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Abstract
Federated learning (FL) enables privacy-preserving
collaboration among numerous clients for training
machine learning models. In FL, a server coor-
dinates model aggregation while preserving data
privacy. However, non-identically and indepen-
dently distributed (non-IID) local data label dis-
tributions degrade the performance of the global
model. This paper investigates the impact of syn-
thetic data on mitigating non-IID data distributions
in federated learning. We explore data-based aug-
mentation techniques, including uniform and mi-
nority imputation, utilizing conditional variational
autoencoders (CVAEs) to generate synthetic data.
Additionally, we examine a framework-based ap-
proach where a pre-trained model, centrally trained
on synthetic data, is distributed to clients for fine-
tuning on their original datasets. Our results, which
use the binarized MNIST dataset, demonstrate a
quality gap between synthetic and original datasets,
leading to diminished classification performance
when trained on only synthetic data. Integrating
both original and synthetic data improves perfor-
mance on heavily imbalanced label distributions.
At the same time, uniform imputation experiments
reveal that optimal imputation must strike a bal-
ance, with performance degradation being notice-
able when datasets consist of more than 45% syn-
thetic images. Synthetic imputation did not suffer
from degradation in the explored range of imputa-
tion amounts and achieved an average F1 score im-
provement of 0.015 over uniform imputation.

1 Introduction to Federated Learning
In recent years, increasingly larger and more complex deep
learning models are being developed that achieve accuracies
in tasks that were not possible before. These models need
massive amounts of high-quality data to be trained effectively,
which conflicts with constraints related to data privacy regu-
lations and restrictions. Due to privacy concerns and data
regulations such as GDPR, the handling of data has become
more fragmented [27]. This has led to the emergence of dis-
tributed databases comprised of multiple data silos, spread
across mobile devices, institutions, and countries which can-
not be freely transferred. This is especially a major hindrance
to applying deep learning techniques to privacy-focused in-
dustries, such as the medical and financial fields. To meet
these privacy constraints while still producing competitive
models, Google introduced the Federated Learning (FL) al-
gorithm [19]. In FL systems, decentralized clients update a
global model by training on local data as seen in Figure 1.

The central server coordinates the training process, col-
lecting the locally trained models, and aggregating them to
form an updated global model (which is then sent to the
clients to train on further iterations). This ensures local mod-
els can get the benefit of a bigger dataset while maintaining
the privacy of their data. The original FL aggregating algo-
rithm, FedAvg [19] updates the global model by averaging

Figure 1: Overview of the basic federated learning algorithm: Local
ML models are trained with local data (1). The local models are
aggregated at the server (2). This aggregated model is sent back to
clients to be trained further on local data (3).

the clients’ updated parameters weighted by the size of their
respective datasets. However, the FL algorithm as originally
proposed leads to a substantial worsening in accuracy when
each client’s data is heterogeneous. For instance, local client
datasets that are not identically and independently distributed
(IID) can significantly hamper global model performance due
to the discrepancy between the global model and local model
parameters during training [30] [29]. One way data can be
non-IID is if each client has major differences in the distri-
bution of labels of its dataset. This problem has been tack-
led in multiple ways which can be broadly categorized into
data-based, model-based, algorithm-based, and framework-
based approaches [18]. Data sharing [29] is an example of
a data-based approach, where the data distribution is trans-
formed in some way. However, the downside is the major
loss of privacy. Data augmentation approaches aim to address
this pitfall using generative methods rather than original local
data [5]. Data points, which are synthesized from genera-
tive models, are then imputed, or inserted, into the original
dataset, to make client datasets more IID. Framework-based
solutions, such as similarity clustering, knowledge distilla-
tion, and transfer learning aim to solve the non-IID problem
by modifying the overall FL framework instead of the data
distribution itself.

In this paper, the effectiveness of different techniques to
augment data in a federated setting is explored. We aim to in-
vestigate to what extent different data augmentation methods
such as uniform and minority imputation affect FL perfor-
mance under a variety of imbalanced dataset conditions. We
also focus on local client data augmentation using data and
framework-based solutions by finetuning a centrally trained
classifier trained with synthetic images produced by a varia-
tional autoencoder (VAE) trained in a federated manner.

