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Chapter 1

Introduction

The issue of climate change is steadily becoming of increased concern due to its
critical implications. The earth’s ecosystem is constantly irradiated by the sun
and a part of this incoming power is reflected by the atmosphere before even
reaching the surface, while another part is reflected back afterwards; the rest
remains within the ecosystem. In other words, the earth’s ecosystem can be
thought of as an open system characterized by a radiative balance at its bound-
ary. The actual point of the equilibrium is set by all the factors that affect the
absorption and reflection of the incoming sun power. The composition and char-
acteristics of clouds and atmosphere, which define the boundary, is obviously
the key point. This can be further analyzed in individual components as shown
in Fig. 1.1. The radiative forcing expresses the contribution to the thermal
budget, with positive values imply warming of the earth system. Regarding
aerosols, there is uncertainty not only as to the actual magnitude of their ra-
diative forcing but the underlying physical mechanisms as well. It could be said
that there is indication that they could very well affect the thermal equilibrium
significantly, yet there is limited knowledge on how this takes place thus any
prediction is difficult. It is apparent that some effort should be focused on that
direction so that more knowledge on their physical interaction is obtained.

IDRA (IRCTR drizzle radar) is a X-band Doppler polarimetric radar that
was designed in this context. More information about IDRA and its objectives
can be found in [1] and [2] while detailed technical information is available in [3].
IDRA is located in Cabauw, the Netherlands, where there are installed many
other observation instruments allowing for synergy. The main objective is the
observation of drizzle, through which conclusions upon the aerosol effects can be
drawn [4]. In particular, the presence of aerosols is pronounced at the Cabauw
site due to the industrial areas nearby, and their spatial concentration can be
monitored by installed sensors. On the other hand, IDRA is able to monitor
the spacial distribution of drizzle at a local scale; by studying the statistics
of these two kind of measurements over a long time frame, the mechanism of
their relationship may be understood. Next to this climate objective, IDRA was
designed for the characterization of precipitation at small temporal and space
scale from drizzle to heavy precipitation. IDRA has been in operation since
April 2008 and apparently a good understanding of its products and perfor-
mance is essential prior to attempting studies closely relevant to its objectives;
precipitation and aerosol effect observation is not a straightforward procedure

1



as it involves long-term detailed measurements. This sets the context of the
current thesis: although no mention is given to the climatic objective of IDRA,
the estimation and assessment of the polarimetric observables Φdp and Kdp in
the current state is the next step towards understanding and qualifying IDRA
performance. Moreover, these observables are directly related to rain rate esti-
mation which falls well within the extended IDRA objectives and intended use.
Therefore, it is hoped that the current work will contribute to an increased body
of knowledge regarding IDRA, which once being complete will allow for further
atmospheric studies.

Figure 1.1: The radiative forcing of various factors. Regarding aerosols, there is
great uncertainty as to the magnitude of their contribution combined with low
understanding of the underlying mechanisms (source: IPCC, Working Group I,
Summary for Policy Makers, figure 3).

With the previous in mind, it is now stated that the objective of this thesis
is to discuss the estimation of the differential phase (Φdp) and specific dif-
ferential phase (Kdp) based on IDRA data, with a view to their usefulness for
rain estimation. Being phase-based observables in contrast to the amplitude-
based and more commonly used Z and Zdr, they present valuable advantages
such as independence from absolute calibration errors and attenuation effects.
For this reason, it comes as no surprise that Kdp is needed in order to apply
a rain rate estimation relationship as accurate as possible and Φdp is key for
attenuation correction schemes. On the other hand, Φdp was attempted to be
estimated with a spectral polarimetry approach in contrast to the established
time-domain method. Above all, emphasis was given on explaining and un-
derstanding the expected and obtained results from a physical point of view
in order to gain integrated confidence in all the products of IDRA, which is
necessary for the progressive study of meteorological phenomena.

In Chapter 2 an essential theoretical background is given mainly about Φdp

and Kdp, so that the discussion in Chapters 3 and 4 dealing with their estimation

2



can be clearly understood. In Chapter 5, two case studies are discussed in detail
while the next one focuses on the assessment of the obtained results. Finally, in
Chapter 7 the issue of attenuation, which is expected to affect X-band radars,
is addressed. Additional material is included in the appendices.
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Chapter 2

Theoretical Background

A monostatic radar emits electromagnetic waves towards a medium that are
subsequently scattered in all directions. Backscattered waves are propagated in
the opposite direction towards the radar and received by it. The backscattered
signal is referred to as the echo of the medium. By studying the signal charac-
teristics of the echo, such as its power, a variety of conclusions can be drawn
regarding the medium itself. In short, a radar is a tool for observing media by
distance by analyzing the received echoes; this is the concept of remote sensing
applications.

In the case of a weather radar, the medium is the atmosphere and the scatter-
ing occurs due to the particles contained in it (rain drops, hail stones etc). The
objective is acquiring information such as the composition of the atmosphere
in terms of particles, their dimensions, their velocities etc. This information is
essential either for weather forecasting or for general studies on the behavior
and progressive changes of the atmosphere.

A detailed theoretical treatment for weather radars is available in [5]. The
limited theoretical information given here pertains only to the kind of measure-
ments and studies conducted and presented in the following chapters so that
they can be clearly understood. But before that, it is useful to expand on two
key terms relevant to IDRA: the Doppler radar and the polarimetric radar:

• a Doppler radar exploits the Doppler frequency shifting phenomenon.
The scattered electromagnetic waves are of the same frequency as the
transmitted ones. However, if the radar and the medium are in relative
motion then the received echo will be shifted in frequency, depending
on the relative radial velocity. For horizontally profiling weather radars,
the relative velocity is due to the motion of the atmospheric particles by
local wind or turbulence. In other words, the velocity of the particles
is translated into frequency shifting and vice versa. The advantage of
Doppler radars is that they offer additional information on the velocities
of the particles which is essential for dynamic studies. On the other hand,
this entails that the received signal is no longer monochromatic (assuming
the transmitted was) so it can be filtered in the frequency domain, or
equivalently the domain of particle velocities. This is useful for clutter
suppression since the unwanted clutter signal comes in the most cases from
stationary targets of zero velocity, while the desired signal originated from
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the particles is frequency shifted.

• a polarimetric radar transmits pulses of different polarization (usually
horizontal and vertical). This is motivated by the anisotropy of the pre-
cipitation medium; since the particles are not spherical, processing their
echoes for different polarizations provides extended information on their
microphysical properties.

• a Doppler polarimetric radar utilizes both mechanisms and provides the
particle velocities along with information as to their anisotropic charac-
teristics. IDRA is an example of such a radar.

2.1 Derivation of Φdp and Kdp

In this section, the derivation for the radar observables differential phase
(Φdp) and specific differential phase (Kdp) is given (based on [5], Chapter 4).
They are first derived for simple, ideal cases that are progressively generalized
in order to end up with a realistic model of the radar resolution volume
which is the part of the atmospheric volume that collectively scatters a certain
transmitted pulse.

We begin with the case where the medium is simply a collection of identical
spherical particles. It can be shown ([5], p21) that the medium can be consid-
ered as being equivalent to a homogeneous medium of effective wave number
keff , where Im(keff ) is the attenuation constant affecting the attenuation of
the amplitude of the electromagnetic wave, Re(keff ) is the propagation con-
stant affecting the rate of phase change and keff itself is an eigenvalue from a
mathematical point of view (Eq. 2.1, 2.2). If the particles are spheroid instead
of spherical and their canting angle is zero, meaning that their axis of revo-
lution is vertical with respect to the earth surface, the medium they comprise
becomes anisotropic as to the horizontal and vertical plane. In other words, a
wave polarized in a direction which belongs in one of these polarization planes
will encounter different effective wave numbers, kh

eff and kv
eff respectively, as

the h-polarized wave ‘sees’ a different medium than the v-polarized. The prop-
agation of a linearly horizontally polarized and a linearly vertically polarized
plane wave can be described by Eq. 2.3 which has the solution given in Eq. 2.4,
where λ1 = −jkh

eff and λ2 = −jkv
eff .

~E = êE0 exp(−jkefffz) (2.1)

d ~E

dz
= (−jkeff) ~E (2.2)

d

dz

[

Eh

Ev

]

=

[

−jkh
eff 0

0 −jkv
eff

] [

Eh

Ev

]

(2.3)

[

Eh(z)
Ev(z)

]

=

[

eλ1z 0
0 eλ2z

] [

Eh(0)
Ev(0)

]

=

[

Tl1 0
0 T22

] [

Eh(0)
Ev(0)

]

(2.4)
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The differential behavior of the medium can be expressed quantitatively by con-
sidering the difference between the phase constants for each polarization, taking
into account that Im(λ) = −Re(keff ). This gives rise to specific differential
phase Kdp [radkm−1] defined as1:

Kdp = −(103)Im(λ1 − λ2) (2.5)

An important conclusion from Eq. 2.4 is that since the transmission matrix
T is diagonal, the h-polarized and the v-polarized waves remain uncoupled:
transmission of an h-polarized wave will not generate at any point within the
medium a v-polarized wave and vice versa.

If we now consider the generalization for a polydisperse distribution of
particles (meaning that they can be of different size, shape, orientation, phase
etc) it was shown ([6]) that again the medium can be mathematically described
by two eigenvalues as before. Eq. 2.3 is now replaced by Eq. 2.6, which involves
the elements of a matrix P defined in Eq. 2.7. The essence of the Oguchi’s
solution, as it is called, is that a polydisperse distribution of particles implies
that each particle may have its own scattering matrix2 according to its own
state, but they are all accounted for by ensemble averaging over them as
denoted by the < . > operator.

d

dz

[

Eh(z)
Ev(z)

]

=

[

−jk0 + Phh Phv

Pvh −jk0 + Pvv

] [

Eh(z)
Ev(z)

]

(2.6)

P = −j
2π

k0
〈nSFSA(̂i, î)〉 (2.7)

In the above equation, k0 is the complex wave number of the material (here
assumed to be vacuum), n is the concentration of the particles, and SFSA(̂i, î)
is the scattering matrix in the forward direction under the FSA convention.
Eq. 2.6 has a solution of the form of Eq. 2.8 where the transmission matrix T
is now non-diagonal. The importance of the non-diagonal elements is that they
give rise to coupling of the h- and v-polarized modes: an h-polarized transmitted
wave will generate a v-polarized echo and vice versa. These types of echoes are
called cross-polar in contrast to co-polar ones.

[

Eh(z)
Ev(z)

]

=

[

Thh Thv

Tvh Tvv

] [

Eh(0)
Ev(0)

]

(2.8)

Even though the model of medium is realistic since it allows for any type
and number of particles (provided that it remains ‘sparse’), the analysis so far
is only relevant to the propagation of a wave through the medium. In the case
of the radar, there is transmission and reception and the process is described
by the radar equation (Fig. 2.1, Eq. 2.9).

[

Vh

Vv

]

=
λG

4πr2
[T][SBSA][T]

[

Mh

Mv

]

(2.9)

In Eq 2.9, Mh and Mv are the transmitted voltages at the h and v port respec-

1as defined above, Kdp is positive for oblate particles which is actually the expected shape
of rain drops

2the scattering matrix completely describes a particle’s interaction with the transmitted
electromagnetic field
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Figure 2.1: Scattering of the radar beam by a target in the resolution volume,
which is preceded by the propagation medium ([5], p177).

tively and Vh and Vv the received ones. The transmission matrix [T] accounts
for the two-way propagation through the medium3 while the scattering matrix
[S] characterizes the target (in general the radar resolution volume). In this
case, in order to express the scattering matrix the BSA convention is used in-
stead. Let us assume that the medium is composed of oriented spheroids
(zero canting angle). In this case, it can be shown ([5],p173) that

T =

[

eλ1z 0
0 eλ2z

]

(2.10)

Also, let us assume that the scattering matrix of the target is diagonal:

SBSA =

[

Shh 0
0 Svv

]

= ejδhh

[

|Shh| 0
0 |Svv|ej(δvv−δhh)

]

(2.11)

If we consider the transmission of an h-pulse (Mh = 1,Mv = 0) then the received
voltage at the h-port is

V 10
h =

λG

4πr2
e2λ1rShh , (2.12)

while upon transmission of a v-pulse (Mh = 0,Mv = 1) the received voltage at
the v-port is

V 01
v =

λG

4πr2
e2λ2rSvv . (2.13)

The argument of their product takes the following form, recalling Eq. 2.5 and
that λ = −jkh

eff :

arg[(V 10
h )∗(V 01

v )] = Ψdp = arg[e2(λ2−λ1)r] + arg(S∗hhSvv)BSA

= 2Kdpr + δco = Φdp + δco (2.14)

In the above equation, the following terms appear:

1. the total differential phase Ψdp [deg] being the addition of

3assumed uniform so it may be represented by a constant [T]
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2. the differential propagation phase (Φdp, [deg]), being the two-way
range integral of Kdp (Φdp=2Kdpr), and

3. the differential scattering phase (δco, [deg])

Eq. 2.14 is fundamental because it shows clearly the interrelationship of all the
above terms. At this point, some basic characteristics of the two components of
Ψdp are given.

• Φdp and δco differ in one important aspect: Φdp is due to propagation

through the medium while δco originates in the resolution volume (target)
itself and only. This means that δco is not a cumulative function with
respect to the range as opposed to Φdp, so it may change abruptly from
rain cell to rain cell. This property will be recalled later trying to separate
them, so that only Φdp is left which is connected directly to the desired
Kdp.

• If δco is zero, then Ψdp=Φdp. However, δco is only zero for scattering
under the Rayleigh approximation and non-zero for the Mie solution, as
it can be seen by inspection of the respective scattering matrices. For X-
band, the Rayleigh approximation is no longer valid as the size of the rain
drops (0.2-8mm in equivolumetric diameter) become significant compared
to the wavelength (for IDRA λ=3.2cm). Hence, δco cannot be ignored in
principle and Ψdp is not equal to Φdp.

