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Abstract

Introduction

Pulmonary exacerbations are critical events in paediatric patients with asthma or cystic fibrosis
(CF). These exacerbation events are often associated with sudden health deterioration and in-
creased healthcare burden. The early prediction of exacerbations events could allow for timely
interventions, and thus improved patient outcomes. This thesis attempted to develop a ma-
chine learning (ML) model to predict pulmonary exacerbations before they occur in a paediatric
population using remote patient monitoring (RPM) data.

Methods

Aretrospective study was conducted using continuous data from wearable devices, daily spirom-
etry, environmental data, and patient-reported outcomes. Predictions were focused on the oc-
currence of an exacerbation within three prediction windows (1-day, 3-day, and 7-day). Two
ML approaches were considered: anomaly detection (using Gaussian mixture model, Isolation
forest, One-class-SVM, and Local outlier factor), and classification models (Logistic regression,
Random forest), using 5-fold nested cross-validation. Time-related transformations were per-
formed to capture the temporal dependency of time-series data, including the feature engineer-
ing of clinical features related to heart rate and physical activity.

Results

A total of 2407 home monitoring days of 90 paediatric patients, with 10 observed exacerba-
tion events were included in the analysis. All models struggled to achieve high predictive value,
with PR-AUC values below 0.20 and ROC-AUC values ranging from 0.43 to 0.72 across different
time windows. No single model consistently outperformed the others. Despite the low perfor-
mance, the models demonstrated better than random prediction for secondary outcomes, such
as weekends and holidays, suggesting the ability to capture patterns in the data.

Conclusion

This thesis shows the potential and limitations of using ML techniques for predicting pulmonary
exacerbations using RPM data. The current anomaly detection and classification model perfor-
mances are insufficient for clinical application. The low incidence of exacerbation events and
the limitations in data quality contribute to these results. These findings point to the need for
further refinement and more robust datasets to fully realise the potential of ML in the context of
predicting pulmonary exacerbations.
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Nomenclature

Abbreviation Definition

ACD-6 Asthma Control Diary, six-question version
ACQ Asthma Control Questionnaire

AUC Area Under the Curve

BMI Body Mass Index

CF Cystic Fibrosis

CFQ-R Cystic Fibrosis Questionnaire-Revised
Ccv Cross-Validation

FEV1 Forced Expiratory Volume in 1 second
FPR False Positive Rate

FVC Forced Vital Capacity

GMM Gaussian Mixture Model

ICS Inhaled Corticosteroids

KNN k-Nearest Neighbors

LABA Long-Acting B-Agonist

LOF Local Outlier Factor

LR Logistic Regression

LSTMs Long Short-Term Memory networks
ML Machine Learning

nCVv Nested Cross-Validation

0OC-SVM One-Class Support Vector Machine
PAQLQ Paediatric Asthma Quality of Life Questionnaire
PCA Principal Component Analysis

PEF Peak Expiratory Flow

PR-AUC Precision-Recall Area Under the Curve
PedsQL Pediatric Quality of Life Inventory
RNN Recurrent Neural Networks

ROC-AUC Receiver Operating Characteristic Area Under the Curve
RPM Remote Patient Monitoring

SHAP SHapley Additive exPlanations

SVM Support Vector Machine
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Introduction

1.1. Asthma and cystic fibrosis

Asthma and cystic fibrosis (CF) are prevalent chronic pulmonary diseases in the paediatric pop-
ulation. In 2021, approximately 7% of the children in the Netherlands between ages 7 and 20
were experiencing asthma, with an even larger prevalence observed in younger children [1]. Pae-
diatric asthma is characterised by chronic airway inflammation with variable expiratory airflow
obstruction [2, 3]. Common symptoms of asthma include coughing, wheezing, dyspnea, chest
tightness triggered by physical activity, respiratory infection, and allergies, which influence the
patient’s quality of life.

It is understood that asthma is a multifactorial disease, caused by many environmental factors
such as exposure to allergens, air pollutants, irritants, and cigarette smoke, and by genetic fac-
tors. Studies with twins have shown that asthma has a strong genetic component and tends to
runin families [4]. Asthma onset can occur at any point in life, and some children who experience
asthma during childhood will continue to have the condition into adulthood [3]. According to the
most recent CF registration of 2022, a total of 548 children are currently receiving treatment in
Dutch children’s centers [5].

Paediatric cystic fibrosis is one of the most frequently diagnosed hereditary diseases in the
Western population, affecting different organs such as the lungs, intestine, and pancreas [6, 7].
The prevalence of CF varies worldwide, but Europe is amongst the continents with the highest
prevalence [7]. A large spectrum of clinical presentation of CF is present, including lung disease,
pancreatic disease, liver disease, chronic pansinusitis, nasal polyposis, and elevated salt levels
in sweat gland secretion. CF itself is caused by mutations in a gene called cystic fibrosis trans-
membrane conductance regulator (CFTR) [7, 8]. There have currently been over 2000 distinct
mutations identified as the cause of the disease. These CFTR mutations have varying effects
on CFTR protein synthesis, functionality, and stability at the cell membrane.
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Asthma is mainly caused by genetic and environmental factors that result in persistent inflam-
mation of the airways, while cystic fibrosis (CF) is a hereditary condition that affects several or-
gans because of faulty CFTR proteins. Despite this, their clinical presentations are comparable.
For instance, cough, dyspnea, and exacerbations are pulmonary symptoms that are common
to both diseases.

1.2. Pulmonary exacerbations

Pulmonary exacerbations are episodes of acute worsening of respiratory symptoms from the
patient’s baseline, requiring additional treatment or hospitalisation [9, 10]. Common triggers for
exacerbations in children include (viral) upper airway infections [11] or environmental exposures
[12]. These exacerbations can affect lung disease progression and the quality of life of children
and their families. Exacerbations can result in the children and their parents missing school and
work days; limit the child’s physical and social activities; require additional health-related costs;
and lead to emergency department visits or hospital admissions [13—-15].

There is currently no universally accepted definition for pulmonary exacerbations [16]. Pul-
monary exacerbations are patient-specific and they are often presented by a variety of symp-
toms such as increased cough, dyspnea, increased sputum production, deterioration of lung
function parameters, weight loss, and decreased energy level and appetite [17, 18]. Despite this
lack of a clear definition, the general agreement is that exacerbations are (sub)acute deteriora-
tions in symptom control, sufficient to cause risk to health, and require a change in treatment
[19].

The management of chronic pulmonary diseases focuses on the importance of maintaining
symptom control and reducing the risk of future exacerbations through monitoring and risk as-
sessment [2, 7]. Symptoms can be reduced using treatments such as anti-inflammatory drugs,
bronchodilators, and biologicals, along with non-pharmacological measures such as environ-
mental control and patient education. Children, however, may find it more difficult to recognise
symptoms of exacerbation and address it to their parents. This difficulty in recognising and
managing symptoms can lead to delays in seeking appropriate medical help [20]. Therefore,
regular follow-up is needed to prevent disease deterioration and future exacerbations [21].

1.3. Remote Patient Monitoring

Remote patient monitoring (RPM) is a form of telehealth that uses technology to monitor pa-
tients’ health status outside of the hospital setting [22]. RPM has been a rapidly growing indus-
try over the past century, particularly since the COVID-19 pandemic [23, 24]. The use of RPM
offers several benefits, such as early detection of health deterioration, which leads to timely
interventions, improved patient outcomes, and reduced healthcare costs [25].

The introduction of personal smart devices has allowed for real-time monitoring of physiologic
parameters such as heart rate, activity levels, oxygen saturation, respiratory rate, sleep patterns,
and GPS location [26—-28]. For pulmonary diseases, such devices may provide valuable insight
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into disease control at home and the risk of exacerbations. Although existing literature regarding
monitoring technologies in asthma or CF is heterogeneous, these tools have shown promising
results for RPM in paediatric care [29].

In particular, studies with wearables have shown the potential to predict exacerbations [30-32].
These tools are passive monitoring tools that collect patient data with minimum active user en-
gagement. Therefore, wearables may reduce the impact of exacerbations through early recog-
nition of symptoms and timely treatment. As large amount of data is gathered through RPM, it
is common to utilise machine learning (ML) techniques to develop their prediction models [33].
ML algorithms analyse large data sets collected from wearables to identify patterns and corre-
lations that might not be evident from traditional statistical methods. By training these models
on historical data, they can learn to predict future exacerbations based on subtle changes in
monitored parameters.

Although these potential benefits are extremely valuable, RPM evidence and its use for pae-
diatric pulmonary disease management are still in their early stages. Many studies focus on
assessing the relation of home-monitoring parameters with varying indices (such as symp-
tom scores, wheezing, and exacerbations). However, existing research seems to lack multi-
parameter RPM methods combined with ML for predicting future exacerbations in pediatric
healthcare. [34]

1.4. Thesis objective

This thesis focuses on the development of a machine learning algorithm to predict pulmonary
exacerbations in children with asthma or cystic fibrosis within 7 days of onset, based on re-
mote patient monitoring data. A secondary aim of this study was to predict additional outcome
measures, such as the heightened symptom days of patients with asthma and cystic fibrosis
indicated by the clinical questionnaire scores, using the home monitoring dataset.



