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Abstract

The Tactile Internet (TI) is a new paradigm for
remote interactions, enabling the transmission of
touch and physical sensations. One of the major
challenges in achieving seamless remote interac-
tions is latency. To circumvent strict latency re-
quirements, the paper briefly introduces the ap-
proach of a Model Mediated Teleoperation scheme
utilizing a locally run physics engine to simulate the
remote environment.

The focus of this paper is on solving the problem
of tracking objects in TI workspaces, to be able to
simulate them. We developed a pattern recognition-
based pose estimation technique using OpenCV’s
Perspective-n-Point solver, which accurately esti-
mates the pose of objects in real time. Further con-
tributions include the implementation of a virtual
test bed in the Unity game engine. The solver and
test bed were integrated with a Python Flask server.
This approach proved to be effective in providing
accurate position and rotation estimation.

1 Introduction

The concept of the Tactile Internet (TI) is emerg-
ing as a new remote interaction paradigm, aiming
to revolutionize remote interactions by enabling the
transmission of touch and physical sensations. The
tactile internet holds the promise of bridging geo-
graphical distances and creating a sense of physi-
cal presence between users or between users and
machines, by allowing seamless teleoperation over
long distances.

The objective of the Tactile Internet is to provide
real-time, high-fidelity haptic feedback over the in-
ternet, surpassing the boundaries of traditional in-
formation exchange.

One fundamental challenge in achieving seam-
less remote interactions lies in latency, the un-
avoidable delay in transmitting data over long dis-
tances [1]. As the speed of light sets the lower
bound for latency, there are inherent limitations to
how far teleoperation can effectively be carried out.
However, innovative approaches have emerged to
overcome this hurdle. Rather than attempting to re-
duce latency beyond the speed of light, a viable so-
lution lies in observing the remote environment and
simulating it with a locally run physics engine, al-
lowing users to interact without network latency on
the simulation, rather than directly with the remote
environment. This novel Model Mediated Teleop-
eration (MMT) scheme is illustrated in Fig. 1.

For accurate and realistic feeling control, it is
essential to have precise and up-to-date observa-
tions of the workspace in real time. Objects in
the workspace need to be tracked as they are en-
countered or interacted with. Conventional RGB
cameras provide a common, affordable, and ac-

Figure 1: An illustration of Tactile Internet.
The operator in the master domain sends in-
structions to the controlled domain through a
network by interacting with a simulation. The
controlled domain’s workspace is observed and
feedback from the taken actions is fed back to
the master domain’s simulation. Illustration by
Kees Kroep.

cessible imaging solution, but the simple 2D im-
ages they create face challenges when it comes to
object tracking without depth sensors or advanced
machine-learning techniques.

To address this obstacle, this paper investigates
pattern recognition-based pose estimation tech-
niques, where a pattern of known dimensions, such
as a checkerboard pattern on a sticker, is used as a
reference for tracking objects. This approach en-
ables accurate tracking and position estimation, en-
hancing the overall fidelity of remote interactions
within the Tactile Internet framework.

This paper is part of ongoing research on MMT
using a physics engine for Tactile Internet, at the
TU Delft.
Contributions The objective of this paper is to
present the following contributions, which aim to
solve object tracking in TI workspaces:

1. Virtual test bed: We implemented a virtual
test setup in the Unity game engine that allows
for rapid prototyping and testing of RGB cam-
era tracking in a 1:1 real-world scale.

2. Pose estimation algorithm: The pose es-
timation algorithm implementing OpenCV’s
Perspective-n-Point (PnP) solver takes in an
image and parameters and returns an accurate
pose estimation, providing both position and
rotation estimations.

3. Integration framework: The virtual test bed
and the pose estimation are integrated by a
Flask server API called from the Unity test
bed, allowing the posing process to be fully
executed from the Unity editor without even
needing to enter Play mode.

The paper is organized as follows: Section 2 dis-
cusses relevant works in the fields of TI, MMT,
and pose estimation methods. Section 3 explains
the methodology and considerations followed dur-
ing research. Section 4 then concretely specifies the
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exact experimental setup. This is followed by the
results of the experiments in section 5. Section 6
discusses further context and acknowledgments re-
lated to the results, and section 7 gives recommen-
dations for future research. The ethical implications
of this work are mentioned in section 8 before the
paper concludes with section 9.

