect, as the total
effect is in fact smaller than the direct effect. Note, however, that both the total and the direct effect
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are not significant. But what does this mean? It appears that we are dealing with a special case of a
mediator: our mediator is in fact a suppressor. This can happen when a and b have different signs (in
this case, a < 0 and b > 0) and the direct effect is positive.
The total effect of Monitoring on Controlled Motivation is non-significant, but this is because the indirect
and direct effect cancel each other out here, resulting in a small (non-significant) total effect. Even
though the direct effect of Monitoring on Controlled Motivation is approximately 0 (a non-significant
0.092), it is apparently high enough to cancel out the mediation effect (ab = −0.072, p ≈ 0.043), causing
the total effect (recall that this is the sum of the indirect and direct effect) to be non-significant.

2. Model 2: Scaffolding , Competence Frustration and Controlled Motivation

The model is similar to the second model from hypothesis 6, such that the equation for the
t−rule is exactly the same as equation 27 and so we know that the t−rule holds.
The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.959 0.951 (0.042,0.060) 0.08

Table 32: Goodness-of-fit measures for Mediation Model 2

We note that all measures are at least acceptable.
The following Figure represents the second mediation model:

Scaffolding

Competence Frustration

Controlled Motivation

Scaffolding Controlled Motivation

−0.277∗ 0.344∗∗

−0.046

−0.142

Figure 24: Graphical presentation of Mediation Model 2

We see that there is a negative relationship between Scaffolding and Competence Frustration, whereas
there is a positive relationship between Competence Frustration and Controlled Motivation. Together,
the indirect effect is significantly negative (ab = −0.095, p ≈ 0.025). We see that the direct effect is also
negative, though non-significant.
This results in a total effect that is (in absolute value) larger than the direct effect (note that the total
effect is also not significant, though). Therefore, we cannot speak of negative mediation or suppression
here.

3. Model 3: Monitoring, Relatedness Frustration and Controlled Motivation

The model is similar to the first model from hypothesis 6, such that the equation for the t−rule
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is exactly the same as equation 26 and so we know that the t−rule holds.
The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.975 0.972 (0.042,0.063) 0.081

Table 33: Goodness-of-fit measures for Mediation Model 1

Unfortunately, not all measures are sufficient. The RMSEA is slightly too high, and the same goes for
the SRMR. This needs to be taken into account when interpreting the following results.

The following Figure represents the third mediation model:

Monitoring

Relatedness Frustration

Controlled Motivation

Monitoring Controlled Motivation

−0.142∗ 0.419∗∗

0.081

−0.021

Figure 25: Graphical presentation of Mediation Model 3

We deduce from Figure 25 that we have a negative relationship between Monitoring and Relatedness
Frustration, and a positive relationship between Relatedness Frustration and Controlled Motivation.
Also, the indirect or mediation effect is significant: ab = −0.06, p ≈ 0.034.
This result, combined with our finding that the total effect is smaller than the direct effect, indicates
that we can indeed speak of a negative mediation effect, where the mediator is again a suppressor.

4. Model 4: Scaffolding , Relatedness Frustration and Controlled Motivation

The model is similar to the second model from hypothesis 6, such that the equation for the
t−rule is exactly the same as equation 27 and so we know that the t−rule holds.
The following goodness-of-fit measures were obtained for this model:

Goodness-of-fit measure p(χ2) CFI TLI RMSEA SRMR
0 0.963 0.956 (0.035,0.060) 0.078

Table 34: Goodness-of-fit measures for Mediation Model 4

We see that all goodness-of-fit measures are sufficient.

The following Figure represents the fourth mediation model:
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Scaffolding

Relatedness Frustration

Controlled Motivation

Scaffolding Controlled Motivation

−0.388∗∗ 0.413∗∗

0.018

−0.142

Figure 26: Graphical presentation of Mediation Model 4

We see that this model is similar to the second mediation model where considered Scaffolding and
Competence Frustration. We obtain a negative indirect effect ab = −0.16, p ≈ 0.008, but the direct effect
is almost equal to 0. Also, the total effect is larger (in absolute value) than the direct effect, even if it is
non-significant. Therefore, we cannot speak of negative mediation here.

