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A B S T R A C T

Probabilistic modelling of power systems operation and planning processes depends on data-driven methods,
which require sufficiently large datasets. When historical data lacks this, it is desired to model the underlying
data generation mechanism as a probability distribution to assess the data quality and generate more data,
if needed. Kernel density estimation (KDE) based models are popular choices for this task, but they fail to
adapt to data regions with varying densities. In this paper, an adaptive KDE model is employed to circumvent
this, where each kernel in the model has an individual bandwidth. The leave-one-out maximum log-likelihood
(LOO-MLL) criterion is proposed to prevent the singular solutions that the regular MLL criterion gives rise to,
and it is proven that LOO-MLL prevents these. Relying on this guaranteed robustness, the model is extended by
adjustable weights for the kernels. In addition, a modified expectation–maximization algorithm is employed to
accelerate the optimization speed reliably. The performance of the proposed method and models are exhibited
on two power systems datasets using different statistical tests and by comparison with Gaussian mixture models.
Results show that the proposed models have promising performance, in addition to their singularity prevention
guarantees.
1. Introduction

Today’s power systems exhibit unprecedented levels of variability,
especially due to the high penetration of renewable energy systems.
Understanding these variabilities is crucial for the operation and plan-
ning of power systems because good models that represent these un-
certainties can aid the decision-making process of system operators.
Data-driven methods are the go-to approaches for such modelling tasks,
but the effectiveness of these methods depends on the data quality,
including its abundance, representativeness and health (missing values,
outliers, etc.). Thus, assessing and improving the quality of real-life
data is crucial for effective modelling.

One way to achieve these goals is the data-driven probabilistic mod-
elling of the data, which aims to find the closest distribution to the
unobservable real-life distribution that generated the data as a prob-
ability density function (pdf ). Fig. 1 illustrates this process and Fig. 2
indicates both the complexity of dependencies and the ability to use
such a model to generate more data. These can aid various data-driven
applications such as security analysis [1], and anomaly detection [2].

There is a wide variety of methods for the density estimation
problem such as copulas [1], Gaussian mixture models (GMMs) [3], and
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variational autoencoders [4]. One of the most common among these is
kernel density estimation (KDE) [3], which relies on placing kernels
centred on data points and averaging them to form a pdf. However,
the regular KDE model has an identical bandwidth parameter for all
its kernels. This could lead to (1) noisy samples from the probabilistic
model and (2) suboptimal estimation of the pdf in low-density regions
where the data is scarce. This challenge can be overcome by assigning
individual bandwidths for each data point with respect to their relative
locations among each other [5,6]. Thus, this adaptive KDE (A-KDE)
model requires an optimization objective for its bandwidths to be
assigned.

The maximum log-likelihood (MLL) criterion is one of the most well-
established objectives for optimizing probabilistic models. Yet, the high
flexibility of the adaptive KDE model leads to a phenomenon called
data-copying[7]. This occurs when the A-KDE model is optimized to the
extent that at least one bandwidth converges to zero and re-produces
the data point as seen in Fig. 1 (lower left) and results in a singular
solution that causes the optimization algorithm to stop while the rest
of distribution is arbitrarily shaped. Please note that most, if not all, of
vailable online 29 June 2024
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the highly flexible probabilistic models, such as GMMs and variational
autoencoders, are prone to this phenomenon [7].

Avoiding data-copying can be crucial for applications where the
probabilistic modelling is part of a pipeline. For instance, a reliability
assessment pipeline can have its probabilistic asset modelling task
automated for a smoother decision-making process, or edge computing
devices in substations can utilize probabilistic models to automatically
update their detection algorithms. These applications necessitate guar-
antees of non-singular solutions for providing reliable data processing
pipelines, especially if the resources (computation power, time, battery,
etc.) are limited.

Contributions. In this work, we explore a singularity mitigation
strategy called the leave-one-out (LOO) MLL criterion using KDE-based
models [6] in a similar fashion to the jackknife estimation method in
statistics [8].1 The contributions are as follows.

• We prove that KDE-based models converge to singular solutions
when the regular MLL criterion is employed.

• We introduce the LOO-MLL objective to the KDE-based models
and prove that it results in well-behaved and robust solutions.

• We propose 𝜋-KDE as a more flexible extension of A-KDE by
integrating kernel weights into the model.

• We propose a modified expectation–maximization (EM) optimiza-
tion procedure to exploit the advantages of EM.

• We developed a testing procedure to compare the performance of
probabilistic models quantitatively.

2. Problem definition

2.1. Motivating examples

We start by giving some motivating examples of probabilistic mod-
elling for power system applications.