Data collection and preparation

2.1. Study population

For this thesis, a retrospective study was conducted with data acquired from a clinical validation
study with paediatric patients aged 616 years diagnosed with either asthma or CF [35]. The
clinical study aimed at the clinical validation of smartwatch biomarkers (physical activity, heart
rate, and sleep) and portable spirometer biomarkers (FEV1; forced expiratory volume in 1 sec-
ond and FVC; forced vital capacity) in children with asthma and CF. Patients in this study were
recruited from the outpatient clinic at the Juliana Children’s Hospital (Haga Teaching Hospital,
The Hague, The Netherlands) and Sophia Children's Hospital (Erasmus Medical Centre, Rotter-
dam, The Netherlands), and the study was conducted between November 2018 and February
2020. The diagnosis of asthma was based on clinical symptoms combined with pulmonary
function tests (PFTs), and the diagnosis of CF was confirmed using genetic tests.

2.2. Data acquisition

The data from asthma and CF patients was collected using various digital devices, comprising
a combination of wearable, spirometry, environmental, and clinical questionnaire data. All pa-
tients were monitored over a total duration of 28 days, and an overview of all available features
of the dataset is shown in Table 2.1

Each patient wore a Steel HR smartwatch, which continuously measured the physical activity
(amount of steps taken) through an accelerometer and the heart rate via a photoplethysmogra-
phy sensor. Several sleep-related parameters were also calculated automatically by the smart-
watch, such as the average heart rate during sleep and the wake-up count. Furthermore, patients
performed daily home-based spirometry using the Air Next spirometry device. This spirometer
measured the FEV1, FVC, and peak expiratory flow (PEF).

Clinical characteristics were collected through questionnaires. Daily questionnaires included

4
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the six-question Asthma Control Diary (ACD-6) for asthma patients and a daily respiratory symp-
tom questionnaire for CF patients. For the clinical baseline characteristics, parents filled out the
Pediatric Quality of Life Inventory (PedsQL 4.0) questionnaire, children with asthma the Asthma
Control Questionnaire (ACQ) and the Paediatric Asthma Quality of Life Questionnaire (PAQLQ),
and children with CF filled out the Cystic Fibrosis Questionnaire-Revised (CFQ-R). External data
was obtained from the electronic patient files (e.g., prescribed medications) and the Royal Dutch
Meteorological Institute (e.g., amount of pollen in the air).

Table 2.1: Overview of features (n=194) in the acquired dataset. Wearable features were recorded continuously,
while spirometry, questionnaires, and environmental data were gathered daily. Baseline characteristics and specific

questionnaires (PedsQL 4.0, ACQ, PAQLQ, and CFQ-R) were assessed once at the beginning of the study. The
dataset includes patients monitored over a 28-day study period.

Features (n=194) Description
Wearable (n=69)
Daily Activity (n=29) Total number of steps over 24 hours, sorted into hourly values.

Maximum number of steps during the most active hour.
The number of steps taken between 15:00 and 19:00.

Heart rate (n=32) Average heart rate over 24 hours, sorted into hourly values.
Average, minimum, maximum HR during awake and sleep period.
5th and 95th percentile of all heart rates measured during a day.

Sleep (n=8) Awake, light, deep, total sleep duration in seconds. Sleep scores.
Number of times woken up, sleep and wake time.

Spirometry (n=13)

Lung function (n=13) Measured and predicted amount of air expired in T second (FEVT).
Measured and predicted total amount of air expired (FVC).
Calculated and predicted ratio between FEV1/FVC.

Measured and predicted peak flow (PEF).

Assessment of technique performance, graded spirometry curves.

Questionnaire (n=39)

Questionnaire (n=39) ACD-6 scores, daily respiratory symptom questionnaire scores.
PedsQL 4.0 scores, ACQ scores, PAQLQ scores, and CFQ-R scores.

Other (n=73)

Baseline characteristics (n=45) Age, gender, height, weight, BMI, school year, race, sports, pets. Age dis-
ease diagnosis, asthma family history, smoking situation. Type urbanisa-
tion, activity scores, medication use, clinical condition.

Environmental Data (n=19) Amount of pollen in air, pollutant concentrations.
Wind speed, temperature, rainfall, sunshine duration.

Miscellaneous (n=8) Subject number, school day, day type, screen time.
Day number, month, weekday, week.

Exacerbation (n=1) Onset of exacerbation (day 0).

ACD-6: six-question Asthma Control Diary; PedsQL: Pediatric Quality of Life Inventory; ACQ: Asthma Control
Questionnaire; PAQLQ: Paediatric Asthma Quality of Life Questionnaire; CFQ-R: Cystic Fibrosis
Questionnaire-Revised; BMI: body mass index.

Inthe available dataset, the continuously measured parameters (heart rate and number of steps)
were available in hourly intervals. For example, the number of steps measured between 15:00
and 16:00 or the average heart rate within the same hourly time frame. Other daily measure-
ments were either measured (e.g., best FEV1) or calculated (e.g., the average heart rate during
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sleep). There was no specification of when these daily measurements were taken.
Certain features only had one value for the entire patient monitoring period, as these were base-
line parameters composed of the patient characteristics and clinical questionnaire answers.

2.2.1. Outcome variable

For the primary analysis, the outcome variable was defined as the occurrence of an exacerba-
tion within a certain number of days. An exacerbation was defined differently for asthma and
CF. For asthma, an exacerbation was identified as worsening of symptoms requiring the use of
systemic corticosteroids to prevent a serious outcome [17]. In the case of CF, this was defined
as the need for additional antibiotic treatment due to a recent change in symptoms or decrease
in pulmonary function (=10% of predicted FEV1) [36]. To predict the occurrence of pulmonary
exacerbations within an upcoming period, various prediction windows were considered. Specif-
ically, three different prediction windows were analysed: a 1-day window, a 3-day window, and
a 7-day window. For instance, a prediction within the 3-day window would correspond to an
exacerbation occurring within the next three days. Table 2.2 provides a schematic overview of
the 1-day, 3-day, and 7-day prediction windows, indicating the period during which the model
anticipates the onset of an exacerbation.

Day -7/6|(-5(-4/-3|-2|-1/0,1|2|3|4|5|6]|7

Onset of
exacerbation

1-day window

3-day window

7-day window

Table 2.2: Three variations of the exacerbation time window (1-day, 3-day, and 7-day). The onset of an
exacerbation is considered as day 0.

2.3. Data preprocessing

2.3.1. Data exclusion

Patient days with a watch wear time below 50% between 06:00 and 22:00 were removed due to
data insufficiency. Additionally, only spirometry sessions with at least one acceptable spirom-
etry measurement (graded A-E according to the American Thoracic Society/European Respira-
tory Society criteria [37]), were included for the analysis. Given, that the dataset was comprised
of two different patient populations with their own unique features (e.g., ACQ, PAQLQ, CFQ-R,
the use of inhalation medicine for asthma, and the presence of pancreatic insufficiency in CF),
features specific to one population were excluded in the primary analysis to maintain consis-
tency. Lastly, features missing data for the entire 28-day study period for any patient were also
removed.
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2.3.2. Data transformation

All categorical features (e.g., gender, screen time) were transformed from strings into numeric
formats using scikit-learn's LabelEncoder [38] for the effective use of ML algorithms.

Patients were monitored over multiple days and their respective data was normalised and im-
puted separately. This allowed for adjustments based on each patient’s baseline and variability,
as opposed to performing these transformations across the whole dataset. By applying scikit-
learn’s StandardScaler [39], the patient data was standardised to have a mean of zero and a
standard deviation of one. Missing values in the dataset (NaN, Not a Number) were filled using
k-Nearest Neighbours (KNN) imputation [40]. A method that replaces missing values with the
average of the K-amount of nearest neighbours in the dataset.

2.3.3. Feature engineering

In order to further enhance the predictive capability of the clinical time-series data, new features
were engineered. These included clinical features related to heart rate and physical activity, as
well as time-series transformations designed to capture temporal dynamics.

Three heart rate features were developed: The first feature, the nocturnal heart rate reserve,
represents the difference between the resting heart rate and the maximum heart rate during
sleep [30]. The second feature captures the difference between measured heart rates and age-
specific normal pediatric heart rates, according to Fleming et al. [41]. This feature included the
differences of the daily average heart rate, hourly heart rates, as well as the 95th and 5th per-
centile heart rates. The third clinical feature was developed to capture the relationship between
heart rate and physical activity levels [42]. For further explanation and the specific formulas
used to derive these features, see Appendix A.1.