To summarize, we can conclude that we can in part confirm this hypothesis based on our results.
For Monitoring, we obtained negative (suppressor) mediation effects when taking into account both
mediators in mediation models 1 and 3. For Scaffolding , we obtained no negative mediation effects in
models 2 and 4. In these two models, the effect appears to be closer to positive mediation (as the direct
effects appear to be smaller than the total effects in absolute value), but this is not supported by the
significance tests.

Hypothesis 8: There is a positive relationship between Autonomous Motivation and per-
formance and a negative, but less strong, relationship between Controlled Motivation and
performance

This hypothesis can be answered directly from the model shown in Figure 13. We obtain a positive and
significant standardized regression coefficient for Autonomous Motivation and Academic Performance
(β = 0.79, p ≈ 0.001, but a non-significant coefficient for Controlled Motivation and Academic Perfor-
mance (β = 0.29, p > 0.05).
Therefore, we conclude that Controlled Motivation indeed has a less strong effect on Academic Per-
formance compared to Autonomous Motivation. Though non-significant, it is definitely not negative,
suggesting that Controlled Motivation might have a positive influence on Academic Performance, though
this is not supported by our data at this point.
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8 Conclusion

8.1 Summary of our results

To summarize our results, we will make a distinction between the ‘journey’ of creating the models, and
the actual content of the models.

8.1.1 Creating the models

When it comes to creating the model, which was the main focus of this research, we can conclude that
it was rather challenging to obtain a decent model for this specific subject. Fitting a mathematically
correct model to non-directly observable data is not very straightforward. Mathematicians are used
to working with explicit, directly observable data and are therefore not used to working with more
complicated constructs that are not directly measurable. On the other hand, social scientists are used to
working with implicit, non-directly observable constructs, but are less familiar with the mathematics to
fit a model. This research was designed to find a solution for this problem, by creating a mathematically
decent model for latent variables.

However, the challenges we faced during the process of creating a decent model for our data,
were enormous.

First of all, we needed to meet the assumptions for applying SEM (Structural Equation Mod-
elling), which was not the case. The data was ordinal and therefore automatically not normally
distributed as it should have been. Also, there was a lot of missing data. These issues needed to be dealt
with beforehand.
We discovered that it was possible to adjust the estimation method in Lavaan in R from Maximum
Likelihood to Diagonally Weighted Least Squares, after which it became possible to work with ordinal
data.
The problem of the missing values was solved too. For example, some students appeared to not have
answered seriously and some specific items were not clear for many students. These were removed from
the data. After this, analyses were done to make sure the remaining missing data was missing at random
(MAR). This turned out to be the case, making it possible to work with this data.

When we created the model in R based on the relationships hypothesized, we initially obtained
warnings that standard errors could not be computed and the model may not be specified. Up to this
point, it is still unclear why this was the case and it will be a point of discussion in Chapter 9. Also, the
goodness-of-fit measures were insufficient, indicating a bad fit.
Because it was difficult to find the cause for these problems based on such a large model, we decided to
split the model into three smaller sub-models.

One of these sub-models involved the teacher cues and the six Needs.
Here, we discovered that we needed to make some improvements to the model by adding some regressions
(allowing certain items to be strongly correlated to each other). We used the MI (Modification Index)
to decide what items were correlated the most and manually checked whether it made sense to add a
regression between these items (were the items very similar, or did it seem logical that students would
answer them similarly?). After adding some regressions, most indices had improved, but the SRMR
remained far too high. Therefore, we focused on individual items and removed the ones with the
highest mean residual covariance compared to all other items. Six items were removed after which all
goodness-of-fit measures were within the desired ranges.

For the second sub-model, involving the Needs and Motivation, only two regressions needed to be
added, and no items needed to be removed. This part of the model was initially the best from the start
and needed the smallest number of adjustments in order to obtain a good fit.