• It is useful to underline that the nature of δco is deterministic rather than
random. As it has been said, δco ‘sits’ on top of the desired Φdp range
profile thus biasing the subsequent estimation of Kdp. Regarding Kdp

estimation it presents itself as a noisy signal, however this does not mean
that δco is random in nature; it can be completely defined in terms of
the drop size distribution, and rain cells having identical distributions will
always result in the same δco

4. If the drop size distribution is somehow
known then δco will be known as well.

We now consider generalizations over the simplifications assumed. First of
all, the radar resolution volume is not expected to contain only one target of
diagonal scattering matrix [S]; in reality it contains a distribution of particles
which can be described by a general, non-diagonal scattering matrix [S] being
the ensemble average of the individual ones. In this case, Eq. 2.9 becomes

[

Vh

Vv

]

=
λG

4πr2

[

Shhe2λ1r Shve(λ1+λ2)r

Svhe(λ1+λ2)r Svve2λ2r

] [

Mh

Mv

]

It is obvious that regarding arg[(V 10
h )∗(V 01

v )], it is the same as before so the
previous conclusions apply in this generalized case as well; the propagation
medium expressed by λ1 and λ2 will result in Φdp, being the two-way integral
of Kdp, and the resolution volume will result in the δco on top of Φdp. The
difference lies only in the cross-polar products which are not of our concern.
Secondly, in reality the propagation path is seldom homogeneous so that it can
be described in its whole range by a single transmission matrix [T]. However,

4in a particle ensemble-averaging sense
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it can be segmented into small homogeneous paths corresponding to diagonal
[T1], [T2], ... hence

[

Vh

Vv

]

=
λG

4πr2
[T1][T2] · · · [Tn][SBSA][Tn][Tn−1] · · · [T1]

Since the multiplication of diagonal matrices result in a diagonal matrix it is
obvious that the previous definitions and conclusions still apply, the difference
being that all the quantities now become functions of range.

What is now left is to consider the case where the precipitation particles are
canted so [T] is non-diagonal. If [S] describes spherical particles, then Eq. 2.9
becomes

[

Vh

Vv

]

=
λG

4πr2
S

[

T 2
hh + T 2

hv Thv(Thh + Tvv)
Thv(Thh + Tvv) T 2

hv + T 2
vv

] [

Mh

Mv

]

since [S] is proportional to the identity matrix. The elements of matrix [T] are
given in [5],page 173 where it can be seen that Thv = Tvh so their phases will be
cancelled out in arg[(V 10

h )∗(V 01
v )] while arg[(T 2

hh)∗(T 2
vv)] will give the familiar

Φdp. Again only the crosspolar products are affected. Finally, for non-diagonal
[S] the expressions become too complex, but due to Thv = Tvh eventually the
definitions and interrelationships of Φdp, Kdp and δco are the same as before.

In brief, Kdp can be thought to be as the equivalent to the Zdr, but for
the phases of h- and v-channel signal rather than their magnitude. The reason
that it is derived indirectly through Φdp is because the phase of the signal is
cumulative, so the derivative has to be considered in order to come up with a
radar observable defined per rain cell.

2.2 Properties and characteristics of Kdp

In this section some properties and unique characteristics of Kdp as a radar
observable are discussed. First of all, Kdp is the range derivative of Φdp. If the
rain path is homogeneous, meaning the drop size distribution is the same in
every cell, Kdp is constant and Φdp increases linearly. If it is non-homogeneous,
then Kdp varies and so does the slope of the Φdp range profile at each rangebin
so its curve becomes now non-linear. At any case, Kdp is expected to be always
positive since rain drops are oblate and not prolate, so Φdp is always increasing.
Regions where Φdp is constant correspond to negligible values of Kdp, while
a certain decrease can only be attributed to the effect of δco which was not
completely removed from Ψdp, estimated initially.

Also, although Kdp and Zdr both originate from the non-sphericity of the
particles they differ in one important aspect. Zdr is defined as the ratio of
the reflectivities for the horizontal and vertical polarization, so the density of
the particles does not matter; if it is increased then both reflectivities vary
proportionally and their ratio is unaffected. However, Kdp arises from their
anisotropy in a cumulative sense; increasing their density means that Kdp will
be increased proportionally. This can be clearly seen by the expressions for Kdp

and Zdr in the Rayleigh limit:

Zdr = 10log10

∫

|Shh(r,D)|2N(D)dD
∫

|Svv(r,D)|2N(D)dD
(7.9a)
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= 10log10

∫

D6N(D)|(ǫr − 1)/[1 + 1
2 (1− λz)(ǫr − 1)]|2dD

∫

D6N(D)|(ǫr − 1)/[1 + λz(ǫr − 1)]|2dD

Kdp =
2π

k0
Re

∫

N(D)[ĥ · ~f(r,D)− v̂ · ~f(r,D)]dD

=
πk0

12
Re{

∫

D3N(D)[
ǫr − 1

1 + 1
2 (1− λz)(ǫr − 1)

− ǫr − 1

1 + λz(ǫr − 1)
]dD}

For Zdr, the drop size distribution N(D)5 appears in a ratio while not for Kdp.
The implication is that high values of Zdr imply a medium of high anisotropy,
while nothing can be said about the density of the particles. High values of Kdp,
on the other hand, imply either a sparse medium of high anisotropy of particles
(λz > 1

3 ) or a dense medium of low anisotropy since the low anisotropy can be
offset when multiplied by N(D). This underlines that Kdp can offer additional
information to Zdr regarding the microphysics of the atmospheric resolution
volume.

Another important property is that Kdp is derived through Φdp, and Φdp

being a phase quantity is not affected by attenuation effects, radar calibration
errors or partial beam blockage. This is important because attenuation is signif-
icant for X-band and simple correction algorithms can be applied based on Φdp

(Chapter 7). Regarding rain rate estimation, if Kdp is used it carries the same
benefits thus avoiding underestimation which occurs in the case of attenuated
Z and Zdr values. On top of that, it can be shown that Kdp is well-immune to
hail contamination ([5],p174). This is because raindrops tend to be oriented in
space, while tumbling hailstones have a dispersion in their canting angles which
reduces their contribution to total Kdp exponentially by its variance. Finally,
it can be shown ([5],p388) that Kdp is closely linear to the total water con-
tent (W) with the slope being the mass-weighted mean diameter Dm. This
linearity holds especially for X-band and it is independent of the form of drop
size distribution, N(D). The above imply that Kdp is suitable to be used for
rain rate estimation from a physical point of view. It is therefore reasonable
that rain rate estimation algorithms that include Kdp can result in significant
improvement in certain cases, much in the same way that the inclusion of Zdr

improved the pro-existing algorithms based only on reflectivity ([7], [8]).

2.3 Drop size distribution (dsd)

A rain cell is expected to contain particles of different size, shape, orientation
or phase. If the exact composition of the rain cell were somehow known, it
would be possible to compute the scattered field mathematically (with numerical
methods), therefore the radar observables as well. On the other hand, any
physical properties related to it (for example its associated rain rate or water
content) could be determined by analytical computation as well. However, it
is apparent that the assumption of knowing the exact cell composition is not
realistic due to the multitude of the microscopic particles and their dynamic
behavior.

5it is defined in the next section
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In any case, the objective of atmospheric observations is eventually the de-
termination of a physical quantity, such as the rain rate on which the current
thesis is focused. Radar measurements only supply the radar observables, which
are translated to the desired physical quantities by certain relationships. Since
both are fundamentally based on the composition of the rain cell, it is useful to
at least model it mathematically and describe it approximately. This is done
by a drop size distribution (dsd) model which is a function that gives the to-
tal number of particles of a certain characteristic per unit volume. We assume
that all particles are of the same orientation and phase, so the only variable
characteristics remaining are:

• the size, that is the equivolumetric diameter (D)

• the shape, that is the axis ratio (r) as the particles are assumed to be
spheroids. Also, r is assumed to be governed by the size (D) via a rain
drop axis ratio model function.

Under these assumptions, the dsd gives the total number of particles per D and
per unit volume so it is expressed in [mm−1m−3]. A typical dsd model is that
of a modified gamma distribution (or gamma dsd) (Eq. 2.15) which has been
widely used since it is able to capture the dynamics of the rain cells reasonably
for a wide range of atmospheric conditions ([9]).

N(D) = N0D
µe−ΛD = N0D

µe
−(3.67+ µ)

D

D0 (2.15)

The gamma dsd is a function of three parameters:

• a constant (No) which relates to the density of particles

• the median drop size (Do) defined with respect to the water mass con-
tent ([5],p385); larger Do implies the presence of larger rain drops

• the shape parameter (µ) which affects the shape of the curve, serving
as an additional degree of freedom so that it can be adapted suitably to
the rain event under consideration

In Fig. 2.2 some examples of possible gamma dsd’s are given so that the effect
of these parameters is made clear.

2.4 Rain rate estimation

The rain rate (R, [mmhr−1]) expresses the amount of precipitation per unit of
time, in other words ‘how much’ it rains and it is the physical quantity of concern
for the current thesis. R can be computed provided the dsd is known and a drop
velocity model is chosen, which expresses the velocity of a drop as a function of
D. Eventually, it takes the form of a moment of the dsd like the radar observables
([5],p414). A rain rate relationship expresses R as a function of one or more
radar observables and performs the translation from the measurement domain
into the physical domain. Mathematically, the relationships are power-laws with
the coefficients to be determined (Eq. 2.16-2.20). There are various rain rate
relationships due to the different possible choices of the radar observables used
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Figure 2.2: The effect of increasing Do [mm] (left) and mu (right) on the shape
of the gamma dsd. The intercept parameter Nw appears when the gamma
drop size distribution is cast into an alternative but equivalent mathematical
form. It is equal to the intercept parameter of an exponential dsd of the same
water content (W) and Do.

as inputs. However, even for the same set of observables there is a variety of
coefficients. This is because the coefficients are derived via applying regression
techniques on datasets, and different datasets (rain conditions) will result in
different coefficients.

R = R(Z) = cZa (2.16)

R = R(Z,Zdr) = cZa10−bZdr (2.17)

R = R(Kdp) = cKdp
d (2.18)

R = R(Kdp, Zdr) = cKdp
d10−bZdr (2.19)

R = R(Z,Kdp, Zdr) = cZaKdp
d10−bZdr (2.20)

Initially, R(Z) relationships were used but they were prone to bias due to hail
contamination. Using a R(Z,Zdr) relationship mitigates this issue and improves
the accuracy of the rain rate estimation. Relationships including Kdp were
found to give significant improvement over previous ones. Nevertheless, it has
to be stressed that using the estimator that is the most accurate in theory does
not guarantee the best results in practice, due to the errors involved in the
estimation of the radar observables. Also, the performance of each estimator
generally depends on the intensity of the rain. In [7], [8] further information
can be found about the derivation and performance of rain rate estimators.
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2.5 Attenuation

Attenuation is due to the imaginary part of the permittivity of the water. This
means that rain drops (precipitation particles in general) absorb some of the
transmitted radar beam both ways, so the received signal is attenuated in am-
plitude. As mentioned before, since the imaginary part of the effective wave
number keff represents attenuation it follows that E(r) = e−Im(keff )rE(0)
where E(r) is the amplitude of the wave at range r. In practice the dB scale
is used, so if 10log10 is applied on both sides, the attenuation factor becomes
10log10e

−Im(keff )r = −4.343Im(keff )r. Omitting the negative sign which is
implicit for attenuation and taking into account that it occurs two times, the
specific attenuation A [dBkm−1] is defined as:

A = 1038.686Im(keff ) (2.21)

For an anisotropic medium there is Ah and Av which are unequal, so the specific
differential attenuation Adp [dBkm−1] is defined as:

Adp = 1038.686(Im(kh
eff )− Im(kv

eff )) (2.22)

If these parameters are somehow known, then they could be used to correct
the attenuated Z and Zdr range profiles which may be either unnecessary or
essential depending on the intensity of the rain path and the frequency band.
For X-band, the attenuation is expected to affect even moderate rain paths.
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Chapter 3

Estimation of Differential
Phase (Ψdp)

As mentioned in the derivation of Kdp section in the previous Chapter, the differ-
ential propagation phase (Φdp) does not appear by itself but with the differential
scattering phase (δco) added. Their combination is the total differential phase
(Ψdp) which can be estimated by measurements. In this Chapter two ways of es-
timating Ψdp are presented with emphasis on the spectral polarimetry method.
It is again underlined that there is no direct method for the estimation of Φdp;
Ψdp has to be estimated first as presented here and then δco has to be filtered
out in order to obtain Φdp and proceed with Kdp estimation.

3.1 Time domain approach

The time domain approach implies that a pulse radar is used, so that it emits a
horizontally and vertically polarized wave alternatively according to a switching
scheme and their echoes are received on both channels.

3.1.1 Formulation

A detailed analysis is given in [5], section 6.4. This time domain approach is
well documented in the literature so only the key points will be mentioned that
define the outline and correspond to the other approach as well.

• Ψdp entails the calculation of the phase difference between the Vhh and Vvv

copolar echoes (they are complex). Of course, not a single pair is needed
for reliable estimation but rather averaging over many. Statistically, this
is the phase of their correlation at zero time lag. However, since the
radar can only transmit a pulse of one polarization at a time, the copolar
returns are never available at the same time but separated by the pulse
period, Ts. Hence, their desired correlation at zero time lag cannot be
expressed through measurements. Still, based on certain signal properties
of atmospheric echoes, it can be shown that the correlation of the copolar
signals at zero time lag can be related to that at Ts (time lag l=1). By
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considering the correlation of the copolar signals first as Rhh,vv and then
as Rvv,hh

1, Ψdp can be estimated as the semi-difference of their phases.

• The accuracy of Ψdp estimation depends on the magnitude of the corre-
lation of the copolar signals (ρco) and the Doppler spectrum width. In
general, Ψdp can be estimated with an accuracy of up to 2o provided that
ρco is more than 0.97. High values of ρco imply that the received signal was
due to precipitation, since non-atmospheric echoes are often decorrelated.