In addition to the clinical features, time-series transformations were performed. Rolling win-
dows were utilised to calculate statistics (mean, standard deviation, maximum, and minimum)
over a fixed time interval [43]. For example, a 7-day window aggregated data from the current
day and the six preceding days. Moreover, a lagged variable was used to account for the influ-
ence of previous time steps. This feature represented the data observed one day prior. Finally,
the first differences were calculated by measuring the change between consecutive data points.
This feature captured the shift from one day to the next.

For the prediction of pulmonary exacerbations, the following features were engineered: (a) 3-day
mean, standard deviation, maximum and minimum, (b) 5-day mean, standard deviation, max-
imum and minimum, (c) 1-day lag, and (d) first differences of the daily heart rate (awake and
during sleep), daily step rate, best measured lung function parameters, environmental parame-
ters, and the new engineered clinical features.

2.4. Model development
For model development, both anomaly detection models and classification models were used
to predict outliers indicating exacerbations. This included the Gaussian Mixture Model, Isolation
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Forest, One-Class Support Vector Machine, and Local Outlier Factor for anomaly detection, and
Logistic Regression and Random Forest for classification. All models were implemented using
the scikit-learn library.

2.4.1. Anomaly detection
The principal task of anomaly detection is to identify data samples that do not fit the overall
distribution. See Figure 2.1 for a schematic representation of the anomaly detection models.

A

v

() (b)

v
v

©) (d)

Figure 2.1: Schematic representation of the anomaly detection models: (a) Gaussian Mixture Model, (b) Isolation
Forest, (c) One-class Support Vector Machine, and (d) Local Outlier Factor.

Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a probabilistic model, that models the data as a mixture
of Gaussian distributions [44, 45]. In Figure 2.1a, each distribution represents a cluster in the
dataset, and the model is a weighted sum of these distributions. The goal is to find parameters
of distributions which describe the samples the best. The GMM calculates the probability of a
sample belonging to each cluster. Samples with a low probability belonging to any cluster are
identified as anomalies.

Isolation Forest
Isolation Forest (IF) is an anomaly detection method that isolates observations by randomly
selecting a feature and then randomly selecting a split value within the range of the maximum
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and minimum values of the selected feature [46, 47]. In Figure 2.1b, this process is represented
by decision trees, where each tree isolates a subset of the data. IF is based on the assumption
that anomalies are few and different, therefore anomalies are more susceptible to a mecha-
nism called isolation. Only a limited number of conditions are required to separate the anomaly
cases, making the isolation of anomalies easier. On the contrary, isolating normal observations
requires more conditions. An anomaly score can be calculated from the number of conditions
required to isolate a given observation. Specifically, the anomaly score is calculated based on
the path length from the root to the leaf for each observation. Anomalies tend to have shorter
path lengths and normal observations have longer path lengths.

One-Class Support Vector Machine

One-Class Support Vector Machine (SVM) aims to learn a boundary or decision function that
best separates normal data from anomalies in a transformed high-dimensional space [48]. One-
Class SVM exclusively trains on data points from the normal behavior of the data. During train-
ing, a binary function that identifies whether new data instances belong to the normal class
or anomalies is derived. This boundary is depicted in Figure 2.1¢, and is shown as a line (hy-
perplane) or a sphere (hypersphere). The algorithm separates all data instances in a feature
space from the origin, and then maximises the distance from the origin to the separating bound-
ary. The result is a function that classifies instances as normal if they are inside the separating
boundary whereas the observations outside the boundary are predicted as anomalies.

Local Outlier Factor

Local Outlier Factor (LOF) is an anomaly detection algorithm based on the concept of local
densities [49]. In Figure 2.1d, the data points are shown with surrounding circles representing
their local density. LOF measures the local deviation of density of a given sample with respect to
its neighbours. A score is assigned to the sample, which is used as a measure of the ‘deviation
degree’. The larger the deviation, the larger the LOF score. Anomalies are considered to have
relatively smaller densities and therefore have larger LOF scores.

2.4.2. Classification models

For classification models, the goal is to assign labels to unseen data samples, based on patterns
and relationships learned from the training data. See Figure 2.2 for the schematic representa-
tions of the classification models.
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tree T

@ (b)

Figure 2.2: Schematic representation of the classification models: (a) Logistic Regression and (b) Random Forest.

Logistic regression

Logistic regression (LR) is a commonly used classical statistical model, for the probability esti-
mation of a binary event occurring [50]. In Figure 2.2a, the LR model is illustrated by an S-shaped
curve, known as the Sigmoid function, which maps any input value to a probability between 0
and 1. The data points on either end of the curve represent the two possible outcomes, while the
dashed line in the middle represents the decision boundary—the threshold at which the model
decides between the two outcomes. LR is a probability-based classification algorithm, which as-
sumes a linear relationship with the logit (natural logarithm of the probabilities) of the outcome,
introducing a non-linearity in the form of the Sigmoid curve. A limitation of LR, however, is the
assumption of linearity between the dependent and independent variables [51]. This might re-
strict the level of complexity needed to adequately model certain prediction problems, in which
ML methods may lead to better results.

Random Forest

Random forest (RF) is an ensemble learning technique, which uses both bagging and decision
tree concepts [52]. The bagging method refers to generating a new dataset with replacement
from an existing dataset. This creates diverse training sets, which are used to train different
models in the ensemble. Decision trees have a flowchart-like structure, with nodes splitting
the data set into smaller subgroups based on the input feature. For the construction of the RF,
multiple decision trees (forest) are built using randomly selected training datasets and subsets
of the predictor values. Figure 2.2b depicts this concept by showing several decision trees, each
with its own unique path leading to a particular outcome. The results from each tree are then
aggregated to give a prediction for each observation.

2.4.3. Splitting and hyperparameter tuning

Cross-validation (CV) is a common method to assess the performance of ML models by optimis-
ing the split of the dataset. CV involves dividing the dataset into multiple training and validation
sets. The evaluation is repeated across multiple validation sets, to estimate the generalisation
performance of the model. However, the disadvantage of CV is its possibility of overfitting, as
the same data is used for both tuning and evaluation. To reduce this risk of overfitting, nested
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cross-validation (nCV) can be used. nCV involves an outer CV layer for model performance as-
sessment and an inner CV layer for hyperparameter tuning, reducing the possibility of bias in the
model's performance. For this study, nCV was applied with a 5-fold split and stratified group CV,
in both the inner and outer folds. This approach ensured that the data from any given subject
was only included in either the training or validation/test sets within each inner and outer CV
loop, while also maintaining the proportion of the data.

In the case of anomaly detection, novelty detection was used in combination with nCV. Novelty
detection is particularly useful for extremely imbalanced classes [53]. The objective of novelty
detection is to determine whether an instance belongs to the ‘normal’ class [54]. During the train-
ing phase, the models are only trained on normal data. In the evaluation phase, data with both

inliers and outliers are included. The model then assigns a novelty score to each instance, and
it is expected that the model assigns significantly different novelty scores to outliers compared

to inliers.

The nCV strategies for both anomaly detection and classification are visually represented in

Te:
Final novel detection model |«—(Qutliers & Inliers) |

(a)
Figure 2.3: Visual representation of the 5-fold nested cross-validation strategy for (a) novelty detection and (b)

classification. For novelty detection, the algorithm trains on only the inliers (purple), and for classification, both the
inliers and outliers are used for training. Although not explicitly represented for clarity, each fold contains data of a
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The inner layer on the nCV was used for hyperparameter tuning. The hyperparameter settings
for the different models are displayed in Appendix A.2. These settings were often combined with
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the tuning of the number of principal components for the principal component analysis (PCA).
This is an unsupervised algorithm, commonly used for dimensionality reduction, in which new
variables are computed as linear combinations of the original features [55].

The hyperparameter tuning was optimised based on maximising the area under the precision-
recall curve (PR-AUC). This performance metric was assessed over all possible threshold values,
which allowed the model to measure the trade-off between precision and recall. Therefore, the
AUC-PR is particularly useful for imbalanced class problems, as it focuses on identifying the
minority class. Moreover, the combination of hyperparameters leading to the best performance
measure was used for the outer test fold.

2.4.4. Model evaluation

In the outer folds, the trained models were finally evaluated on the test sets, which contained
new and unseen data. This cross-validation process was repeated five times resulting in five
test sets and the final performance was then composed of the average performances of the
five outer folds.

The full evaluation metrics for the test sets included the following performance measures, the
PR-curve (with PR-AUC), the receiver operating characteristic curve (ROC) including its area un-
der the curve (ROC-AUC), precision, recall (sensitivity), specificity, and the F1-score. See ap-
pendix A.3 for a comprehensive description of the performance metrics. In addition, the feature
importance scores for the random forest model were obtained, with the 20 features highest in
importance.

2.4.5. Baseline performance

The baseline comprises a synthetic normalised dataset consisting of inliers and outliers with a
similar class imbalance distribution was created. This synthetic dataset was used to establish
a baseline reference for model performance assessment. The objective was to understand the
model’s predictive capability of the anomalies, by changing the characteristics of these outliers.