The third sub-model was about Motivation and Academic Performance. Here, we got the same
error again as we started with: the model may not be specified as standard errors could not be
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computed. We decided to use a different method to obtain standard errors: the Bootstrap method. This
way, it was possible to obtain standard errors, without which it was not possible to draw any conclusions
from the output.
The result was that we needed to add some regressions again, but still did not obtain the desired
goodness-of-fit. Therefore, we decided to adjust the scale of Academic Performance. Initially, this one
was not ordinal, like the other constructs, but simply the final grade for the course. We tried several
ways to define Academic Performance and concluded that the best results were obtained when we used
four quantiles and set the missing values to 0.

After we succeeded in obtaining goodness-of-fit measures as desired for all three sub-models, we
decided to combine them (including all modifications) to create a final model. The results were much
better than initially, but the RMSEA and the SRMR were still insufficient though. However, we
did decide to share the results for this model, as it was interesting to compare to the sub-models.
Since the goodness-of-fit wasn’t optimal, it is important to keep this in mind when interpreting the output.

When we aimed to test the formulated hypotheses, we discovered that it was necessary to create
even more (sub-)models, because the existing models were not appropriate to use as they, for example,
involve more variables than the hypothesis was about or they included mediation effects we were not
interested in, making direct relationships non-observable.
After creating the appropriate sub-models for the hypotheses, we discovered that it was often the case
that at least one of the goodness-of-fit measures was not sufficient (most often the RMSEA).
As it is at this time not clear how exactly this affects our interpretation of the results, we thought it was
nevertheless interesting to say something about them.

To conclude, it was a challenging journey to obtain decent models for our data, as often it was
the case that at least one of the measures indicated a sub-optimal goodness-of-fit.
Adding regressions and removing items with high residuals seemed to be a decent solution sometimes,
but for more complicated models (such as the total model, containing all latent variables) we did not
succeed.
It appears to be the case that our Structural Equation Modelling worked best on the three sub-models.
Perhaps the total model involved too many complicated data structures (with many mediation effects),
resulting in a sub-optimal fit. Also, the small models that were created to test the hypotheses, were
often slightly insufficient with respect to the RMSEA, which may be because this time there were not
enough variables. These issues could be items for future research.

8.1.2 The content of the models

Another important part of this research revolves around the specific subject of our data from the survey,
and trying to find relationships between the teacher cues ‘Monitoring’ and ‘Scaffolding’, the six Needs
‘Competence Satisfaction’, ‘Competence Frustration’, ‘Relatedness Satisfaction’, ‘Relatedness Frustra-
tion’, ‘Autonomy Satisfaction’ and ‘Autonomy Frustration’, the two types of Motivation ‘Autonomous
Motivation’ and ‘Controlled Motivation’, and finally ‘Academic Performance.’

First of all, a choice was made to make a distinction between Monitoring and Scaffolding. Ini-
tially, they were grouped together as ‘Teacher Cues’, but since we noticed that students’ answers differed
between the two constructs and it was, from the beginning, clear which items were related to Monitoring
and which to Scaffolding, it seemed wise to separate the two.
Also, in previous research, factor analysis indicated that two factors were present in the thirty initial
items involving Monitoring and Scaffolding.

The first sub-model, involving the perceived Teacher Cues and the four Needs: Satisfaction and
Frustration for both Relatedness and Competence, shows us that Monitoring has a positive influence
on Relatedness Satisfaction, and no significant influence on the other three. Scaffolding, however, has a
positive influence on both Relatedness and Competence Satisfaction, and a negative influence on both
Relatedness and Competence Frustration.
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The second sub-model, involving all six Needs and both types of Motivation, shows us that there
is a strong relationship between Autonomy Satisfaction and Autonomous Motivation, but all other
relationships are non-significant.
Perhaps this means that when we know something about Autonomy Satisfaction, this is enough to make
a prediction about Autonomous Motivation, without considering the other five Needs. However, it is
still possible that the other five Needs are significantly related to Motivation when we do not include
Autonomy Satisfaction in the model. Indeed, this turned out to be the case when we considered only a
small number of Needs or only one type of Motivation for the purpose of testing some of the hypotheses.
For example, Competence and Relatedness Satisfaction both have a positive influence on Autonomous
Motivation, when we exclude Autonomy Satisfaction.
Also, the result that Autonomy Satisfaction has a strong positive influence on Autonomous Motivation
was confirmed again by the results of the smaller model that was created to test the second hypothesis.
In total, we can conclude that Autonomous Motivation is positively influenced by all three types of
satisfaction. Interestingly, out of the three types of frustration, only Autonomy Frustration appeared to
have a negative influence on Autonomous Motivation.
When it comes to Controlled Motivation, it appears to be the case that Autonomy and Relatedness
Frustration have a positive influence, but Competence Frustration does not have any effect on it (however,
as we will discuss later, when testing one of the mediation hypotheses, Competence Frustration did have
a positive influence on Controlled Motivation when adjusted for Monitoring).

