

Delft University of Technology

Smart Grid Co-Simulation by Developing an FMI-Compliant Interface for PSCAD

Astero, Poria; Laukkanen, Matti ; Kulmala, Anna; Maki, Kari; van der Meer, Arjen; Bhandia, Rishabh; Widl,
Edmund; Steinbrink, Cornelius

Publication date
2019
Document Version
Final published version
Published in
Smart Grid Co-Simulation by Developing an FMI-Compliant Interface for PSCAD

Citation (APA)
Astero, P., Laukkanen, M., Kulmala, A., Maki, K., van der Meer, A., Bhandia, R., Widl, E., & Steinbrink, C.
(2019). Smart Grid Co-Simulation by Developing an FMI-Compliant Interface for PSCAD. In Smart Grid Co-
Simulation by Developing an FMI-Compliant Interface for PSCAD (2019 ed.). CIRED. https://cired-
repository.org/handle/20.500.12455/169
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://cired-repository.org/handle/20.500.12455/169
https://cired-repository.org/handle/20.500.12455/169

 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019

Paper n° 849

CIRED 2019 1/5

SMART GRID CO-SIMULATION BY DEVELOPING AN FMI-COMPLIANT INTERFACE

FOR PSCAD

P. H. Divshali

VTT Research Centre of Finland

Poria.Divshali@vtt.fi

M. Laukkanen

VTT Research Centre of Finland

Matti.Laukkanen@vtt.fi

R. Bhandia

TU Delft, Netherland

R.Bhandia@tudelft.nl

A. A. VanderMeer

TU Delft, Netherland

A.A.vanderMeer@tudelft.nl

E. Widl

AIT Institute of Technology, Austria

Edmund.Widl@ait.ac.at

C. Steinbrink

OFFIS, Germany

Cornelius.Steinbrink@offis.de

A. Kulmala

VTT Research Centre of Finland

Anna.Kulmala@vtt.fi

K. Mäki

VTT Research Centre of Finland

Kari.Maki@vtt.fi

ABSTRACT

For smart grid assessment one needs to simulate varieties

of components in different software environments.

However, the existing simulation tools are domain

oriented and cannot fulfil this need natively. Therefore, a

smart grid simulation environment has to be established

with accordingly accurate models for intra and inter-

domain elements as well as interfaces and framework for

coordination of those models in a holistic scenario. This

paper presents part of the development of this smart grid

simulation environment by implementing co-simulation

interface for PSCAD using the mosaik framework based

on functional mock-up interface (FMI). This co-simulation

interface is tested using a modified dynamic model of IEEE

9 bus test system simulated in PSCAD while the wind

turbine controller is simulated in MATLAB/Simulink. The

results show a significant advantage over alternative

methods in terms of a reduction in simulation runtime and

compatibility with different simulation environments.

INTRODUCTION

A holistic model of smart grids includes several domains

with fundamentally different nature, such as electrical

systems, communication systems, control and prediction

units, market models, and external factors like weather and

people behaviour. From a conceptual point of view, this

means that a smart grid system should be considered as a

system-of-systems.

Each of these domains has a very different nature

(continuous, discrete, stochastic, etc.) and they are using

different modelling assumptions and implemented in

different software packages. Therefore, there is a serious

challenge in the holistic assessment of such system-of-

systems by simulation studies. This is especially relevant

to smart distribution grids, in which the behaviour of

physical components is often dictated by an overlay

system of ICT and distributed controls.

From the technical perspective, this challenge can be

overcome using 1) multi-domain simulation environments

or 2) co-simulation tools. There are several native multi-

domain simulation environments, such as SystemModeler,

Matlab/Simulink, Openmodelica. In addition,

alternatively, a multi-domain simulation could be built

from scratch. However, a simulator which supports multi-

domain is not trivial to achieve due to the significant effort

and expertise required. On the one hand, it is very often

that the models from different domains would involve

different environments and operating systems (i.e. 32 or 64

bit, windows, Unix or Linux). On the other hand, models

from different domains often need to be dealt with using a

different time scale, a model of computation (MoC) and

specialized solvers. Building a simulator capable of

providing appropriate environments, correct MoC, solvers

and properly coordinating them internally is expensive and

maybe not worth the effort [1], [2].

A further argument against a move to native multi-domain

simulation environments is the need for models of

professional quality in testing and operations assessments:

domain experts are required to verify the correctness of

models, which is easier to realize within domain-specific,

accepted and validated tools.

