
 
 

Delft University of Technology

Smart Grid Co-Simulation by Developing an FMI-Compliant Interface for PSCAD

Astero, Poria; Laukkanen, Matti ; Kulmala, Anna; Maki, Kari; van der Meer, Arjen; Bhandia, Rishabh; Widl,
Edmund; Steinbrink, Cornelius

Publication date
2019
Document Version
Final published version
Published in
Smart Grid Co-Simulation by Developing an FMI-Compliant Interface for PSCAD

Citation (APA)
Astero, P., Laukkanen, M., Kulmala, A., Maki, K., van der Meer, A., Bhandia, R., Widl, E., & Steinbrink, C.
(2019). Smart Grid Co-Simulation by Developing an FMI-Compliant Interface for PSCAD. In Smart Grid Co-
Simulation by Developing an FMI-Compliant Interface for PSCAD (2019 ed.). CIRED. https://cired-
repository.org/handle/20.500.12455/169
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://cired-repository.org/handle/20.500.12455/169
https://cired-repository.org/handle/20.500.12455/169


 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019 
 

Paper n°  849 

 
 

CIRED 2019  1/5 

SMART GRID CO-SIMULATION BY DEVELOPING AN FMI-COMPLIANT INTERFACE 

FOR PSCAD 
 

 

P. H. Divshali 

VTT Research Centre of Finland 

Poria.Divshali@vtt.fi 

M. Laukkanen 

VTT Research Centre of Finland 

Matti.Laukkanen@vtt.fi 

R. Bhandia 

TU Delft, Netherland 

R.Bhandia@tudelft.nl 

A. A. VanderMeer 

TU Delft, Netherland 

A.A.vanderMeer@tudelft.nl 

E. Widl 

AIT Institute of Technology, Austria 

Edmund.Widl@ait.ac.at 

C. Steinbrink 

OFFIS, Germany 

Cornelius.Steinbrink@offis.de 

A. Kulmala 

VTT Research Centre of Finland 

Anna.Kulmala@vtt.fi 

K. Mäki 

VTT Research Centre of Finland 

Kari.Maki@vtt.fi 

 

ABSTRACT 

For smart grid assessment one needs to simulate varieties 

of components in different software environments. 

However, the existing simulation tools are domain 

oriented and cannot fulfil this need natively. Therefore, a 

smart grid simulation environment has to be established 

with accordingly accurate models for intra and inter-

domain elements as well as interfaces and framework for 

coordination of those models in a holistic scenario. This 

paper presents part of the development of this smart grid 

simulation environment by implementing co-simulation 

interface for PSCAD using the mosaik framework based 

on functional mock-up interface (FMI). This co-simulation 

interface is tested using a modified dynamic model of IEEE 

9 bus test system simulated in PSCAD while the wind 

turbine controller is simulated in MATLAB/Simulink. The 

results show a significant advantage over alternative 

methods in terms of a reduction in simulation runtime and 

compatibility with different simulation environments. 

INTRODUCTION 

A holistic model of smart grids includes several domains 

with fundamentally different nature, such as electrical 

systems, communication systems, control and prediction 

units, market models, and external factors like weather and 

people behaviour. From a conceptual point of view, this 

means that a smart grid system should be considered as a 

system-of-systems. 

 

Each of these domains has a very different nature 

(continuous, discrete, stochastic, etc.) and they are using 

different modelling assumptions and implemented in 

different software packages. Therefore, there is a serious 

challenge in the holistic assessment of such system-of-

systems by simulation studies. This is especially relevant 

to smart distribution grids, in which the behaviour of 

physical components is often dictated by an overlay 

system of ICT and distributed controls. 

From the technical perspective, this challenge can be 

overcome using 1) multi-domain simulation environments 

or 2) co-simulation tools. There are several native multi-

domain simulation environments, such as SystemModeler, 

Matlab/Simulink, Openmodelica. In addition, 

alternatively, a multi-domain simulation could be built 

from scratch. However, a simulator which supports multi-

domain is not trivial to achieve due to the significant effort 

and expertise required. On the one hand, it is very often 

that the models from different domains would involve 

different environments and operating systems (i.e. 32 or 64 

bit, windows, Unix or Linux). On the other hand, models 

from different domains often need to be dealt with using a 

different time scale, a model of computation (MoC) and 

specialized solvers. Building a simulator capable of 

providing appropriate environments, correct MoC, solvers 

and properly coordinating them internally is expensive and 

maybe not worth the effort [1], [2]. 