2 Related works

2.1 Tactile Internet
Tactile Internet was introduced by Fettweis in 2014
[1]. While lots of research has been done on
the subject of latency reduction, no publications
have yet taken the approach using a local physics
engine to circumvent stringent latency require-
ments [2] [3] [4]. State-of-the-art research is re-
lying on the latency and reliability improvements
promised by 6G networks. Some of these im-
plementations use 6G ultra-low latency and high-
reliability networks in combination with a feed-
back control system, to relax the latency require-
ments [5] [6] [7]. Using a control system is however
a distinctly different approach than using a physics
simulation, which is the basis for this paper.

2.2 Camera calibration and pose
estimation from pattern

Camera calibration from a pattern on a 2D plane
is a technique first introduced by Zhang in 2000,
which has since been firmly established as a funda-
mental tool for camera calibration as well as pose
estimation [8]. While many patterns can be used to
solve the Perspective-n-Point problem, a checker-
board pattern is a simple pattern that has been in-
corporated into the OpenCV standard library [9]. It
is for this reason that the checkerboard pattern was
used in the prototype presented in this paper.

2.3 Alternative pose estimation methods
Alternative methods to pattern recognition for 3D
pose estimation from 2D images exist. Many of
these methods are based on the SIFT feature ex-
traction algorithm developed by Lowe in 2004 [10].
SIFT represents objects as a sparse set of invariant
features computed from training images, which can
then be detected in new images.

Since depth (RGB-D) cameras became more
prevalent, many algorithms have been developed
that do pose estimation using RGB-D cameras in
combination with machine learning. These include
using a regression forest on a known scene to in-
fer camera pose [11], and templating, where a small
image patch is compared with subregions of a larger
image to find areas that closely match [12] [13].

Another popular approach is CAD-based models
[14]. This method relies on prior knowledge of the
objects to detect in the form of a 3D CAD model.
An approach that does not require prior knowledge

is pose estimation from video using Structure-from-
Motion imaging techniques [15].
The aforementioned approaches were considered
for the problem of object pose estimation in a TI
workspace, but were ultimately deemed unsuitable
for this bachelor thesis. With the strict time re-
straints, a simple approach was necessary without
machine learning. The need for a simple and cheap
prototype for object detection and posing led to the
exploration of the possibilities offered by a conven-
tional RGB camera.

3 Methodology

This section explains the design choices which
were made to solve the object tracking problem
using RGB cameras, starting with an exploration
of point cloud generation, transitioning to pattern
recognition using a PnP solver, and culminating in
the automation of the pose estimation process. The
Unity environment served as the foundation for the
experimental setup, enabling programmable cam-
era rig construction and facilitating the evaluation
and visualization of results. The following subsec-
tions discuss the approach in detail, step by step.

3.1 Virtual test bed
Unity game engine was chosen as the virtual en-
vironment for this study over the use of real cam-
eras, due to its ability to provide a highly config-
urable and consistent testing platform. By leverag-
ing Unity, every aspect of the experimental setup
could be precisely configured, allowing for fine-
tuning and adjustments of variables as needed.
The virtual environment ensured that all parame-
ters, such as camera properties and lighting con-
ditions, remained consistent throughout the exper-
iments, eliminating potential confounding factors.
This way the study ensured a controlled and re-
producible environment, facilitating accurate anal-
ysis and evaluation of the pose estimation technique
within the tactile internet context.

3.2 Point cloud generation
Initially, an attempt was made to do pose estima-
tion through the generation of point clouds from
an array of 2D images. For this purpose, a pro-
grammable camera rig was developed in Unity, pro-
viding flexibility and control over the cameras’ be-
haviors. An array of cameras was set up in a circle
pointing at the workspace center point. Through
photogrammetry techniques, their picture output
was then used to create a 3D point cloud of an
object in the workspace. It was found however
that this approach proved to be far too slow and
resource-intensive for use within the TI context.
The programmable camera approach did allow for
more efficient and cost-effective experimentation,
which proved beneficial for subsequent advance-
ments in pose estimation techniques.
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3.3 Perspective-n-Point pattern
recognition

The focus shifted towards pattern recognition, by
utilizing the Perspective-n-Point (PnP) algorithm.

