
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Extracting Dynamic Dependencies
between Web Services Using Vector

Clocks

Daniele Romano, Martin Pinzger and Eric Bouwers

Report TUD-SERG-2011-034

SERG

TUD-SERG-2011-034

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the International Conference on Service-Oriented
Computing and Applications (SOCA), 2011, IEEE Computer Society.

c© copyright 2011, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Extracting Dynamic Dependencies between Web Services Using Vector Clocks

Daniele Romano
Software Engineering Research Group

Delft University of Technology
Delft, The Netherlands

Email: daniele.romano@tudelft.nl

Martin Pinzger
Software Engineering Research Group

Delft University of Technology
Delft, The Netherlands

Email: m.pinzger@tudelft.nl

Eric Bouwers
Software Improvement Group
Amsterdam, The Netherlands

Email: e.bouwers@sig.eu

Abstract—Service Oriented Architecture (SOA) enables or-
ganizations to react to requirement changes in an agile manner
and to foster the reuse of existing services. However, the
dynamic nature of service oriented systems and their agility
bear the challenge of properly understanding such systems. In
particular, understanding the dependencies among services is
a non trivial task, especially if service oriented systems are dis-
tributed over several hosts belonging to different departments
of an organization.

In this paper, we propose an approach to extract dynamic
dependencies among web services. The approach is based on
the vector clocks, originally conceived and used to order events
in a distributed environment. We use the vector clocks to order
service executions and to infer causal dependencies among
services.

We show the feasibility of the approach by implementing
it into the Apache CXF framework and instrumenting the
SOAP messages. We designed and executed two experiments
to investigate the impact of the approach on the response time.
The results show a slight increase that is deemed to be low in
typical industrial service oriented systems.

Keywords-SOA; web services; dynamic dependencies;

I. INTRODUCTION

IT organizations need to be agile to react to changes in
the market. As a consequence they started to develop their
software systems as Software as a Service (SaaS), over-
coming the poor inclination of monolithically architected
systems towards agility. Hence, the adoption of Service Ori-
ented Architectures (SOAs) has become popular. In addition,
SOA-based application development also aims at reducing
development costs through service reuse.

On the other hand, mining dependencies between services
in a SOA is relevant to understand the entire system and its
evolution over time. The distributed and dynamic nature of
those architectures makes this task particularly challenging.

In order to get an accurate picture of the dependencies
within a SOA system a dynamic analysis is required. Using
static analyses simply fails to cover important features of
a SOA architecture, for example the ability to perform
dynamic binding. To the best of our knowledge, existing
technologies used to deploy a service oriented system do not
provide tool to accurately detect the entire chain of depen-
dencies among services. For instance, open source Enterprise

Service Bus systems (e.g., MuleESB1 and ServiceMix2) are
limited to detect only direct dependencies (i.e., invocation
between pair of services). Such monitoring facilities are
widely implemented through the wire tap and the message
store patterns described by Hohpe et al. [5]. Other tools,
such as HP OpenView SOA Manager3, allow the exploration
of the dependencies, but they must explicitly be specified by
the user [1].

In this paper, we propose (1) an adaptation of our
approach based on vector clocks [14] to extract dynamic
dependencies among web services deployed in an enterprise;
(2) a non-intrusive, easy-to-implement and portable imple-
mentation and (3) an analysis of the impact of our approach
on the performance.

Vector clocks have originally been conceived and used to
order events in a distributed environment [8], [4]. We bring
this technique to the domain of service oriented systems by
attaching the vector clocks to SOAP messages and use them
to order service executions and to infer causal dependencies.

The approach has been implemented into the Apache
CXF4 framework taking advantage of the Pipes and Filters
pattern [5]. Since this pattern is widely used in the most
popular web service frameworks and Enterprise Service
Buses, the approach can be implemented on other SOA
platforms (e.g., Apache Axis25 and Mule ESB) in a similar
manner.

To analyze the impact of the approach on the performance
of a system we investigate how the approach affects the
response time of services. The results show a slight increase
due to the increasing message size and the instrumented
Apache CXF framework. To determine the impact on real
systems a repository of 41 industrial systems is examined.
Given the amount of services typically deployed within this
industrial systems we do not expect a significant increase of
the response time when using our approach.