Section 2 introduces VAEs and presents relevant work
which discusses solutions that have been proposed to miti-
gate the non-IID problem. Section 3 elaborates on the differ-
ent imputation techniques that are investigated. It also out-
lines the steps that were used to conduct the analysis, which



is motivated by the presented preliminary findings. The ex-
perimental setup and the corresponding results are described
in Section 4. These results are further discussed in Section 5.
Section 6 concludes our findings, mentions the limitations of
the study and presents opportunities for future work.

2 Background
2.1 VAEs
VAEs and autoencoders share a similar structure, as illus-
trated in Figure 2. They both comprise an encoder, which
maps the input data x to a point in a latent space. This latent
point is then used to train a decoder to return an output d(z)
that matches the input as closely as possible.

Figure 2: Overview of the variational autoencoder architecture

However, VAEs differ in that they encode inputs as dis-
tributions, instead of points, by returning parameters to a
parameterized distribution, such as the normal distribution.
To ensure continuity (where nearby points decode into simi-
lar outputs) and completeness (where sampled points decode
into ”meaningful” outputs), we must regularize both the co-
variance matrix and the means of the distributions returned
by the encoder, to encourage the returned distributions to be
close to each other. This involves enforcing that the returned
distributions closely resemble the standard normal distribu-
tion, thereby ensuring that the individual class distributions
are closely aligned. This is done by a loss function that bal-
ances the reconstruction term with the Kullback-Leibler di-
vergence, which measures the ”distance” the current distribu-
tion is to a standard normal distribution [15].

Conditional VAEs are a kind of VAE which, given a label,
generate an output corresponding to the label [25]. This is
different to traditional VAEs, where a random point in the la-
tent space is given as the input to be decoded, which generates
outputs with random labels.

2.2 Related Generative Solutions to the Non-IID
Problem

Non-IID problems in federated learning have been tackled in
multiple ways. An example of a framework-based approach
is outlined in [22], which proposes a cluster-based approach
to federatively train an ensemble of models, each of which is
aggregated from clients with similar labels. This helps miti-
gate model shifts since only similar clients will be aggregated
together. However, these techniques usually come with a per-
formance burden on the central server. For example, with
[22], the server needs to store multiple models and figure out
which client models should aggregate with each other, which
is computationally expensive.

Other classes of solutions, such as data-based augmenta-
tion techniques, have also been investigated using a variety
of generative models. This class of solutions aims to make
the local client data more IID, which in turn reduces model

drift, by imputing synthetic data such that the label distribu-
tion becomes more similar between clients. Generative Ad-
versarial Networks (GANs) have become a popular choice
for federated data augmentation [17], where synthetic data is
predominantly generated locally at each client. Related work
has focused on exploring various GAN-based frameworks by
adjusting the locations for training the generator and discrim-
inator models [2] [6] [11]. Nevertheless, training GANs in
a federated way comes with its own challenges. GANs typ-
ically require large amounts of data to perform effectively.
Even with adequate data, instability issues frequently arise,
even during centralized training [9]. Other generative mod-
els, such as VAEs have also been explored. [4] trains only
a global decoder and shares the latent means of some noisy
images from each client’s respective datasets.

On the other hand, data-sharing schemes have been pro-
posed, where the actual data itself is being sent to other
clients, instead of the generative model parameters. For ex-
ample, [13] shares a limited set of real local data. However,
this violates the privacy-preserving principles of FL. Another
data-sharing method is proposed in [23], where synthetic data
is transferred. This synthetic data is generated by performing
XOR decoding on its samples, which is then shared between
clients. This overcomes the previous limitation of sharing
real data. Nevertheless, sharing data, especially in large-scale
systems with thousands of clients, causes a huge communi-
cation overhead, which slows down the process of federated
learning and puts a heavy burden on the communication in-
frastructure used in these networks.

In this paper, different data-based augmentation tech-
niques, such as uniform and minority imputation, and
framework-based techniques involving fine-tuning are inves-
tigated.

3 Methodology
We conducted our experiments on the MNIST [7] dataset with
varying degrees of imbalances. MNIST is a dataset of 28x28
black-and-white images of handwritten digits. Similar to pre-
vious studies, we created partitions of different label skews by
using the Dirichlet distribution [28] by varying the β param-
eters. The smaller the β parameter, the greater the imbalance
tends to be, meaning that the label distribution on clients will
become increasingly skewed as seen in Figure 3. We used β
= [0.1, 0.3, 0.5, 10.0, 100.0] to compare the performance on
datasets with a range of imbalances among client label distri-
butions.