PnP is a method in computer vision that esti-
mates the pose (position and orientation) of an ob-
ject based on its 2D projection in an image and the
known 3D coordinates of corresponding points on
the object. This algorithm relies on the principle
of finding the correspondences between the 2D im-
age points and their corresponding 3D points in a
calibrated coordinate system.

The process of pattern recognition using PnP in-
volves several steps. Initially, a calibration step is
performed to determine the intrinsic and extrinsic
parameters of the camera. The intrinsic parame-
ters include the focal length, principal point, and
distortion coefficients, while the extrinsic parame-
ters define the position and orientation of the cam-
era with respect to the world coordinate system. To
do this, a series of pictures of a checkerboard was
taken in various positions and angles in the virtual
workspace, which resulted in a mean re-projection
error of less than 0.08 pixels. 4 examples of re-
projection of this calibration onto the checkerboard
can be seen in Fig. 2.

Once the camera is calibrated, the next step is
to detect and extract the pattern of interest, such as
a checkerboard or ArUCo markers, from the cap-
tured image. The detected pattern is then matched
with the known 3D coordinates of the correspond-
ing points on the pattern. This correspondence in-
formation serves as the input to the PnP algorithm.

The PnP algorithm calculates the pose of the pat-
tern by finding the transformation matrix that aligns
the 3D coordinates of the pattern points with their
corresponding 2D image points. The transforma-
tion matrix represents the translation and rotation
required to align the pattern with the image.

The objective of this paper was to make the
posing of checkerboards work reliably, serving
as a comprehensive prototype before further re-
search progresses to the utilization of more prac-
tical ArUCo markers on objects.

3.4 Automated testing
To streamline the process and enhance efficiency,
the entire methodology was automated using a sys-
tem of preset poses in the virtual testbed. The poses
were automatically iterated and photographed, and
the photos were sent to a Python server that ex-
ecuted the actual pose estimation. This seamless
integration allowed for automated data process-
ing, pose estimation and result retrieval in a repro-
ducible way. By eliminating manual intervention,
this automation aimed to reduce human error and
increase the scalability of the pose estimation sys-
tem. Through this method, thousands of poses in
one preset were able to be estimated in a matter of
minutes.

Parameter Value
Camera resolution 1920× 1080
Checkerboard grid 10× 7
Square size 5mm
PC Processor Intel i7-8750H @2.2GHz
PC RAM 24GB

Table 1: The exact parameters used in the ex-
perimental setup.

3.5 Ground truth
The automated presets allow for easy retrieval of
ground truth pose information. The precise place-
ment of the checkerboard with respect to the virtual
camera was known, ensuring an exact reference for
evaluating the accuracy of the pose estimation. This
is written to a CSV file. In the Python backend, this
can then be compared with the pose estimates to
obtain an error value.

4 Experimental setup

4.1 Testing parameters
A default virtual RGB camera within the Unity en-
vironment was utilized. The checkerboard pattern
was placed on an A4-sized plane, and then scaled
down by a factor 5 such that the squares were
5mm. All the parameters used can be referenced
in Tab. 1. Lighting was done by Unity’s Sample
Scene’s default Directional Light with an intensity
of 1. For the camera background both the default
skybox and a flat blue shade were used, as seen in
Fig. 2. In Fig. 3 you can see the final test bed setup.

4.2 Pose estimation
Multiple presets were configured programmatically
to study position and rotation estimation perfor-
mance:

1. Repeated samples, same pose. This preset
verified that the PnP solver is deterministic for
the same picture input. The preset had 30 sam-
ples of the checkerboard facing the camera di-
rectly at 20 cm distance.

2. Sweeping distance 0.15 m - 0.75 m. This
preset was built to investigate the pose esti-
mation accuracy as the distance to the camera
increases. Since pose estimation is determin-
istic, capturing multiple samples at the same
distance alone may not provide sufficient vari-
ation to observe a meaningful variance in the
results. Instead, multiple samples were ob-
tained by strategically varying the X/Y posi-
tion of the checkerboard on the screen while
maintaining the same distance. This approach
allowed for the collection of a diverse dataset,
better capturing the system’s behavior in a
broader range of scenarios. It provided in-
sights into the robustness and consistency of
the pose estimation algorithm.
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(a) (b) (c) (d)

Figure 2: Four examples of the re-projection of checkerboard corners detected by the camera cali-
bration process onto the original checkerboard image. This is strictly for visual verification that the
calibration is working properly and is not necessary for the calibration process itself. The input pic-
tures to the camera calibration process used both Unity’s default "skybox" and a flat blue shade as
the camera background, both are pictured here.