3.1.2 Implementation

The above were under the assumption that the radar emits pulses. IDRA is
an FM-CW radar instead, so the previous formulation is not directly applicable
to the content of IDRA raw data files. However, the IDRA raw files can be
processed by a pulse-pair processing algorithm which is equivalent as if the
data were obtained by a pulse radar so that the previous formulation is then
directly applicable to them. Detailed theoretical treatment is given in [3], while
practical issues are addressed in Appendix C. Eventually, using the IDRA offline
processing program as explained in Appendix C, we obtain the total differential
phase Ψdp in the form of a two dimensional matrix of dimension 512x143 (for a
given PPI) where the columns represent different sectors and the rows represent
rangebins spaced 30m apart. If a specific column is considered only, we obtain
the range profile of Ψdp for that sector under the time domain approach as an
one dimensional matrix of dimension 512x1.

3.2 Spectral polarimetry approach

The objective of spectral polarimetry is to treat each radar observable not as a
single integrated value but as a function of the Doppler velocity of the particles.
For example, the differential reflectivity Zdr results from all the particles inside
the rain cell with no distinction being made as to their Doppler velocities. In
spectral polarimetry formulation, Zdr is no longer a value but a function Zdr(v)
(called spectral Zdr), where v is the particle Doppler velocity. Therefore, the
particles are grouped together regarding their velocities and their radar observ-
ables are thus distinguished. More information along with cases where spectral
polarimetry offers additional physical insight can be found in [10],[11]. As far
as the current thesis is concerned, focus was given on using the previously es-
timated Ψdp using a spectral polarimetry approach and contrasting it to the
typical time domain method.

3.2.1 Formulation

A detailed analysis of IDRA signal processing is available in [3]. Here only a
very brief outline will be given. IDRA is an FM-CW radar, so it emits a series
of chirp pulses of duration ∆T each. The received waveform after quadratic
demodulation is sampled within each chirp duration, so it can be represented
as a two-variable function s(tk, tn) where tk denotes the samples within ∆T

1they are not complex conjugate because the pulse pairs are not identical, but similar only
in a leap-frog scheme sense due to polarization switching
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Table 3.1: Processing steps for estimation of Ψdp for the spectral polarimetry
approach

1st algorithm
obtain Ψdp as arg(Shh[k, n]S∗vv[k, n])
apply system circuitry phase offset
compensate for non-simultaneity of copolar measurements
compensate for Doppler aliasing
spectrum smoothing
zero Doppler bin suppression
spectral polarimetric filtering
clipping
2nd algorithm
zero Doppler bin suppression
obtain Ψdp as arg(Shh[k, n]S∗vv[k, n])
apply system circuitry phase offset
compensate for non-simultaneity of copolar measurements
spectrum smoothing
spectral polarimetric filtering
clipping
compensate for Doppler aliasing

and tn a certain chirp and its corresponding ∆T interval. By taking its Fourier
Transform with respect to tk we obtain s(fk, tn) where the frequencies fk can
be translated into rangebins since this is the principle of FM-CW radars. With
a subsequent Fourier Transform with respect to tn

2 we obtain s(fk, fn) where
the frequencies fn can be translated into the Doppler velocities of the particles
thus forming the Doppler spectrum for a certain rangebin. In discrete notation,
the result is a S[k,n] 512x512 matrix where index k denotes the rangebins and
index n denotes a Doppler velocity bin. A certain column contains the values
of the Doppler spectrum along the range for that Doppler velocity bin, while a
certain row contains the full Doppler spectrum (all the velocity bins) for that
rangebin. Taking polarization into account we end up with the Shh, Svh, Svv

and Shv matrices conceptually corresponding to the Vhh, Vvh, Vvv and Vhv return
signals.

3.2.2 Implementation

The starting point is the complex Shh[k, n] and Svv[k, n] matrices mentioned
above. Essentially, considering the difference of the phases of their elements
gives rise to Ψdp, however some extra steps have to be applied as well. These
are shown in Table 3.1 as part of two current variations in the Ψdp estimation
algorithm, the difference being the order of the processing steps. The steps are
briefly commented:

• arg(Shh[k, n]S∗vv[k, n]) obtains a ‘raw’ Ψdp that has to be corrected

2in practice after a number of consecutive sweeps
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• system circuitry phase offset is due to different circuit phase delays for the
h and v channel

• the issue of non-simultaneity of the copolar measurements which prevents
from estimating directly the correlation of the copolar echoes at zero time
lag has been dealt by applying a phase compensation technique presented
in ([12])

• In case of Doppler aliasing, the differential phase is affected and must be
compensated by a fixed phase depending on which side the aliasing occurs
([12])

• spectrum smoothing for noise removal

• zero Doppler bin suppression removes the clutter corresponding to static
targets

• spectral polarimetric filtering allows for advanced filtering of the spectra
ideally keeping only atmospheric echoes. There are two possible filtering
criteria:

– based on Ldr(v): the spectral Ldr has low values for atmospheric
targets. Therefore, the Doppler bins exhibiting atypical large values
(>-5dB) for this parameter are discarded ([13])

– based on Zdr(v): a higher and a lower limit are defined for the Zdr

and according to the magnitude of the v-channel echo, parts of the
spectra where the h-channel echo is higher or lower, respectively, than
what is expected are rejected. This type of filtering is present only in
the second variation, but not used for the present estimation of Ψdp.

• clipping rejects parts of the spectra where the magnitude of the HH copolar
echo is below a defined threshold based on the noise power

• spectral differential phase filtering disregards bins having differential phase
more than 30o in absolute value. Inclusion of this step should be con-
sidered carefully, since it will result in distortion for sectors of intense
rainfall such that the differential phase indeed can have values more than
the threshold. For this reason, this filtering was left out from the present
estimation of Ψdp.

Eventually, the result is a Ψdp[k,n] matrix with the indices k and n as explained
before. In order to arrive to a single value for each rangebin and thus converge
in the time domain approach, a sort of integration has to occur along the rows
(Doppler velocity bins). Two approaches are available:

• Averaging over all Doppler velocity bins which are considered equally

• Weighting the Doppler velocity bin by the magnitude of the respective
Shh[k, n] elements before averaging them, the idea being to suppress the
influence of weak echoes and their associated phases which are more likely
to be governed by noise and promote the influence of strong, atmospheric
echoes instead
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By applying this last weighting-averaging step, the final product is an estimate of
the total differential phase Ψdp along the range of a certain sector, in the form of
a 512x1 vector Ψdp[k] where the elements represent the rangebins spaced 30m
apart. In other words we obtain the range profile of Ψdp for a sector, under
the spectral polarimetric approach. Lastly, it is noticed that in the current
processing routines due to a different sign convention used the Ψdp results as
monotonically decreasing, that is negative. This is corrected by changing the
sign at the last step of computation.

An example of an estimated Ψdp range profile according to both approaches
is given in Fig. 3.1. It is seen that the curves in general tend to increase as
expected for Φdp. It is noticed, however, that at this processing stage they
actually are the Ψdp which includes δco which may cause any bumps on the
profiles. Significant statistical fluctuations from rangebin to rangebin are also
observed, which especially is true for the spectral polarimetry approach. A
detailed presentation of the results from the Ψdp estimation algorithms will be
given in Chapter 5. These example phase range profiles are given at this point
only to draw attention and help illustrate the following points.
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Figure 3.1: The estimated Ψdp for sector of 2900 of the raw data file R2008-8-1 2-
0-0.bin according to spectral polarimetry and time domain method. It is noticed
the wrong offset of the curves for the vertical axis and the abnormally high
values in the near-field region, up to about 250m. The offset can be successfully
corrected while the values of the phases within the near field should be omitted
from any kind of calculation.

3.3 Unwrapping of the time domain Ψdp

It was observed that the time-domain Ψdp needs unwrapping as it presents jumps
of 180o between some adjacent rangebins (Fig. 3.2). In practice the phase jumps
are not exactly equal to 180o due to the presence of noise, but in any case clearly
visible. The spectral polarimetry Ψdp does not present any phase jumps. The
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origin of these phase jumps is the way that Ψdp is estimated in the time-domain,
as the semi-difference of two phases. One of them may be aliased so it will result
in a 180o phase jump. It was observed that these phase jumps usually occur
in clusters around certain locations, or not at all. These clusters are believed
to be related perhaps to regions of increased local wind turbulence but there
was no actual need for the examination of this hypothesis. The most important
point is that a custom unwrapping routine was eventually used instead of the
integrated Matlab unwrap function due to the clustering of the phase jumps.
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Figure 3.2: The estimated time domain Ψdp for sector of 3200 of the raw data
file R2009-5-26 4-0-1.bin. The phase jumps of about 1800 can be seen and their
tendency to occur in clusters. It is again noted the apparently wrong y-axis
offset that is corrected in the next step.

3.4 Near field fluctuation of Ψdp

As it is seen in the example of Fig. 3.1, it was observed that for the first range
bins, the Ψdp takes abnormally large values. The magnitude of these variations
cannot be attributed to the presence of noise; it is because all the theoretical
formulations used are valid for the far field range only. For IDRA, f=9.475GHz
and the antenna aperture is A=1.5m in diameter so the far field is expected

to begin from r = 2D2

λ
= 150m. In practice, it was observed that these near

fluctuations reach up to about 250m which is more than what expected according
to the above formula. In any case, the effect of these near field fluctuations is
that they contaminate the phase profiles so they should be disregarded. This is
especially relevant to the next section.

3.5 Offsetting of the Ψdp

At the moment, the Ψdp range profile as estimated from the raw data files and
for both the spectral polarimetry and time domain method, has not the correct
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offset for the vertical axis. By this it is meant that:

• Φdp should begin from 0o at the first rangebin.

• Due to δco, the Ψdp is not expected to begin from 0o, but the value of
δco corresponding to the first rangebin, which is expected to be a positive
value of few degrees (based on simulations of δco for the X-band that
are presented in Chapter 6). Of course, after correct removal of δco the
resulting Φdp should begin with a value of 0o.

• The above refer to the theoretical phase profiles. In practice, when they
are estimated by measurement there is additional noise so for example the
estimated Φdp may not begin strictly from 0o but in an average sense if a
small segment near the radar origin is considered.

It was observed that the estimated Ψdp has obviously not the correct offset
as shown on Fig. 3.1. The reason for this is believed to be the radar circuitry
despite the dedicated correction processing step during Ψdp estimation. The
delay between the horizontal and vertical radar channel is expected to be con-
stant, characteristic of the system. Perhaps this variability could be attributed
to the system repairments that occurred sometimes at the past. If this assump-
tion is correct then the relative channel delay and the resulting wrong offset
between the horizontal and vertical phases should be constant between periods
of continuous operation but this is not the case.

In order to fix that wrong offset issue we are based on the a priori knowledge
of the expected behaviour of Ψdp and Φdp near the range origin as explained
above. As it will be discussed in Chapter 6, it is possible based on the measured
Z and Zdr alone to compute the expected Ψdp range profile. That means that
another way to offset correctly the measured Ψdp is to offset it so that it matches,
in an average way, the computed Ψdp. However, this approach is not practical
because it entails a series of computations simply for offsetting the estimated
Ψdp that has to be repeated for each case. Still, it can be used as a check for the
validity of the used, practical method. It has to be mentioned that comparing
the two aforementioned phase profiles over the whole range is not suggested
because the attenuation progressively affects the expected Ψdp (Chapter 6).
For this reason only the beginning of the curves, up to about 5km where the
attenuation can rather be safely ignored, should be compared. It was found out
that there is agreement between the two different offset correction methods as
it will be recalled in Chapter 6. In Fig. 3.3 this approach is illustrated. To sum
up, the practical way to correct the wrong Ψdp offset is:

• estimate δco as explained in Chapter 6

• subtract δco from Ψdp to obtain Φdp

• calculate the deviation of Φdp from 0 degrees by taking its average in the
250-700m range. This range was selected so that on one hand it avoids the
contamination due to the near field effects, on the other hand it contains
enough rangebins to cancel out the statistical fluctuations. The upper
range limit cannot be arbitrarily far because then the theoretical average
will not be zero, as the cumulative increase of Φdp will not be negligible.
In practice, low values of Kdp were typically observed in the beginning of
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the range. If 0.3deg/km is taken as a limit then the maximum error in
the offset correction is 0.21 degrees (this is how much the Φdp is expected
to build up at 700m). It is noted that this is the worst case, when this
maximum value for Kdp extends all over the averaging range.

• subtract the thus described average value from Ψdp since it represents the
wrong offset
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Figure 3.3: Illustration of the two possible approaches for offset correction. The
expected curve, derived computationally is correctly offset in contrast to the
estimated one (a wrong offset of +10o is shown here). The estimated curve
can get a correct offset based only on the segment annotated by the circle.
Another way is to calculate the relative average difference of the two curves on
the segment annotated by the rectangle. Only the first approach is practical, as
explained, however comparing the two results is a check for its validity.
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Chapter 4

Estimation of Specific
Differential Phase (Kdp)

4.1 Estimation of Kdp

As mentioned on section 2.1, from a mathematical point of view Kdp is simply
the first derivative of the propagation differential phase Φdp with respect to
the range, that is the distance from the radar. According to Chapter 3, we
can have an estimation of the total differential phase either in time domain or
through a spectral polarimetric approach. This means that we can subsequently
estimate a Kdp based on the time domain or the spectral polarimetric approach,
respectively. In the following, no distinction is made regarding the way that Φdp

was estimated since there is no difference in the subsequent estimation of Kdp

itself. The steps for Kdp estimations are the following:

1. Removing δco from the Ψdp range profile so that only the propagation
differential phase Φdp remains.

2. Smoothing the resulting Φdp curve which is expected to have statistical
fluctuations.

3. Applying an estimator for its range derivative, which is Kdp by definition.

The first step is needed because δco is coupled to Φdp and only their sum,
Ψdp, can be estimated by measurements while Kdp is related only to Φdp. For
the lower frequency bands (such as S or C) where the scattering mechanism is
normally under the Rayleigh limit δco can be ignored as it is expected to be
zero. However, IDRA is an X-band radar so δco is not negligible in principle.
Removal of δco is only possible if there is a kind of estimator for it and this is
treated in Chapter 6.