 

A further argument against a move to native multi-domain 

simulation environments is the need for models of 

professional quality in testing and operations assessments: 

domain experts are required to verify the correctness of 

models, which is easier to realize within domain-specific, 

accepted and validated tools. 

 

In addition, from the modelling point of view, it is 

important to integrate commercial and open-source 

modelling and simulation frameworks, both specialized on 

particular system aspects (e.g. power system simulator or 

communication system simulator) and universal (e.g. 

general modelling environments like MATLAB/Simulink 

or Modelica-based tools). The specialized tools are usually 

equipped with validated component libraries, sophisticated 

import/export capabilities and well-designed user 

interfaces. The universal tools, on the other hand, are good 

for rapid prototyping of new and uncommon components, 

have extensive mathematical capabilities and are well-

accepted in the scientific community. It is necessary to 

combine the best of both worlds. 

https://www.tudelft.nl/en/
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In this regards, co-simulation techniques that provide a 

more powerful test environment are required. Using co-

simulation techniques, the most suitable simulation tools 

for all considered domains, from the perspective of 

accuracy and runtime, can be coupled [3]. 

 

For this purpose, the ERIGrid project [4], a multi-partner 

project funded by EU-Horizon 2020, aims to develop and 

validate a holistic model for smart grids. The co-

simulation activities in ERIGrid focus on developing co-

simulation tools using the mosaik framework [5] based on 

the emerging industry standard functional mock-up 

interface (FMI) [6]. 

 

This paper focuses on the architecture and the 

development of a co-simulation interface for PSCAD as a 

part of this holistic simulation tools for smart grids. The 

PSCAD co-simulation interface is tested by modelling the 

controller of an onshore wind power plant implemented in 

MATLAB/Simulink while it is interconnected to a 

modified dynamic model of IEEE 9 bus test system 

implemented in PSCAD. 

CO-SIMULATION CHALLENGES 

In order to assess a system-of-systems using co-

simulation, it is necessary to integrate the MoC behind a 

model or a simulator. The MoC represents the interactions 

between modules, components or phenomena and it is 

independent of the implementation technology (i.e. 

sequential or parallel) and language (i.e. Matlab, Python). 

MOC can be classified as: Imperative (e.g. Emulators), 

Finite State Machine (e.g. a set of states, rule-based 

control), Dataflow (e.g. ODEs, DEAs), Discrete Event 

(e.g. communication, zero-crossing), etc. [7]. 

 

The energy domain simulators often employ Dataflow 

MoC due to the fact that they derive mostly from sets of 

ordinary differential equations defining the state variables 

and the environmental factors of a system (e.g. steady-state 

simulations, electromagnetic transients or circuit 

simulations). However, ICT, market simulator and 

eventually control simulators use often the Discrete Event 

or Finite State Machine MoC. 

 

The discrete models react to events that occur at a given 

time instant and produce other events either at the same 

time instant or at some future time instant in a 

chronological execution order. Combining discrete event 

and continuous simulation requires mixing different MoC 

such as Discrete Events and Dataflow in a hierarchical way 

[8]. It leads to the necessity of an interaction semantic that 

resolves the ambiguities caused by differences among 

MoC. Events that cross the domains need to be totally 

ordered and associated with timestamps. Moreover, each 

domain (simulator and MoC) must also support a 

rudimentary notion of time. The main difficulties for 

integration of different MoC involve how to deal with 

simultaneous events and zero-delay feedback loops [7]. 

 

In these circumstances, the co-simulation platform must 

overcome the following challenges: 

 Modularity, hierarchical composition, and proper 

linking of domain-specific tools to maintain the 

synchronism between the simulators while the cyclic 

dependencies are implemented between the co-

simulation interfaces. 

 Scenario handling and system handling to allow easy 

component replacement. 

 Distributed and parallel simulation. 