2.1.1. Synthetic data generation
Smart meter data holds great potential for power systems operation

and planning. Unfortunately, accessing these data is not generally pos-
sible due to privacy concerns. Moreover, even if the data is accessible,
it might not be abundant enough due to its historic nature. These
challenges can be overcome by data-driven modelling of the smart
meter data at hand so that new datasets following a similar distribution
can be generated by taking – effectively unlimited – samples from
the probabilistic model. However, the data-copying phenomenon can
hinder the privacy-preservation and expressiveness of the model due
to the generation of exact replicas of certain data points in the original
dataset.

2.1.2. Rare-event sampling
Certain events, such as extreme weather conditions, are crucial

for various power systems applications like reliability assessment and
predictive maintenance. Data points belonging to these events tend
to be scarce, which may undermine the results of the application
by creating a bias towards a few specific usual events. Probabilistic
modelling can remedy this if the distribution’s tail is modelled properly
so one can take samples from the tail and enrich the rare-event data
with unseen rare events. Yet, copying the rare-event data in the dataset
interferes with the generalization of the model in the tail regions and
inhibits the enrichment.

1 The jackknife estimation method systematically resamples the dataset by
leaving out one observation at a time to reveal the effect of individual data
points on the estimator. It can be used for cross-validation and bias–variance
estimation.
2

Fig. 1. Overall objective of probabilistic modelling. Objective functions (MLL, LOO-
MLL) can only use the data points. MLL directly targets the dataset, and it copies
a random data point (singularity). LOO-MLL avoids this, and the resulting model is
similar to the real target distribution.

Fig. 2. Visual comparison between the training and the generated daily consumption
data for three countries (NO, FR, IT) from the Europe dataset (Section 4.1), illustrating
complex dependencies.

2.2. Preliminaries

2.2.1. Maximum log-likelihood criterion
Let 𝑝(𝐱; 𝜃) ∶ R𝑑 → R≥0 represent the (multi-dimensional) pdf that

we employ as our parametric distribution model where 𝜃 = {𝜃𝑎, 𝜃𝑓 }
is the union of adjustable (𝜃𝑎) and fixed (𝜃𝑓 ) model parameters. Using
the dataset  = {𝐱𝑖}𝑁𝑖=1, we aim to find the best model that captures
the underlying data generation process. The most common approach
to represent this aim as a mathematical objective is using the MLL
criterion,

𝜃∗𝑎 = argmax
𝜃𝑎

1
𝑁

∑

𝑖
log 𝑝(𝐱𝑖; 𝜃), (1)

where we hereon call the 1
𝑁

∑

𝑖 log 𝑝(𝐱𝑖; 𝜃) term as the total log-likelihood.
Intuitively, this criteria incentivizes the model to cover as many data
points as possible in its high-density regions since likelihood is an
indicator of expected frequency.



Electric Power Systems Research 235 (2024) 110775K. Bölat et al.

w
C
a
a
d
s

2

p
a
m

𝑝


∃

T
o

∃

i
M
p

e
0
o
h
l
c
b
d

3

i
o
l
m

3
d

r
a
c
p

o
l

{

W
o
a

T
m
a

(
c
b
e
t

T
i

P
r



w

d
n

3

f

2.2.2. Kernel density estimation
KDE is a methodology that utilizes the data points in the dataset to

parameterize the probabilistic model. This is accomplished by placing
identical kernels centred on data points and averaging them. For con-
ciseness, we focus on Gaussian kernels in this work. Thus, the pdf of
the KDE-based model can be written as

𝑝KDE(𝐱; 𝜃) =
1
𝑁

∑

𝑗
 (𝐱;𝜇𝑗 = 𝐱𝑗 , 𝛴𝑗 = 𝜎2𝐈) (2)

hich essentially is a mixture distribution model with uniform weights.
onventionally, the parameters of the KDE model are fixed, i.e. 𝜃𝑎 = ∅,
nd the bandwidth parameter, 𝜎 > 0, is the same for all kernels. As
result, the applicability of KDE-based models to high-dimensional

atasets is limited due to decreasing locality with increasing dimen-
ionality [5,6].

.3. Adaptive kernel density estimation

The aforementioned drawbacks of KDE models motivate us to em-
loy individual bandwidths for each kernel to have the flexibility of
dapting the coverage of the model locally. This adaptive KDE (A-KDE)
odel is defined as

A-KDE(𝐱; 𝜃) =
1
𝑁

∑

𝑗
 (𝐱;𝜇𝑗 = 𝐱𝑗 , 𝛴𝑗 = 𝜎2𝑗 𝐈). (3)

where 𝜎𝑗 > 0, ∀𝑗. Additionally, we let the bandwidths be adjustable,
i.e. 𝜃𝑎 = {𝜎𝑗}𝑁𝑗=1.