As to the estimator itself, the simplest first derivative estimator has the
following form:

K̂dp =
Φdp(r2)− Φdp(r1)

2(r2 − r1)
≃ Ψ̂dp(r2)− Ψ̂dp(r1)

2(r2 − r1)
(4.1)
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and the variance of the estimator, denoting the accuracy of the estimation, is
given by

SD[K̂dp] =
SD[Ψ̂dp]√

2∆r
(4.2)

It is clear that if higher accuracy is desired, either larger range segments should
be considered or somehow the accuracy of Ψdp estimation should be improved.
This is a general point regarding Kdp estimation: accuracy and resolution
are conflicting, therefore a trade-off will always be present. For rain rate
estimation, the accuracy of Kdp estimation should be within some tenths of
a deg/km. Taking 0.2deg/km as the maximum allowed and assuming that
SD[Φdp]=2o, it can be seen that ∆r which is the range segment over which Kdp

is estimated, should be a little more than 7km which is not practical. It is seen
that such an intuitive estimator that is based only on two end-points is not
applicable. Also, in order to avoid negative values for Kdp the Φdp range profile
should be strictly monotonous, probably requiring heavier smoothing in some
parts than in others. If it is filtered at once, some parts will undergo excessive
smoothing resulting in underestimation of Kdp. Otherwise, it should be filtered
in an adaptive way which gives rise to complication.

In order to avoid these issues, another estimator may be used that takes
into account more than two adjacent rangebins relaxing the requirements on
the shape of Φdp profile. The estimator used is given next and its physical
meaning is that we consider a certain segment of N rangebins, apply a straight
line fit to the Φdp segmented profile and obtain its slope1 (Fig. 4.4).

K̂dp =

∑n
i=1[Ψdp(ri)− Ψ̄dp](ri − r̄)

2
∑n

i=1(ri − r̄)2
(4.3)

Ψ̄dp =
1

N

n
∑

i=1

Ψdp(ri) (4.4)

r̄ =
1

N

n
∑

i=1

ri (4.5)

This is the estimated Kdp which is assigned to its rangebin (i). By shifting this
window of N points Kdp is calculated for the rest of the rangebins as well. The
advantage of using this estimator over a more complicated one (for example
considering a higher degree fit to the Φdp) is that its standard deviation can be
expressed analytically, which makes it appropriate to be used as a first attempt.
In Fig. 4.1, its standard deviation is shown. Since for IDRA the rangebins are
spaced apart by 30m, it can be seen that for the desired accuracy of estimated
Kdp the segments considered should be no less than 1.5km (50 rangebins).

Smoothing of the Φdp profile previous to applying the Kdp estimator can be
done by using a low pass filter in order to remove the rapid statistical fluctuations
and keep only the cumulative, slow-varying, mean trend of the phase profile
which is Φdp. This step is needed since differentiation, which is basically the
process of applying an estimator for Kdp, will further increase this noisy part
of the signal. This issue is discussed in the following section.

1since the derivative of a straight line is its slope
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Figure 4.1: The trade-off between accuracy (low standard deviation) and reso-
lution is prominent for Kdp estimation ([5], p375).

4.2 Filtering of the Φdp

Filtering of Φdp is crucial because of the statistical fluctuations. If the filtering is
not enough then it will introduce bias to Kdp estimation and will make difficult
the understanding of the physical meaning of the Φdp curves. On the other hand,
if it is excessive it will result in underestimation for Kdp. The possibility for
some kind of adaptive filtering based on local phase fluctuations is attractive but
complicated. Three types of filters were considered and some example filtering
results are shown in Fig. 4.2.

• A simple moving average filter. It was found out that it produces suffi-
ciently smooth curves with length of integration N at the very least 48
rangebins, preferably 64, which is close to the expected inherent smooth-
ing aspect of the Kdp estimator (1.5-2km). However, the resulting curve
appears to be shifted in range as if ”delayed” so the shape is disturbed
which must be avoided if we wish to compare Φdp curves (Chapter 6).

• This ”delay” effect is due to filter phase distortion. The filter phase dis-
tortion will be opposite if the data series is processed from its end to the
beginning (backwards). Hence, for cases where the whole data series is
available (non real-time) the filter phase distortion can be cancelled out2.
In this way, the phase distortion of the filter cancels out and the shape
of the filtered curve remains exact. However, one characteristic of such a
filtering operation is that the values at the end match perfectly the input.
This is not desired for the end rangebin as the phase fluctuations can result
in distortion (Fig. 4.2). To treat that, the value at the end point has to

2filtfilt command in Matlab
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be set at the local average in order to exclude the influence of phase noise.
For the range origin, this filter behaviour is actually desired because it will
always set it to 0 degrees if a similar approach is applied. In that case,
comparison with expected Φdp curves is facilitated. If this filter is used,
N=48 is enough since it is applied two times. This is the smoothing filter
that was selected as more appropriate and used in all the following results
regarding Φdp. It is also noticed that before applying the smoothing filter,
the Φdp should not contain any NaN values resulting from the previous
spectral polarimetric filtering and noise removal processing. Typically,
this happens for cases of low reflectivity where Φdp is of no concern. Still,
it may happen for a few rangebins even for cases where Φdp is relevant. In
such a situation, the missing NaN values are replaced from neighbouring
rangebins.

• Use of a Lowess filter. This is expressed by two continuous parameters,
λ and α so there is an additional degree of freedom. It keeps the shape
of the input curve and regarding its behaviour at the end points, it is not
set strictly to the values of the input but it reflects the local trends. As
discussed above, for the end rangebin this is desired, but concerning the
range origin, care should be taken so that there is no artefact. It was found
that by using values of λ=2 and α=0.3 similar results with the two-way
filter are obtained.
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Figure 4.2: The corresponding Φdp to Fig. 3.1 (spectral polarimetry approach)
after δco removal and offsetting of the Ψdp. The three available smoothing filters
are compared. It is seen the ”delay” caused by the MA filter that distorts the
actual Φdp curve shape. With the filtfilt MA and the Lowess filters similar result
is obtained without any distortion. It is noticed the strict end-point setting for
the filtfilt filter which results in an artificial downward trend at the end of the
range. This can be overcome by using the local average of Φdp as the final
rangebin value (Fig. 4.3).
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Figure 4.3: The local average correction for the filtfilt MA smoothing filter is
shown. Without it, the resulting Kdp would also be biased.

4.3 Errors in Kdp estimation

In this section the main possible sources of error in Kdp estimation are discussed,
along with ways to mitigate them.

4.3.1 Kdp bias due to δco

Kdp is defined as the range derivative of the Φdp, the propagation differential
phase, however in practice Φdp does not appear by itself; it appears as part of
the total differential phase, Ψdp, which is the differential phase that is actually
estimated in Ch. 3. The other part is the differential scattering phase δco,
Eq. 4.6.

Ψdp = Φdp + δco (4.6)

The presence of δco will give rise to a bias, K̄δco

dp , in the estimated Kdp according
to Eq. 4.7. In practice, the differentiation is interpreted in the same way as the
estimation of Kdp from Φdp mentioned above, so K̄δco

dp it is the slope of the
straight-line fit to a segment of δco profile (Fig. 4.4).

K̄δco

dp =
1

2

dδco

dr
(4.7)

K̄δco

dp is zero if:

1. δco is zero itself. This is a valid assumption for S-bands radars, however
for C-band and especially X-band the assumption does not always hold.

2. δco is non-zero yet steady with respect to the range, so its range derivative
is still zero and there is no bias.
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In principle, since IDRA is an X-band radar we choose not to disregard δco as
being zero, as even for moderate rain paths where the size of the rain drops
is not expected to be relatively large the scattering will still be non-Rayleigh;
this will become even more pronounced for more intense rain paths. On the
other hand, in some cases it may be steady along the range but this is a very
restrictive case since it accounts only for homogeneous rain paths. For these
reasons, we account for the presence of δco and aim to correct its bias. This bias
can be minimized (ideally eliminated if δco is completely removed) in two ways:

• by filtering. Since δco may vary from rangebin to rangebin in contrast to
Φdp which is range cumulative, the presence of δco may be obvious as it will
appear as ‘bumps’ on top of the Φdp slow-varying profile. These bumps
can be easily removed if they are obvious, however in order that they are
obvious they should not extend over a long distance thus get concealed
within the mean trend of Φdp. This approach seems more suitable for long
range radars such as those operating in S or C band where δco bumps can
easily be spotted within a long Φdp profile. X-band IDRA has a maximum
range of 15km and for this approach to work the δco bursts should only
occur within limited range segments so that they are apparent. This
assumption seemed of limited validity and in order to avoid the ambiguity
issue of where exactly3 Φdp ends and δco starts, we opted for the next
approach.

• by using an estimator for δco. If δco is somehow obtained, it could be sub-
tracted from the estimated Ψdp directly. However, δco cannot be estimated
directly from measurements hence a indirect way has to be found. This
could be done if δco is estimated through another observable. For exam-
ple, Zdr seems suitable since they both originate from the non-sphericity
of the precipitation particles so that the estimation has a physical basis
as well. This approach is presented in section 6.5.

4.3.2 Kdp bias due to non homogeneous path

Eq. 4.3 implies that for the estimation of Kdp we consider range segments over
which we compute a best linear fit of the Φdp range profile (Fig. 4.4). This
implicitly assumes that the rain path is homogeneous so Φdp is indeed a linear
curve. If the rain path is not homogeneous, then what we try to estimate is of
limited physical basis. Essentially, inhomogeneities along the considered range
segment will result in either overestimation or underestimation of Kdp. This is

not unlike K̄δco

dp shown in Fig. 4.4, the difference is that the bias is due to the
linear assumption for the estimator itself and not because of a external variable
(δco). In [14], [15], a detailed analysis was carried out for S-band regarding all
sources of bias and their potential effect in subsequent rain rate estimation. It
is believed that similar work should be done for the X-band as well if Kdp is to
be used for rain rate estimation and correlation with rain gauges measurements.
This bias was not taken into account since rather extended analysis is required,
however an assessment of the estimated Kdp will be carried out later comparing
it with its expected values and the agreement can be checked for homogeneous
and non-homogeneous rain paths.

3this ambiguity will have greater effect when the precipitation is not heavy and Kdp takes
small values as in the rain events examined
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4.3.3 Kdp bias due to attenuation

In X-band, the attenuation is no longer negligible even for light rain. Kdp esti-
mation is based on Φdp which being a phase quantity is unaffected by amplitude
attenuation effects, provided the signal is above the noise level. Hence, atten-
uation seems irrelevant to Kdp estimation. However, if a δco(Zdr) correction is
applied to the Ψdp range profile, attenuation effects will have indirect effect on
Kdp estimation through inexact and possibly insufficient δco removal. This issue
will be recalled in Chapter 7.
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Figure 4.4: A Φdp (a) and Ψdp (b) segment from the phase profile of Fig.4.2 is
shown. Actually it corresponds to the 6-7.5km part, however the range is shown
here to start from zero for simplicity. The Kdp estimator applies a linear fit to
the segments and calculates the slope. That means that the resulting Kdp value
for (a) is 0.83deg/km, as there is a phase excursion of about 1.2deg over 1.5km
(1.2/1.5=0.8deg/km). In (b), the resulting Kdp value is 1deg/km, because the
presence of δco introduces fluctuation on the Φdp profile and the Kdp estimator

is biased. Therefore, in this case K̄δco

dp is positive and equal to 0.17deg/km, or
20%. However, it could also be negative depending on the δco fluctuation. It is
noticed that the bias due to non-homogeneous path can be thought as similar,
since when the rain path is not uniform the Φdp segment (a) will not be linear
as in this case, so its fluctuation (as in (b)) will result in a respective bias.
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Chapter 5

Results

In this chapter the results obtained by processing two IDRA raw data files
according to Chapters 3 and 4 are presented and discussed. These particular
raw data files were selected because they correspond to relatively intense rain
events making the estimation of Φdp and Kdp more reliable. In general, the
occurrence of a meteorological event can easily be concluded by visual inspection
of the reflectivity PPI and the records of other observation instruments placed
at the Cabauw atmospheric site.

5.1 Case study A

This first rain event occurred on 1st of August 2008 between 00:00-03:00 UTC.
High values of reflectivity (up to 40dBZ) were recorded, which stand out among
the typically observed ones for IDRA. Also, the precipitation was not homo-
geneous so within each different sector there is a unique range profile of the
reflectivity and differential reflectivity. This offers the opportunity to apply the
estimation algorithms on a variety of different conditions with respect to the
intensity and homogeneity of the precipitation. There are three raw data files
available for this rain event, namely R2008-8-1 0-0-0.bin, R2008-8-1 1-0-0.bin
and R2008-8-1 2-0-0.bin. Each one represents a one-minute continuous raw
data recording every one hour (as indicated in the filenames), in other words
a full azimuthal scan since the rotational speed of IDRA was 1rpm. Of these
three available files, the last one was chosen as it contains a larger number of
intense rain cells.

In Fig. 5.1-5.4 the reflectivity, differential reflectivity, mean Doppler velocity
and Doppler width are shown as PPI scans. It is noticed that the Zdr parameter
can be biased for some sectors (Appendix B). The sector that corresponds to
a viewing angle of 0o is oriented along the North, and the azimuth angle in-
creases clockwise. For example, the sector of 270o matches the West direction.
The following results correspond to the sector of 274o, as marked in Fig. 5.1. In
Fig. 5.5 the estimation of the total differential phase1 Ψdp is shown for the range-
bin located 10km away from the radar, under the spectral polarimetry approach
(section 3.2). As explained before, if the differential phase is estimated with a
time domain approach then at a certain location (rangebin)it is represented by

1since it contains δco at this processing step
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a single value. However, the spectral total differential phase extends over the
Doppler velocity bins so it is a function defined over them. The blue curve is
the total differential phase while the green curve is the weighting function, the
spectral reflectivity (section 3.2.2). The left column, which is in dB scale, and
the right column being in linear scale, are otherwise identical. The gaps of the
curves for the upper row are due to the spectral polarimetric filtering and noise
clipping. They correspond to Doppler velocity bins where there is not meteo-
rological echo. It is also mentioned that the gap around the Doppler velocity
0m/sec is due to a fixed notch filter. In the lower row all parts of the spectra
are attached together so that the weighting process becomes clearer; the blue
curve (sΨdp) is weighted by the green one (sShh).