This paper is structured as follows. In Section II we
present the main applications of the proposed approach. In

1http://www.mulesoft.org/
2http://servicemix.apache.org/
3http://h20229.www2.hp.com/products/soa/
4http://cxf.apache.org/
5http://axis.apache.org/

SERG Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks

TUD-SERG-2011-034 1

Section III we report the related work. In Section IV we
describe the context in which we plan to apply our study.
In Section V we describe our approach to extract dynamic
dependencies among web services. In Section VI we propose
an implementation of our approach. In Section VII we report
the first experiments and the obtained results. Finally, we
conclude the paper and present the future work in Section
VIII.

II. APPLICATIONS

In this section we discuss the main applications of our
approach that we plan to perform in future work.

A. Quality attributes measurement

Our approach can be used to build up dynamic depen-
dency graphs. These graphs are commonly weighted, where
the weights indicate the number of times a particular service
is invoked or a particular execution path is traversed. The
information contained in these graphs can help software
engineers to measure important quality attributes (e.g., an-
alyzability and changeability) for measuring maintainability
of the system under analysis.

For instance Perepletchikov et al. defined several cohesion
and coupling metrics to estimate the maintainability and
analyzability of service oriented systems [10], [11], [12],
[9]. In our previous work [13], we found an interesting
correlation between the number of changes in Java interfaces
and the external cohesion metric defined by Perepletchikov
et al. With our approach to extract dynamic dependencies
among services we plan to perform similar studies to validate
and improve those metrics by analyzing service oriented
systems. More in general, our dynamic dependency analysis
is a starting point to study the interactions among services in
industrial service oriented systems and to define anti-patterns
that can affect the quality attributes required by a SOA.

B. Change Impact Analysis

Besides the measurement of quality attributes our ap-
proach can be used to perform Change Impact Analyses (IA)
on service oriented systems. Bohner et al. [15], [2] defined
the IA as the identification of potential consequences of a
change, or the assessment of what needs to be modified
to accomplish a change. They defined two techniques to
perform IA, namely Traceability and Dependency.

Wang et al. [16] defined an IA approach for service
oriented systems based on a service dependency graph.
Our approach fits in with their work by adding a dynamic
dependency graph.

III. RELATED WORK

The most recent work on mining dynamic dependencies
in service oriented systems has been developed by Basu et
al. [1] in 2008. Basu et al. infer the causal dependencies
through three dependencies identification algorithm, respec-
tively based on the analysis of 1) occurrence frequency of

logged message pairs, 2) distribution of service execution
time and 3) histogram of execution time differences. This
approach does not require the instrumentation of the system
infrastructure. However, it is based on probabilities and there
is still the need for properly setting the parameters of their
algorithms to reach a good accuracy.

In 2006, Briand et al. [3] proposed a methodology and an
instrumentation infrastructure aimed at reverse engineering
of UML sequence diagrams from dynamic analysis of dis-
tributed Java systems. Their approach is based on a complete
instrumentation of the systems under analysis which in turn
requires a complete knowledge of the system.

Hrischuk et al. [6] provided a series of requirements
to reverse engineer scenarios from traces in a distributed
system. However, besides the requirements, this work does
not provide any approach to extract dependencies in a
service oriented system.

As can be deduced from the overview of related work
there currently does not exist any accurate approach for
inferring the dependencies amongst services. In this paper,
we present such an approach based on the concept of vector
clocks.

IV. STUDY CONTEXT

In this section we describe the context in which we plan to
apply our study. The perspective is that of a quality engineer
who wants to extract the dynamic dependencies among
services within the boundaries of an enterprise. We refer to
dependencies as message dependencies, according to which
two services are dependent if they exchange messages. We
furthemore refer to web services as services which are
compliant to the following XML-standards:

• WSDL6 (Web Services Description Language) which
describes the service interfaces.

• SOAP7 (Simple Object Access Protocol) widely
adopted as a simple, robust and extensible XML-based
protocol for the exchange of messages among web
services.

Finally, we assume that the enterprise provides an UDDI8

(Universal Description, Discovery, and Integration) registry
to allow for the publication of services and the search for
services that meet particular requirements.

Our sample enterprise is composed of several departments
(a sample enterprise with two departments is shown in
Figure 1). Each department exposes some functionality as
web services that can be invoked by web services deployed
in other departments. Services deployed within the bound-
aries of the enterprise are called internal services. Services
deployed outside the boundaries of the enterprise are called
external services.