PROPOSED APPROACH 

In order to overcome the abovementioned challenges, the 

co-simulation interface has been developed using the 

mosaik framework based on the FMI interface. Fig. 1 

shows the structure of the co-simulation method used in 

this project.  

FMI Interface 

The FMI interface provides the most essential and 

fundamental functionality to handle and manipulate 

functional mock-up units (FMU), such as numerical 

integration, advanced event-handling or state predictions. 

 

However, the FMI is in the form of a C interface and 

implies several prerequisites that a simulation tool has to 

fulfil in order to be able to utilize such an FMI component. 

Therefore, the FMI++ Python Interface has been 

developed, a Python package wrapping the FMI++ 

Library [9]. For this purpose, the ERIGrid project 

combines the FMI++ python interface and mosaik 

framework for co-simulation of FMU. 

Mosaik Framework 

As mentioned previously, the holistic smart grid simulator 

requires means of flexible scenario handling in complex 

setups. Such feature allows for easy component 

replacement and system scaling, which makes up the main 

advantages simulation-based validation has over lab-based 

validation. For this reason, the mosaik platform is used. 

 

The mosaik framework is an easy-to-deploy software 

package that facilitates the integration of new simulators 

as well as the creation of co-simulation experiments. This 

PSCAD Co-Simulation Interface 

(FMI compatible )

PSCAD

Mosaik Framework 

(using Python code)

MATLAB 

FMU units

Other simulators, e.g. 

communication, Network, ...
 

Fig. 1: The proposed PSCAD co-simulation structure. 
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is achieved via a lightweight software core based purely on 

Python, a special Component-API for simulator 

integration, and a Scenario-API for flexible simulator 

coupling [5]. 

 

The co-simulation framework mosaik has been developed 

with a strong focus on flexibility. However, in order to 

guarantee the absence of deadlocks for any given setup, the 

handling of so-called cyclic dependencies in mosaik has so 

far had some limiting characteristics. In particular, using 

mosaik’s intuitive connection capabilities to establish a 

cyclic data exchange between two or more simulators has 

been prohibited. Instead, users had to extend the simulator 

interfaces to realize cyclic data exchange, which obviously 

decreases the usability of mosaik for researchers with little 

programming experience. 

 

Within the scope of the ERIGrid project, the capabilities 

of mosaik have been extended to allow for higher usability 

in the handling of cyclic dependencies. The basic idea of 

the extension is the separation of data exchange into two 

stages: simulators may either receive data before they are 

called to calculate a time step or after they have calculated 

so that they store the data for the next time they are called. 

With this separation priorities between simulators can be 

established so that deadlocks are limited.  

 

Fig. 2 illustrates different data exchange options between 

two simulators A and B. Connections for data exchange 

before calculations are called standard connections since 

they are part of the typical functionality of mosaik. The 

newly added connection type is called time-shifted 

connection since they provide data to simulators that 

already have been called for calculation. As Fig. 2 shows, 

standard connections in mosaik provide data to a simulator 

for its calculation of the current time step while time-

shifted connections provide data for the next time step to 

be calculated. 

 

Furthermore, mosaik provides the option to set default 

input data for the first calculation of a simulator that is 

addressed by time-shifted connections. This way, parallel 

data exchange schemes may also be realized if initial input 

data can be assigned to each simulator. 

PSCAD CO-SIMULATION 

As a part of the holistic simulation tools developed for 

smart grids in the ERIGrid project, an FMI-compliant 

interface is developed for PSCAD. PSCAD is a 

commercial general-purpose time domain simulation tool 

for studying transient behaviour of electrical networks. Its 

strengths, in addition to its computational performance and 

advanced user interface, are in the modelling modularity 

and ability to model the components using standard library 

components or user-built model components of the desired 

level of detail. The most recent versions of PSCAD 

provide a built-in interface for MATLAB/Simulink. 

However, this interface proved to perform poorly in 

practice, as data exchange was remarkably slow. 