Figure 3: The virtual test bed in Unity, show-
ing the camera pointed at the checkerboard, the
directional light behind it, and a preview of the
camera’s view in the bottom right corner.

6 X-coordinates and 6 Y-coordinates were
used, making 36 unique screen positions for
each of the 25 Z values studied, giving a total
of 900 samples.

3. Sweeping roll, pitch, yaw. This preset has the
checkerboard rotated between −60 and 60 de-
grees on the pitch axis, then similarly rotated
on the yaw axis, and finally rotated −180 to
180 degrees on the roll axis. Rotation was
swept in steps of 5 degrees. The regions −90
to −60 and 60 to 90 degrees were skipped for
the pitch and yaw sweeps because no checker-
boards could be detected by the PnP solver for
those angles. The total sample count for this
set was 5040, with 1008 for both pitch and roll
and 3024 for yaw, all at a distance of 0.3m.

4.3 Server integration
The integration between the Python posing algo-
rithm and the Unity test bed is managed by a Python
Flask server running locally. The Unity test bed
sends a POST request to the server’s API with the
picture data and parameters, and the server pipes
the data through the PnP solver. Its output is stored
on the local hard drive and optionally sent back to
the Unity test bed. The test bed can then visual-
ize the pose by projecting an axis system onto the
checkerboard in the scene, as illustrated in Fig. 4.
The axis system is projected onto the top left corner

of the checkerboard as that is considered its origin.

5 Results

The resulting data of pose estimation of the
checkerboard in 6 degrees of freedom are presented
here.

Due to the deterministic nature of the PnP solver
algorithm as proven by the "Repeated samples,
same pose" test configuration, sweeping a variable
such as distance or angle on a checkerboard pattern
positioned in the center of the frame did not yield
diverse or informative results. In order to explore a
wider range of scenarios and capture more nuanced
information, it became necessary to introduce more
complex patterns or incorporate additional factors
into the pose estimation process. Therefore for each
data point of the swept variable, the checkerboard
was photographed in multiple X/Y positions in the
camera frame. This gives insight into the variance
of pose estimation error for objects that might ap-
pear in any part of the screen.

5.1 Position
In Fig. 5 the variance of estimation error is plot-
ted, as the checkerboard moves away from the cam-
era. Each axis is individually plotted. The observed
variance is less than 0.1mm off for the X and Y
axes. The Z-axis mostly follows the near perfect
accuracy of the other axes, with a spike in vari-
ance between 0.325m and 0.55m that does not ex-
ceed 1mm. At distances beyond 0.7m the vari-
ance spikes drastically as samples start to fail to
converge. Beyond 0.75m the PnP algorithm fails
to detect any checkerboards.

The achieved submillimeter accuracy is notewor-
thy, even surpassing the stringent requirements for
precise surgical operations as established in related
literature [16]. It highlights the promising potential
for achieving consistently high positional accuracy
in the pose estimation prototype. However, to en-
sure a comprehensive understanding of the system’s
performance, further investigation is required to de-
termine the underlying cause of the spike along the
Z-axis.
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Figure 4: Results of pose estimation re-projected as a Cartesian coordinate system on the checker-
board in the Unity test bed for visualization purposes. The X-axis is shown in red, Y-axis in green and
Z-axis in blue.
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Figure 5: The pose estimation algorithm’s ac-
curacy is plotted for various distances (points
along the Z-axis) of the checkerboard from the
camera. Multiple samples were taken per Z-
axis point by having the checkerboard at mul-
tiple distinct X/Y positions in the camera frame.
The variance of these samples per Z-axis point is
plotted.

One plausible explanation is that distortions in
the checkerboard squares or dimensional variations
caused by aliasing, resulting from the camera’s
resolution, could contribute to this phenomenon.
Aliasing artifacts change with distance to the cam-
era, so that might explain why the variance de-
creases again after 0.55m. Addressing this aspect
will contribute to improving the overall accuracy
and reliability of the pose estimation system.