By applying the spectral weighting, the result is the value of Ψdp assigned
to that particular rangebin. The other option is to apply a uniform weighting,
essentially taking the average of spectral Ψdp values over all the velocity bins
equally. Doing this for all rangebins along the radar beam, the result is the range
profile of Ψdp as shown in Fig. 5.6. In the upper row the red curve corresponds
to the first algorithm of Ψdp estimation while the blue to the second; for the
left subfigure uniform averaging was performed in contrast to spectral weighting
for the right one. In the lower row the same curves are grouped differently, in
terms of the weighting method. Apparently, there are four possible candidate
Ψdp range profiles depending on the choice of algorithm and the method of
weighting. Based on many similar results as the one depicted here, it was
concluded that:

• Spectral weighting results in less statistical variation than uniform aver-
aging.

• The two different algorithms have no noticeable differences, which is indi-
cation of the robustness of the Ψdp estimation.

Therefore, for the subsequent estimation of Kdp we chose to use the Ψdp range
profile obtained from the first variation2 and by applying spectral weighting. In
Fig. 5.7, all the available radar observables are shown under the time domain
and spectral polarimetry approaches. Based on many similar results as the one
depicted here, it was concluded that:

• There is very good agreement on Z and Zdr except for some narrow spikes
present in the time domain approach. It is believed that these are due
to spurious signals which are removed with spectral polarimetric filtering
and this is the reason that they do not appear in the spectral polarimetry
approach.

• The agreement on Ldr is not good, however Ldr is very difficult to measure
reliably due to the very weak level of the cross-polar echoes and since Ldr is
not much involved in the estimation procedures this issue was disregarded.

• There is agreement on the estimated Ψdp between the two different ap-
proaches. Under spectral polarimetry the resulting curve has more statis-
tical fluctuations which is a disadvantage, but after applying a smoothing
filter the filtered curves are expected to coincide.

2it could have been the second as well
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Figure 5.1: PPI of the reflectivity in dBZ.
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Figure 5.2: PPI of the differential reflectivity in dB.
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Figure 5.3: PPI of the mean Doppler velocity in m/sec.
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Figure 5.4: PPI of the Doppler width in m/sec.
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Figure 5.5: The spectral total differential phase (sΨdp) for one rangebin (blue
curve). The spectral reflectivity (sShh), which will be used as a weighting func-
tion, is also shown (green curve). On the lower right subfigure it is seen that
only a narrow part around the peak of the weighting function will contribute
to the resulting Ψdp value of about -15o. The minus sign is because at this
processing stage the differential phases are computed with negative sign. So it
is actually about +15o as it can be seen in Fig. 5.6.
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Figure 5.6: The Ψdp range profile for the sector of 2740. There are four candidate
Ψdp curves as there are two algorithms for its estimation and the possibility
for either spectral weighting or uniform averaging. It is noticed that at this
processing stage there is no offset correction, which will apparently be about
+5o.
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which is of no consequence for our estimations.
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dp bias.

Having the Ψdp range profile the δco is removed by using a δco(Zdr) relation-
ship resulting in the desired Φdp range profile. Afterwards, Φdp is smoothed by
applying a two-way smoothing filter of 48 rangebins (about 1.5km in extent) and
the Kdp is estimated (Fig. 5.8-5.9). These two processing steps were discussed
in Chapters 3 and 4.

From Fig. 5.8-5.9 it is seen that the Kdp curve ”follows” the shape of the Z
and Zdr curves which is expected. Of course, the resolution of the Kdp curves
is lower because the Kdp estimator operates on large range segments (N=48 in
this case). The reflectivity peak at 8km is the among the strongest observed
with IDRA and accordingly the value of Kdp at that point is one of the highest.
This particular sector is non-homogeneous and this also is apparent in the Φdp

profiles that exhibit a varying local slope (which is expressed locally by Kdp).
Regarding δco, it is seen that it can have high values but its actual contamination
depends on its slope: it has to be constantly increasing or decreasing in order to
introduce a strong positive or negative bias, respectively. In this case this takes
place only around 8km in a limited way so the K̄δco

dp is in magnitude less than
0.2deg/km. It is noticed that this bias is not present in the given Kdp curves;
it would be if no δco estimation had taken place, and it is computed in order to
assess its effect in general.
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5.2 Case study B

The second rain event occurred on 25st of May 2009 from about 19:30 till 04:30
UTC the next day. However, the intensity of the precipitation was particularly
high only between 20:00-21:00 and 1:30-4:30. High values of reflectivity were
observed (up to 40dBZ) allowing for more reliable estimation of Kdp than in
the case of weak atmospheric echoes, accompanied by variation in the intensity
and homogeneity of the precipitation within the sectors. The content of the
corresponding raw data files is similar as explained before and they are available
every half an hour or even every ten minutes for some part of the event. In
Fig. 5.10-5.13 the reflectivity, differential reflectivity, mean Doppler velocity
and Doppler width are again shown as PPI scans. Following are the respective
figures similar to the previous case study (the sector of 320o of the raw data file
R2009-5-26 4-0-1.bin was selected in this case).

In this case, this particular sector is rather homogeneous as it is seen by the
Z and Zdr profiles and this is why the Φdp profile has limited slope variability.
It has to be stressed, however, that due to the aspect ratio of the figures they
appear somehow elongated and this conceals the small slope variations in the
Φdp profile; they become obvious in the Kdp curve which presents a certain
variability, but mostly around a mean value rather that strong peaks since this
sector is essentially homogeneous unlike the previous case study. Even though
the Kdp has small values in this case and limited variation, there is still a slight
peak discernible at 11km, correlated to the Z and Zdr, which is a positive point
for the sensitivity and correctness of its estimation.

It is important that sectors from different raw data files be analyzed, because
each one represents a different rain event of different properties (different drop
size distribution). In this way the processing algorithms are tested against a
variety of meteorological conditions so their performance is assessed in a realistic
way. Therefore, in Appendix A more results are given based on the processing
discussed so far and the assessment approach presented in Chapter 6.
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Figure 5.10: PPI of the reflectivity in dBZ.
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Figure 5.11: PPI of the differential reflectivity in dB.
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Figure 5.12: PPI of the mean Doppler velocity in m/sec.
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Figure 5.13: PPI of the Doppler width in m/sec.
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Figure 5.14: The spectral total differential phase sΨdp (blue curve) and the spec-
tral reflectivity sShh (green curve) for the rangebin located at 10km. In contrast
to Fig. 5.5, in this case a larger number of velocity bins have actual contribution
to the resulting Ψdp value for the rangebin, as the weighting function does not
present such a strong peak.
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Figure 5.15: The Ψdp range profile for the sector of 3200. As before, there
are four candidate Ψdp curves. Regarding the first variation, in the lower left
subfigure it is noticed the positive effect of the spectral weighting, since with just
averaging the Ψdp presents a suspect downward trend at the end of the range. In
general, it was noticed that the comparative effect of spectral weighting (other
than less statistical fluctuations) is either negligible or positive and this is why
it was the preferred method.
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Figure 5.16: Comparison of the radar observables under the time domain and
spectral polarimetric approach.
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Chapter 6

Assessment of results

As mentioned in Chapter 4, correct estimation of Kdp is a complicated task
because it entails various processing steps that have to take place in advance:
estimation of Ψdp, removal of δco in order to get Φdp and smoothing of the
curve. When a smooth Φdp curve is obtained, an estimator of Kdp can be
applied (Eq. 4.3). The estimated Kdp is then used for applications such as rain
rate estimation. Rain rate estimators themselves are not exact relationships but
best-fit curves so they have limited inherent accuracy. It is therefore essential
that Kdp or any other observable to be estimated as accurately as possible before
it is used in such ways. In this chapter we look into possible ways to assess the
quality and correctness of the previous Φdp and Kdp estimation and gain further
insight into the results.

6.1 Correlation with rain gauges

The most dependable way to have confidence in the estimated Kdp is to apply a
rain rate estimation algorithm involving it (ideally Kdp alone in order to isolate
effects from other estimated radar observables) and check for agreement with
rain gauge measurements. This is because rain gauge measurements are typi-
cally regarded as the ‘ground truth’ being the reference for all other estimations.
Seeking agreement with rain gauges measurements is generally a complicated
task mainly for two reasons:

• rain gauges measure the rain on the ground surface, while rain rate esti-
mators based on radar observables refer to a certain rain cell above the
ground. Correlating them is possible under certain assumptions.

• rain gauges measure accumulation of rain, while rain rate estimators give
instantaneous results that have to be integrated in time.

There are available rain gauges in the IDRA area (one network belonging to
KNMI and the other to Wageningen University) however a correlation was out of
the scope of the present thesis. It is believed that checking for agreement against
these rain gauges is important for gaining confidence in IDRA measurements
and estimations. At the moment, the main obstacle to this direction is that
the estimation of Kdp is based on raw data files that are available not very
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frequently. Frequent Kdp values (every few minutes) have to be available so that
estimated rain rates can be integrated and compared against the rain gauges.
That means that any Kdp estimation processing step (involving Φdp smoothing
and δco removal) has to be implemented in the real-time processing scheme first.

6.2 Analytical computation

As mentioned before all the radar observables are mathematically defined as
moments of the drop size distribution. If the dsd is known, the radar observ-
ables can be analytically computed and used as reference for the correctness of
their estimation based on radar data. The dsd is possible to be retrieved by
2D disdrometer measurements, an instrument available near the Cabauw tower
where IDRA is located. It is believed that 2D disdrometers measurements can
offer valuable information regarding the specific meteorological conditions in the
site of radar measurements which can be helpful in any case. Despite that, such
an approach was not taken as it was out of the scope of the current thesis.

6.3 Self-consistency considerations

As stated above, once the DSD is known the radar observables can be calcu-
lated analytically. This implies that the observables themselves do not vary
independently but they are correlated. Of course, this does not mean that there
are only unique combinations of values, for example unique triplets of (Z, Zdr,
Kdp). In the same way there is actually a 2D scatterplot of Z and Zdr values
and not a unique curve expressing their mutual variation, there is a 3D scat-
terplot of triplets (Z, Zdr, Kdp) where each point corresponds to a certain dsd,
or equivalently a certain combination of the dsd parameters. Calculation of a
best fit surface is possible so that one parameter is expressed as a function of
the other two. An intuitive reasoning is that since there is a rain rate estima-
tor as a function of Z and Zdr and Kdp is closely linear to R, at least for the
X-band (section 2.2), it should also be possible to express Kdp as a function
of Z and Zdr. This ‘interconnection’ of the radar observables is known as the
self-consistency principle [16] and has been used for attenuation correction. In
our case, we wish to use this principle to check the correctness of the Φdp and
Kdp estimation. We can do that by deriving a relationship which will be used
as a reference for the estimated Kdp values. This relationship is:

Ksc
dp = Kdp(Z,Zdr) = αZβ10−γZdr , Z in linear scale and Zdr in dB (6.1)

and it means that to each couple of (Z,Zdr) values corresponds a certain value of
Kdp, in a best-fit sense. To sum up, we will try to come up with a relationship
like Eq. 6.3 and check for agreement between the estimated Kdp and the one
according to the self-consistency principle, Kdp

sc. Following a similar argument,
δco may expressed through Zdr as

δco = aZdr
b,
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Zdr in dB (6.2)

The intuitive reasoning for the above relationship is that both variables originate
from the non-sphericity of the rain droplets, so they have a common physical
basis. Also, Zdr is expressed in dB so that in the limiting case where it becomes
zero (spherical particles) δco will be zero as well.

The validity of this approach is based on the following assumptions:

1. Eq. 6.3 is mathematically meaningful, that is the dispersion of the (Z, Zdr,
Kdp) triplets in their 3D space is limited (high correlation) and thus able
to be approximated by a surface.

2. The estimated values of Z and Zdr used as inputs in Eq. 6.3 to get a
reference for Kdp are correct.

Regarding the first point, it will be shown in section 6.5 that it holds. Most
importantly, it has to be underlined that the validity of the fit (Eq. 6.3) from
a physical prospective depends on the kind of dsd’s considered. If we wish to
apply this method reliably, then the range of dsd used to generate the dataset
on which the regression will be carried out to get Eq. 6.3 should be as closely
as possible to the actual meteorological conditions in the site of measurement.
Otherwise, we will end up with a relationship which may be mathematically
accurate, but wrong from a physical point of view, as it describes a different
meteorological situation. In brief, Eq. 6.3 has to be calibrated to the actual
rain event under consideration. The way and reasoning for doing so will be
discussed further in section 6.5. Regarding the second point, at the moment
there is confidence in the estimated Z and Zdr values so that they are thought
to be suitable to serve as references. Besides, Eq. 6.3 will be mainly used as
a qualitative measure for assessing the correctness of Φdp and Kdp estimation
and not in a quantitative sense. A special issue regarding Zdr is addressed in
Appendix B; at this point it is only noted that it has limited influence.

6.4 Drop size distribution retrieval

As mentioned in section 6.2, if the dsd could somehow be retrieved then Kdp

could be computed analytically and used as a reference for the estimated one.
Without using 2D disdrometers, the dsd may be retrieved by the measured Z
and Zdr. However, it is apparent that since the model for dsd being used is the
gamma dsd involving 3 parameters (section 2.3) and there are only two known
observables (Z and Zdr), one parameter has to be assumed known and only
then the other two can be retrieved. It is assumed that µ is known as the radar
observables are less sensitive to it compared to Nw and Do. Since Z depends
on both Nw and Do while Zdr only on Do, Do can be retrieved first by Zdr and
then Nw. The validity of this approach is based on the following assumptions:

1. The actual dsd in the measurement location can be described by a gamma
dsd model.

2. The estimated values of Z and Zdr used as inputs to retrieve the dsd are
correct.
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Regarding the first point, only actual in situ 2D disdrometer measurements can
verify its validity or not. However, the gamma dsd model is widely used and
believed to be a reasonable approximation of the particle distribution, especially
for common meteorological conditions. The second point has been discussed just
before. In conclusion, we will try to retrieve the dsd from the measured Z and
Zdr and once the dsd is known Kdp will be computed analytically (Kdsd

dp ) and
used as reference for the estimated one and similarly for Ψdp.