The synthetic normalised dataset consisted of features with a mean of zero and a standard
deviation of one. For the calculation of the baseline performance, the mean of the anomalies
was shifted in small increments. Each mean shift represents a deviation of the anomaly data
values, with respect to the normal data values. For example, an anomaly mean shift of 2.0
corresponds to anomalies that are (on average) two standard deviations away from the mean
of the normal data. At each mean shift, the AUC-PR was evaluated and recorded. These results
were plotted and displayed as a visual change of the performance metric over a mean shift of
the anomalies.

2.5. Secondary Analysis

In addition to the primary analysis for the prediction of exacerbation days, a secondary analysis
was performed to explore additional outcomes, such as the prediction of heightened symptom
days prior to one day before they occurred. The dataset consisted of the wearable, spirometry,
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environmental, and patient characteristic data. For asthma patients, a symptom day was de-
fined by an ACD-6 score of 1.5 or higher. For CF patients, a CF symptom score of 7 or higher
was considered a symptom day. Given that questionnaire results are subjective and height-
ened symptom days can be perceived earlier than when the aforementioned threshold values
are reached, the performances were also evaluated for different thresholds for the ACD-6 and
CF symptom scores.

For this analysis, the individual asthma and CF population datasets were used for the prediction
of the heightened symptom days. The patient population-specific features, which were previ-
ously excluded (Section 2.3.1), were now included in this analysis. Therefore, except for the pa-
tient dataset and outcome variables, the methods for data transformation, feature engineering,
classifier algorithms, splitting, hyperparameter tuning, and model evaluation were consistent
with those used in the primary analysis.



3.1. Study cohort

Results

The study cohort consisted of a total of 90 patients, monitored from November 2018 to February
2020. Characteristics of the study cohort are presented in Table 3.1.

Table 3.1: Characteristics of the study cohort

Characteristics Asthma Cystic Fibrosis Total
Patient, N 60 30 90

Total amount of measured days, N 1570 831 2401
Age, median (25-75) 11 (8-12) 10 (7-12) 10 (8-12)
Gender (male), N (%) 40 (66.7%) 14 (46.7%) 54 (60%)
BMI, mean (std) 19.3 (4.2) 16.3 (1.6) 18.3 (3.9)
LABA therapy, N (%) 35(58.3%)

ICS, N (%) 58 (96.7%)

Pancreas insufficiency, N (%) 28(93.3%)

Wearable parameters

Daily heart rate (awake), mean (std) 87.3(9.7) 85.3(9.8) 86.6 (7.8)
Daily heart rate (sleep), mean (std) 73.5(8.6) 71.5(8.6) 72.8(8.7)
Sleep duration, mean (std) 8.7 (1.3) 9.2(1.4) 8.9 (1.3)

Daily steps, mean (std)

6516.6 (3684.0)

6752.0 (3119.7)

6597.3 (3502.1)

Spirometry parameters

FEVT, mean (std) 2.0 (0.8) 18(0.6) 2.0(0.7)
FVC, mean (std) 2.7 (1.0) 2.2(0.7) 2.5(0.9)
PEF, mean (std) 4.2(1.7) 3.8(1.4) 4.1(1.6)
Outcomes

Exacerbations, N (%) 5(0.3%) 5(0.6%) 10 (0.4%)
ACD-6, mean (std) 0.8(0.9)

Respiratory symptom score, 47 (47

mean (std)

Descriptive statistics of the study cohort. BMI: body mass index; LABA: long-acting B-agonist; ICS: inhaled
corticosteroid; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; PEF: peak expiratory flow;

ACD-6: six-question Asthma Control Diary; std: standard deviation.

14
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The dataset included 60 children with asthma and 30 children with CF, with ages ranging from
6 to 16 years old (median (25-75): asthma 11 years (8-12), CF 10 years (7-12)). A total of 2612
patient days were monitored. During this monitoring period, 11 exacerbation events were ob-
served (0.5% of total daily measurements) with five asthma, and six CF exacerbations. However,
one patient did not wear the smartwatch during the onset of the event, reducing the total num-
ber of recorded events to 10. After the removal of patient data days due to insufficient watch
wear time, 2401 patient data days were left, representing a removal of 8.1%. Following this, ad-
herence to daily spirometry measurements was 72% across the entire dataset. Out of these
measurements, 87.5% (986 out of 1127) were of adequate quality (graded A-E), while the re-
maining 12.5% (graded F or U) of the lung function measurements were excluded.

Figure 3.1 illustrates the time series for the average heart rate, number of steps taken, and
best FEV1 for a patient without and with exacerbation. Empty gaps in the time series indicated
missing values in the dataset. The dataset had varying levels of missing data across different
categories of features. Approximately 6.6% of the wearable features had missing values, with
30.6% of the spirometry features missing values, and 24.7% of the questionnaire-based features
had incomplete data.
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Figure 3.1: Time series for patients without (top) and with (bottom) an exacerbation. (a) Average heart rate (bpm),
(b) average steps, and (c) Best FEV1 (L). The onset of an exacerbation is marked as a red dashed area.
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3.2. Baseline performance

A synthetic normally distributed dataset with anomalies was constructed to evaluate the perfor-
mance of the models. This dataset was composed of 2000 samples with 125 features and a
skewed distribution. In this dataset, 0.4% of these samples were defined as anomalies. The per-
formance was calculated using this synthetic dataset while shifting the mean of the anomalies
from 0 to 2.3, increasing the distinction between an outlier and an inlier. Figure 3.2 shows the
change in performance due to the mean shift of the outliers in anomaly detection models (left)
and classification models (right).

ine perfor ( ly detection models) ine perfor (Classification models)

10{ — GMM + PCA 1.0{ — Logistic Regression + PCA
Isolation Forest \/\/l/ Random Forest //\“\
One-Class SVM / )y

Local Outlier Factor

Average PR-AUC performance
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0.0 0.5

Figure 3.2: Baseline performances of the anomaly detection models (Left: Gaussian Mixture Model, Isolation
Forest, One-class SVM, and Local Outlier Factor) and classification models (Right: Logistic Regression and
Random Forest) with the shift in mean of the outliers.

In this figure, it can be seen that the performance of the models improved with an increasing
mean shift of the anomalies. Considering the anomaly detection models, OC-SVM and LOF
demonstrated a slight edge over the other two models in detecting the outliers earlier. They
both achieved good performances (>0.8) at mean outlier shifts of 0.75 or higher. For the classi-
fication tasks, LR outperformed RF, with good performances acquired at mean outlier shifts of
0.50 or higher. Furthermore, it was observed that the performance of the GMM model became
less stable at larger mean shifts, whereas the other anomaly detection models consistently
maintained a PR-AUC of 1.0 at higher shift values.

3.3. Primary analysis

3.3.1. Anomaly detection performance

Table 3.2 lists all the average AUCs after 5-fold nCV of the anomaly detection models for both
the PR-curve and ROC-curve, based on different window sizes for the outcome variable. The
following window sizes were considered: 1-day window, 3-day window, and 7-day window. In
addition, Figures 3.3 and 3.4 display the full PR-curves and ROC-curves, respectively, of their
corresponding algorithms and outcomes. The complete performance evaluation results can be
seen in Appendix A.4, including the tuned hyperparameters.

Figure 3.3 and Table 3.2 illustrate that for each time window, all four anomaly detection models
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scored similar and low PR-AUCs of around 0.04. There was no clear superior algorithm across
all evaluated results. Additionally, Figure 3.4 and Table 3.2 display moderate performances of
the ROC-AUC of approximately 0.60, in combination with standard deviations of around +0.15.
Notably, both the average ROC-AUCS and standard deviations for the 1-day window size were
slightly higher compared to the 7-day window outcome.

Table 3.2: Performance evaluation results (PR-AUC and ROC-AUC) of the anomaly detection models for different
window sizes outcomes (1-day, 3-day, and 7-day window).