For the three types of satisfaction, we conclude that none of them have any influence on Controlled
Motivation, even though negative influences were expected.

The third sub-model was about Motivation and Academic Performance, and shows us that Au-
tonomous Motivation has a strong positive relationship with Academic Performance, and Controlled
Motivation does not. However, it is again possible that Controlled Motivation has an influence on
Academic Performance when we do not include Autonomous Motivation.

When we aimed to test the hypotheses, we came across two hypotheses that involved mediation
effects. In total, eight mediation models were created, and the following interesting results were obtained:

• Competence Satisfaction fully mediates the relationship between Monitoring and Autonomous
Motivation: Monitoring positively influences Autonomous Motivation, but when controlling for
Competence Satisfaction there is no direct effect.

• Competence Satisfaction partially mediates the relationship between Scaffolding and Autonomous
Motivation: the positive influence from Scaffolding to Autonomous Motivation is reduced when
controlling for Competence Satisfaction.

• Relatedness Satisfaction fully mediates the relationship between Monitoring and Autonomous
Motivation: Monitoring positively influences Autonomous Motivation, but when controlling for
Relatedness Satisfaction there is no direct effect.

• Relatedness Satisfaction partially mediates the relationship between Scaffolding and Autonomous
Motivation: the positive influence from Scaffolding to Autonomous Motivation is reduced when
controlling for Relatedness Satisfaction.

• Competence Frustration suppresses the relationship between Monitoring and Controlled Motiva-
tion: there appears to be no relationship between Monitoring and Controlled Motivation, but this
seems to be caused by the fact that the indirect and the direct effect cancel each other out.
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• It is unclear how to interpret whether Competence Frustration mediates the relationship between
Scaffolding and Controlled Motivation, as both the direct and the total effect are non-significant,
but the indirect effect or mediation effect is significant.

• Relatedness Frustration suppresses the relationship between Monitoring and Controlled Motivation:
there appears to be no relationship between Monitoring and Controlled Motivation, but this seems
to be caused by the fact that the indirect and the direct effect cancel each other out.

• It is unclear how to interpret whether Relatedness Frustration mediates the relationship between
Scaffolding and Controlled Motivation, as both the direct and the total effect are non-significant,
but the indirect effect or mediation effect is significant.

8.2 A comparison to previous research with the same data set

In this subsection, a comparison is made between the results of this research and the ones from previous
research done by two other TU-Delft students who used a similar data set (the same data set initially,
but probably with some differences as we may have cleaned the data differently).

1. One of these researches was also about estimating links between latent variables using SEM by
Plomp [20]. Here, the author faced similar issues with obtaining a decent fit. She also used the
Modification Index to improve the model, with a final result of a sub-optimal goodness-of-fit
though. Comparison possibilities are limited, as the author decided not to split Monitoring and
Scaffolding like we did. Also, she did not use the Diagonally Weighted Least Squares estimator,
but the Maximum Likelihood estimator to obtain standardized regression coefficients. Finally,
her coefficients were not tested for significance, and therefore we cannot be sure whether the
relationships found are meaningful. However, we will still report the most clear similarities and
differences between the two researches:

• When it comes to the relationships between the teacher cues and the six Needs, a positive
relationship between both teacher cues and Relatedness Satisfaction was found in both
researches. Also, a negative relationship was found between Scaffolding (in [20], teacher cues)
and Competence Frustration. Other than this, the results differed.