2.4. Data-copying as a singularity

The additional flexibility and adjustability that come with A-KDE
encourage us to optimize 𝜃𝑎 according to the MLL criterion in (1).
Unfortunately, the direct employment of this criterion as an objective
function results in one or more bandwidth parameters converging to
zero (bandwidth-collapse). Since a kernel with zero bandwidth contains
no uncertainty and precisely represents the data point, we call this
phenomenon data-copying.

Definition 1 (Data-Copying). An A-KDE model copies a data point 𝐱𝑗′ ∈
when 𝜎𝑗′ → 0+. Thus, the data-copying phenomenon occurs when

𝑗 ∶ 𝜎𝑗 → 0+.

heorem 1. An A-KDE model optimized by MLL objective copies at least
ne data point if and only if the total log-likelihood goes to infinity, i.e.

𝑗 ∶ 𝜎𝑗 → 0+ ⟺
∑

𝑖
log 𝑝A-KDE(𝐱𝑖; 𝜃) → ∞.

The proof of Theorem 1 can be found in Appendix A. This theorem
mplies that data-copying is a property of the global optimizer of the
LL objective, resulting in a singular solution for the density estimation

roblem.
Intuitively, the MLL objective drives the model to replicate the

mpirical data distribution by copying all the data points, i.e. 𝜎𝑗 →
+, ∀𝑗. Ideally, these bandwidth-collapses continue throughout the
ptimization until the full replication of the dataset. However, as we
ave shown, one bandwidth-collapse is enough to take the total log-
ikelihood to infinity. In practice, numerical optimization algorithms
annot handle infinite values and stop the optimization before the other
andwidths collapse. Thus, besides being singular, we can define the
ata-copying phenomenon also as an unstable solution.

. Methodology

The aforementioned challenges that come with the increased flex-
bility of A-KDE models require a mitigation mechanism for healthy
ptimization. Since we want our method to be applicable to the prob-
em without any prior assumptions regarding data, we rule out ad-hoc
3

ethods limiting the flexibility of the model, like regularization.
.1. Leave-one-out maximum log-likelihood objective for adaptive kernel
ensity estimation

In order to mitigate the bandwidth-collapses, we should look at the
oot of the problem. Intuitively, it is more rewarding for the kernels to
ssign higher likelihoods to the data points that they centred on (self-
ontribution), which drives these kernels to ignore the surrounding data
oints. This can also be seen in the data-copying proof in Appendix A.

A natural solution to this problem would be to modify the MLL
bjective in a way that we leave these self-contributions out of the total
og-likelihood, i.e.

𝜎∗𝑗 }𝑗 = argmax
{𝜎𝑗}𝑗

∑

𝑖
log

∑

𝑗≠𝑖
 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈). (4)

e call this the LOO-MLL objective for A-KDE. We guarantee this
bjective solves the data-copying problem by the following theorem,
nd its proof can be found in Appendix B.

heorem 2. Data-copying cannot occur for any optimal solution for the
odelling problem with A-KDE if the LOO-MLL objective is used and there
re no repeating data points in the dataset.

Note that the unique data points assumption holds almost surely
with probability one) for non-discrete data domains, so that the data-
opying is not a problem for datasets drawn from continuous distri-
utions. In addition, we also show that the instability problem that we
ncounter in the regular MLL objective does not occur when we employ
he LOO-MLL objective.

heorem 3. The total log-likelihood in (4) is always bounded from above
f there are no repeating data points in the dataset.

roof. Let us define 𝑚 ∶== min{𝑖,𝑗∶𝑖≠𝑗}(‖𝐱𝑖 − 𝐱𝑗‖). Thanks to the no-
eplica data point assumption we have 𝑚 > 0, and we can derive

(𝐱𝑖; 𝐱𝑗≠𝑖, 𝜎2𝑗 𝐈) ∝ 𝜎−𝑑𝑗 exp(−
‖𝐱𝑖 − 𝐱𝑗≠𝑖‖2

2𝜎2𝑗
)

≤ 1
𝜎𝑑𝑗

exp(−𝑚
2

2𝜎2𝑗
) ≤ 𝑑

𝑑
2

exp( 𝑑2 )
𝑚−𝑑 = 𝑐 < ∞

(5)

As a result,
∑

𝑖
log

∑

𝑗≠𝑖
 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈) < 𝑁 log((𝑁 − 1)𝑐) < ∞ (6)

hich concludes the proof. □

Consequently, employing LOO-MLL objective to non-discrete
atasets almost surely guarantees the prevention of A-KDE’s drawbacks,
amely data-copying and instability.