Anomaly Detection

1-day window 3-day window 7-day window
PR-AUC ROC-AUC | PR-AUC ROC-AUC | PR-AUC ROC-AUC
GMM + PCA 0.03(0.01) 0.67(0.20) | 0.04(0.01) 0.60(0.17) | 0.07 (0.04) 0.58(0.17)
Isolation Forest 0.05(0.3) 0.62(0.25) | 0.04(0.02) 0.60(0.17) | 0.05(0.02) 0.58(0.18)
One-class SVM 0.04(0.02) 0.65(0.25) | 0.04(0.02) 0.60(0.20) | 0.05(0.02) 0.51(0.12)
Local Qutlier 0.03(0.01) 0.67(0.20) | 0.02(0.01) 0.55(0.06) | 0.04(0.01) 0.45(0.10)
Factor

PR-AUC: precision-recall area under the curve; ROC-AUC: receiver operating characteristic area under the curve;
GMM: gaussian mixture model; SVM: support vector machine.
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Figure 3.3: Precision-recall curves of the anomaly detection models for a 1-day window (left), 3-day window
(middle), and 7-day window (right) as the outcome variable.
10 ROC-Curve for 1-day window (Anomaly Detection) 10 ROC-Curve for 3-day window (Anomaly Detection)
f .~ i
J - — ,J'L/
T s Vull o

08 . 08 L =l 08
- | | y H L =l -
06 — % 06 A= 06
H / K ] - g
= / - £ L =
S04 M —~ - g 04
3 | P 3 [ 3
F | F / F

0 —— GMM + PCA (ROC-AUC: 0.67 # 0.20) ~—— GMM + PCA (ROC-AUC: 0.60 * 0.17) b ~—— GMM + PCA (ROC-AUC: 0.58 * 0.17)
029 /T Isolation Forest (ROC-AUC: 0.62 + 0.25) 02 Isolation Forest (ROC-AUC: 0.60 = 0.20) 02 e Isolation Forest (ROC-AUC: 0.56 + 0.18)
U/ One-Class SVM (ROC-AUC: 0.65 + 0.25) J |~ One-Class SVM (ROC-AUC: 0.62 + 0.17) # One-Class SVM (ROC-AUC: 0.51 + 0.12)
_L Local Outlier Factor (ROC-AUC: 0.67  0.20) Local Outlier Factor (ROC-AUC: 0.55 + 0.06) L Local Outlier Factor (ROC-AUC: 0.45 % 0.10)
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 02 04 06 08 10 0.0 0.2 0.4 0.6 08 10

False Positive Rate

Figure 3.4: Receiver operating characteristic curves of the anomaly detection models for a 1-day window (left),

3-day window (middle), and 7-day window (right) as the outcome variable.
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3.3.2. Classification model performance

Similar to the previous subsection, performances were evaluated after 5-fold nCV of the clas-
sification models for the different window sizes of the outcome variable. These results are
shown in Table 3.3 and Figures 3.5 and 3.6, in which the figures display the full PR-curves and
ROC-curves, respectively, for the classification algorithms. Detailed performance evaluation re-
sults, including the tuned hyperparameters and feature importance scores for the random forest
model, are presented in Appendix A.5.

Figure 3.5 and Table 3.3 show that all classification models scored low PR-AUCs. Logistic re-
gression seemed to perform better compared to random forest, which was consistent with the
baseline performance. However, the standard deviation for logistic regression was relatively
also larger. Similarly, the ROC-AUCs displayed in Figure 3.6 and Table 3.3, showed moderate re-
sults (0.43-0.72), with higher performance results for the 1-day window compared to the 7-day
window outcome. Furthermore, considering the 1-day window size, the performance metrics
of the classification models were slightly higher compared to those of the anomaly detection
models.

Table 3.3: Performance evaluation results (PR-AUC and ROC-AUC) of the classification models for different
window sizes outcomes (1-day, 3-day, and 7-day window).

Classification Model

1-day window 3-day window 7-day window
PR-AUC ROC-AUC | PR-AUC ROC-AUC | PR-AUC ROC-AUC
Logistic 0.15(0.18) 0.72(0.27) | 0.08(0.09) 0.43(0.25) | 0.05(0.03) 0.55(0.13)

Regression

Random Forest 0.04(0.03) 0.70(0.16) | 0.02(0.01) 0.47(0.14) | 0.03(0.02) 0.45(0.08)
PR-AUC: precision-recall area under the curve; ROC-AUC: receiver operating characteristic area under the curve.
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Figure 3.5: Precision-recall curves of the classification models for a 1-day window (left), 3-day window (middle),
and 7-day window (right) as the outcome variable.
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Figure 3.6: Receiver operating characteristic curves of the classification models for a 1-day window (left), 3-day
window (middle), and 7-day window (right) as the outcome variable.

3.4. Secondary analysis

3.4.1. Symptom days (ACD-6 = 1.5 and CF symptom score = 7)
Using the individual population sets, the heightened symptom days (indicated by ACD-6 > 1.5
or CF symptom score (SS) > 7) were predicted, including one day prior to the occurrence (1-day
window). The number of instances for this prediction was 21.5% (338/1570 days) for ACD-6
> 1.5, and 33.6% (279/831 days) for CF symptom score > 7. The PR-AUC and ROC-AUC for
these analyses are shown in Table 3.4, with their corresponding PR-curves and ROC-curves in

Appendix A.6.

Table 3.4: Performance evaluation results (PR-AUC and ROC-AUC) for the prediction of symptom days (ACD-6 =
1.5 & CF symptom score > 7) including one day prior to occurrence (1-day window).

Symptom Days
ACD-6=1.5 CF symptom score =7
PR-AUC ROC-AUC PR-AUC ROC-AUC

Anomaly Detection
GMM + PCA 0.25(0.06) 0.52 (0.01) 0.38 (0.06) 0.53 (0.07)
Isolation Forest 0.26 (0.06) 0.54 (0.03) 0.38 (0.04) 0.51 (0.04)
One-class SVM 0.25(0.06) 0.52 (0.04) 0.36 (0.04) 0.51 (0.04)
Local Outlier Factor 0.24 (0.06) 0.53 (0.04) 0.36 (0.06) 0.50 (0.07)
Classification
Logistic Regression 0.28 (0.09) 0.55(0.05) 0.37 (0.08) 0.50 (0.05)
Random Forest 0.27(0.17) 0.55 (0.06) 0.32 (0.08) 0.46 (0.12)

ACD-6: six-question Asthma Control Diary; CF: cystic fibrosis; PR-AUC: precision-recall area under the curve;
ROC-AUC: receiver operating characteristic area under the curve; GMM: gaussian mixture model; SVM: support

vector machine.

The performances in Table 3.4 and Appendix A.6 show that no model significantly performs
better than the other. However, the standard deviations of the random forest models were higher
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compared to those of the anomaly detection models. Additionally, while the ROC-AUC values
were similar for predicting both questionnaire scores, a higher PR-AUC was observed for the CF
symptom score, in comparison to the ACD-6 scores.

3.4.2. Symptom days (variable ACD-6 and CF symptom score)

As questionnaire scores are subjective, the analysis was extended to different threshold val-
ues that define heightened symptom days, to assess how varying these thresholds impacts the
model’'s performance. The models were evaluated using ACD-6 thresholds of [0.5, 0.7, 0.9, 1.1,
1.3,1.5,1.7] and CF symptom score thresholds of [4, 5, 6, 7, 8], while maintaining a 1-day predic-
tion window. The performance results for these analyses are visualised in Figures 3.7 and 3.8,
with additional information on the number of instances provided in Appendix A.6
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Figure 3.7: PR curves and ROC curves for different minimum thresholds of the heightened symptom days (ACD-6).
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Table A.4 in the Appendix shows that lower the threshold was set, the more days were predicted
as heightened symptoms days. For the prediction of the ACD-6 scores, lower thresholds led to
improved PR-AUC values across all models. However, the ROC-AUC did not show similar im-
provements. The ROC-AUC generally increased at higher thresholds, as seen with the threshold
set at ACD-6 = 1.7. In the case of the CF symptom scores, both the PR-AUC and ROC-AUC
improved at lower threshold values for the classification models. However, while the PR-AUC
also increased at lower thresholds for the anomaly detection models, the ROC-AUC remained
relatively stable at all threshold values.

3.4.3. Additional outcome variables

Lastly, to validate the robustness and generalisability of the methodology, the dataset was inves-
tigated to see what additional predictions could be made, even if these outcomes might not have
direct clinical relevance. Predictions were made for the following outcome variables: weekend,
holiday, and wake-up count > 3. The ROC-AUC results are visualised in Figure 3.9, with further
details on the feature importances in Appendix A.6. Only the ROC-AUC scores were shown as
there was no class imbalance.
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Figure 3.9: Bar plot of the ROC-AUC scores for the prediction of the outcomes 'Weekend'’, "Holiday’, "Wake-up count
> 3’ using the classifiers Gaussian Mixture Model (GMM), Isolation Forest, One-class SVM, Local Outlier Factor
(LOF), Logistic Regression, and Random Forest.

Figure 3.9 shows a discrepancy in performance between the anomaly detection models and the
classification models. The highest performances were achieved with the random forest model,
with ROC-AUC values ranging from 0.77 to 0.97 and small standard deviations for all three pre-
diction outcomes. In contrast, the anomaly detection models performed similarly across the
outcome variables, with ROC-AUCs around 0.60. The feature importances revealed that while
steps08 was the most important predictor for the weekend and holiday outcomes, the prediction
of the wake-up count heavily relied on the feature awakeDuration.