6http://www.w3.org/TR/wsdl
7http://www.w3.org/TR/soap/
8http://uddi.xml.org/

Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks SERG

2 TUD-SERG-2011-034

Figure 1. A sample enterprise with web services deployed in two
departments

We assume that hosts within the departments publish web
services through an application server (e.g., JBoss AS9 or
Apache Tomcat10) and web service engines (e.g., Apache
Axis2 or Apache CXF).

V. APPROACH

Our approach to extract dynamic dependencies among
web services is based on the concept of vector clocks. In this
section, we first provide a background on vector clocks after
which we present our approach to order service executions
and to infer dynamic dependencies among web services.

A. Vector Clocks

Ordering events in a distributed system, such as a service
oriented system, is challenging since the physical clock
of different hosts may not be perfectly synchronized. The
logical clocks were introduced to deal with this problem.
The first algorithm relying on logical clocks was proposed
by Lamport [7]. This algorithm is used to provide a partial
ordering of events, where the term partial reflects the fact
that not every pair of events needs to be related. Lamport
formulated the happens-before relation as a binary relation
over a set of events which is reflexive, antisymmetric and
transitive.

Lamport’s work is a starting point for the more advanced
vector clocks defined by Fidge and Mattern in 1988 [4],
[8]. Like the logical clocks, they have been widely used
for generating a partial ordering of events in a distributed

9http://www.jboss.org/jbossas/
10http://tomcat.apache.org/

system. Given a system composed by N processes, a vector
clock is defined as a vector of N logical clocks, where the ith

clock is associated to the ith process. Initially all the clocks
are set to zero. Every time a process sends a message, it
increments its own logical clock, and it attaches the vector
clock to the message. When a process receives a message,
first it increments its own logical clock and then it updates
the entire vector clock. The updating is achieved by setting
the value of each logical clock in the vector to the maximum
of the current value and the values contained by the vector
received with the message.

B. Inferring dependencies among web services

We conceive a vector clock (VC) as a vector/array of pairs
(s,n), where s is the service id and n is number of times
the service s is invoked. When an instance of the service
s receives an execution request the vector clock is updated
according to the following rules:

• if the request does not contain a vector clock (e.g., a
request from outside the system), the vector clock is
created, and the pair (s,1) is added to it;

• if the request contains a vector clock and a pair with
service id s is already contained in the vector clock, the
value of n is incremented by one; if not, the pair (s,1)
is added to the vector.

Once the vector clock is updated, its value is associated to
the execution of service s and we label it VC(s). The vector
clock is then stored in a database.

Whenever an instance of the service s sends an execution
request to another service x, then the following actions are
performed:

• if the service x is an internal service, then the vector
clock is attached to the outgoing message;

• if the service x is an external service, the pair (x,1)
is added to the vector clock and the vector clock is
stored in the database but not attached to the outgoing
message.

From the set of vector clocks stored in the database, we
can infer the causal order of the service executions. Given
the vector clocks associated to the execution of the service
i and the service j, VC(i) and VC(j), we can state that the
execution of service i causes the execution of service j, if
VC(i) <VC(j), according to the following equation:

V C(i) < V C(j) , 8x [V C(i)x  V C(j)x]

^9x0 [V C(i)x0 < V C(j)x0] (1)

where VC(i)x denotes the value for n in the pair (x,n) of
the vector clock VC(i). In other words, the execution of a
service i causes the execution of a service j, if and only if
all the pairs contained in the vector VC(i) have values for n
that are less or equal to the corresponding values for n in
VC(j), and at least one value for n is smaller.

SERG Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks

TUD-SERG-2011-034 3

Figure 2. Example of a service oriented system to open a bank account

If all the corresponding pairs of the two vector clocks
VC(i) and VC(j) contain the same values for n except one
corresponding pair whose values for n differ exactly by 1,
we state that there is a direct dependency (i.e., a direct call)
between service i and service j.

If a pair with id s is missing in the vector the value for n
is considered to be 0.

Finally, to infer the dynamic dependencies among ser-
vices, it is necessary to apply the binary relation in (1)
among each pair of vector clocks whose values are stored
in the database.

C. Working Example

Consider the example system from Figure 2 composed
by six services inside the enterprise boundary, one external
service and one client which triggers the execution. The
system provides the services to open an account in a banking
system.

In this example, the client interested in creating an account
needs to invoke the service OpenAccount. This service
invokes the services GetUserInfo, Deposit and RequestCred-
itCard. These services invoke the service WriteDB to access
a database. WriteDB first writes in a database and then, if its
invocation has been triggered by RequestCreditCard, invokes
NotifyUser which performs actions to notify the user. The
external service TaxAuthority is invoked by GetUserInfo to
inquire fiscal information about the user.