.2. 𝜋-kernel density estimation

As we mentioned before, the KDE-based models are essentially
mixture models, and A-KDE models are no exceptions. We can use
this resemblance to extend their flexibility by introducing individual
weights to each kernel as

𝑝𝜋-KDE(𝐱; 𝜃) =
∑

𝑗
𝜋𝑗 (𝐱; 𝐱𝑗 , 𝜎2𝑗 𝐈) (7)

where 𝜋𝑗 > 0, ∑𝑗 𝜋𝑗 = 1 and 𝜃𝑎 = {𝜋𝑗 , 𝜎𝑗}𝑗 . Note that A-KDE is a special
orm of 𝜋-KDE with 𝜋𝑗 = 1

𝑁 ,∀𝑗. Accordingly, the LOO-MLL objective
for 𝜋-KDE models can be written in a similar manner too:

{𝜋∗
𝑗 , 𝜎

∗
𝑗 }𝑗 = argmax

{𝜋𝑗 ,𝜎𝑗}𝑗

∑

𝑖
log

∑

𝑗≠𝑖
𝜋𝑗 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈). (8)

This integration of the kernel weights introduces greater flexibility
thanks to the higher number of parameters. Additionally, we hypoth-
esize that the model’s sensitivity to outliers is reduced by employing
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this method since, intuitively, the kernels belonging to these outlier
data points tend to have smaller weights. The analysis of this claim
is outside of the scope of this study, and we leave it for future work.

Corollary 3.1. The Theorems 1–3 apply to the 𝜋-KDE model and its related
OO-MLL objective.

This corollary can be proved directly by including the weights to the
erivations in the corresponding proofs. Intuitively, the 𝜋-KDE model
mploys a convex combination of the likelihoods in the A-KDE model
nd adapting this convexity to the given proofs does not change the
esults.

.3. Modified expectation–maximization algorithm

Until now, no specific optimization algorithm has been indicated to
ind the optimal solutions for the aforementioned LOO-MLL problems
n 3.1 and 3.2. Because of their continuous nature, a wide variety of off-
he-shelf automatic differentiation-based optimizers, such as Adam [9]
re applicable to our problem. These optimizers provide a seamless
irst-order gradient-based optimization for a given model and objective
unction.

On the other hand, the A-KDE/𝜋-KDE models are special cases of
sotropic Gaussian mixture models where the centres are predetermined
nd fixed, suggesting that we can employ the EM algorithm [3] for
ts desirable properties and intuitive implementation. Thus, the expec-
ation and maximization steps of the algorithm can easily be applied
o the conventional MLL objective. However, we must modify this EM
lgorithm according to our LOO-MLL objective to obtain well-behaved
nd stable solutions.

Accordingly, we propose to use the following modified EM algo-
ithm to iteratively maximize the LOO-MLL objective:

• E-step:

𝑟𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜋𝑗 (𝐱𝑖 ;𝐱𝑗 ,𝜎2𝑗 𝐈)
∑

𝑗′≠𝑖 𝜋𝑗′ (𝐱𝑖;𝐱𝑗′ ,𝜎2𝑗′ 𝐈)
∶ 𝑖 ≠ 𝑗

0 ∶ 𝑖 = 𝑗
(9)

• M-step:

𝜎2𝑗 = 1
𝑑

∑

𝑖 𝑟𝑖𝑗‖𝐱𝑖 − 𝐱𝑗‖2
∑

𝑖 𝑟𝑖𝑗
(10)

𝜋𝑗 =
1
𝑁

∑

𝑖
𝑟𝑖𝑗 (11)

The weights are fixed to 𝜋𝑗 =
1
𝑁 ,∀𝑗 for A-KDE. Note that the M-step

remains the same as the M-step of the regular EM algorithm, thanks
to the assignment of zero responsibilities to the self-kernels, i.e. 𝑟𝑖𝑖 = 0.
This assignment is a representation of the LOO mechanism in a way that
the data points have no effect on the optimization of their self-kernels.

4. Experimentation

In order to exhibit the probabilistic modelling capabilities of A-KDE
and 𝜋-KDE models, we run a number of experiments. This section de-
scribes the datasets, the model comparison strategy and the experiment
settings.2

4.1. Datasets

We employ the data from ENTSO-E Transparency Platform3,4 as the
basis of our datasets. We curated two datasets using this platform,5 as
given below.