5.2 Rotation
For the following results, 0 degrees rotation is the
checkerboard rotation as seen in Figs. 2 (a) and 3.

The variance of the angular error is plotted in
Fig. 6 and Fig. 7 for the roll, pitch and yaw angles.
The horizontal axis shows the angle with respect to
the camera, and the vertical axis the error variance
of the samples on various x/y positions with that
angle. The error is very low, arguably negligible
between −45 and 45 degrees for the pitch and roll
axes. As the angle to the camera increases beyond
that the error spikes, particularly on the roll axis.
Beyond ±50 degrees many samples also fail to con-
verge. This could be correlated with the higher vari-
ance observed there.
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Figure 6: Pose estimation accuracy for the pitch
and roll axes, corresponding to the Y and X axes
in Fig. 4 respectively. The rotation was done be-
tween −90◦ and 90◦ but since beyond 60◦ no
checkerboards could be detected in the samples
they are excluded from the plot.
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Figure 7: Pose estimation accuracy for the yaw
axis, corresponding to the Z axis in Fig. 4. The
rotation was done between −180◦ and 180◦. All
samples converged to a detected pose.

The pose estimation on roll is almost per-
fectly accurate between −90 and 90 degrees, and
then starts to experience pretty significant variance
spikes. It is not clear why this might happen, as the
checkerboard is fully and distinctly in view with
the exact same lighting conditions as the samples
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where accuracy is high. It is worth noting that
the significant spikes in variance occur only when
the checkerboard is rotated beyond 90 degrees, i.e.
when it is more upside down than upright. The rea-
sons behind this behavior, despite the checkerboard
being visible and the lighting conditions remaining
consistent, are not clear yet and require further in-
vestigation.

5.3 Frame rate
The average frame rate achieved for pose estima-
tion in the experiments was 40 Hz. This was
achieved on the system specifications listed in
Tab. 1. This frame rate surpasses the standard frame
rate of the Kinect camera at 30 Hz typically utilized
in RGB-D implementations, as well as the typical
default video frame rates. The obtained frame rate
of 40 Hz is nowhere close to the 1 kHz frequency
used in the MMT physics simulation, but it might
be used complementarily.

5.4 Summary
The results obtained from the experimental eval-
uations highlight the strengths and limitations of
the prototype developed for TI teleoperation. The
high positional accuracy and consistent perfor-
mance within a realistic distance range demonstrate
there is a lot of potential in the prototype for precise
teleoperation tasks. However, challenges in accu-
rately estimating poses at extreme rotational angles
need to be addressed or circumvented, for exam-
ple through the use of multiple checkerboards on
different faces of an object, to enhance the proto-
type’s overall performance and broaden its applica-
tion in real-world TI scenarios. Finally, it is worth
mentioning that the current implementation of the
system achieves an average framerate of 40 Hz for
pose estimation, which provides a satisfactory real-
time performance for various applications, surpass-
ing the default framerates of most video sources
and even the Kinect camera’s 30 Hz.

6 Discussion

This research had a strict time restraint of about
9 weeks. This put considerable scope restraints on
the research. To exacerbate the problem, the ini-
tial research topic was considering mesh comple-
tion from partial point clouds generated by a depth
camera. This topic, after some research, was not
interesting to me. It was only in week 2 that I
switched to the topic of tracking objects using con-
ventional cameras. Once that was established, I
spent too much time digesting papers on object de-
tection and pose estimation without having a gen-
eral understanding of the topics or a clear idea of
what to look for. I went through a steep learning
curve of how research is done, and this cost me
valuable time.

Unfortunately, for two weeks during the research
project, I’ve been dealing with a nasty fever that

took a toll on me. My productivity took a nosedive
because I just couldn’t work through the symptoms
and mental fog. It was a struggle to even get started
on tasks that usually come easily to me. It was frus-
trating to see my to-do list grow while my energy
levels plummeted. I tried my best to push through,
but eventually, I had to admit that I needed to adjust
the scope of my project. The things I would have
liked to have gotten done are mentioned in the next
section.

7 Future work

Despite the time constraints imposed on this re-
search, several stretch goals were envisioned but
could not be pursued within the given timeframe.
One such goal was the implementation of ArUCo
marker tracking, which offers practical advantages
in the context of Tactile Internet (TI) teleoperation.
ArUCo markers enable the tracking of multiple dis-
tinct stickers on an object, providing finer-grained
information about its pose and enhancing the accu-
racy of teleoperation. An object might have stick-
ers on all sides so it can be tracked from any an-
gle. Unfortunately, due to the limited duration of
the project, it was not feasible to explore this av-
enue.