The use of a conditional VAE (CVAE), which generates
the appropriate data points given a label, is needed here as
preliminary experiments with vanilla VAEs showed that the
distribution of the generated labels under federated learning
became increasingly skewed as the data imbalance worsened.
As seen in Figure 4, even though the MNIST dataset has a
near-uniform label distribution, the corresponding generated
label distribution is heavily skewed. CVAEs address this is-
sue by separating the process of image generation from the
selection of the label to be generated. The CVAE architecture
we used is taken from [25].

The training was split into two stages. First, the CVAE was



Figure 3: Label distribution for select clients for various beta values

trained in a federated manner. This trained CVAE was used to
augment the dataset in various ways. The augmented dataset
is then used by a classifier, which is used to classify the labels
of the generated or original images of digits.

(a) β=0.1 (b) β=1.0

Figure 4: Influence of data imbalance on VAE-generated label dis-
tribution

3.1 Imputation Investigation
The first two methods are variations of the Synthetic Minority
Reconstruction Technique [24], which involves locally im-
puting k synthetic data points using a federated CVAE and
also training a classifier in a federated manner as seen in Fig-
ure 5, where a CVAE trained in a federated manner is used to
impute k data points into the client datasets. The effect k has
on the client test metrics was investigated.

Two imputation techniques, namely uniform and minority
imputation, were investigated. Uniform imputation imputes
all the labels uniformly, no matter what the initial local client
label distribution is. Minority imputation takes the prior label
distribution into account, imputing more synthetic data points
with the minority labels, as shown in Figure 6. The number
of imputed data points generated per label is specified by Al-
gorithm 1, where the bigger the difference between the most
common label frequency and the frequency of a certain la-
bel, the more that certain label is imputed. This algorithm
assumes a global, uniform label distribution. If the global

distribution is not uniform, then an additional step to collect
and aggregate label counts from clients is needed. This in-
formation must then be used to adjust the imputation amount
such that each local distribution is imputed so that it matches
this global label distribution.

These two imputation approaches were investigated to de-
termine whether the potential performance improvement is
due to simply adding new data indiscriminately or if it is the
result of making client datasets more similar, a task that mi-
nority imputation accomplishes more effectively.

Figure 5: Overview of steps in data-based augmentation experi-
ments: The CVAE is trained in a federated manner (1). The trained
CVAE is used to augment k data points into the local dataset (2).
The classifier is trained on the augmented local dataset in a feder-
ated manner (3).

3.2 Finetuning Investigation
The second method, as shown in Figure 7, looked into the per-
formance of the federated system if the classifier was trained
centrally with the generated data. The VAE is still trained
in a federated manner. This pre-trained classifier would then
be fine-tuned locally at each client using original data. We
simulated data points with the same label distribution as the
global MNIST dataset with the CVAE to get 70k images, con-
sisting of 60k training and 10k testing images, similar to the
original MNIST dataset. We then test the performance of the
classifier on the clients each using their respective original
(non-imputed) local test datasets for each method. We com-
pare these methods with the baseline of no data augmentation
with varying label imbalances.

This method allows us to also assess the quality of the gen-
erated data for the classification task from the intermediate
results of the pre-trained models. This approach also allows
us to compare the effectiveness of transfer learning in fed-
erated learning to the data-based imputation methods previ-
ously discussed in Section 3.1.

3.3 Experiment Setup
We extended the implementation of the vanilla FL framework
used in [19], which was written in Pytorch. Our code can



Figure 6: Local label distribution from an example client with β=0.5
before and after doing minority imputation with various imputation
amounts

be found on Github1. All the models were trained using the
Adam [14] optimizer. We simulated the federated learning
process using 100 clients with all of them participating every
round. The binary cross entropy loss was used to train the
classifier. The aggregation algorithm is FedAvg. Each exper-
iment was run 5 times to ensure reliable results and to deter-
mine the variability of the results. At the beginning of each
run, a CVAE was trained federatively on data split according
to β = [0.1, 0.3, 0.5, 10.0, 100.0]. All the errors represented
in the Figures are± 1 standard deviation away from the mean
of the trials.

We use ExquisiteNet [3] as our classifier model since it
achieves a high classification accuracy and is complex enough
for its performance to be noticeably degraded under federated
conditions. To allow for increased performance of the genera-
tive models, we binarized the MNIST dataset, similar to [21].