2 https://github.com/kabolat/leave-one-out_maximum-log-likelihood
3 https://transparency.entsoe.eu/
4 https://data.open-power-system-data.org/time_series/
5

4

The datasets can be found in the shared code repository.
4.1.1. Europe dataset
We used the daily averaged power consumption in MW of 15

European countries6 between 2015–2020 to build this dataset, which
resulted in 2099 data points with 15 features. In other words, each
data point corresponds to one day in the given five-year period, and
each feature represents the aggregated daily consumption of the corre-
sponding country. Fig. 2 (blue points) visualizes this dataset using three
countries’ data, i.e. three data features.

4.1.2. Denmark dataset
We used the hourly averaged load and generation (solar, onshore

wind and offshore wind) numbers (in MW) from the two bidding zones
in Denmark in 2019 to build this dataset, which resulted in 8784 data
points with 8 features. Therefore, each data point corresponds to an
hour of a given day in 2019.

Please note that both datasets are treated as collections of i.i.d.
snapshots in time, not as time series. This treatment is relevant for
various energy systems applications such as scenario testing for (cross-
border) energy market studies and statistical modelling of load levels
interconnection capacity planning.

4.2. Two-step model comparison strategy

Here, we introduce our model comparison strategy to assess the
performance of the distribution models.

4.2.1. Sample comparison tests
In order to test the hypothesis of whether two sets of samples

are coming from the same distribution or not, two multi-dimensional
two-sample statistical tests were used: maximum mean discrepancy
(MMD) [10] and energy [11] tests.7 These aim to test the hypothesis
if the model samples are coming from the same distribution as the test
samples. The test samples consist of the data points that we held out
during the training of the models.

4.2.2. Model comparison tests
Two sample tests are designed to give smaller scores when the null

hypothesis (samples are coming from the same distribution) is more
likely. However, the test scores themselves are not easy to interpret nu-
merically. In other words, the score alone cannot say if the best model
amongst the candidate models is a good model or not. To overcome
this, first, we obtained baseline scores by performing two-sample tests
that compared the training data with the test data.

However, one drawback of this approach is that we randomly split
he training and test samples before the optimization. Thus, the ob-
ained baseline score is merely a sample of a complex random process
nd can be misleading. Since conducting all the optimization proce-
ures for different data splits is infeasible, we propose to use the
andom subsets of the train, test and generated sample sets to capture
his effect as done in [12]. This Monte Carlo approach results in samples
f sample comparison scores, that are used to compare models.

Samples of test scores from the models can be compared to base-
ine score samples by using different statistics to calculate the differ-
nce between these sample distributions. For this, we use three two-
ample tests as model comparison tests: Kolmogorov–Smirnov (KS) [13],

Cramér–von Mises (CvM)8 [14], and simple mean difference (𝛥Mean)
tests. These result in model comparison scores with smaller values indi-
cating better performance.

Algorithm 1 contains a pseudo-algorithm of the two-step model
comparison procedure. Here, ,  train,  test, 𝑁MC and 𝑟 represents the
et of the compared models, training set, test set, the number of Monte

6 AT, BE, CH, DE, DK, ES, FI, FR, GB, IE, IT, NL, NO, PT, SE.
7 https://github.com/josipd/torch-two-sample
8
 scipy.stats (v1.8.1) is used for KS and CvM tests.

https://github.com/kabolat/leave-one-out_maximum-log-likelihood
https://transparency.entsoe.eu/
https://data.open-power-system-data.org/time_series/
https://github.com/josipd/torch-two-sample
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Algorithm 1 Two-Step Model Comparison Procedure

Require: ,  train,  test, 𝑁MC, 𝑁model ∈ N, 𝑟 ∈ (0, 1)
1:  S = {MMD,Energy} ⊳ Sample comparison tests
2: 𝑛 ← 𝑟 × | test

| ⊳ # subsamples
3: for all Ts ∈  S do
4: base

Ts ← {}
5: for all 𝑖 ∈ 1, 2,… , 𝑁MC do
6: test n∼  test; base n∼  train ⊳ Subsampling
7: base

Ts ← base
Ts ∪ Ts(test,base)

8: ⊳ Collecting the baseline sample scores for test Ts

9: end for
10: end for
11:
12: for all M ∈  do
13: model 𝑁model

∼ M ⊳ Taking samples from the model
14: for all Ts ∈  S do
15: M

Ts ← {}
16: for all 𝑖 ∈ 1, 2,… , 𝑁MC do
17: test n∼  test; model n∼ model ⊳ Subsampling
18: M