Discussion

In this retrospective study, the primary thesis aim was to predict short-term pulmonary exacer-
bations using machine learning algorithms based on remote patient monitoring data, for the po-
tential to provide real-time warnings to enable timely intervention and prevention. Both anomaly
detection algorithms (Gaussian Mixture Model, Random Forest, One-class SVM, and Local Out-
lier Factor) and classification algorithms (Logistic Regression and Random Forest) were fitted
to the data to create prediction models. Different exacerbation time windows were considered
for the outcome variables (1-day, 3-day, and 7-day window) as the short-term prediction period.
The results showed that the mean performances of the PR-AUC were less than 0.20, and the
ROC-AUC was between 0.43-0.72, indicating that the current performance of these models is
not yet sufficient for clinical implementation, likely due to the limitations of the available data.
For the secondary analysis, additional outcomes such as the heightened symptom days (based
on the ACD-6 and CF symptom scores) were predicted with the developed models. Similarly to
the primary analysis, performance metrics scored low PR-AUC values of 0.19-0.58 and for the
ROC-AUC values between 0.37-0.58, indicating that the model is no better than random guess-
ing (ROC-AUC = 0.50). This analysis confirms that the performance of the models is not yet
sufficient to predict monitoring days related to the symptom disease. Despite this, the method-
ology of this study was validated by predicting non-clinical variables of the data set. Outcome
variables such as weekend or holiday were able to be predicted with good performances (ROC-
AUC > 0.80).

4.1. Interpretation of results

The results of the baseline performances showed that in a controlled environment with syn-
thetic data, logistic regression may be more suitable for distinguishing anomalies. A good per-
formance of PR-AUC > 0.80 was reached at a minimum mean anomaly shift of 0.5, indicating
that the outliers should differ by at least 0.5 units from the inliers to achieve better results. How-

22
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ever, as this baseline performance used a synthetic dataset, the anomaly shift should be seen
as an idealised benchmark.

For the prediction of exacerbations in the primary analysis, the performance metrics showed
continuous low/moderate performances. Even though the ROC-AUC showed moderate perfor-
mances (<0.75), the standard deviation (+0.20) suggested variability in model performances and
that the model is likely overfitting on the data. Expanding the window frame of the exacerbation
period did not improve the metrics. On the contrary, the highest ROC-AUC was found using the
one-day window outcome, for logistic regression (0.72+0.21). Furthermore, the combination
of moderate/high ROC-AUC and low PR-AUC could likely be attributed to the imbalanced na-
ture of the dataset, in which the model performs better on the majority class, than the minority
class. When handling extremely skewed datasets, ROC-AUC can sometimes present an overly
optimistic view of the model's performance. Therefore, the model performed poorly in correctly
identifying exacerbations up to one day before occurrence and it is most likely an overfit on the
data.

In the secondary analysis, the number of heightened symptom days was predicted prior to one
day before occurrence. These results showed improved performances compared to the pre-
diction of exacerbations, but not yet sufficient for the clinical setting. The metrics showed per-
formances with PR-AUC values between 0.24-0.28 and ROC-AUC values between 0.52-0.55 for
predicting ACD-6 = 1.5, and PR-AUCs of 0.32-0.38 and ROC-AUCs of 0.46-0.53 for CF symptom
score = 7. However, important to note was that the PR-AUCs were close to the baseline PR
curve height, which is equal to the proportion of positive examples in the dataset (25.5% for
ACD-6 and 37.5% for CF symptom scores). This suggests that the models’ predictions are not
much better than simply guessing based on the prevalence of the outcome. Furthermore, the
ROC-AUCs for both predictions were also near 0.50, further indicating that the models struggled
to differentiate between true positives and false positives effectively.

This was confirmed by the results of the variable thresholds depicting heightened symptom
days. The average PR-AUC only increased due to the increase in positive instances, as the
PR-AUC remained equal to the baseline proportion of instances. Additionaly, the ROC-AUC re-
mained around 0.50, indicating that the model was not able to distinguish between the positive
and negative classes. Therefore, heightened symptom days based on minimal ACD-6 and CF
symptom scores might be too subjective to be reliably predicted using home monitoring data.

Lastly, additional outcomes such as weekend, holiday, and wake-up count > 3 were predicted.
The classification models showed clear superiority over the anomaly detection models. Among
the classification models, the random forest demonstrated the highest performance across
all three outcomes (ROC-AUC > 0.75), with good generalisation as indicated by the high ROC-
AUC scores and small standard deviations. These results indicate that, although the models
were not effective in predicting exacerbation and heightened symptom days, they performed
better than random chance in predicting non-clinically relevant outcomes. This suggests that
the methodology is robust and capable of identifying meaningful patterns in the data.
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4.2. Comparative work

Arecent study from Sutcliffe et al., [32] on predicting exacerbations using home monitoring data
in CF patients, showcased that a logistic regression model can detect impending events 10 days
earlier than clinical practice, with an 83.6% success rate at a false positive rate of 18.6%. Out
of 15966 active study days, 111 exacerbation events (0.7%) were observed. The author demon-
strated that symptom features such as wellness, 02 saturation, and pulse rate, give considerable
prediction value, suggesting that home monitoring might not have to involve spirometry, which
is effort-dependent, time-consuming, and can cause discomfort to patients.

The success rate mentioned by the author was based on a custom performance metric. Per-
formance evaluation using the standard metrics resulted in a PR-AUC of 0.28, and a ROC-AUC
of 0.74%. These findings show that even with larger datasets, correctly identifying the minority
class remains a challenge.

In another recent study, Hond et al,, [56] showed the superiority of using logistic regression over
other ML classifiers, such as XGBoost, for the prediction of asthma exacerbations using remote
patient monitoring data. Logistic regression achieved better performances with a ROC-AUC of
0.88, and better sensitivity and specificity. The rate of incidence was 154 exacerbations (0.2 %
of total daily measurements) for the development cohort and 94 exacerbations (also 0.2 % of
total daily measurements) for the validation cohort. According to the author, the logistic regres-
sion classifier had a substantial number of false positive predictions at high levels of sensitivity,
which could be linked to the low incidence rate.

Similar to the results of this thesis, the precision would quickly drop at higher recalls, most likely
due to severe class imbalance and large variety per patient. Furthermore, Hond performed a
sensitivity analysis on expanding the exacerbation outcome window from two to four and eight
days, which showed no noticeable performance differences. Although the results in this thesis
showed slightly better performances for the 1-day window outcome, the high standard deviation
suggested considerable variability and poor generalisation.

4.3. Study limitations

A major limitation of this thesis was the small amount of exacerbations recorded in the monitor-
ing period. Each patient was monitored for 28 days, but out of the 90 included patients, only 11
exacerbation events were observed, one of which was excluded due to insufficient wear time of
the smartwatch. Such a small positive class heavily influences the outcome of the algorithms,
and generally, large amounts of data are needed for training to generalise well for unseen data
in a ML model [57]. No upsampling or downsampling was performed as the number of positive
instances was too small, and there is no proven strategy for employing such methods without
distorting information and/or introducing bias [58].

Another limitation to consider was that this study was a post hoc analysis of remote patient
monitoring data, collected for a study aimed at the clinical validation of smartwatch biomark-
ers, and not originally intended for predicting pulmonary exacerbations. Therefore, the quality
required for a reliable ML prediction model was lacking, which contributed to the performance
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results. Additionally, the original dataset with continuous measurements was not available. In-
stead, the acquired dataset consisted of the averaged hourly features for the heart rate and
number of steps taken. This limited the application of pre-processing steps, such as filtering of
the heart rate data to compensate for sensor inaccuracies.

Moreover, the reliability of the spirometry features was a limiting factor, due to the high pro-
portion of missing or low-quality data. Approximately 39.3% of the spirometry data was either
missing or deemed inadequate for analysis. Although KNN-imputation was performed, the re-
liance on imputed data may have introduced additional uncertainty into the models.

The PR-AUC and ROC-AUC values were close to random guessing, which implied that the mod-
els were not able to capture any meaningful patterns from the features. In particular, high fea-
ture importance for spirometry features might be misleading. The models may have overfitted
on noise or artifacts in the data rather than identifying genuinely predictive patterns, especially
given the poor overall model performance. Additionally, feature importance was only employed
for the random forest model. To improve the explainability of the other models, additional meth-
ods such as the SHapley Additive exPlanations (SHAP) tool may be required [59].

The final limitation was the definition of an exacerbation. As mentioned before, exacerbations
are patient-specific and there is no clear consensus on what clinical criteria an exacerbation
constitutes. This study had two definitions of exacerbations: worsening of symptoms requir-
ing systemic corticosteroids (asthma patients), and the need for additional antibiotic treatment
due to change in symptoms or decrease in pulmonary function (CF patients). Exacerbation time
windows were formed as outcome variables, to encompass the change in symptoms before the
occurrence of an event. However, the additional need for therapy is subjective, and patient data
is heterogeneous. A fixed time window might therefore not capture all the variability [32].