• For the six Needs and Motivation, both researches obtained (strong) relationships between
Autonomy, Relatedness and Competence Satisfaction and Autonomous Motivation. Also,
Autonomy Frustration has a positive influence on Controlled Motivation and a negative
influence on Autonomous Motivation in both researches.

• Finally, when it comes to the relationships between Motivation and Academic Performance,
both researches found a positive relationship between Autonomous Motivation and Academic
Performance.
Plomp also found a negative relationship between Controlled Motivation and Academic
Performance, but we found they were not significantly related.

To conclude, it is difficult to compare the results because the analyses were done very differently.
However, it is interesting to see there are still some similarities.
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2. The other research we make a comparison with, was done by Brouwer [4]. She also used the same
data set, and also applied SEM on it, with the largest difference that she used a Bayesian variant
of SEM. Unfortunately, Brouwer also faced issues obtaining a decent goodness-of-fit for her model,
and worked with sub-optimal results. Here, a comparison is again not straightforward, as Brouwer
did not separate Monitoring and Scaffolding like we did, and it is not clear whether the fact that
we are dealing with ordinal data was taken into account.
Finally, the reported results are based on the standardized coefficient estimates but no report was
made about the statistical significance of the results. Nonetheless, it is interesting to report some
similarities and differences:

• For the relationships between the Teacher Cues and the Needs, the relationships obtained are
similar, with the exception that Brouwer obtained a positive relationship between teacher cues
and Competence Frustration, where we obtained negative ones (with statistical significance
only for Scaffolding).

• When it comes to the relationships between the Needs and Motivation, we obtained that
all three types of Satisfaction are positively related to Autonomous Motivation, but in [4]
only Competence Satisfaction had a positive relationship with Autonomous Motivation.
For Relatedness Satisfaction, there was no relationship and for Autonomy Satisfaction, the
coefficient was negative even. This is a remarkable difference, as we obtained a very strong
positive relationship between Autonomy Satisfaction and Autonomous Motivation. For
Controlled Motivation, the relationships obtained also differ greatly.

• Finally, a positive relationship between Autonomous Motivation and Academic Performance
was obtained in both researches. Brouwer also found a positive relationship between
Controlled Motivation and Academic Performance (we did too, but the relationship was not
statistically significant).

To conclude, there are some similarities but also large differences between the two researches.

In total, we conclude that comparisons between all three researches are difficult to make. What stands
out is that all three researchers obtained a strong positive relationship between Autonomous Motivation
and Academic Performance. All other relationships are less obvious as large differences were obtained
between all researches.
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9 Discussion

To summarize, it took some time and effort to obtain a decent model and therefore obtain results that
could be interpreted. The ‘problems’ of the ordinal structure of the data and the fact that there were
many missing values needed to be handled first. The model needed to be split up into smaller sub-models
in order to analyze the relationships between latent variables better. Adjustments to the models were
made by adding regressions and deleting some items. For the complete model, bootstrapping was
necessary to obtain standard errors.

With respect to the content of the models, some interesting results were obtained. The most in-
teresting result was that when we consider Academic Performance, it appears to be that Autonomous
Motivation is of positive influence. Autonomous Motivation, in turn, was positively influenced by
Autonomy, Competence and Relatedness Satisfaction, with the first having the strongest influence. Au-
tonomy Frustration appears to be the only type of Frustration having a negative effect on Autonomous
Motivation. Both Monitoring and Scaffolding appear to have a positive influence on Relatedness
Satisfaction, but Scaffolding also has a positive effect on Competence Satisfaction, and a negative effect
on Relatedness and Competence Frustration.
Both Competence and Relatedness Satisfaction fully mediate the relationship between Monitoring and
Autonomous Motivation, and they both partially mediate the relationship between Scaffolding and
Autonomous Motivation.