Ts ← M
Ts ∪ Ts(test,model)

19: ⊳ Collecting the sample scores of M for Ts

20: end for
21: end for
22: end for
23:
24:  M = {KS,CvM, 𝛥Mean} ⊳ Model comparison tests
25: for all (Ts,Tm,M) ∈  S ×  M × do
26: M

Ts ,Tm ← Tm(base
Ts ,M

Ts )
27: ⊳ Assigning model scores for every Ts and M
28: end for

Carlo runs and the subsampling ratio, respectively. The operator n∼
means sampling n data points without replacement. As a result, we have
a collection of model comparison scores M

Ts ,Tm for all model, sample
comparison test and model comparison test triples, e.g. 𝜋−KDE

MMD,CvM.

4.3. Experiment settings

4.3.1. Dataset settings
Both datasets were randomly split into train and test sets with a

ratio of 4:1 and normalized using z-score normalization.

4.3.2. Optimizer settings
Adam was used for the gradient-based optimization. The conver-

gence thresholds were set to 10−4 for all of the optimization algorithms.

4.3.3. Initialization settings
The initial bandwidths were assigned as 0.1 both for A-KDE and

𝜋-KDE models9 and initial weights were assigned as 1
𝑁 for the 𝜋-KDE

model.

4.3.4. Benchmark model settings
Full covariance GMMs were used as the model of comparison. Their

numbers of components were set in a way that the total numbers
of parameters were as close as possible to the numbers of parame-
ters of A-KDE and 𝜋-KDE. The GMM models are denoted as GMMA
and GMM𝜋 , respectively. Thus, the set of models becomes  =
{A-KDE, 𝜋-KDE,GMMA,GMM𝜋}.

9 A logarithmic search was conducted for the initial bandwidths, and
no value performs the best on all scores. Since the resulting scores are
relatively close to each other, 0.1 was chosen as the most representative initial
bandwidth value.
5

Fig. 3. Convergence times of the modified EM and Adam.

4.3.5. Test settings
The number of samples was set to the size of the training set for all

models, i.e. 𝑁model = | train
|. We chose a subsampling rate of 𝑟 = 0.5

and set the number of Monte Carlo runs (𝑁MC) to 2000 and 1000 for
Europe and Denmark datasets, respectively.

5. Results and discussion

5.1. Comparison of training speed

First, we compared the speed differences between two optimization
algorithms (modified EM and Adam) by measuring the elapsed times for
convergence. Since the convergence speed of Adam also depends on the
selection of the batch size and learning rate, we created a test grid that
comprised combinations of several values of these hyperparameters.10

The results are illustrated in Fig. 3. As can be seen, the mod-
ified EM algorithm is not necessarily faster than Adam. However,
the fact that the abundance of hyperparameter combinations that re-
sult in slower convergences makes the modified EM algorithm more
favourable thanks to the absence of hyperparameters. Moreover, please
note that the results are given in the logarithmic scale. Thus, the
convergence time of Adam is significantly longer than the modified EM
for most combinations, while the difference is negligible when Adam is
faster.

5.2. Estimation performance comparison

We trained all candidate models for each dataset. The empirical
cumulative distribution functions (ECDFs) of the resulting sample test
scores (M

Ts and base
Ts ) after the Monte Carlo runs are depicted in Fig. 4.

The corresponding model comparison scores (M
Ts ,Tm ) are tabulated in

Table 1. The final column indicates if the model is subject to singularity
prevention.

In Fig. 4, we can see that the sample test scores of the models (M
Ts )

have similar variances with respect to their corresponding baseline
sample test scores (base

Ts ). This eases the visual inspection by looking
at the ordering of the ECDFs. Since we hypothesize that a lower score
means better performance and that train and test data are drawn from
the same distribution, having the baseline ECDFs on the leftmost for all
orderings confirms our intuition.

First, we see from Table 1 that A-KDE is consistently inferior to
the 𝜋-KDE model. This supports the motivation of introducing kernel
weights described in Section 3.2.

The similarity of distributions in Fig. 4 suggests that all tested
models are able to adequately represent the Denmark dataset. We
interpret this as a result of the lower dimensionality and larger dataset
size with respect to the Europe dataset. Nonetheless, 𝜋-KDE is more
desirable in practice thanks to its singularity prevention guarantees.
GMMs lack this prevention, and it is likely to encounter singularities,
which we experienced occasionally during our experimentation.