The execution flow resulting from the invocation of the
service OpenAccount is shown as a UML sequence diagram
in Figure 3. The arrows in the diagram are labeled with
the vector clocks associated to the execution of the invoked
service. Vector clocks with superscripts mark vector clocks

associated to different instances of the same service. When
the OpenAccount (OA) service is invoked, there is no vector
clock attached to the message, since the invocation request
comes from outside (i.e., Client). Hence, a new vector
clock (VC(OA)) is created with the single pair (OA,1) and
it is stored in the database. Then the execution of the
service OpenAccount triggers the execution of the service
GetUserInfo (GUI). When this service is invoked, a new pair
(GUI,1) is added to the vector clock, obtaining the new clock
VC(GUI)=[(OA,1),(GUI,1)] that is stored in the database.

When the service GetUserInfo (GUI) invokes the ex-
ternal service TaxAuthority (TA) the vector clock is set
to VC(TA)=[(OA,1),(GUI,1),(TA,1)] and is stored in the
database. In this way we can infer dependencies to external
services. Since TaxAuthority (TA) is an external service and
we do not have control of external services the vector clock
is not attached to this message.

Consider the execution of the service WriteDB (WDB),
and assume we want to infer all the services that depend
on it. Since we have multiple invocations of the service
WriteDB in the execution flow, the dependent services are
all the services x whose vector clocks VC(x) satisfy the
following boolean expression:

V C(x) < V C(WDB)0 _ V C(x) < V C(WDB)00_
_V C(x) < V C(WDB)000

These services are OpenAccount, GetUserInfo, Deposit and
RequestCreditCard (see Figure 3).

If we want to infer all the services that WriteDB depends
on, we look for all the services x whose vector clock VC(x)
satisfy the following boolean expression:

V C(x) > V C(WDB)0 _ V C(x) > V C(WDB)00_
_V C(x) > V C(WDB)000

The sole service which WriteDB depends on is Noti-
fyUser.

Consider the execution of the service OpenAccount (OA),
and assume we want to infer the services that OpenAccount
depends on directly. Those services are the services GetUser-
Info(GUI), Deposit(D) and RequestCreditCard(RCC). Their
vector clocks (VC(GUI), VC(D) and VC(RCC)) contain only
one pair (respectively (GUI,1), (D,1) and (RCC,1)) with a
value for n that is larger exactly by 1 than the corresponding
values in the vector clock VC(OA). Among the services
OA and WDB there are no direct dependencies because the
vector clocks corresponding to the execution of WDB contain
two pairs with different values for n.

The values for n from the example in Figure 3 are
all equal to 1. However, they are needed to detect the
presence of cycles along the execution flows. Assume that
the NotifyUser service invokes the WriteDB service in-
troducing a cycle. In this case the vector clock associ-
ated to the second invocation of the service WriteDB is
VC(WDB)=[(OA,1),(RCC,1),(WDB,2),(NU,1)].

Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks SERG

4 TUD-SERG-2011-034

/OpenAccount (OA)
<<internal>>

/GetUserInfo (GUI)
<<internal>>

/TaxAuthority (TA)
<<external>>

/Deposit (D)
<<internal>>

/RequestCreditCard (RCC)
<<internal>>

/WriteDB (WDB)
<<internal>>

/NotifyUser (NU)
<<internal>>

/Client
<<external>>

VC(OA)=[(OA,1)]
VC(GUI)=[(OA,1),(GUI,1)]

VC(TA)=[(OA,1),(GUI,1),(TA,1)]

9&�:'%�· >�2$�����*8,�����:'%���@

VC(D)=[(OA,1),(D,1)]

VC(RCC)=[(OA,1),(RCC,1)]

9&�:'%�·· >�2$�����'�����:'%���@

9&�:'%�··· >�2$�����5&&�����:'%���@ VC(NU)=[(OA,1),(RCC,1),
 (WDB,1),(NU,1)]

Figure 3. Sequence diagram for opening a bank account. The arrows in the diagram are labeled with the vector clocks associated to the execution of the
invoked service.

VI. IMPLEMENTATION

The implementation of the proposed approach should be
non-intrusive, easy-to-implement and portable to different
SOA platforms. Only if these properties hold we can be sure
that the approach can be adapted in an industry setting. In
this section we propose an implementation that meets these
requirements.