Since local clients will be dealing with datasets with an
imbalanced label distribution, we must look at the F1 score
in addition to the accuracy of the classifier such that we min-
imize the metric bias caused by the majority class [1].

1https://github.com/Lyadalachanchu/Effect-of-Different-Data-
Augmentation-Strategies-on-Performance-In-Federated-Learning-
Systems

Algorithm 1 CVAE-based Minority Class Imputation

1: Input: k, trained cvae, initial ds, label distribution

2: Output: combined ds
3: deficits← ∅
4: for each label, count in label distribution do
5: deficits[label]← max(label distribution)− count
6: end for
7: inverse counts← k × Normalize(deficits)
8: for each label in label distribution do
9: num samples← Round(inverse counts[label])

10: if num samples > 0 then
11: generated images ←

GenerateData(trained cvae, num samples, label)

12: generated ds← ∅
13: for each image in generated images do
14: generated ds ← generated ds ∪

(image, label)
15: end for
16: end if
17: end for
18: return CombineDatasets(initial ds, generated ds)

4 Results
4.1 Imputation Experiments
K = [0, 100, 500, 1000] images were generated using the
CVAE that was trained on the respective β parameter for each
client. With an average of 600 original images on each client,
synthetic images make up 0%, 14.2%, 45%, and 62.5% of
the training data for their respective imputation amounts. The
number of local epochs and global communication rounds
was set to 1 and 15, respectively, as increasing them did not
significantly enhance the performance of any augmentation
method. The classifier was trained with a learning rate of 0.01
and a weight decay of 0.0001 with a batch size of 32. These
settings were used for both uniform and minority imputation.

Uniform Imputation
The mean test losses and their variances do not seem to be af-
fected by the number of imputed data points, as seen in figure
8. However, this does not seem to be the case with the final
test macro F1 scores shown in Figure 9. The F1 score vari-
ance is lower for higher values of β, however, their variances
do not seem to be affected by k, similar to the test losses. F1
performance seems to be affected the most when the data is
the most imbalanced (for smaller values of β). The macro
F1 performance saw a noticeable increase for the two most
imbalanced data splits β = [0.1, 0.3] between no imputation
and 100 imputed images. However, it’s also apparent that too
many imputed images seem to degrade performance as can
be seen with k=1000 in Figure 10.

Minority Imputation
As seen in Figure 12, the average F1 score across all βs is
higher when using minority imputation compared to when
using uniform imputation. Unlike with uniform imputation,
there seems to be a continuous performance improvement, at



Figure 7: Overview of steps in finetuning experiments. The aggre-
gated CVAE is trained in a federated manner (1a). The CVAE gener-
ates a synthetic dataset which the central classifier uses to train itself
locally on the server (1b). This pre-trained classifier is sent to each
client (2), where it is further trained with original data from the local
dataset (3).

Figure 8: Test Losses for Each Global Round for Different Imputa-
tion Amounts

least for the range for the explored values of k. Although this
performance improvement is diminishing the higher the k.
This can be seen in Figure 12 where the F1-score improves
more between k=100 and k=500 than between k=500 and
k=1000. Synthetic imputation demonstrates steady perfor-
mance improvement, even with more balanced client datasets,
as shown in Figure 11. There is a roughly 0.1 increase in
the F1-score between k=0 and k=1000 when β=100.0. In
contrast, uniform imputation with higher βs results in per-
formance stagnation with less drastic improvements between
k=0 and k=1000 for βs = [10.0, 100.0].

4.2 Finetuning Experiments
For each of the 5 runs, a synthetic dataset was created for
each beta parameter with their respective CVAEs. 70,000
synthetic MNIST images were generated with the same label
distribution as the original MNIST dataset using their respec-
tive CVAEs. The five classifiers were trained in a centralized
manner on their respective synthetic dataset with 15 epochs,
a learning rate of 0.01 and a weight decay of 0.0001 with a
batch size of 32. Each classifier was then sent to each client,

Figure 9: Test macro-F1 scores for different imputation amounts
with uniform imputation

Figure 10: Aggregated test macro-F1 scores for different imputation
amounts with uniform imputation

which then locally trained the classifier with local MNIST
data (split according to the respective beta parameter of the
data the classifier was trained on) for 8 local epochs with all
other hyperparameters remaining constant.