6.5 Implementation

In this section, it is described how the approaches presented in sections 6.3
and 6.4 are implemented along with the reasoning and assumptions involved.
Although these two approaches are different in implementation, they are both
based on the measured Z and Zdr as their only inputs. Theoretically, the dsd
retrieval approach is expected to be more accurate to be used as a reference,
provided µ is assumed correctly and Z and Zdr are measured with high accuracy,
since the self-consistency approach is a best-fit practice. However, these points
are not easy to meet, so in the end there may be not any relative advantage over
the self-consistency approach. In any case, we are interested in these methods
as assessment tools for the Φdp and Kdp estimation rather than for detailed
quantitative studies, meaning that further analysis into comparing them is not
required.

The main point of implementation is being able to compute the radar ob-
servables analytically for a certain dsd, or equivalently for a certain selection of
its parameters. For the case of Mie scattering, this is not a trivial task as there
are not direct mathematical relationships as opposed to Rayleigh scattering. It
is necessary to use a numerical method to compute the scattering amplitude
from a single particle, which is then used as a basis for computing the radar
observables due to an ensemble of particles. Examples of such a technique is the
Fredholm integral method (FIM) [17] and the T-matrix method. The one used
was the FIM as it was already implemented inside a Matlab toolbox allowing
for systematic use and integration with the other routines used (Appendix C).
By using this toolbox it is able to:

• define a gamma dsd by its three parameters and compute all the radar
observables and the rain rate (R)

• define a range of dsd by considering a range for its parameters in order to
get a dataset of observables and rain rate

• retrieve the dsd (derive Nw and Do) by the measured Z and Zdr provided
that µ is assumed

We begin by deriving Eq 6.3. For this, a regression has to be applied on
a dataset consisting of (Z,Zdr,Kdp) triplets. This dataset was generated by
considering a certain range for the gamma dsd parameters, given in Table 1.
This range of parameters is close to ([5],p538) where similar simulations were
carried out. However, as discussed previously, this dataset should also be similar
to the actual meteorological conditions of the rain event under consideration.
In order to do this, combinations of (Nw,Do,µ) that result in rain rate R greater
than 20mm/hr were filtered out because they correspond to precipitation events
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Table 6.1: The range of dsd parameters that resulted in the dataset of Fig. 6.1.

µ k (Nw = 10k [mm−1m−3]) Do [mm]
-1:1:5 3:0.25:4.5 0.1:0.05:4.5

more intense than the observed ones. It has to be noticed that since no rain
rate estimation was actually made, the threshold value of 20mm/hr was selected
empirically based on inspection of the vast majority of the Z values and the
corresponding R according to typical R(Z) relationships found in literature.
The full and filtered dataset is given in Fig. 6.1.

It is seen that the scatter of Kdp with respect to Z and Zdr is limited, so a
relationship like 6.3 is mathematically meaningful. By applying regression, it
was found that

Ksc
dp = 0.0005Z0.975110−0.3908Zdr (6.3)

The values of the parameters in the above relationship relate well with those
given in [16] for S- and C-band. In our case, parameter β was found to be
larger, which is offset by an also larger parameter γ. This difference is probably
due to the different regression technique used, non-linear for [16] and linear in
our case. It is noticed that the non-linear regression is the optimal one, so that
means that the derived self-consistency relationships as presented here could be
improved. The performance of the estimator is shown in Fig. 6.2.

Regarding Eq. 6.3, the δco-Zdr scatterplot and performance of the estimator
is given in Fig. 6.3. Although the MSE of the estimator is not as limited
as before, still good results were obtained by using it since the smoothing of
the Φdp curve is expected to eliminate small faults in δco removal. Also, the
performance of the estimator deteriorates only for large values of Zdr (larger
than 2.5dB which corresponds on average to δco of about 5o) which are not very
common, at least for many consecutive rain cells. It was found that

dsc
co = 0.3719Zdr

2.8291 (6.4)

Various rain rate relationships can also be derived as shown in Fig. 6.4. The
parameters were computed by regression and are given in Table 2. It is seen
that the best estimator is the R(Kdp,Zdr)

1 followed by R(Z,Zdr). Also, R(Kdp)
although it depends on only one observable unlike the others still performs well.
These general conclusions are in agreement with the literature ([7], [8]).

As mentioned in section 2.3, a shape-size model has to be selected so that
the particle distribution can be modelled by a monoparametric dsd, that is

1R(Z,Kdp,Zdr) offers no noticeable improvement despite the additional inclusion of Z
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(b) Filtered so that it only contains points corresponding to R less than
20mm/hr.

Figure 6.1: The dataset of radar observables generated according to Table 1 in
order to derive the self-consistency relationships.
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Figure 6.2: Performance of the self-consistency Kdp(Z,Zdr) estimator (subfigure
b). It is seen that it tends to result in overestimation for higher values of Kdp.
It is noticed that an attempted Kdp(Z) (subfigure a) estimator fails (very high
MSE); Zdr is needed in order to ’capture’ the origin of Kdp due to the non-
sphericity of the rain drops.

Table 6.2: Rain rate estimators according to the dataset of Fig. 6.1 and the
raindrop axis ratio model in [18]. In the second row the mean square error
(MSE) is given.

X-band (9.475 GHz); T=25oC;Z [mm−6m−3] Zdr [dB] Kdp [deg/km]
R(Z) R(Z,Zdr) R(Kdp) R(Kdp, Zdr) R(Z,Kdp, Zdr)

R = 0.083Z0.49 R = 0.018Z0.91
10
−0.47Zdr R = 10.98Kdp

0.84 R = 17.8Kdp
0.93

10
−0.09Zdr R = 8.37Z0.84Kdp

0.13
10
−0.1Zdr

39.1% 11.1% 12.1% 6.9% 6.8%
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Figure 6.3: Self-consistency estimator of δco. It is seen that it tends to result in
overestimation for higher values of δco (about 50, corresponding to Zdr of about
2.5dB). It is apparent that the variation of δco versus Zdr is such that cannot
be captured effectively in only one power-law expression over the whole range
of values. It is suggested that two different power-law expressions may be used
for future work, one up to the 50 region where the variation is closely linear,
and another for the remaining range where the variation deviates from linear.
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Figure 6.4: Various possible rain rate estimators.
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involving only D as an independent variable. The choice of such a model is not
trivial as there are many available and it affects the computed radar observables
for a certain dsd, especially the ones that originate from the anisotropy of the
particles such as Kdp and Zdr. The simulation toolbox offers the possibility
to use various rain drop axis ratio models but only the Pruppacher and Beard
[18] model was eventually used since it is rather common and good results were
obtained with it. Still, the possible effects of different choice of the axis ratio
model would be useful to be studied and be known in order eliminate sources
of uncertainty.

At this point, the approach presented in section 6.3 has been implemented
as we may compute a Ksc

dp and δsc
co from the measured Z and Zdr and the self-

consistency relationships. For section 6.4, a value for µ is assumed (along the
whole range of the sector) and then Nw and Do are retrieved. Once the dsd is
retrieved, we may compute a similar Kdsd

dp and δdsd
co (not through an equation,

but by using the FIM toolbox). Regarding the choice of µ, small values such
as 0,1 or 2 seem more reasonable2 as it has been reported in the literature
that higher values are associated with more intense rain events ([19]). This is
somehow expected, because increasing µ shifts the shape of the dsd more to
the right (Fig. 2.2) to include a greater number of larger raindrops which are
not expected to occur in the light to moderate rain events we are dealing with.
A schematic representation of the two approaches is given in Fig. 6.5. Finally,
it is noted that for some rain cells (typically near the radar origin) Z and Zdr

have NaN values meaning they are below the noise level. In such cases the self-
consistency relationships cannot be applied so Kdsd

dp and δdsd
co are directly taken

to be zero, which is the correct physical interpretation.

6.6 Results

We refer to the same case presented in section 5.2 (Case study B). In Fig. 6.6
the result of the dsd retrieval can be seen, that is the profiles for Nw and Do

(µ=1 was assumed). The reconstructed Z and Zdr profiles completely coincide
with the measured ones, so no error takes place at this step. Having retrieved
the dsd, δdsd

co and Kdsd
dp can be computed and thus the Ψdsd

dp and Φdsd
dp range

profiles as well. Similar procedure can be followed for the self-consistency ap-
proach; Ksc

dp and δsc
co are computed directly in this case from their estimators and

Ψsc
dp,Φ

sc
dp profiles can be reconstructed as well. The reconstructed Φdp for the

dsd retrieval approach is calculated as Φdsd
dp = 2

∫ r=rend

r=0
Kdsd

dp (r)dr, where the
multiplying factor of 2 accounts for the two-way propagation of the radar beam,
while Ψdsd

dp = Φdsd
dp + δdsd

co since δco originates only once at the radar resolution
volume. For the approach based on self-consistency the relationships become
Φsc

dp = 2
∫ r=rend

r=0
Ksc

dp(r)dr and Ψsc
dp = Φsc

dp + δsc
co.

First, a comparison of the two approaches is shown in Fig. 6.7. It is seen that
there is good agreement on Kdp and δco, so the respective Φdp and Ψdp profiles
in Fig. 6.8 agree. This is expected since both are based on the same physical
basis, that all the radar observables are interrelated. A cumulative deviation is
observed for the phase profiles, however this is relatively small (about 1 degree
at the end of the range). Next, a comparison between the results of the dsd

2for the dsd retrieval curves following in the next section, the selected value of µ is given
in the figures
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(a) Self-consistency approach

(b) dsd retrieval approach

Figure 6.5: A schematic representation of the two assessment methods. The
objective is the comparison of these reference, expected values with those esti-
mated directly from radar signal measurements.
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Figure 6.6: Drop size distribution retrieval for Z and Zdr of Fig.5.17 (case B).
The reconstructed Z and Zdr profiles are given by the blue curves while the
original ones by the dashed black curves and they coincide.
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Figure 6.8: Comparison of the reconstructed Ψdp and Φdp profiles (case B).

retrieval method and the actual estimation regarding Ψdp, Φdp and Kdp is given
in Fig. 6.9. The respective for the self-consistency approach is Fig. 6.10.

It is seen that there is close agreement between the estimated (through mea-
surements) and expected (through either the self-consistency or the dsd retrieval
method) Ψdp and Φdp profiles. However, a growing deviation is observed after
about 6km, with the estimated Φdp and Ψdp growing continuously more than
the expected ones. This deviation reaches up to 3 degrees at the end of the
range so it cannot be dismissed as negligible. It is believed that it is caused
by attenuation, because attenuated Z and Zdr values result in underestimation
of the expected Φdp and Ψdp. This will be examined in the next chapter. Re-
garding the comparison of Kdp curves, it should be noted that the measured
curves include an inherent smoothing due to the Kdp estimator which works on
range segments while the expected Kdp curves are per range point (one rain cell
only). Therefore, being different in nature, for a more realistic comparison the
expected Kdp curves should be smoothed with a smoothing filter of the same
N used for the Kdp estimator, such as the one used for Φdp smoothing. This is
shown in Fig. 6.16.

The respective results for the sector discussed in section 5.1 are now given
in Fig. 6.11-6.15. The above conclusions apply for this case as well. It is again
noticed a growing deviation for the differential phase profiles which is now more
pronounced (about 7o at the end) which is suggestive of a systematic underlying
reason which could be the attenuation of the radar beam.

57



0 2000 4000 6000 8000 10000 12000 14000 16000

0

5

10

15

[d
e
g
]

Ψ
dp

0 2000 4000 6000 8000 10000 12000 14000 16000

0

5

10

15

[d
e
g
]

Φ
dp

0 2000 4000 6000 8000 10000 12000 14000 16000

0

0.5

1

[d
e
g
]

K
dp

distance [m]

Ψ
dp

dsd

Ψ
dp

Figure 6.9: Comparison of the results (case B) from the dsd retrieval approach
(blue curve) and the actual estimation of Ψdp, Φdp and Kdp (black curve).
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Figure 6.10: Comparison of the results (case B) from the self-consistency ap-
proach (red curve) and the actual estimation of Ψdp, Φdp and Kdp (black curve).
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Figure 6.11: Drop size distribution retrieval for Z and Zdr of Fig.5.8. The recon-
structed Z and Zdr profiles are given by the blue curves while the original ones
by the dashed black curves and they coincide. It is noticed that for rangebins
where Do is very low (very low Zdr), the error in Nw estimated values is very
large. In fact, in the shown Nw profile above, due to non-optimal vertical axis
zoom only these spike values appear.
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Figure 6.12: Comparison of the results from the self-consistency and dsd re-
trieval approach (case A).
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Figure 6.13: Comparison of the reconstructed Ψdp and Φdp profiles (case A).
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Figure 6.14: Comparison of the results (case A) from the dsd retrieval approach
(blue curve) and the actual estimation of Ψdp, Φdp and Kdp (black curve).
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Figure 6.15: Comparison of the results (case A) from the self-consistency ap-
proach (red curve) and the actual estimation of Ψdp, Φdp and Kdp (black curve).
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Figure 6.16: Comparison of the estimated and expected Kdp curves while trying
to account for their different qualities by smoothing the expected ones.
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Chapter 7

Attenuation

In X-band, the attenuation may no longer be ignored even for light to moderate
rain paths. The attenuation of the radar signal is quantitatively described by
the specific attenuation (Ahh) and specific differential attenuation (Adp) which
affect Z and Zdr respectively. Attenuated Z and Zdr will result in underesti-
mation of the rain rate along with shortening of the effective radar range over
which reliable atmospheric observations may be carried out. The latter can be
dealt with increasing the transmission power, but even in this case Ahh and Adp

will still result in distorted Z and Zdr range profiles which obfuscate their anal-
ysis. For these reasons, an attenuation correction algorithm is believed to be of
necessity for IDRA data when the intensity of the rain path is not negligible.
Our motivation is supported by the results presented in the previous chapter
where a disagreement was observed between the measured and expected values
of Φdp at long ranges, which was assumed to be due to attenuation effects.