4.4. Recommendations

Given the outcomes of this study, many steps still have to be taken before wearables and Al can
be implemented in the clinical setting for predicting pulmonary exacerbations in paediatric care.
There is a need for large high-quality longitudinal studies to evaluate the feasibility of passive
monitoring and exacerbation prediction. Importantly, for more accurate prediction, anincreased
number of observed exacerbation events is needed, which can be achieved by extending the
monitoring period and/or including more patients. These studies should incorporate multipa-
rameter monitoring strategies, with devices that cause limited patient burden, in particular for
children. Furthermore, additional monitoring features could be explored, such as the respira-
tory rate, 02 saturation, nocturnal cough (physiological), inhaler usage, and patient-reported
outcomes (clinical) [60—62]. Building on this framework, features derived from the raw data can
be feature-engineered into higher-level behavioral markers (e.g., stress, fatigue, sleep disruption)
[63], and more advanced time series analysis can be performed to identify pattern trends and
dependencies. Furthermore, the results suggest that anomaly detection models, particularly
GMM, may lack the stability and precision required for accurately predicting exacerbations. In
datasets characterised by complex features, missing data, variable patient populations, biased



45. Conclusion 26

datasets, and heterogeneous outcomes, standard machine learning approaches may struggle
to generalise effectively [64, 65]. In such cases, deep learning methods, like Recurrent Neural
Networks (RNNs) or Long Short-Term Memory networks (LSTMs), which are adept at handling
temporal dependencies, may offer a more suitable approach for predicting exacerbations. How-
ever, these methods require enormous large datasets to be effective.

Moreover, in contrast to using time windows to predict the exacerbation events as a category
(yes or no), it might be more suitable in the future to predict the probabilities of events, indicat-
ing the likelihood of something happening, as explored by two previous studies [66, 67]. This
approach was not yet employed in the current study, due to the initial need for a clear, binary,
and easily interpretable assessment of the model's performance. Once the models achieve re-
liable performance with binary predictions, probabilistic outputs may be considered to provide
further benefits. This more complex algorithm may provide the prediction as a risk score, which
might be more intuitive for both the patient and healthcare professionals to better understand
the status of the pulmonary condition.

Lastly, in the future realm of performing real-time predictions of exacerbation events, an ideal
architecture system should include several key components. A wearable device, including a
smartphone, should be used for continuous data collection. This information should be securely
sent to a central server, in which data processing can be conducted, and the model algorithm is
updated with new patient information. Initially, this model may only rely on population-based al-
gorithms. However, as the system continues to collect patient-specific data, it should enable the
constant retraining and improvement of the underlying algorithms. Over time, this process will
allow the transition from population-based models to more personalised predictive algorithms
uniquely tailored to the individual patient, resulting in more accurate and personalised exacer-
bation predictions. Ideally, this system would also be integrated with the hospital’s electronic
health record, ensuring that any new information documented in the records is incorporated into
the model, while measurements and predicted events are made accessible to both patients and
healthcare professionals.

4.5. Conclusion

This thesis highlights the need for high-quality data for utilising machine learning in the predic-
tion of pulmonary exacerbations. Currently available patient monitoring data including phys-
iological data, lung function parameters, environmental data, and patient-reported outcomes
do not suffice to predict pulmonary exacerbations within 7 days or heightened symptom days.
Clinical application may be challenging due to the low incidence rate of exacerbations. The
use of machine learning and wearable technology holds significant potential for improving the
management of pulmonary exacerbations in pediatric patients, however many improvements
in data collection, outcome definition, model development, and evaluation are needed before a
well-generalised prediction model can be formed.
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Appendix

A.l. Feature Engineering

Three features related to the heart rate were constructed. The first feature, nocturnal heart rate
reserve, was calculated to capture the difference between the maximum heart rate during sleep
and the average heart rate during the night. This feature was based on the feature importance
of the heart rate reserve, as described by Hosseini et al. [30]. The nocturnal heart rate reserve
was calculated as follows:

Nocturnal Heart Rate Reserve = HRyjax sieep — HRAvg

The second feature was composed to analyse deviations from age-specific normal paediatric
heart rates as reported by Fleming et al. [41]. This feature was calculated for the daily average
heart rates, the hourly heart rates, the 95th percentile, and the 5th percentile heart rates. The
differences were calculated as follows:

Daily Heart Rate Difference = HReasured — HRNormal Adjusted

Lastly, a clinical feature capturing the relationship between physical activity and heart rate was
constructed. According to Mathienne et al. [42], the recovery time for the heart rate after exer-
cise was higher in patients with uncontrolled asthma. To capture the relationship between the
heart rate and activity, the following ratio was calculated:

Average Heart Rate During Hour X
Total Number of Steps in Hour X

Ratio Heart Rate and Steps =

33
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This feature was based on the ratio between the highest number of steps taken in an hour and
the corresponding average heart rate at that time. Both the heart rate and number of steps taken
were normalised before calculation, to ensure consistency and comparability across patients.

A.2. Hyperparameter settings
The following settings in Table A.1T were considered for hyperparameter tuning during the inner
loop of the nCV.

Table A.1: Hyperparameter settings for the anomaly detection and classification models

Values
(1,2, 3, 4]
[5,10, 25, 50, 75, 100]

Model Hyperparameter

n_gaussian
pca_components

Gaussian Mixture Model

nu [0.01, 0.05,0.1]

One-Class SVYM — [rbf]

Isolation Forest n_estimators [100, 200]
max_samples [auto, 0.5, 0.75]

Local Outlier Factor n_neighbors [10, 20, 35]

Logistic Regression pca_components [5,10, 25, 50, 75, 100}
n_estimators [100, 200]

Random Forest max_depth [None, 5]
class_weight ['balanced]]
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A.3. Evaluation Metrics
The evaluation metrics used to evaluate the model's performance are further explained as fol-
lows:

Precision-Recall Curve (PR-Curve)

The Precision-Recall Curve (PR-Curve) is a graphical representation of a model's performance,
plotting precision (y-axis) against recall (x-axis). Precision and recall are further explained in
the next section. In this plot, precision and recall are calculated for different threshold values,
showing the trade-off between precision and recall as the threshold changes. Thresholds are
necessary for mapping data samples to one class or the other. The algorithms of the models
use the thresholds to interpret the mapping of the labels. The default threshold is 0.50, in which
values that are less than 0.50 are assigned to class 0, and values larger than or equal to 0.50 are
assigned to class 1. The left side of these curves indicates a more ‘confident’ threshold, with
a higher threshold (e.g., threshold = 0.80) corresponding to lower recall but higher precision.
The right side represents ‘less strict’ scenarios, where the thresholds are lower (e.g., threshold
= 0.20), with higher recall but lower precision. The area under the PR Curve (PR-AUC) is a single
value which summarises the classifier's performance over all threshold values.

Receiver Operating Characteristic Curve (ROC Curve)

The Receiver Operating Characteristic (ROC) Curve plots the true positive rate (sensitivity or
recall) against the false positive rate (1 - specificity) at all threshold values, which provides a
comprehensive view of this trade-off of these rates. The area under the ROC Curve (ROC-AUC)
measures the classifier’s ability to distinguish between the classes and is used as a summary of
the ROC curve. An ROC-AUC of 0.50 indicates that the model is not able to distinguish between
the classes, corresponding to a random classifier.

Precision
Precision is defined as:

True Positives

Precision = — —
True Positives + False Positives

Precision, also known as the positive predictive value, measures the accuracy of all the positive
predictions made by the model.

Recall (Sensitivity)
Recall, also known as sensitivity, is defined as:

True Positives

Recall = — .
True Positives + False Negatives

Recall measures whether all positive instances in the dataset can be correctly identified by the
model.
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Specificity
Specificity is defined as:

True Negatives

Specificity = True Negatives + False Positives

Specificity measures how well all negative instances in the dataset can be identified.

F1-Score
The F1-Score is the harmonic mean between precision and recall, defined as:

Precision x Recall

F1-Score = 2 —
% Precision + Recall

The F1-Score is a single value metric that balances both precision and recall, and it is commonly
used in cases where the class distribution is imbalanced.



A.4. Primary analysis: Anomaly detection

37

A.4. Primary analysis: Anomaly detection
The extended results of the performance metrics of the anomaly detection models are pre-

sented in Table A.2.

Table A.2: Performance metrics (mean and standard deviation) for different anomaly detection models across
different time windows.