In addition, from the modelling point of view, it is

important to integrate commercial and open-source

modelling and simulation frameworks, both specialized on

particular system aspects (e.g. power system simulator or

communication system simulator) and universal (e.g.

general modelling environments like MATLAB/Simulink

or Modelica-based tools). The specialized tools are usually

equipped with validated component libraries, sophisticated

import/export capabilities and well-designed user

interfaces. The universal tools, on the other hand, are good

for rapid prototyping of new and uncommon components,

have extensive mathematical capabilities and are well-

accepted in the scientific community. It is necessary to

combine the best of both worlds.

https://www.tudelft.nl/en/
mailto:R.Bhandia@tudelft.nl
https://www.tudelft.nl/en/
mailto:A.A.vanderMeer@tudelft.nl
mailto:Kari.Maki@vtt.fi

 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019

Paper n° 849

CIRED 2019 2/5

In this regards, co-simulation techniques that provide a

more powerful test environment are required. Using co-

simulation techniques, the most suitable simulation tools

for all considered domains, from the perspective of

accuracy and runtime, can be coupled [3].

For this purpose, the ERIGrid project [4], a multi-partner

project funded by EU-Horizon 2020, aims to develop and

validate a holistic model for smart grids. The co-

simulation activities in ERIGrid focus on developing co-

simulation tools using the mosaik framework [5] based on

the emerging industry standard functional mock-up

interface (FMI) [6].

This paper focuses on the architecture and the

development of a co-simulation interface for PSCAD as a

part of this holistic simulation tools for smart grids. The

PSCAD co-simulation interface is tested by modelling the

controller of an onshore wind power plant implemented in

MATLAB/Simulink while it is interconnected to a

modified dynamic model of IEEE 9 bus test system

implemented in PSCAD.

CO-SIMULATION CHALLENGES

In order to assess a system-of-systems using co-

simulation, it is necessary to integrate the MoC behind a

model or a simulator. The MoC represents the interactions

between modules, components or phenomena and it is

independent of the implementation technology (i.e.

sequential or parallel) and language (i.e. Matlab, Python).

MOC can be classified as: Imperative (e.g. Emulators),

Finite State Machine (e.g. a set of states, rule-based

control), Dataflow (e.g. ODEs, DEAs), Discrete Event

(e.g. communication, zero-crossing), etc. [7].

The energy domain simulators often employ Dataflow

MoC due to the fact that they derive mostly from sets of

ordinary differential equations defining the state variables

and the environmental factors of a system (e.g. steady-state

simulations, electromagnetic transients or circuit

simulations). However, ICT, market simulator and

eventually control simulators use often the Discrete Event

or Finite State Machine MoC.

The discrete models react to events that occur at a given

time instant and produce other events either at the same

time instant or at some future time instant in a

chronological execution order. Combining discrete event

and continuous simulation requires mixing different MoC

such as Discrete Events and Dataflow in a hierarchical way

[8]. It leads to the necessity of an interaction semantic that

resolves the ambiguities caused by differences among

MoC. Events that cross the domains need to be totally

ordered and associated with timestamps. Moreover, each

domain (simulator and MoC) must also support a

rudimentary notion of time. The main difficulties for

integration of different MoC involve how to deal with

simultaneous events and zero-delay feedback loops [7].

In these circumstances, the co-simulation platform must

overcome the following challenges:

 Modularity, hierarchical composition, and proper

linking of domain-specific tools to maintain the

synchronism between the simulators while the cyclic

dependencies are implemented between the co-

simulation interfaces.

 Scenario handling and system handling to allow easy

component replacement.

 Distributed and parallel simulation.

PROPOSED APPROACH

In order to overcome the abovementioned challenges, the

co-simulation interface has been developed using the

mosaik framework based on the FMI interface. Fig. 1

shows the structure of the co-simulation method used in

this project.

FMI Interface

The FMI interface provides the most essential and

fundamental functionality to handle and manipulate

functional mock-up units (FMU), such as numerical

integration, advanced event-handling or state predictions.

However, the FMI is in the form of a C interface and

implies several prerequisites that a simulation tool has to

fulfil in order to be able to utilize such an FMI component.

Therefore, the FMI++ Python Interface has been

developed, a Python package wrapping the FMI++

Library [9]. For this purpose, the ERIGrid project

combines the FMI++ python interface and mosaik

framework for co-simulation of FMU.

Mosaik Framework

As mentioned previously, the holistic smart grid simulator

requires means of flexible scenario handling in complex

setups. Such feature allows for easy component

replacement and system scaling, which makes up the main

advantages simulation-based validation has over lab-based

validation. For this reason, the mosaik platform is used.