The implementation requires three steps. First, the mes-
sages need to be instrumented to attach the vector clock data
structure. Next, we need a technique to capture the incoming
messages in order to retrieve the vector clock, update it and
store its value in the database. Finally the outgoing messages
have to be captured to attach the updated vector clock to
them.

To instrument the messages we use the SOAP header
element. This element is meant to contain additional infor-
mation (e.g., authentication information) not directly related
to the particular message.

For example, after attaching the vector clock to the
message sent from the service GetUserInfo to the service
WriteDB (see Figure 3), the message contains the following
header:

<s o a p : E n v e l o p e>
<s o a p : H e a d e r>

<v c : V e c t o r C l o c k>
<v c : p a i r>

<v c : s>OpenAccount< / v c : s>
<v c : n>1< / v c : n>

< / v c : p a i r>
<v c : p a i r>

<v c : s>G e t U s e r I n f o< / v c : s>
<v c : n>1< / v c : n>

< / v c : p a i r>
< / v c : V e c t o r C l o c k>

< / s o a p : H e a d e r>
. . .

< / s o a p : E n v e l o p e>

Concerning the interception of the incoming and outgoing
messages, we adopted a technique that relies on the Pipes
and Filters [5] architectural pattern. The Pipes and Filters
pattern allows to divide a larger processing task into a
sequence of smaller, independent processing steps, called
Filters, that are connected by channels, called Pipes. This
pattern is widely adopted to process incoming and outgoing
messages in web service engines and frameworks such as
Apache Axis2 and Apache CXF.

Those frameworks use Filters to implement the message
processing tasks (e.g., messages marshaling and unmarshal-
ing) and they allow the developers to easily extend the chains
of Filters to further process messages. Since this pattern is
widely used, even by the Enterprise Service Bus platforms
(e.g., MuleESB), we decided to use this pattern to implement
the logic needed to retrieve, update, store and forward the
vector clocks.

Instrumenting the services would be an alternative imple-
mentation approach. However, instrumentation is risky since
it modifies the implementation and can introduce bugs. To
implement our approach we use the Apache CXF service
framework. In Apache CXF the filters are called intercep-
tors. Figure 4 shows the chains of interceptors between
an Apache CXF Deployed Service and an Apache CXF
Developed Consumer.

When the consumer invokes a remote service, the Apache
CXF runtime creates an outbound chain (Out Chain) to
process the request. If the invocation starts a two-way
message exchange, the runtime creates an inbound chain to
process the response (omitted in Figure 4).

When a service receives a request from a consumer,
a similar process takes place. The Apache CXF runtime
creates an inbound interceptor chain (In Chain) to process
the request. If the request is part of a two-way message
exchange, the runtime also creates an outbound interceptor
chain (omitted in Figure 4).

SERG Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks

TUD-SERG-2011-034 5

Figure 4. The chains containing our vector clock interceptors between a
Apache CXF Deployed Service and a Apache CXF Developed Consumer

In this implementation we add two interceptors. We add
VectorClockInInterceptor in the In Chain to update/create
the vector clock value and store it in the database. In the
Out Chain we added the VectorClockOutInterceptor to attach
the vector clock to the outgoing message, or to update and
store the vector clock in the case of invocations to external
services.

Those interceptors can be added dynamically to the chain
of interceptors. This feature allows us to use our approach
without re-deploying the system under analysis.

VII. EXPERIMENT

To investigate the impact of our approach on the service
response time we designed and executed two experiments.
The response time of a system can increase because the
approach introduces two variables. First, we introduced two
new filters in the Pipes and Filters pattern and the Apache
CXF runtime is loaded with additional message processing
tasks. Secondly, we introduced a new header element in the
SOAP messages to attach the vector clock which increases
the size of the messages passed between services.

We performed two experiments in which we measure
the impact of the instrumented Apache CXF framework
(Experiment 1) and the impact of the increasing size of the
messages (Experiment 2) on the response time.

To perform our experiments the Apache CXF framework
2.4.1 is instrumented as described in the previous section.
Tomcat 7.0.19 is used as an application server and Hibernate
3 as Java persistence framework. On the hardware part
two platforms are connected through a 100 Mbit/s Ethernet
connection:

• Platform 1: MacBook pro 6.2 , processor 2.66 GHz
Intel Core i7, memory 4 GB DDR3, Mac OS 10.6.5.