10 Batch size: [128, 256, 512, 1024]. Learning rate: [0.01, 0.05, 0.10].
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Table 1
Model Comparison Scores (M

Ts ,Tm ).

Dataset Sample
Comparison
Test (Ts)

Model Model Comparison Test (Tm) Singularity
Prevention

KS
×10-1

CvM 𝛥Mean
×10-3

Europe

MMD

A-KDE 9.16 317.88 5.91 Yes
𝜋-KDE 5.82 167.79 2.50 Yes
GMMA 7.63 256.11 4.10 No
GMM𝜋 3.08 52.45 1.25 No

Energy

A-KDE 4.46 95.96 23.99 Yes
𝜋-KDE 1.24 6.95 5.97 Yes
GMMA 2.02 21.96 14.30 No
GMM𝜋 0.56 1.27 3.34 No

Denmark

MMD

A-KDE 6.84 111.03 1.58 Yes
𝜋-KDE 3.79 36.23 0.65 Yes
GMMA 4.19 42.52 0.75 No
GMM𝜋 4.74 55.41 0.91 No

Energy

A-KDE 1.57 5.51 0.68 Yes
𝜋-KDE 0.95 2.24 0.57 Yes
GMMA 1.06 1.77 0.34 No
GMM𝜋 0.93 1.67 0.34 No
Fig. 4. ECDFs of sample test scores for (a) Europe and (b) Denmark datasets.

For the Europe dataset, the best scores are obtained by the GMM𝜋
model. However, the 𝜋-KDE model also shows acceptable performance
for this dataset. Qualitatively, we can see from Fig. 2 that the complex
nature of the marginals and ‘2-way marginals’ of the selected countries
are captured by the generated data. This makes the 𝜋-KDE model more
favourable in cases where singularity prevention is crucial, like in
edge-computing, in which the computation power is limited and re-
running a failed GMM optimization might be costly in terms of time
and energy. Similarly, (near) real-time applications might also require
this singularity prevention due to the limited time budget to re-run a
failed optimization attempt.

6. Conclusion and future work

Probabilistic modelling of power systems data is crucial for the
future of systems operation and planning. This work introduced the
6

data-copying phenomenon, which burdens such modelling by caus-
ing singular solutions. KDE-based models are employed to investigate
this effect in a mathematically rigorous way. LOO-MLL criterion is
proposed as a solution, and singularity prevention is guaranteed for
two KDE-based models. Moreover, a modified EM optimization pro-
cedure is proposed for reliable training of the models. The models,
along with benchmark GMM models, are tested on two power systems
datasets using a novel testing procedure. The results show that the
proposed models have an adequate modelling performance besides
having singularity prevention guarantees.

Even though the KDE-based models are convenient for mathemati-
cal analysis, their applicability is limited since the number of kernels
can easily be overwhelming for large datasets. A pruning mechanism
might be the solution for this. Also, the isotropic nature of kernels can
result in noisy samples if the data lies in a lower dimensional manifold.
We plan to extend this work to kernels with full-covariance matrices.
Lastly, as mentioned before, singularity caused by data-copying is a
common problem in more advanced models too [7], such as GMMs and
variational autoencoders, so it is appealing to use the LOO-MLL in these
models in future.
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Appendix A. Proof of data-copying

Proof. (⇒) Let 𝜎𝑗′ → 0+ while the rest of the bandwidths, {𝜎𝑗}𝑗≠𝑗′
ave non-zero values. Plugging these into the scaled total log-likelihood
ithout taking the limit results in

∑

𝑖
log

∑

𝑗
 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈)

c
=
∑

𝑖
log

[

1
𝜎𝑑𝑗′

exp

(−𝛥2
𝑖𝑗′

2𝜎2𝑗′

)

+ 𝑐𝑖

]

= log

[

1
𝜎𝑑𝑗′

+ 𝑐𝑗′

]

+
∑

𝑖≠𝑗′
log

⎡

⎢

⎢

⎣

(

1
𝜎2𝑗′

)
𝑑
2

exp

(−𝛥2
𝑖𝑗′

2𝜎2𝑗′

)