A large discrepancy between the training (performed on
synthetic MNIST data) and test (performed on original
MNIST) loss is apparent as the test losses are roughly a mag-
nitude of order higher than the train losses as shown by Table
1. This difference is reflected in the test accuracies shown in
Figure 13. The accuracies for the classifier trained on syn-
thetic data all start significantly higher than the accuracies for
the classifier trained on the original dataset as seen in Figures
13a and 13b respectively.

Further exploration was performed to investigate the cause
for this discrepancy in the performances between the syn-
thetic and original data. Looking at the output probabilities
in Figure 14, the model was more uncertain with real data,



Figure 11: Test macro-F1 scores for different imputation amounts
with minority imputation

Figure 12: Aggregated test macro-F1 scores for different imputation
amounts with minority imputation

which might partly explain the discrepancy between the train
and test losses. However, the accuracies also seem to be sig-
nificantly lower when trained on synthetic data, while the
model is relatively confident most of the time, which means
that when the model is wrong, it heavily contributes to the
cross entropy loss since it is so confident.

This discrepancy between the synthetic and original data
means that the pre-trained classifier performs significantly
worse than the finetuned and the original federated strategies
as seen in Figure 15. However, after finetuning the pre-trained
classifier, we see better performance than the vanilla feder-
ated strategy for heavily imbalanced data while for more bal-
anced data, they seem to be comparable. It also seems like
finetuning reduces the variance of the performance.

Table 1: Final train and test losses for respective beta parameters
with the model trained only on synthetic data and tested on original
data

β Train Loss Test Loss
0.1 0.014241 1.374088
0.3 0.009557 1.865668
0.5 0.010085 1.226184
10.0 0.010298 1.359792

100.0 0.008356 1.546940

(a) Accuracies for classifier
trained on synthetic MNIST data

(b) Accuracies for classifier
trained on original MNIST data

Figure 13: Test accuracies on original data during training over vary-
ing β parameters

5 Discussion
The results seem to generally indicate a difference in quality
between the synthetic and the original MNIST dataset, caus-
ing a worse classification performance for synthetic data. In-
deed this is a known problem [20], where performance on
downstream tasks such as classification can be degraded by
up to 20% with certain VAE models. This is apparent, espe-
cially in the results from the finetuning experiments, where
Figure 13 shows significant accuracy degradation for all val-
ues of β when the classifier was trained on synthetic data.
This can be seen also in Figure 15, where the pre-trained
classifier (which was done only with synthetic data) achieves
lower performance compared to the other strategies. How-
ever, it seems that when the classifier is trained with original
data alongside synthetic data, performance is higher than with
original data for only the heavily imbalanced data. This can
be seen in Figure 15 since the finetuned classifier achieves
a slightly higher F1 performance than the classifier trained
only with original data for β = [0.1, 0.3]. This can also be
supported by Figure 9 since the F1 performance of the clas-
sifier for data split according to β = [0.1, 0.3] increases when
100 images are imputed compared to when none are imputed.

However, there seems to be a balance in the optimal
amount of synthetic images to impute for uniform imputation.
Performance stops improving and seems to be degraded after
more than 500 images are imputed, especially for the more
imbalanced data splits. Furthermore, it seems that uniform
data imputation does not affect performance when the data is
more balanced. This might be because synthetic data qual-
ity is lower than real data quality, and if the data is already
balanced to achieve near-optimal performance, then adding
sub-optimal data does not provide any benefit. This is in con-



(a) Predicted class probabili-
ties of the classifier on original
MNIST dataset

(b) Predicted class probabilities
of the classifier on synthetic
MNIST dataset

Figure 14: Output probabilities of the classifier trained on synthetic
data

Figure 15: Test macro-F1 scores for pre-trained, finetuned, and
vanilla federated strategies

trast to when the data imbalance is high, where imputing data
allows the client label distributions to become more balanced,
even though the imputed data is sub-optimal. This might also
explain the presence of an optimal imputation amount since
adding the first few images will have a greater effect in reduc-
ing data imbalance. However, once enough synthetic images
are added, the benefit provided by the imbalance will not out-
weigh the degradation caused by the sub-optimal synthetic
data.