7.1 Attenuation correction based on Φdp

The simplest attenuation correction algorithm for Z is based on assuming a linear
relationship Ah

∼= αKdp(r), where Ah is in dBkm−1 and Kdp is in degkm−1.
By definition of the specific attenuation, the attenuated reflectivity Z ′ can be
expressed as

Z′h(r) = Zh(r)− 2
∫ r

0
Ah(s)ds = Zh(r)− 2α

∫ r

0
Kdp(s)ds = Zh(r)− α[Φdp(r)−

Φdp(0)] (7.1)

and since the initial value for Φdp is Φdp(0) = 0, it follows that

Zh(r) = Z ′h(r) + αΦdp(r) (7.2)

According to Eq. 7.2, the unattenuated or corrected Z (in dBZ) can be computed
if the respective value of Φdp multiplied by the coefficient α is added to the
measured one, for each rangebin. For Zdr, a similar analysis holds with the
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Table 7.1: Effect of temperature on complex permittivity of water (f=9.475GHz)
and attenuation correction coefficients

Temperature (oC) ǫr α β
15 59.6177+34.7621i 0.25 0.0529
20 62.3766+31.7862i 0.26 0.053
25 64.1842+28.8638i 0.26 0.053
30 65.2438+26.1288i 0.28 0.054

only difference being that Ahh is now replaced by Adp(r) and coefficient α by
coefficient β, Adp = βKdp(r) (Zdr is in dB and Adp in dBkm−1):

Z′dr(r) = Zdr(r)−2
∫ r

0
Adp(s)ds = Zdr(r)−2β

∫ r

0
Kdp(s)ds = Zdr(r)−β[Φdp(r)−

Φdp(0)] (7.3)

Zdr(r)=Zdr
′(r) + βΦdp(r) (7.4)

Based on the simulation approach, scatterplots of Ah −Kdp and Adp −Kdp

and the performance of their estimators are given Fig. 7.1-7.4 in order to check
the assumption of linearity and determine the actual values for coefficients α and
β. It is seen that the assumption of linearity is only true for small values of Kdp,
namely less than 1deg/km, therefore the validity of the consecutive estimators
is limited. Additionally, even for such a small linear region, the scatter of the
estimators is considerable (Fig. 7.2 and 7.4) and the origin of this should be
studied more closely. Still, the computed values for α and β agree well with the
reported ones in the literature ([5],p494). A more pronounced discrepancy can
be noted regarding the value of β which was initially thought that it could be
attributed to the temperature which was taken to be 20oC, instead of averaging
over 0 − 30oC as is ([5],p494). Temperature has an effect on the coefficients α
and β because it affects the permittivity of the rain drops. However, as shown
on Table 7.1 this effect is only minimal and consequently it is believed that any
discrepancies related to the attenuation coefficients originate from the choice of
the drop axis ratio model.

At this point Eq. 7.2 and Eq. 7.4 are applied to the range profiles of Z and
Zdr of the previous section in order to get their ‘true’, un-attenuated profiles
(Fig. 7.5). It is clearly seen the distorting effect of attenuation on both after
about 6km since it is cumulative. We now use these corrected profiles of Z and
Zdr as inputs for the self-consistency and dsd retrieval methods which result
in the expected Φdp for case B (Fig. 7.7). The previous results are repeated
in Fig. 7.6 where it is seen that the disagreement between the measured and
expected Φdp range profiles begins at the same point where attenuation starts
to occur for Z and Zdr. Correcting for attenuation ‘lifts’ Z and Zdr up after this
point, and subsequently the expected Φdp (Φsc

dp or Φdsd
dp ) which now is in good

agreement with the measured one (Fig. 7.7). Therefore, we conclude that the
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Figure 7.1: Ahh-Kdp scatter plot.
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Figure 7.2: Performance of Ahh(Kdp)
estimator (α=0.26, 20oC).
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Figure 7.3: Adp-Kdp scatter plot.
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Figure 7.4: Performance of Adp(Kdp) es-
timator (β=0.053, 20oC).
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initial disagreement was indeed due to attenuation and the agreement reached
after correction is indicative of good performance of both the Φdp estimation on
one hand and the simple attenuation correction algorithm on the other. The
corresponding results for the other case are shown in Fig. 7.8- 7.9.
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Figure 7.5: Attenuation correction for the Z and Zdr range profiles of Fig. 5.17
(case B).

So far it has been said that attenuation of Z and Zdr will result in underesti-
mation of the expected Φdp and Ψdp profiles. However, according to Eq. 6.1 the
opposite may also occur. The attenuation of Z and Zdr have different impacts
on the expected Kdp: attenuated Z results in underestimation while attenuated
Zdr actually results in overestimation. Their combined result may be either one,
at least in theory. However, in practice (Appendix A) it has been observed that
attenuation results in underestimation of the expected Kdp and therefore of the
expected differential phases.
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Figure 7.6: Fig. 6.9 repeated for comparison with Fig. 7.7. It is seen that the
deviation starts to occur at the same point as the attenuation, indication that
the effects are correlated. The curves in black colour represent the estimated
parameters, while the ones in blue the expected according to the dsd retrieval
approach.
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Figure 7.7: Correcting for attenuation results in better agreement between ex-
pected and estimated Φdp and Ψdp range profiles (case B). The curves in black
colour represent the estimated parameters, while the ones in blue the expected
according to the dsd retrieval approach and the ones in red the expected ac-
cording to the self consistency approach.
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Figure 7.8: Attenuation correction for the Z and Zdr range profiles of case A.
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Figure 7.9: Correcting for attenuation results in better agreement between ex-
pected and estimated Φdp and Ψdp range profiles (case A). Again, the curves in
black colour represent the estimated parameters, while the ones in blue the ex-
pected according to the dsd retrieval approach and the ones in red the expected
according to the self consistency approach.
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7.2 Attenuation and δco(Zdr)

Since attenuation correction for Z and Zdr depends on Φdp, a vicious circle is en-
countered: Φdp has to be available first, but Φdp estimation assumes δco removal
which depends on Zdr. This means that un-attenuated Zdr has to be available
first as well, otherwise if we are based on the attenuated Zdr, δco estimation and
removal may not be exact and this will induce bias in Φdp. Also, erroneous δco

will result in bias in the Kdp estimation as explained in Chapter 4. Nevertheless,
these issues are merely mentioned for future reference and no further investiga-
tion was attempted. In the case of attenuation correction, studying further the
uncertainties in the corretion relationships is considered to be of higher priority.
In the case of Kdp estimation, it is believed that the inherent smoothing of the
estimator smooths away small errors coming from problematic δco removal.
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Chapter 8

Conclusions

The main objective of this thesis was the estimation of the Kdp radar polarimet-
ric variable. Kdp is derived from Φdp both under the time domain and spectral
polarimetry approach. The estimation of Φdp is presented because the process-
ing steps directly affect the Kdp, so that the estimation of Kdp is explained in
an analytical way as a whole with the starting point being the IDRA raw data
files. Since there are two approaches for the estimation Φdp, the same holds for
Kdp. Emphasis was given on the spectral polarimetry as it is used for IDRA.
Although the time domain technique is the actual standard, the gain of spec-
tral polarimetric processing is better performance in removing non-atmospheric
echoes. As this can be advantageous in such cases, it is the reason for focusing
on a spectral polarimetric estimation of Kdp in order to remove dependency on
the time domain technique for any radar observable. The spectral polarimetry
and time domain Φdp were compared against each other and good agreement
was observed; therefore the respectively derived Kdp are in good overall agree-
ment as well. For cases were discrepancies are observed, the proposed strategy
is to take the time domain curves as references and trace back the processing
steps of the spectral polarimetry even up to the initial Doppler spectra. This is
because the spectral polarimetry approach involves more processing and choices
of threshold values.

On the other hand, the presented Φdp, Ψdp and Kdp curves were attempted to
be compared against the expected, reconstructed ones through a self-consistency
or dsd retrieval approach in a way that also accounts for possible effects of
attenuation. Based on cases A&B and Appendix A, and despite the assumptions
and uncertainties involved, the results are believed to be satisfactory and the
following are concluded:

• the good self-consistency of the IDRA observables

• the potential of IDRA measurements for dsd retrievals

• the potential of implementing an attenuation correction algorithm, useful
for all type of IDRA applications, based on Φdp

• the potential of a successful δco removal scheme; although the δco bias in
Kdp was not found to be troublesome, it is useful being able to remove
it, as for stronger rain events it may prove to affect a potential rain rate
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estimation accuracy. In any case, its removal is crucial for any kind of
assessment, qualitative as presented here or even quantitative, since as
long it is involved the true Φdp cannot be retrieved from Ψdp.

• Appropriate sectors have to observed for a sufficient time frame and the
estimated R(Kdp) has to be correlated with the rain gauges measure-
ments. This work is greatly facilitated since the routines and processing
algorithms for correlation of radar estimated rain rates with rain gauges
have already been implemented by previous work for the R(Z) estima-
tors. The estimation of Kdp was attempted to be as modular as possible
so that various possible choices for the involved parameters can be studied
and compared. By substituting R(Z) with R(Kdp), the performance of
the R(Kdp) estimator can be assessed for different configurations (length
of the smoothing interval N for Φdp, choice of the δco(Zdr) relationship
parameters etc). In the end it will be concluded if the estimation of Kdp

is correct and what values for the parameters are more accurate. Regard-
ing rain rate estimation, at the moment it is not certain the potential
of Kdp for rain rate estimation; this is due to the weak values of Kdp

observed, usually below 1deg/km. The reflectivity Z should be at least
30 dBZ for Kdp to start becoming discernible (0.2deg/km). However, it
increases quickly to around 1deg/km as Z rises higher (35-40dBZ). When
Z surpasses 40dBZ, the Kdp approaches the 2deg/km vicinity. Although
intense rain events are not very common at the moment, it is believed that
they could be more pronounced in the future which would facilitate Kdp

applications.

• The next step will be essential if the results from the previous one are not
satisfactory enough, but also important in any case: the analysis of the
disdrometer measurements available at the Cabauw site. These will prove
very useful as they give direct insight into the drop size distribution, for
which only assumptions can be made. The most fundamental parameter
that has to be modelled with good certainty is the rain drop axis ratio
which affects the results. Additionally, these data are important for de-
riving relationships such as δco(Zdr), Ahh(Kdp), Adp(Kdp) outside of the
simulation approach. Considering the rain gauge approach, the appropri-
ate choices for the parameters of such relationships can be derived rather
heuristically by trial and error. On the contrary, when disdrometer data
are taken into account these choices are possible to be supported by direct
measurements and scientific reasoning (a good candidate is the issue of
the choice of µ). However, the work required is more demanding.

It is believed that the above two steps should be the focus of future work
because they advance into extended measurements and techniques close to the
IDRA objectives rather than attempting to improve small details. Trying to
improve the following issues is regarded as complementary:

• altough from a processing point of view the issue of the wrong offset for
the Ψdp can be overcome, it would be useful to determine the actual cause
with certainty by observing this variability from sector to sector and from
time to time.
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• reducing the variation for the spectral polarimetry estimation of Φdp so it
is comparable to the time domain

• studying the influence of non-homogenous rain path on the Kdp estimator
is also suggested as it is a factor of uncertainty at the moment. It may also
point to the necessity of a better smoothing and Kdp estimation approach,
based on local, unequal range segments. However, taken into account the
current assessment results for Kdp, that do not take it into account, its
influence is not thought to be crucial.

Consequently, it is believed that despite the uncertainties it can be argued that
there are indications for the correct estimation of Ψdp, Φdp and Kdp based
on combined radar measurements and simulations. In any case, the lack of a
known reference, which is a defining factor for remote sensing studies, eventually
demands extensive studies only to lower the level of uncertainty by little. It is
hoped that the work presented in this thesis is sufficiently methodological so it
will be accessible enough for future corrections, improvements and extensions.
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Appendix A

Extended results

In this Appendix results obtained in the same way as the ones presented in
Chapters 5-7 are given for various sectors (azimuth directions) of various raw
data files as listed below. Files 1-3 belong to the rain event of case study A,
while the rest to case study B. The filenames also denote the specific time of
acquisition (UTC). On the next page the reflectivity PPI corresponding to each
file are shown. From these PPI some sectors were selected and processed in the
same way described in Chapters 5,6 and 7. The layout of the results is as shown
in Fig. A.1.
1:R2008-8-1 0-0-0.bin 2:R2008-8-1 1-0-0.bin
3:R2008-8-1 2-0-0.bin 4:R2009-5-25 20-13-0.bin
5:R2009-5-25 20-23-0.bin 6:R2009-5-25 20-33-0.bin
7:R2009-5-26 1-0-1.bin 8:R2009-5-26 1-30-1.bin
9:R2009-5-26 2-0-1.bin 10:R2009-5-26 4-0-1.bin

Figure A.1: On each page the results from processing a certain sector are pre-
sented, given in four plots as depicted, in terms of the grouping of the curves
(grey font) and the meaning of each one (coloured font).
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case:1 sector:280 In this case the reflectivity is too low (30dBZ) so that Kdp stays below 0.2deg/km.
However, the time domain and spectral polarimetry Ψdp curves agree on their shape and total phase
excursion, about 2o. It is noticed that the shape of time domain Φdp is distorted by spurious noisy spikes
around 10 and 13km.
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case:2 sector:0 For this sector the reflectivity lies in the 30-40dBZ range. Up to about 8km it stays under
35dBZ so Kdp is closely below what we consider its detection value (0.2deg/km). For the other part
where 35<Z<40dBZ it is seen that it rises above this boundary value. The assessment curves also agree
with the estimation, and attenuation correction results in improved agreement. In this case the Kdp bias

due to δco (K̄δco

dp ) takes non-negligible values, which means more than the low limit of 0.2deg/km.
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case:2 sector:140 This is the case of a sector of very low Z, with the exception of a raincell at 6-10km.
There is very good agreement between the time domain and spectral polarimetry estimation. There is also
good agreement in the assessment, especially after the attenuation correction where there is agreement on
the value that the phase assumes after the ’jump’. It is also noticed that the pronounced inhomogeneity
around 6km results in considerable K̄δco

dp bias.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

d
B

Z

Z

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

0

2

4

d
B

Z
dr

0 2000 4000 6000 8000 10000 12000 14000 16000
−20

−10

0

10

20

distance [m]

[d
e
g
]

Ψ
dp

0 2000 4000 6000 8000 10000 12000 14000 16000
0

5

10

15

δ
co

[d
e
g
]

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

0

2

4

6

Φ
dp

[d
e
g
]

0 2000 4000 6000 8000 10000 12000 14000 16000
−0.5

0

0.5

1

K
dp

distance [m]