The mosaik framework is an easy-to-deploy software

package that facilitates the integration of new simulators

as well as the creation of co-simulation experiments. This

PSCAD Co-Simulation Interface

(FMI compatible)

PSCAD

Mosaik Framework

(using Python code)

MATLAB

FMU units

Other simulators, e.g.

communication, Network, ...

Fig. 1: The proposed PSCAD co-simulation structure.

 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019

Paper n° 849

CIRED 2019 3/5

is achieved via a lightweight software core based purely on

Python, a special Component-API for simulator

integration, and a Scenario-API for flexible simulator

coupling [5].

The co-simulation framework mosaik has been developed

with a strong focus on flexibility. However, in order to

guarantee the absence of deadlocks for any given setup, the

handling of so-called cyclic dependencies in mosaik has so

far had some limiting characteristics. In particular, using

mosaik’s intuitive connection capabilities to establish a

cyclic data exchange between two or more simulators has

been prohibited. Instead, users had to extend the simulator

interfaces to realize cyclic data exchange, which obviously

decreases the usability of mosaik for researchers with little

programming experience.

Within the scope of the ERIGrid project, the capabilities

of mosaik have been extended to allow for higher usability

in the handling of cyclic dependencies. The basic idea of

the extension is the separation of data exchange into two

stages: simulators may either receive data before they are

called to calculate a time step or after they have calculated

so that they store the data for the next time they are called.

With this separation priorities between simulators can be

established so that deadlocks are limited.

Fig. 2 illustrates different data exchange options between

two simulators A and B. Connections for data exchange

before calculations are called standard connections since

they are part of the typical functionality of mosaik. The

newly added connection type is called time-shifted

connection since they provide data to simulators that

already have been called for calculation. As Fig. 2 shows,

standard connections in mosaik provide data to a simulator

for its calculation of the current time step while time-

shifted connections provide data for the next time step to

be calculated.

Furthermore, mosaik provides the option to set default

input data for the first calculation of a simulator that is

addressed by time-shifted connections. This way, parallel

data exchange schemes may also be realized if initial input

data can be assigned to each simulator.

PSCAD CO-SIMULATION

As a part of the holistic simulation tools developed for

smart grids in the ERIGrid project, an FMI-compliant

interface is developed for PSCAD. PSCAD is a

commercial general-purpose time domain simulation tool

for studying transient behaviour of electrical networks. Its

strengths, in addition to its computational performance and

advanced user interface, are in the modelling modularity

and ability to model the components using standard library

components or user-built model components of the desired

level of detail. The most recent versions of PSCAD

provide a built-in interface for MATLAB/Simulink.

However, this interface proved to perform poorly in

practice, as data exchange was remarkably slow.

PSCAD provides so-called automation API, a Python

interface which can be used to interact with the software,

e.g. opening and loading projects, setting model

parameters and running simulations. Despite providing a

wide range of functions, the API cannot access the

simulation model’s data signals that are needed for co-

simulation. However, user components in PSCAD are

programmable with Fortran, which in turn allows cross-

compiling C/C++ code and thus enables developing co-

simulation interface. Using this feature, this project

developed the PSCAD co-simulation interfaced, shown as

the green box in Fig. 1, to add FMI ability to PSCAD. This

co-simulation interface is implemented using a C-function

to read and write into TCP/IP protocol and is merged with

PSCAD using Fortran compiler.

This co-simulation interface consists of two parts: A back-

end component used by PSCAD, and a front-end

component used by the master algorithm. The back-end

part is implemented as user-defined components called

pscad_send and pscad_recv (See Fig. 3). They take desired

input/output signal names as arrays, and at configurable

time intervals (co-simulation time-step) they send/receive

data over a socket. Socket communication functions are

written in C.

The front-end component was initially implemented as a

kind of FMU, a Python program that acts as a socket

server, exchanging data with PSCAD and exposing it to

the master algorithm. It also handles the time

Fig. 3: the PSCAD co-simulation interface

Fig. 2: Data exchange schemes possible in mosaik.

 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019

Paper n° 849

CIRED 2019 4/5

synchronization between the master and the slave. The

developed co-simulation interface, which is compatible

with the FMI standard can be found in ERIGrid GitHub

[10]. However, further work is required to add the ability

of encapsulating the PSCAD simulation and exporting it

as an FMU.

VALIDATION

In order to validate the PSCAD co-simulation package, a

modified dynamic model of IEEE 9 bus test system [11],

replacing the third generator by a wind turbine (WT), is

implemented in PSCAD. In monolithic simulation case,

the WT controller is also implemented in PSCAD but in

co-simulation case, the control mechanisms of WT are

implemented in MATLAB/Simulink and exported as an

FMU.