However, with minority imputation, this degradation is not
seen. This might be because each imputed data point is more
likely to help make the datasets more IID than with uniform
imputation resulting in an optimal imputation amount that is
greater than the tested values of k. Unlike minority imputa-
tion, uniform imputation adds synthetic data points with the
majority label, which doesn’t provide much benefit to make
the datasets more IID while diminishing the dataset quality.
Minority imputation seems to be a better imputation method
than uniform imputation since it achieves higher F1-scores
across most values of k, except for k=100, as seen when com-
paring Figure 12 and Figure 10. On average, the F1 perfor-
mance of minority imputation is 0.015 higher than with uni-
form imputation.

As seen in Figure 13a, the final accuracies of the classifier
trained on synthetic data are lower than the final accuracies

when the classifier is trained on the original data for all βs.
On the other hand, the start accuracies are also a lot higher
when trained on synthetic MNIST images. This suggests that
the generated digits do not look different enough from each
other (unlike with real data) so the model learns only a few
variations of each digit. This shows that the model produced
digits with little variance. This could be fixed through the
use of a beta VAE, which uses a modified loss function that
allows the Kullback-Leibler divergence term to be weighted
more heavily, allowing the generation of a wider variety of
digit types.

Admittedly, the explored techniques also encounter some
of the same pitfalls as related solutions, as discussed in Sec-
tion 2. The finetuning approach increases server load. For this
approach to work, the server will need to create and store a
synthetic dataset and also train a model centrally, though this
is a different type of computational complexity compared to
the type faced by the framework-based solutions mentioned
in 2.2. The explored imputation-based approaches overcome
some of the privacy loss and communication burden limita-
tions of the previous data-sharing methods, since the genera-
tive models themselves are being shared, not the images. This
reduces the communication burden since sending the model is
less data-intensive than sending the dataset itself. The privacy
loss is minimized because we are not giving other clients ac-
cess to the original data. However, no investigation into how
much information the generated data leaks about the original
dataset is done.

6 Conclusions and Future Work
Data heterogeneity is a significant challenge that impedes the
effectiveness of practical federated learning systems, often
leading to substantial performance degradation.

6.1 Main Contributions
This research addresses the data heterogeneity issue by in-
vestigating two data-based methods: synthetic uniform im-
putation and synthetic minority imputation. Additionally, a
framework-based approach was explored, which involves lo-
cally fine-tuning a classifier that was initially trained centrally
on synthetic data.

The key findings of the project are as follows:

• Combining original and synthetic data outperforms only
original data in scenarios with extremely imbalanced la-
bel distributions and only synthetic data on all tested val-
ues of β.

• There appears to be an optimal amount of synthetic data
imputation for uniform imputation, beyond which per-
formance starts degrading.

• Minority imputation seems to lead to better performance
than uniform imputation across most levels of imbal-
ances, with the most improvement for the most imbal-
anced data.

• It was reaffirmed that using solely synthetic data for
classifier training leads to significantly worse perfor-
mance in downstream tasks.



These results highlight the potential of synthetic data aug-
mentation to mitigate the effects of data heterogeneity in fed-
erated learning, offering insights into optimal strategies for
improving model performance.

6.2 Limitations and Future Work
Our study presents several limitations that should be ad-
dressed in future research. Firstly, the experiments were con-
ducted exclusively on the MNIST dataset. This narrow fo-
cus limits the generalizability of the results to other datasets,
as different datasets may exhibit diverse characteristics and
complexities.

Secondly, we did not utilize a β-VAE to control or increase
the variance of the types of digits generated. Implementing a
β-VAE could provide more diverse generative outputs, which
may enhance the robustness and performance of federated
learning models.

Another important aspect that was not explored due to time
constraints is the impact of differential privacy on model per-
formance. Differential privacy is crucial for ensuring data
privacy, a fundamental principle of federated learning. Inves-
tigating how the addition of random noise to the generated
data points affects the performance of downstream tasks is
essential. Such research would be valuable for understanding
the trade-offs between privacy and model accuracy, facilitat-
ing the adoption of generative data augmentation in industry.

Lastly, our study primarily focused on federated learning
frameworks where relatively fewer clients participate, com-
monly found in the medical domain. This approach overlooks
scenarios with a large number of participating clients, such as
mobile keyboard next-word recommenders [12] [26]. It is un-
likely that our results will directly translate to large federated
learning systems. Future work should explore the effects of
data augmentation in environments with many clients to bet-
ter understand its scalability and applicability across different
federated learning contexts.