Anomaly Detection

1 day window

3 day window

7 day window

One-class SVM

Precision 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Recall 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
F1 Score 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
AUROC 0.649 (0.247) 0.619 (0.170) 0.513(0.125)
PR AUC 0.042 (0.027) 0.038(0.019) 0.049 (0.025)
Specificity 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Isolation Forest

Precision 0.033 (0.075) 0.000 (0.000) 0.056 (0.053)
Recall 0.050 (0.112) 0.000 (0.000) 0.052 (0.053)
F1 Score 0.040 (0.089) 0.000 (0.000) 0.054 (0.053)
AUROC 0.620 (0.247) 0.599 (0.199) 0.556 (0.178)
PR AUC 0.053 (0.037) 0.037 (0.022) 0.055 (0.024)
Specificity 0.987 (0.008) 0.992 (0.004) 0.977 (0.008)
Local Outlier Factor

Precision 0.008 (0.001) 0.016 (0.003) 0.031 (0.003)
Recall 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
F1 Score 0.016 (0.002) 0.031 (0.006) 0.060 (0.006)
AUROC 0.666 (0.200) 0.548 (0.061) 0.450 (0.101)
PR AUC 0.027 (0.013) 0.025 (0.009) 0.036 (0.014)
Specificity 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
GMM + PCA

Precision 0.008 (0.001) 0.016 (0.003) 0.031 (0.003)
Recall 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
F1 Score 0.016 (0.002) 0.031 (0.006) 0.060 (0.006)
AUROC 0.668 (0.197) 0.599 (0.172) 0.576 (0.166)
PR AUC 0.033(0.016) 0.035(0.016) 0.073 (0.043)
Specificity 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

The inner loops of the nested cross-validation were used for hyperparameter tuning. The results
for the hyperparameters on each outer fold, for the model assessment on the 7-day window
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outcome variable, are as follows:

One-Class SVM

Fold 1: nu: 0.10, kernel: rbf
Fold 2: nu: 0.10, kernel: rbf
Fold 3: nu: 0.10, kernel: rbf
Fold 4: nu: 0.10, kernel: rbf
Fold 5: nu: 0.10, kernel: rbf

Isolation Forest

Fold 1: n_estimators: 100, max_samples:
Fold 2: n_estimators: 200, max_samples:
Fold 3: n_estimators: 200, max_samples:
Fold 4: n_estimators: 200, max_samples:

Fold 5: n_estimators: 200, max_samples:

Local Outlier Factor (LOF)

Fold 1: n_neighbors: 35, algorithm: auto
Fold 2: n_neighbors: 20, algorithm: auto
Fold 3: n_neighbors: 35, algorithm: auto
Fold 4: n_neighbors: 35, algorithm: auto
Fold 5: n_neighbors: 35, algorithm: auto

Gaussian Mixture Model (GMM)
Fold 1: pca_components: 5, n_gaussian: 3
Fold 2: pca_components: 5 n_gaussian: 2

Fold 3: pca_components: 5 n_gaussian: 2

auto
auto
auto
auto
auto

Fold 4: pca_components: 25, n_gaussian: 4

Fold 5: pca_components: 5, n_gaussian: 3
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A.5. Primary analysis: Classification

The extended results of the performance metrics of the classification models are presented in

Table A.3.

Table A.3: Performance metrics (mean and standard deviation) for different classification models across different

time windows.

Classification Models

1 day window

3 day window

7 day window

Logistic Regression

Precision 0.200 (0.447) 0.000 (0.000) 0.000 (0.000)
Recall 0.033(0.075) 0.000 (0.000) 0.000 (0.000)
F1 Score 0.057 (0.128) 0.000 (0.000) 0.000 (0.000)
AUROC 0.723 (0.211) 0.430 (0.253) 0.547 (0.131)
PR AUC 0.155(0.198) 0.083(0.097) 0.052 (0.032)
Specificity 0.998 (0.003) 0.999 (0.003) 1.000 (0.000)
Random Forest

Precision 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Recall 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
F1 Score 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
AUROC 0.695 (0.156) 0.468 (0.142) 0.451 (0.078)
PR AUC 0.044 (0.032) 0.022 (0.011) 0.035(0.017)
Specificity 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

The inner loops of the nested cross-validation were used for hyperparameter tuning. The results
for the hyperparameters on each outer fold, for the model assessment on the 7-day window

outcome variable, are as follows:

Logistic Regression

Fold 1: pca_components:
Fold 2: pca_components:
Fold 3: pca_components:
Fold 4: pca_components:
Fold 5: pca_components:

Random Forest

50

50

Fold 1: n_estimators: 100, max_depth: None

Fold 2: n_estimators: 100, max_depth: None
Fold 3: n_estimators: 100, max_depth: None

Fold 4: n_estimators: 100, max_depth: None
Fold 5: n_estimators: 100, max_depth: None
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Feature Importance

The mean feature importance for the 5-fold nested cross-validated random forest model for the
1-day window outcome is shown in Figure A.1. In particular, predominantly features related to
the heart rate measures were rated as the highest in importance.

Feature importances (Random Forest)
HR21_Minus_NormAdaptedHR_3d_max
HR21_Minus_NormAdaptedHR_5d_min
HrAvgWake_3d_max
HR21_Minus_NormAdaptedHR_1d_lag
HRAvgSleep
HR22_Minus_NormAdaptedHR_3d_max
HR95Perc_Minus_NormAdaptedHR
HR22_Minus_NermAdaptedHR_3d_std
HR20_Minus_NormAdaptedHR_1d_lag

HR21_Minus_NormAdaptedHR_3d_std

Features

HRO9_Minus_NormAdaptedHR
HR20_Minus_NormAdaptedHR_5d_max
HR23

PM25_1d_lag

HR22

HRMinSleep
HR20_Minus_NormAdaptedHR_5d_min
HRO5Perc

HR21_Minus_NormAdaptedHR_3d_mean

peak_step_HR_ratio_3d_max

0.00 0.01 0.02 0.03 0.04 0.05
Importance mean

Figure A.1: Mean feature importance scores for the 5-fold nested cross-validated random forest model with 1-day
exacerbation window outcome.
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A.6. Secondary analysis
Symptom days (ACD-6 = 1.5 and CF symptom score = 7)

Additionally to the PR-AUCs and the ROC-AUCs, the following Figures A.2 and A.3 display the
PR-curve and ROC-curve respectively for the asthma and CF symptom days.

PI} gurves for the prediction of asthma symptom days (ACD-6 = 1.5) Rolcocurves for the prediction of asthma symptom days (ACD-6 = 1.5)

—e— one_class_svm (PR-AUC = 0.25 + 0.06)
-#- isolation_forest (PR-AUC = 0.26 + 0.06)
—&— lof (PR-AUC = 0.24 + 0.05) § 7
08 &~ gmm (PR-AUC = 0.25 + 0.06) 0.8 2
logistic_regression (PR-AUC = 0.28 # 0.09)
random_forest (PR-AUC = 0.27 + 0.11)

0.6

0.6

Precision

0.4

True Positive Rate

“ —e— one_class_svm (ROC-AUC = 0.52 + 0.04)
--=- isolation_forest (ROC-AUC = 0.54 + 0.03)
—4— lof (ROC-AUC = 0.53 + 0.04)
gmm (ROC-AUC = 0.52 + 0.01)
logistic_regression (ROC-AUC = 0.55 + 0.05)
random_forest (ROC-AUC = 0.55 + 0.06)
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0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Recall False Positive Rate

Figure A.2: PR curve (left) and ROC curve (right) of the prediction of an asthma symptom day two days before
occurrence, based on six-question Asthma Control Diary Score (ACD-6) > 1.5.
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Figure A.3: PR curve (left) and ROC curve (right) of the prediction of a CF symptom day two days before
occurrence, based on CF Symptom Score (SS) = 7.
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Symptom days (variable ACD-6 and CF symptom score)

The asthma and CF heightened symptom days were predicted based on the mean of the ques-
tionnaire scores. The models were evaluated on ACD-6 = [0.5,0.7,0.9, 1.1, 1.3, 1.5, 1.7] and CF
symptom score = [4, 5, 6, 7, 8]. The number of positive instances of these different threshold
are displayed in Table A.4.

Table A.4: Percentage and amount of positive instances for the prediction of symptom day with variable ACD-6
and CF symptom score thresholds.

Positive instances

ACD-6 CF Symptom Score

Threshold Threshold

0.7 45,3% (711/1570)

09 37,9% (595/1570) 4 51,7% (430/831)
1.1 32,3% (506/1570) 5 45,0% (374/831)
1.3 26,8% (421/1570) 6 39,0% (324/831)
1.5 21,5% (338/1570) 7 33,6% (279/831)
1.7 15,9% (248/1570) 8 27,8% (231/831)
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Symptom days (Additional outcome variables)

Additional outcome variables were predicted using the anomaly detection models and classifi-
cation models. This included the outcomes: Weekend, Holiday, and Wake-up Count = 3. The
feature importances for these outcome variables are shown in Figure A.4.

Random forest feature importances (weekend) Random forest feature importances (holiday)

steps1o

001 002 003 004 005 006 0000 0005 0610 o015 0620 0025
importance mean Importance mean

(@) (b)

Random forest feature importances (wakeup)

mmmmmmmmmmmm

Figure A.4: Random forest feature importances of the outcome variables: a) Weekend, b) Holiday, and ¢) Wake-up
count =3

For both the weekend and holiday outcomes, the feature steps08 emerged as the most impor-
tant predictor. This likely reflected the level of morning activity, as patients are typically more
active during this hour due to school, compared to weekends or holidays. In the case of the
weekend outcome, activity and heart rate related features were the most important predictors,
reflecting changes in physical activity and heart rate patterns typically associated with week-
ends. For the holiday outcome, however, the features with higher importance included activity,
spirometry, and environmental factors, suggesting that these variables play a more significant
role in distinguishing holidays from regular days. In the case of the wake-up count > 3 outcome,
the feature awakeDuration overwhelmingly dominated the feature importance scores. This in-
dicates that the model heavily relied on this feature, which is likely directly related to or used in
calculating the wake-up count.
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