+ 𝑐𝑖
⎤

⎥

⎥

⎦

(12)

here 𝑐𝑖 ∶=
∑

𝑗≠𝑗′  (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈), 𝛥𝑖𝑗 ∶= ‖𝐱𝑖 − 𝐱𝑗‖ and c
= means equal up

o a constant. Taking the limit 𝜎𝑗′ → 0+, we get

lim
𝑗′→0+

∑

𝑖
log

∑

𝑗
 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈) =

− 𝑑 lim
𝜎𝑗′→0+

log(𝜎𝑗′ ) +
∑

𝑖≠𝑗′
log(0 + 𝑐𝑖) → ∞

(13)

ssuming there are no replica points in the dataset, i.e. 𝛥𝑖𝑗′ ≠ 0,∀𝑖.
therwise, the second term also goes to infinity. In both cases, the total

imit diverges to infinity, concluding the proof of the only if part.
(⇐) Let us assume the opposite of the conclusion, i.e. ∃𝜀 > 0 ∶ 𝜎𝑗 >

,∀𝑗. This makes the likelihoods of the datapoints under every kernel
inite, i.e. ∃𝑐 ∈ R+ ∶  (𝐱𝑖|𝐱𝑗 , 𝜎2𝑗 𝐈) ≤ 𝑐,∀𝑖, 𝑗. This also results in an
pper-bounded total log-likelihood
1
𝑁

∑

𝑖
log

∑

𝑗
 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈) ≤ log𝑁𝑐 (14)

which contradicts the initial statement and concludes the proof. □

ppendix B. Proof of data-copying prevention by LOO-MLL

roof. The assumption that there are no repeating data points implies
in{𝑖,𝑗∶𝑖≠𝑗}(‖𝐱𝑖 − 𝐱𝑗‖) > 0. The remainder of the proposition can be

ormulated as
𝜎∗𝑗 }𝑗 = argmax

{𝜎𝑗}𝑗

∑

𝑖
log

∑

𝑗≠𝑖
 (𝐱𝑖; 𝐱𝑗 , 𝜎2𝑗 𝐈)

⟹ ∃𝜀 > 0 ∶ 𝜎∗𝑗 ≥ 𝜀,∀𝑗
(15)

and express the negation as

∀𝜀 > 0 ∶ ∃𝑗 ∶ 𝜎∗𝑗 < 𝜀 ∧

𝑔𝑗
|

|

|{𝜎∗𝑘}𝑘
∶==

𝜕
∑

𝑖 log
∑

𝑘≠𝑖 exp(𝑓𝑖𝑘)
𝜕𝜎𝑗

|

|

|

|

|{𝜎∗𝑘}𝑘

≤ 0,
(16)

where 𝑓𝑖𝑘 = −𝑑 log 𝜎𝑘 −
𝛥2𝑖𝑘
2𝜎2𝑘

and 𝛥𝑖𝑘 = ‖𝐱𝑖 − 𝐱𝑘‖. If we prove that
(16) results in a contradiction, it concludes the proof. Note that the
inequality in the (local) optimality condition covers the candidate
solutions on the boundaries.
7

The gradient expression 𝑔𝑗 can be derived as

𝑔𝑗 =
∑

𝑖≠𝑗

(

𝛥2
𝑖𝑗

𝜎3𝑗
− 𝑑

𝜎𝑗

)

𝑤𝑖𝑗 (17)

where 𝑤𝑖𝑗 =
exp(𝑓𝑖𝑗 )

∑

𝑘≠𝑖 exp(𝑓𝑖𝑘)
∈ (0, 1). Let us assume that 𝜎∗𝑗′ < 𝜀 and express

𝑔∗𝑗′ = 𝑔𝑗′
|

|

|{𝜎∗𝑘}𝑘
≤ 0 using (17) as

1
𝜀2

< 1
𝜎∗2𝑗′

≤
𝑑
∑

𝑖≠𝑗′ 𝑤
∗
𝑖𝑗′

∑

𝑖≠𝑗′ 𝛥
2
𝑖𝑗′𝑤

∗
𝑖𝑗′

= 𝑑
∑

𝑖≠𝑗′
𝛥2
𝑖𝑗′

1+
∑

𝑙≠𝑖,𝑗′ 𝑤𝑙𝑗′

<
𝑑(𝑁 − 1)
∑

𝑖≠𝑗′ 𝛥
2
𝑖𝑗′

<
𝑑(𝑁 − 1)

𝑁 min({𝛥2
𝑖𝑗′}𝑖≠𝑗′ )

.

(18)

Thus, the optimality statement in (16) takes the form of

∀𝜀 > 0 ∶ ∃𝑗 ∶ 𝑁
𝑑(𝑁 − 1)

min({𝛥2
𝑖𝑗}𝑖≠𝑗 ) < 𝜀2. (19)

This is a contradiction as long as the non-repeating data point assump-
tion (min{𝑖,𝑗∶𝑖≠𝑗}(‖𝐱𝑖 − 𝐱𝑗‖) > 0) holds. □
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