7 Responsible Research
Federated learning is being increasingly used for data-
sensitive fields, such as the medical field, where a privacy
breach would be disastrous. Therefore, it follows that the eth-
ical implications of federated learning usage and more specif-
ically privacy losses in generative modelling should be con-
sidered with relation to our research project. Furthermore, we
must uphold the principles stated in the Dutch code of con-
duct for research integrity [16] by clearly documenting our
data, analysis, and methodology.

7.1 Ethical Implications of Using Generative
Augmentation for Federated Learning in
Privacy Sensitive Scenarios

The use of generative augmentation in federated learning,
particularly in privacy-sensitive scenarios, poses significant
ethical implications. A primary concern is the risk of in-
formation leakage. Information leakage occurs when private
data can be partially reconstructed through various methods.
This risk is exacerbated when a client possesses only a few

data points, making their information more susceptible to re-
identification.

Moreover, sharing variational autoencoder (VAE) models
introduces additional vectors for potential data leaks. There is
a risk that some generated data might exactly match the data
on which the generative model was trained [10]. This sce-
nario creates a tension between achieving high model perfor-
mance and preserving data privacy. High-performing models
may inadvertently memorize and regenerate specific training
data, thereby compromising privacy.

One viable solution to mitigate these risks is the imple-
mentation of differential privacy. Differential privacy, as de-
scribed by [8], provides a framework for quantifying and
managing privacy loss. It works by introducing random noise
to the shared information, which, in the context of our re-
search, would be the weights of the generative models. By
carefully calibrating the amount of noise added, stakeholders
can balance the trade-off between model accuracy and the de-
gree of privacy preservation. This approach allows for a more
controlled and transparent parameterization of privacy, ensur-
ing that sensitive data remains protected even as models are
trained collaboratively.

7.2 Reproducibility and Repeatability
To ensure the reproducibility of our experiments in Section
4, we have published our code (which consists of plot gen-
eration, as well as our modifications to the federated learn-
ing simulation framework originally developed by [19]) on
Github2 with the fully open source MIT License, with which
allows researchers to reproduce and build upon our results.
The exact commands we used for each run and each experi-
ment are also available in the README file on our GitHub
repository. However, it is important to note, that while our
code is available, future researchers may not achieve identi-
cal results due to the randomness present in the training of
ML models.

A Appendix
I acknowledge the use of ChatGPT 3.5 and ChatGPT 4 (Ope-
nAI, https://chat.openai.com) to rephrase initial drafts, gener-
ate basic skeleton code for plotting, and proofread my final
draft.

Prompt: Reword this to flow smoother:

The number of local epochs and global communication
rounds were set to 1 and 15 respectively since
performance didn’t improve much for any
augmentation method by increasing them.

Response:

The number of local epochs and global communication
rounds were set to 1 and 15, respectively, as
increasing them did not significantly enhance
the performance for any augmentation method.

Prompt: Make this flow smoother:
2https://github.com/Lyadalachanchu/Effect-of-Different-Data-

Augmentation-Strategies-on-Performance-In-Federated-Learning-
Systems

https://chat.openai.com


Synthetic imputation also shows steady performance
improvement even with the more balanced client
datasets as evidenced in Figure ref{minority-
test-f1-imputation}; whereas with uniform
imputation performance seems to stagnate.

Response:

Synthetic imputation demonstrates steady
performance improvement, even with more
balanced client datasets, as shown in Figure
ref{minority-test-f1-imputation}. In contrast,
uniform imputation results in performance
stagnation.

Prompt: Make this more concise:

Our experiments were performed on the binarized
MNIST dataset with the ExquisiteNet classifier
being trained in a federated manner. The
results indicate a notable difference in
quality between the synthetic and original
MNIST datasets, leading to poorer
classification performance. This problem is
evident in the finetuning experiments, where
classifiers trained on synthetic data showed
significant accuracy degradation across all
values. Specifically, the pretrained
classifiers, trained only with synthetic data,
performed worse compared to other strategies.
However, incorporating both original and
synthetic data during training improved
performance, especially for heavily imbalanced
data.

Response:

Our experiments utilized the binarized MNIST
dataset with the ExquisiteNet classifier
trained in a federated manner. The results
reveal a significant quality gap between
synthetic and original MNIST datasets,
resulting in diminished classification
performance. Fine-tuning experiments
demonstrate substantial accuracy degradation
across all values for classifiers trained
solely on synthetic data. However, integrating
both original and synthetic data during
training enhances performance, particularly in
heavily imbalanced datasets.