There are, however, some points to take into consideration when interpreting the results:
Before we analyzed our data, some choices had to be made. One choice that was made was the splitting of
‘Teacher Cues’ into ‘Monitoring’ and ‘Scaffolding.’ Reasons to do this were that we noticed that students
answered differed between the two constructs (in previous research, factor analysis indicated that
there were indeed two factors present in the thirty initial items involving Monitoring and Scaffolding).
However, it could be interesting to see how the models would change if we considered ‘Teacher Cues’ as
one latent variable. The reason this was not investigated in this research was because there were already
a lot of models to consider and doing this would almost double the number of total models analyzed.
Other choices that we expect could be of great influence are the choices that were made when cleaning
the data. These include the removal of some students, but perhaps more importantly adjusting some of
the data as students answered ‘2.5’ instead of either 2 or 3, for example. As was explained in Chapter
5, we decided to round down answers below 3 and round up answers above 3 to make the answers less
neutral. Other options would have been to round every answer either up or down, or simply remove
these students entirely. It is not clear how much influence this choice has on the results, but as some
latent variables are made up of only four observed variables, it is something to take into account.

In this research, there are also some shortcomings worth mentioning. One shortcoming that stands out
most, perhaps, is that when we created the complete model in R based on the relationships hypothesized,
we initially obtained warnings that standard errors could not be computed and the model may not be
specified. Also, the goodness-of-fit measures were insufficient, indicating a bad fit.
It is unclear why these standard errors could not be computed. It is clear, however, that it is very hard
to interpret the results of such a large model to begin with. In the complete model, there is a large
number of mediation effects, resulting in very different results than when sub-models are considered
or when relationships between only a small number of latent variables are analyzed, as we did to test
for mediation effects, for example. So even though we found a way around this shortcoming by using
Bootstrapping to compute standard errors, one can wonder about the usefulness of this complete model
to begin with. Also, considering the fact that Bootstrapping was used only for the complete model
and not for every model (Bootstrapping on this large data set turned out to be a very time-intensive
procedure), it might be difficult to compare this model to the others as well.
We had to make a decision between making use of Bootstrapping and finding some interpretable results
this way, or not making use of Bootstrapping and concluding that the complete model simply did not
represent the data well. We decided to make use of Bootstrapping, but because of this shortcoming, we
also decided to create sub-models, which turned out to be a good idea in terms of being able to interpret
the results. It appeared to be the case that our Structural Equation Modelling worked best on the
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three sub-models and the Mediation models. Perhaps the total model involved too many complicated
data structures (with many mediation effects), resulting in a sub-optimal fit, even if it was possible to
compute standard errors.

Another shortcoming of this research is that one item was removed from the variable ‘Monitor-
ing’, based on too many missing values. Previous research has shown that in the original data set,
the consistency measured by Cronbach’s Alpha was very good, but this was not tested in the current
research where one item was removed. We don’t expect this of be much influence, though, as it was only
one item out of 16 items total.

Something else that is worth mentioning is that the evaluation with respect to the usefulness of
a model, based on the goodness-of-fit measures, depends heavily on the interpretation of the user. Table
1 in Section 2.5 provides a commonly used interpretation for the goodness-of-fit measures, but not all
researchers agree on the cutoff-values presented here. More importantly, what does it mean if one of the
goodness-of-fit measures is slightly off, like the RMSEA for example? It doesn’t immediately make the
model useless.
In this research, models were adjusted in order to obtain the best possible goodness-of-fit measures, and
when one or more gof measures were still slightly out of bounds, this was mentioned, as it is something
to consider when interpreting the results.

Other influences on the goodness-of-fit measures are the number of used variables, the sample
size, and the type of estimator that was used in order to obtain the results. Shi, Lee and Maydeu-
Olivares discovered, for example, that when a higher number of variables were used, this affected the
CFI, TLI and the RMSEA in a negative way, suggesting a worse fit [24]. They also found this was the
case for a smaller sample size.
Xia and Yang claim that the conventional cut-off values as proposed in table 1 in Section 2.5, should
only be applied when the conventional estimator (the Maximum Likelihood Estimator) is used. They
made a comparison between the ML and the DWLS estimators and claim that for the DWLS estimator,
the CFI and TLI always tend to be higher and the RMSEA always tends to be lower (in all cases
suggesting a better fit) [30]. They argue that using the same cutoff-values when the Diagonally Weighted
Least Squares Estimator is used, is therefore not recommended, as there is a tendency not to discover
model-data misfit. However, up to today there is no alternative to the cutoff-values from table 1, and
therefore we decided to use them in this research anyway. But it has become clear that finding a good
model fit is not that easy or straightforward.