An alternative avenue to investigate is the uti-
lization of multiple cameras to enhance the relia-
bility of pose estimation. A multi-perspective ap-
proach can facilitate a more robust and accurate
pose estimation, as it combines information from
different vantage points, effectively mitigating oc-
clusions and ambiguity. Having access to multiple
angles might greatly enhance the tracking process.

Exploring the integration of machine learning
techniques for object detection and pose estimation
could also significantly enhance the capabilities of
TI teleoperation. Training deep learning models on
large-scale datasets to recognize and track objects
in real-time could provide more accurate and ro-
bust pose estimation, thereby improving the overall
performance of TI systems.

It would also have been very interesting to ex-
pand on the current research on checkerboards. For
instance investigating camera resolutions; how high
it needs to be for accurate tracking. Another in-
teresting idea is to compare the results from this
research with depth (RGB-D) camera and inertial
measurement unit tracking implementations pre-
sented by other members of the TU Delft TI re-
search group.

Although certain stretch goals could not be real-
ized within the given time constraints, the research
outcomes have still shed light on the challenges and
possibilities of object tracking in TI teleoperation.
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8 Responsible Research

This study did not involve the collection, use, or
analysis of any personal or sensitive data related to
individuals. Therefore, privacy violations and as-
sociated ethical concerns typically associated with
data usage and handling were not applicable to this
research.

It is important to note that while ChatGPT was
utilized to assist in the writing process of this pa-
per, it played a supportive role in generating draft
content. This aided in accelerating the paper writ-
ing process. The final composition and structure of
the paper was determined by the author, who care-
fully reviewed, augmented and rewrote the gener-
ated text to ensure its accuracy and adherence to
responsible research standards.

We recognize the need for transparency and in-
tegrity in scientific research, and we have strived
to uphold these principles throughout the course
of this study. We have made every effort to cite
and reference relevant sources appropriately, giv-
ing credit to the contributions of other researchers
in the field.

9 Conclusion

The Tactile Internet (TI) is a new paradigm for
remote interactions by enabling the transmission of
touch and physical sensations. The ultimate goal
is to provide real-time, high-fidelity haptic feed-
back over the internet. One of the major challenges
in achieving this seamless remote interaction is la-
tency, an unavoidable delay in transmitting data
over long distances with the speed of light setting
an absolute lower bound.

To overcome this hurdle, the paper introduces
the approach of a Model Mediated Teleoperation
scheme utilizing a locally run physics engine to
simulate the remote environment. This allows users
to interact with the simulation without network la-
tency, improving the overall fidelity of remote in-
teractions within the TI framework.

In this paper, we focused on solving the problem
of tracking objects in TI workspaces. We inves-
tigated pattern recognition-based pose estimation
techniques using a checkerboard pattern as a ref-
erence for tracking objects. This approach proved
to be effective in providing accurate tracking and
position estimation.

The contributions of this paper include the im-
plementation of a virtual test bed in the Unity game
engine for rapid prototyping and testing of RGB
camera tracking. We also developed a pose esti-
mation algorithm using OpenCV’s Perspective-n-
Point solver, which accurately estimates the pose
of objects in real time. Additionally, we integrated
the virtual test bed and pose estimation algorithm
through a Flask server API, allowing for seamless
execution of the posing process from the Unity ed-
itor.

Our methodology involved automated testing
and data processing, which improved efficiency and
reduced human error. The virtual environment pro-
vided a controlled and reproducible setting for eval-
uating the pose estimation technique within the TI
context.

While our experiments focused on the posing of
checkerboards, serving as a comprehensive proto-
type, we acknowledge the potential of using more
practical ArUCo markers on objects in future re-
search.

In summary, this paper contributes to the ongo-
ing research on physics-based MMT for the Tactile
Internet by addressing the object tracking challenge
in TI workspaces. Our findings demonstrate the
feasibility and effectiveness of pattern recognition-
based pose estimation techniques using RGB cam-
eras. This research opens up possibilities for en-
hancing remote interactions by providing more ac-
curate and realistic haptic feedback.
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