• Platform 2: MacBook pro 7.1 , processor 2.4 GHz Intel
Core 2 Duo, memory 4 GB DDR3, Mac OS 10.6.4.

Each platform uses a MySQL 5.1.53 (Community Edition)
database to store the vector clocks values for subsequent de-
pendencies extraction. Execution times are measured using
the Java timer method, System.currentTime(). This method
returns the current value of the most precise available system
timer, in milliseconds (ms).

A. Experiment 1

In the first experiment we investigate the impact of the
instrumented version of the Apache CXF framework on
the response time. We implemented the example shown in
Figure 2 deploying the services within the boundary on
Platform 1 and the external service on Platform 2. We
deployed the services within the system in one platform
to achieve more accurate timing and eliminate the network
overhead, which is not relevant for this experiment. More-
over the implementation of each service contains only the
logic needed to invoke other services. We measured the
response time of the service OpenAccount in three different
scenarios:

• NoClock: we executed the system without our vector
clock approach.

• Clock: we executed the system with our vector clock
approach.

• ClockNoDB: we executed the system with our vector
clock approach without storing the vector clocks values
in the database.

For each scenario we executed the system 1000 times to
minimize the influence of the operating system activities.
Figure 5 shows the box plots of the response time measured
for the three different scenarios while the following table
shows median and average values in milliseconds.

Scenario Median (ms) Average (ms)
NoClock 116.6 108
ClockNoDB 249.4 226
Clock 286.4 275

The results show that on average the difference among the
response time is 167 ms between the scenarios with and
without vector clocks. The overhead due to the storage in
the database using Hibernate 3 is on average 49 ms.

The difference measured is relevant, but it is relative to a
system which involves the execution of 7 services without
any business logic. The impact of our approach can be lower

Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks SERG

6 TUD-SERG-2011-034

NoClockClockNoDBClock

Re
sp

on
se

 T
im

e
(m

s)
300.00

250.00

200.00

150.00

100.00

Figure 5. Box plots of the response time in milliseconds obtained for the
Experiment 1

in real systems since the increase in milliseconds introduced
by the instrumented Apache CXF framework is expected
to be a small percentage of the total response time when
additional logic is also executed.

B. Experiment 2

In the second experiment we investigate the impact of
the increasing message size on the response time. We
implemented the system shown in Figure 6. The system is
composed of 12 web services that we labeled from 1 to 12.
Each web service Servicei invokes the Servicei+1, except the
last service Service12. The invocations among services are
synchronous. To take into account the network overhead we
deployed the Servicei on the Platform 1 if i is an odd number
and on Platform 2 if it is even. Similarly to Experiment 1
the services’ implementations do not contain any business
logic except the logic needed to invoke the other service.

Figure 6. System deployed to perform the Experiment 2

We measure the response time of the service Service1
while increasing the vector clock size from 1 to 2000 pairs.
The vector clock is added to the message sent to Service1
that forwards the message to Service2 until the last service of
the execution flow is reached. For each vector clock size, this
scenario is executed 1000 times to minimize the influence
of the operating system activities. The vector clocks are not
stored to the database in order to achieve more accurate time
measures.

Figure 7. Average and median response time in milliseconds when
increasing the vector clock size for experiment 2

Figure 7 shows the median and average of the measured
response times for each vector clock size. As shown by the
plot the increasing size of the messages has a relevant impact
on the response time. Basically, the more unique services are
invoked along the execution flow the higher the response
time.

C. Summary of the results

Our experiments measured the impact of the approach
on the response time. This impact is mainly due to the
increasing size of the SOAP messages. The instrumentation
of the CXF framework can be a minor issue for real systems.

In order to validate whether the increase in message-
size is not problematic in practice, we counted the number
of services and operations in a set of industrial systems
which use web services. These industrial systems have been
previously analyzed by the Software Improvement Group11

and cover a wide range of domains. The following table
reports the frequencies of the number of operations and the
number of services within these systems:

#Services #Systems #Operations #Systems
1-10 31 1-10 13

11-100 6 11-100 17
101-201 4 101-500 9

> 501 2

According to these results, applying our approach to
extract dependencies in the biggest system (composed of 201
services) in our repository would lead to an increase of the
response time of 140 ms in the worst case. This difference
is significant for a system without any business logic, but
we believe it is only a small percentage of the response time
in real systems. In our future work we plan to investigate
the impact of our approach in a subset of those systems.