Disagreement among researchers also exists when it comes to making use of the Modification In-
dex in order to improve the model-fit. MacCallum, Roznowski and Necowitz argue that modification of
the model based on the MI will always result in better model-fit, but this doesn’t necessarily mean the
model is actually better [15]. They claim this way of adjusting the model is too data-driven not based
on theory, and this type of adjustment has a tendency to make the model fit better based on this specific
sample and its ‘chance characteristics,’ which therefore not necessarily makes the model better for the
population.
In this research, we decided to make use of the Modification Index, but only for regressions that made
sense to us theoretically as well. All suggested modifications were manually checked and were only added
when it was understandable why students would answer them in a similar fashion.

Other than adressing some shortcomings of this research, there are also some new ideas for fu-
ture research. One could be to make use of the demographic data more when analyzing the results. We
know, for example, the age and gender of most of the students, but this information was not used in
this research. It could be interesting to find out if there is a gender difference when considering the
relationships between our latent variables. What if the relationship between Autonomous Motivation
and Academic Performance is stronger for females than for males, for example? This could be interesting
information. In this research, however, only 24 females participated, whereas there were 152 males.
In future research, if more students participate in the survey, it could be interesting to investigate further.
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To conclude, we aim to interpret the results for education purposes: what connections can we
make between the results of this research and the way education leads to better Academic Performance
of students? The most obvious conclusion is that Autonomous Motivation plays a big, positive role in
Academic Performance. Therefore, if we want better Academic Performance in our students, we need to
focus on improving Autonomous Motivation. It turns out that intrinsic motivation (wanting to learn,
enjoying studying in general, etc.) is much more important than external motivation (feeling guilty
about not studying, living up to other people’s expectations, etc.) The focus should therefore be on
Autonomous Motivation.
Our results show us that Autonomous Motivation is influenced by Autonomy Satisfaction most, and
in a positive way: if students experience a sense of choice and freedom in their undertakings, feel that
their decisions about course activities reflect what they really want and express who they really are,
and are really interested in what they are doing, this has a very positive influence on Autonomous
Motivation. Similarly, Autonomy Frustration appears to have a very negative influence on Autonomous
Motivation. These feelings of Autonomy might be difficult to influence for a teacher, however. If we
leave out Autonomy Satisfaction, we find that Relatedness Satisfaction and Competence Satisfaction
also play a positive role: feeling connected to other students, and feeling competent to achieving their
goals can also be of importance in being intrinsically motivated, albeit to a lesser extent. However, these
two constructs can be influenced by teachers, and are therefore valuable to look into more: How can the
way education is given, influence these types of Satisfaction? Our results show us that Monitoring can
influence Relatedness Satisfaction and Competence Satisfaction in a positive way: it helps if the lecturer
encourages students to reflect, stimulates to think about improvement, discusses progress that was made,
etc. Monitoring has no effect on Autonomous Motivation directly, as it turns out that Relatedness and
Competence Satisfaction both fully mediate this relationship.
We find that Scaffolding plays an even bigger role than Monitoring when it comes to Relatedness and
Competence Satisfaction: it helps if the lecturer is flexible in explaining topics in several ways, if there
are opportunities to share and discuss what is learned, if contribution to the lessons and interaction
between classmates is allowed, if the student feels that the assignments reflect the material well, etc.
Scaffolding even turns out to affect Autonomous Motivation in a direct way, as becomes clear from the
partial mediation effects: Relatedness and Competence Satisfaction explain the positive relationship
between Scaffolding and Autonomous Satisfaction only partly.
We conclude that, even though Autonomy Satisfaction is very important for Autonomous Motivation,
the lecturer can have the most influence on Relatedness and Competence Satisfaction, and even on
Autonomous Motivation directly, by doing well on the ‘Scaffolding’ cues.
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Appendix

The appendix can be provided upon request.
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