Prompt: Turn this list of bullet points into a well-written
section:

Data heterogeneity is a significant challenge that
impedes the effectiveness of practical
federated learning systems, often leading to
substantial performance degradation.

- Most important results (aka. your main
contributions)
- In this project, two data-based methods,
synthetic uniform imputation and synthetic
minority imputation, were investigated. A
framework-based approach that involves locally
fine-tuning a classifier trained centrally on
synthetic data was also explored.

- Combination of original and synthetic data
seem to outperform only training on only
original data or only synthetic data for less
balanced label distributions
- There seems to be an optimal amount of
synthetic data imputation, after which
performance is similar if not slightly better
than with no imputation
- It was reinforced that using only synthetic
data for classifier training leads to
significantly worse performance for downstream
tasks.

Response:

Data heterogeneity is a significant challenge that
impedes the effectiveness of practical
federated learning systems, often leading to
substantial performance degradation. This
project addresses this issue by investigating
two data-based methods: synthetic uniform
imputation and synthetic minority imputation.
Additionally, a framework-based approach was
explored, which involves locally fine-tuning a
classifier that was initially trained centrally
on synthetic data.

The key findings of the project are as follows:

1. Combining original and synthetic data
outperforms training exclusively on either
original data or synthetic data, especially in
scenarios with less balanced label
distributions.

2. There appears to be an optimal amount of
synthetic data imputation, beyond which
performance stabilizes and may slightly improve
compared to no imputation.

3. It was reaffirmed that using solely synthetic
data for classifier training leads to
significantly worse performance in downstream
tasks.

These results highlight the potential of synthetic
data augmentation to mitigate the effects of
data heterogeneity in federated learning,
offering insights into optimal strategies for
improving model performance.

Prompt:

How can I get the total number of times a label
appeared:

generated_train_dataset = impute_cvae_minority(k
=1000, trained_cvae=trained_cvae,
initial_dataset=train_dataset)‘

‘post_label_counts = [label for _, label in
generated_train_dataset]‘

‘post_label_counts = Counter(post_label_counts)

Response:

To get the total number of times a label appeared
in the generated dataset, you can use the ‘
Counter‘ from the ‘collections‘ module. Heres



how you can modify your code to count the
occurrences of each label in the concatenated
dataset:

from collections import Counter

def impute_cvae_minority(k, trained_cvae,
initial_dataset):
# Get the label distribution from the initial
dataset
label_distribution = get_label_distribution(
initial_dataset)

# Invert the distribution to prioritize
minority labels
max_prob = max(label_distribution.values())
inverted_distribution = {label: max_prob / prob
for label, prob in label_distribution.items()}
total_inverted_prob = sum(inverted_distribution
.values())
normalized_distribution = {label: prob /
total_inverted_prob for label, prob in
inverted_distribution.items()}

# Prepare the transformation
apply_transform = transforms.Compose([

transforms.ToTensor(),
transforms.Lambda(lambda x: torch.round(x))
# Binarize the images

])

# Generate dataset
generated_dataset = []
generated_labels = random.choices(list(
normalized_distribution.keys()), weights=
normalized_distribution.values(), k=k)

for label in generated_labels:
generated_image = trained_cvae.

generate_data(n_samples=1, target_label=label).
squeeze(1)
multiplier = 1.0 / generated_image.max().

item()
transformed_image = torch.round(

generated_image * multiplier)
generated_dataset.append((transformed_image

, label))

# Create a new dataset by concatenating the
initial and generated datasets
concatenated_dataset = torch.utils.data.
ConcatDataset([initial_dataset,
generated_dataset])

# Count the occurrences of each label
post_label_counts = [label for _, label in
concatenated_dataset]
post_label_counts = Counter(post_label_counts)

return concatenated_dataset, post_label_counts

# Example usage (assuming you have a trained CVAE
model and initial dataset)

generated_train_dataset, post_label_counts =
impute_cvae_minority(k=1000, trained_cvae=

trained_cvae, initial_dataset=train_dataset)
print(post_label_counts)

This code snippet defines a function to impute data
using a CVAE while prioritizing minority
labels, then counts and prints the occurrences
of each label in the resulting concatenated
dataset.
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