 

PSCAD provides so-called automation API, a Python 

interface which can be used to interact with the software, 

e.g. opening and loading projects, setting model 

parameters and running simulations. Despite providing a 

wide range of functions, the API cannot access the 

simulation model’s data signals that are needed for co-

simulation. However, user components in PSCAD are 

programmable with Fortran, which in turn allows cross-

compiling C/C++ code and thus enables developing co-

simulation interface. Using this feature, this project 

developed the PSCAD co-simulation interfaced, shown as 

the green box in Fig. 1, to add FMI ability to PSCAD. This 

co-simulation interface is implemented using a C-function 

to read and write into TCP/IP protocol and is merged with 

PSCAD using Fortran compiler. 

 

This co-simulation interface consists of two parts: A back-

end component used by PSCAD, and a front-end 

component used by the master algorithm. The back-end 

part is implemented as user-defined components called 

pscad_send and pscad_recv (See Fig. 3). They take desired 

input/output signal names as arrays, and at configurable 

time intervals (co-simulation time-step) they send/receive 

data over a socket. Socket communication functions are 

written in C. 

 

The front-end component was initially implemented as a 

kind of FMU, a Python program that acts as a socket 

server, exchanging data with PSCAD and exposing it to 

the master algorithm. It also handles the time 

 
Fig. 3: the PSCAD co-simulation interface 

 

 

Fig. 2: Data exchange schemes possible in mosaik. 
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synchronization between the master and the slave. The 

developed co-simulation interface, which is compatible 

with the FMI standard can be found in ERIGrid GitHub 

[10]. However, further work is required to add the ability 

of encapsulating the PSCAD simulation and exporting it 

as an FMU. 

VALIDATION 

In order to validate the PSCAD co-simulation package, a 

modified dynamic model of IEEE 9 bus test system [11], 

replacing the third generator by a wind turbine (WT), is 

implemented in PSCAD. In monolithic simulation case, 

the WT controller is also implemented in PSCAD but in 

co-simulation case, the control mechanisms of WT are 

implemented in MATLAB/Simulink and exported as an 

FMU. 

 

The dynamic model of the modified IEEE 9 bus system is 

implemented in PSCAD as shown in Fig. 4, while a three 

phase fault happened at t = 0.4 s. The third synchronous 

generator, G3, is replaced by a WT at the modified IEEE 

9 bus test system. This WT is modelled by a converter, 

Turbine block in Fig. 4, in PSCAD. 

The PSCAD simulation sends and receives signals using 

the pscad_send and pscad_recv blocks, developed for co-

simulation interface of PSCAD. By using this interface, 

the co-simulation can be conducted through FMI++ 

interface. These blocks send some measurements, which 

are required for controllers implemented in SIMULINK, 

e.g. time, Vd, and Vq and receive the output of the 

controllers, the reference values for the converter, via the 

master program. 

 

In order to validate the co-simulation, the results of the co-

simulation are compared with that from the results of 

PSCAD monolithic simulation. Fig. 5 shows this 

comparison. The simulation is performed for 20 seconds; 

since PSCAD starts from zero initial condition, the first 10 

seconds (before 0) is used for the model initialising.  

 

As shown in Fig. 5, the co-simulation and monolithic 

simulations trace the same and overlap each other 

indicating that the co-simulation produces the same results 

as monolithic. It is noteworthy to mention, there was not 

considerable difference between simulation runtime of 

monolithic and co-simulation cases. The implementation 

of both monolithic and co-simulation cases are available in 

[10]. 

 

Fig. 4: The dynamic model of IEEE 9 bus system, implemented in PSCAD 
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CONCLUSION 

This paper presents the challenges of developing a holistic 

simulation tool for assessing smart grids as a system of 

systems. Since the smart grids include different domains a 

co-simulation interface coupling power system to other 

domains, such as ICT and control, is necessary. This paper 

develops a co-simulation interfaced for PSCAD using the 

mosaik framework based on FMI. The results validate and 

demonstrate the effectiveness of the proposed method. It 

is worth to mention that although the validation case 

performed by co-simulation of PSCAD and Matlab, the 

developed interface enables interfacing also with other 

programs. 
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Fig. 5.a: The output voltage of the WT 

 

 

Fig. 5.b: The active power output of the WT 
 

 

Fig. 5.c: The reactive power output of the WT 
 

 

Fig. 5.d: The reference current (Id) of the WT 

 

 

Fig. 5.e: The reference current (Iq) of the WT 

 