11http://www.sig.eu

SERG Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks

TUD-SERG-2011-034 7

VIII. CONCLUSION & FUTURE WORK

In this paper, we presented a novel approach to extract
dynamic dependencies among services using the concept of
vector clocks. They allow the reconstruction of an accurate
dynamic dependency graph from the execution of a service
oriented system.

We implemented our approach into the Apache CXF
framework using the Pipes and Filters pattern. This pattern
makes our approach portable to a wide range of SOA
platforms, such as Mule ESB and Apache Axis2.

The information retrievable with our approach is of great
interest for both researchers and developers of service-
oriented systems. Amongst others, the dependencies can be
used to study service usage patterns and anti-patterns. In
addition, the information can be used to identify the potential
consequences of a change or a failure in a service, also
known in literature as change and failure impact analysis.

As future work, we plan to apply our approach to extract
dependencies in both open-source and industrial systems.
The extracted graphs allows us to measure important quality
attributes of the systems under analysis, such as changeabil-
ity, maintainability and analyzability.

Moreover, we plan to further investigate the impact of our
approach on the response time of industrial systems. If the
impact is significant, we plan to improve our approach to
minimize the introduced overhead.

ACKNOWLEDGMENT

This work has been partially funded by the NWO-
Jacquard program within the ReSOS project.

REFERENCES

[1] S. Basu, F. Casati, and F. Daniel. Toward web service depen-
dency discovery for soa management. In Proceedings of the
2008 IEEE International Conference on Services Computing
- Volume 2, pages 422–429, Washington, DC, USA, 2008.
IEEE Computer Society.

[2] S. A. Bohner. Software change impacts - an evolving
perspective. In ICSM, pages 263–272, 2002.

[3] L. C. Briand, Y. Labiche, and J. Leduc. Toward the reverse
engineering of uml sequence diagrams for distributed java
software. IEEE Trans. Softw. Eng., 32:642–663, September
2006.

[4] C. J. Fidge. Timestamps in message-passing systems that pre-
serve partial ordering. In Proceedings of the 11th Australian
Computer Science Conference, pages 56–66, 1988.

[5] G. Hohpe and B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[6] C. E. Hrischuk and C. M. Woodside. Logical clock require-
ments for reverse engineering scenarios from a distributed
system. IEEE Trans. Softw. Eng., 28:321–339, April 2002.

[7] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[8] F. Mattern. Virtual time and global states of distributed
systems. In Parallel and Distributed Algorithms, pages 215–
226. North-Holland, 1989.

[9] M. Perepletchikov and C. Ryan. The impact of service
cohesion on the analyzability of service-oriented software.
IEEE T. on Software Engineering, 37(4):449–465, 2011.

[10] M. Perepletchikov, C. Ryan, and K. Frampton. Towards the
definition and validation of coupling metrics for predicting
maintainability in service-oriented designs. In OTM Work-
shops (1), pages 34–35, 2006.

[11] M. Perepletchikov, C. Ryan, and K. Frampton. Cohesion
metrics for predicting maintainability of service-oriented soft-
ware. In QSIC, pages 328–335, 2007.

[12] M. Perepletchikov, C. Ryan, and Z. Tari. The impact of
service cohesion on the analyzability of service-oriented
software. IEEE T. Services Computing, 3(2):89–103, 2010.

[13] D. Romano and M. Pinzger. Using source code metrics to
predict change-prone java interfaces. In Proceedings of the
2011 27th International Conference on Software Maintenance
[To appear], 2011.

[14] D. Romano and M. Pinzger. Using vector clocks to monitor
dependencies among services at runtime. In Proceedings of
the International Workshop on Quality Assurance for Service-
Based Applications, QASBA ’11, pages 1–4, 2011.

[15] R. A. Shawn A. Bohner. Software change impact analysis.
IEEE Computer Society Press, 1996.

[16] S. Wang and M. A. M. Capretz. A dependency impact
analysis model for web services evolution. In Proceedings
of the 2009 IEEE International Conference on Web Services,
ICWS ’09, pages 359–365, Washington, DC, USA, 2009.
IEEE Computer Society.

Romano , Pinzger & Bouwers – Extracting Dynamic Dependencies between Web Services Using Vector Clocks SERG

8 TUD-SERG-2011-034

TUD-SERG-2011-034
ISSN 1872-5392 SERG