The dynamic model of the modified IEEE 9 bus system is

implemented in PSCAD as shown in Fig. 4, while a three

phase fault happened at t = 0.4 s. The third synchronous

generator, G3, is replaced by a WT at the modified IEEE

9 bus test system. This WT is modelled by a converter,

Turbine block in Fig. 4, in PSCAD.

The PSCAD simulation sends and receives signals using

the pscad_send and pscad_recv blocks, developed for co-

simulation interface of PSCAD. By using this interface,

the co-simulation can be conducted through FMI++

interface. These blocks send some measurements, which

are required for controllers implemented in SIMULINK,

e.g. time, Vd, and Vq and receive the output of the

controllers, the reference values for the converter, via the

master program.

In order to validate the co-simulation, the results of the co-

simulation are compared with that from the results of

PSCAD monolithic simulation. Fig. 5 shows this

comparison. The simulation is performed for 20 seconds;

since PSCAD starts from zero initial condition, the first 10

seconds (before 0) is used for the model initialising.

As shown in Fig. 5, the co-simulation and monolithic

simulations trace the same and overlap each other

indicating that the co-simulation produces the same results

as monolithic. It is noteworthy to mention, there was not

considerable difference between simulation runtime of

monolithic and co-simulation cases. The implementation

of both monolithic and co-simulation cases are available in

[10].

Fig. 4: The dynamic model of IEEE 9 bus system, implemented in PSCAD

 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019

Paper n° 849

CIRED 2019 5/5

CONCLUSION

This paper presents the challenges of developing a holistic

simulation tool for assessing smart grids as a system of

systems. Since the smart grids include different domains a

co-simulation interface coupling power system to other

domains, such as ICT and control, is necessary. This paper

develops a co-simulation interfaced for PSCAD using the

mosaik framework based on FMI. The results validate and

demonstrate the effectiveness of the proposed method. It

is worth to mention that although the validation case

performed by co-simulation of PSCAD and Matlab, the

developed interface enables interfacing also with other

programs.

REFERENCES

[1] K. Johnstone, S. M. Blair, M. H. Syed, A. Emhemed,

G. M. Burt, and T. I. Strasser, “Co-simulation

approach using PowerFactory and

MATLAB/Simulink to enable validation of

distributed control concepts within future power

systems,” CIRED - Open Access Proc. J., vol. 2017,

no. 1, pp. 2192–2196, Oct. 2017.

[2] A. Latif, M. Shahzad, P. Palensky, and W. Gawlik,

“An alternate PowerFactory Matlab coupling

approach,” in Proceedings - 2015 International

Symposium on Smart Electric Distribution Systems

and Technologies, EDST 2015, 2015.

[3] T. Strasser et al., “Towards holistic power distribution

system validation and testing—an overview and

discussion of different possibilities,” Elektrotechnik

und Informationstechnik, 2017.

[4] “ERIGrid Project.” [Online]. Available:

https://erigrid.eu/. [Accessed: 12-Sep-2018].

[5] “mosaik — A flexible Smart Grid co-simulation

framework.” [Online]. Available:

https://mosaik.offis.de/. [Accessed: 12-Sep-2018].

[6] “Functional Mock-up Interface.” [Online]. Available:

https://fmi-standard.org/. [Accessed: 12-Sep-2018].

[7] Szu-Chu Liu and Shyang Chang, “Dimension

estimation of discrete-time fractional Brownian

motion with applications to image texture

classification,” IEEE Trans. Image Process., vol. 6,

no. 8, pp. 1176–1184, 1997.

[8] J. Banks, Discrete-event system simulation. Prentice

Hall, 2010.

[9] “The FMI++ Python Interface for Windows.”

[Online]. Available: https://pythonhosted.org/fmipp/.

[Accessed: 13-Dec-2018].

[10] “ERIGrid JRA2: Test case TC1 mosaik

implementation.” [Online]. Available:

https://github.com/ERIGrid/JRA2-TC1. [Accessed:

31-Dec-2018].

[11] P. Demetriou, M. Asprou, J. Quiros-Tortos, and E.

Kyriakides, “Dynamic IEEE Test Systems for

Transient Analysis,” IEEE Syst. J., 2015.

Fig. 5.a: The output voltage of the WT

Fig. 5.b: The active power output of the WT

Fig. 5.c: The reactive power output of the WT

Fig. 5.d: The reference current (Id) of the WT

Fig. 5.e: The reference current (Iq) of the WT