[d
e
g
/k

m
]

0 2000 4000 6000 8000 10000 12000 14000 16000

0

10

20

30

40

Ψ
d
p
 [
d
e
g
]

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

0

2

4

6

Φ
d
p
 [
d
e
g
]

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

0

2

4

K
d
p
 [
d
e
g
/k

m
]

distance [m]

0 2000 4000 6000 8000 10000 12000 14000 16000

0

10

20

30

40

Ψ
d
p
 [
d
e
g
]

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

0

2

4

6

Φ
d
p
 [
d
e
g
]

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

0

2

4

6

K
d
p
 [
d
e
g
/k

m
]

distance [m]



case:2 sector:220 This case is similar to the previous, but even more pronounced. If no δco removal had
taken place, its bias on Kdp and any resulting rain rate estimation would be severe.
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case:2 sector:320 Good agreement between the spectral polarimetry and assessment curves is observed
for this sector. The phase wrap issue for time domain Ψdp appears at 8km.
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case:3 sector:20 In this case the time domain and spectral polarimetry Φdp and Kdp do not coincide due
to a discrepancy in Ψdp around 5.5km.
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case:3 sector:180 Good agreement between the time domain, spectral polarimetry and assessment curves
is observed. The disagreement of the TD and SP Φdp curves is limited only in the beginning (where there
is a noisy spike in time domain Ψdp) and the end of the range where the reflectivity is too low (below
20dBZ) so the signal to noise ratio deteriorates which affects Ψdp estimation. It is noticed, however,
that the spectral polarimetric processing has successfully removed the spurious peak present in the time
domain, and is more robust against SNR deterioration.
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case:3 sector:300 Another sector where good agreement is observed. Regarding assessment, the Kdp

curves are more difficult to be compared due to their different quality: the assessed Kdp is per rangebin,
which is fictitious. By observing the range of values over which they vary locally their agreement becomes
more obvious, especially after the attenuation correction for the 10-14km part. It is noticed that at 5km
K̄δco

dp would result in 100% relative error due to the local Zdr inhomogeneity.
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case:3 sector:340 This is a sector similar to the previous giving similar, consistent results.
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case:5 sector:20 This sector presents pronounced variations in the Z and Zdr values, however there is
very good agreement in the assessment. In this case the phase wrap issue for the time domain Ψdp is left
untreated in order to illustrate it.
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case:5 sector:340 In this sector the reflectivity peaks a little over 50dBZ, one of the highest values observed
by IDRA. Consequently, Kdp also peaks at 4.6deg/km. It is noticed that the attenuation correction results
in severe disagreement after 14km. This is because the correction factor is proportional to Φdp, which is
particularly high in this case. An small error in the actual value of the attenuation correction factors α
and β for Z and Zdr respectively, would be amplified. As it has been mentioned, these factors are indeed
variable (mostly on the temperature). It is believed that it would be useful to study this case so that the
limitations and assumptions of the attenuation correction scheme become more clear.
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case:6 sector:100 In this case the good agreement in the assessment is distorted by the very noisy
part of the estimated Ψdp which affects Φdp. Similar behaviour has been in some other sectors as
well, characterized by very low reflectivity near the range end and Ψdp, both time domain and spectral
polarimetric, that is noisy. It is suggested that an additional smoothing routine be used that deals
with such large scale (above 1km) noisy interferences, or revise the Ψdp estimation routines for possible

improvement. It is also mentioned that over the 9-13km segment the K̄δco

dp is equal or even larger than
the estimated Kdp itself.
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case:7 sector:240 In this case the spectral polarimetric Ψdp profile deteriorate when the reflectivity pro-
gressively falls below 20dBZ. In such a case, the assessment curves are more accurate for the problematic
region.
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case:8 sector:290 This is a case of very low reflectivity and both estimation and asessement show that
no Kdp estimation is possible. It is seen that the time domain Ψdp is severely affected, and also that the
noisy Zdr at 4km results in an artefact in δco.
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case:9 sector:0 This is a sector with intense rain cells near the radar. Therefore, the attenuation effects
become obvious even after 2km. Attenuation correction improves considerably the agreement in the
assessment, but still only up to 8km (the change in Kdp curves is particularly obvious). It is suggested
that this case be studied more as it will increase our understanding of the limitations of the attenuation
correction scheme. The high reflectivity is also combined by high values of differential reflectivity, so this
a case where Kdp assumes considerable values over an extended range and the total Φdp phase excursion
is one of the largest observed. After 12km, it is seen that the Ψdp profiles start to decrease which is not
expected to occur; when Kdp is close to zero, the Ψdp profiles sould remain on the same level. This is an
issue that has been observed in general, that is when the reflectivity is below 20dBZ the deterioration in
SNR affects the Ψdp profiles in this way.
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case:9 sector:100 This is a very interesting case in which although Z remains too low after 4km, the
same does not apply to Zdr. The estimated Ψdp curves appear to be non-monotonous, with two obvious
negative ‘bumps’ between 6 and 10km, and another one between 11 and 13km. Having no reason to
assume that they are due to a fault in the estimation processing, they have to be due to δco presence.
However, they also appear in the Φdp profiles, which means that they were not successfuly removed.
Since δco is expected to be positive, only positive ‘bumps’ may occur. The only logical conclusion is that
there are no negative ‘bumps’, but positive ‘bumps’ in the remaining range segments: 2-6km, 7.5-9km,
9-10.5km and 12-16km. This is an indication that the simple δco(Zdr) removal scheme is insufficient in
this case; perhaps a δco(Z,Zdr) relationship would be more appropriate. Due to incorrect Φdp profiles,
the estimated Kdp is also erroneous (around the negative values).
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case:9 sector:160 This case is similar to the previous one, in that the Ψdp profiles become faulty after
7km.
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case:10 sector:260 In this case, the attenuation correction did result in improvement for the assessment
curves (the difference in the Φdp values at end rangebin decreased from 4.5 to 3degrees) there is still
not complete agreement (about 30% relative error). However, this does not imply that the estimation
is erroneous. Probably this occurred for the assessment procedure, as it involves many assumptions. It
is mentioned again that the assessment curves should not be viewed as a reference, but rather as the
expected values. For this case, no safe conclusion can be drawn from the fact that they are not in close
agreement with the estimation; instead, it is more important to consider the overall shape of the curves
(where there is agreement) and the relative improvement that occured after the attenuation correction.
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case:10 sector:300 In this case the attenuation correction results in worse agreement for the assessment
in the region after 10km. Since the Ψdp time domain and spectral polarimetry profiles agree very well,
the fault lies rather within the assessment procedure; in particularly it is believed that in this case
overcompensation in the attenuation correction took place.
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Appendix B

The issue of Zdr

Although there is confidence in the correctness of measurement of Z and Zdr,
there is a problematic condition that affects Zdr: distortion lines appear in some
sectors as apparent on the PPI (Fig. B.1). At the moment, it is not known with
certainty the cause of this distortion, however the safety metallic fence at the
top of the Cabauw tower where IDRA is located is suspected. The problematic
sectors may change from PPI to PPI (Fig. B.2). According to Fig. B1-2, it
seems that the location of the problematic sectors is rather stable, and it is the
intensity of the distortion effect per sector that varies. In the case shown, there
is only 1 hour time difference between the two PPI; if PPI from different rain
events are compared the distortion patterns are slightly less similar. In any case,
no definite conclusion was reached for the behaviour of the distortion patterns.
In practice, the distorted sectors are unusable as far as Zdr is concerned. Until
further measures are being taken, it is suggested that the Zdr PPI be visually
inspected in order to identify the problematic sectors and disregard them. Since
they stand out at later processing stages (Fig. B.3), they can be easily detected
as in our processing the Z and Zdr range profiles are explicitly used. The rest
of the sectors are believed to be dependable regarding Zdr, although mitigation
of the distorting condition is necessary in order to remove any doubts.
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Figure B.1: A distortion line is apparent for the 3100 sector.
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Figure B.2: A distortion line is now apparent about 200, while the 3100 sector
seems to be normal.
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Figure B.3: The range profiles for the problematic sector of Fig. B.1. Zdr takes
abnormally large values while Z around 20dBZ. It is also noticed the obvious
disagreement between time domain (red curve) and spectral polarimetry Zdr

(blue curve) which should not occur.
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Appendix C

User guide for software and
programs used

There are four types of IDRA datafiles:

1. raw (spectral) datafiles of extension .bin

2. spectral polarimetric processed datafiles of extension .Par.bin

3. time domain processed datafiles of extension .PPPar.bin

4. noise datafiles of extension .bin and beginning with ‘N’ (used for noise
reduction and calibration)

The starting point is the raw and noise datafiles from which the processed
datafiles are derived by using the IDRA offline processing tool Fig. C.1. The
main options are:

• Raw Data Processing, which generates the .Par.bin from a given input
raw and noise datafile (spectral polarimetric processed)

• Pulse Pair Processing, which generates the .PPPar.bin from a given
input raw and noise datafile (time domain processed)

• Data Visualization, displays the radar observables as a PPI scan for a
given processed datafile

The parameters Clipping Level and Number of Doppler bins are typi-
cally set to 10dB and 512 respectively. It is noted that on the left pane the
temperature sensor values are shown along with additional information such as
the sweep time and transmitted power of the current datafile1. On the right
pane the individual PPI scans can be selected and saved as image files. A disk
storage catalogue of all IDRA datafiles is contained in the file ‘Disk content
IDRA.doc’ and the corresponding meteorological conditions in ‘Relevant Me-
teorological Events IDRA.doc’. Once an event is chosen, the above processing
steps have to take place for all raw datafiles corresponding to the desired time
interval. At this point, the written Matlab routines may be used to derive

1this metadata is contained in the header of the raw datafiles
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plots and results similar to the ones presented in this thesis. A detailed expla-
nation of the function of each routine is included in each file. The main ones are:

• attenuation correction.m, applies attenuation correction to Z and Zdr pro-
files

• generate dataset.m, generates a dataset of radar observables given a range
for the gamma dsd parameters

• get DSD.m, retrieves the dsd from a given Z, Zdr profile

• getZ.m, used to read from .Par.bin and .PPPar.bin files

• Kdp calc.m, performs Kdp estimation given a smoothed Φdp profile

• PhaseRangeProfile.m, performs weighting or averaging on the spectral Φdp

in order to derive a Φdp range profile

• Phi dp inspector.m, computes and plots the Φdp

• PlotPhase chris.m, is the first variation for Ψdp estimation

• PlotPhase jordi.m, is the second variation for Ψdp estimation

• smooth1.m, smoothes Φdp range profiles

• myunwrap.m applies a custom phase uwrapping for the time domain Ψdp

• synthetic profile.m, computes and plots the results according to the self-
consistency or dsd retrieval assessment approach

The FIM simulation toolbox resides in the folder ‘Scattering Simulation’ and
should be included in the Matlab path, as it is called by some of the above
routines. In the following, the sequence of commands used for the analysis of
a certain case are given with comments on the most important variables as an
example.

global sector case study

sector=270;

case study=3;

The sector variable defines the desired sector to be analyzed, in degrees. It
is noticed that since the angular resolution of IDRA is about 2.5o, when an
arbitrary selection is made it will be approximated to the closest possible actual
sector. This information can be viewed on the Matlab command window as
output. For this example, the desired sector of 270o is matched to the actual
sector of azimuth 271.1260. The case study variable defines a specific raw data
file and its associated processed data files as given in the Phi dp inspector.m

file. In this case, the value of 3 corresponds to R2008-8-1 2-0-0.bin.

k=8;close all;[Psi1 Psi2 Psi3 Z sp Zdr sp Ldr sp Z td Zdr td Ldr td r

block TitlePlot]=Phi dp inspector(sector,10000,1,2,’no’,case study,k);

This command performs the calculations for the computation of Ψdp from an
IDRA raw data file. The variable k denotes the number of near field rangebins
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that will be omitted from the plots for better readability since the radar ob-
servables exhibit irrelevent values at this range. In this case the range profiles
will be plotted from 8*30=240m. Psi1 and Psi2 are the spectral polarimetry
(as computed from the raw data file) and time domain Ψdp respectively, while
Psi3 is the spectral polarimetry Ψdp as computed from the processed data file.
The other output variables are the radar observables Z,Zdr and Ldr along with
some auxilliary ones. It is noticed that at this point the derived Ψdp are not
correctly offset as δco is not available yet.

k=8;m=10;N=64;dco coeff=[0.3719 2.8291];mode=3;

The variable m denotes the number of initial rangebins that will be disregarded
from the Ψdp offset calculations. Typically, it is expected to be the same as k.
However, an additional one is used as a degree of freedom for problematic cases.
dco coeff defines the parameters for the δco(Zdr) estimator, and mode the type
of smoothing filter to be applied with N its extent in rangebins.

[Phi1 Phi2 Phi1s Phi2s Kdp1 Kdp2 Kdpbias]= Kdp calc(Psi1,Psi2,Psi3,Z sp,Zdr sp,

Ldr sp,Z td,Zdr td,Ldr td,r,block,TitlePlot,k,m,N,dco coeff,mode);

This command performs the Kdp calculation and the correct offsetting of Ψdp

since δco is now available.

flag=0;

The variable flag is passed to the routines that are called two times (before and
after attenuation correction) to indicate the actual processing stage. The val-
ues of 0 and 1 respectively correspond to before and after attenuation correction.

z pre=10*log10(Z sp(1:end,block));

This is the measured Z range profile, from the spectral polarimetry approach
converted into the dB scale.
zdr pre=10*log10(Zdr sp(1:end,block));zdr pre(isnan(zdr pre))=0;

The same for Zdr.

mu=1;[Do dsd pre Nw dsd pre Z dsd pre Zdr dsd pre]=get DSD(z pre,zdr pre,mu,flag);

This command performs the dsd retrieval and outputs the gamma dsd param-
eters. As it seen, the value of µ has to be assumed.

Kdp coeff=[0.0005 0.9751 0.3908];

dco coeff=[0.3719 2.8291];

These are the self-consistency estimator relationships for Kdp and δco.

[Psidpdsd pre Phidpdsd pre Kdpdsd pre dcodsd pre Psidpsc pre Phidpsc pre

Kdpsc pre dcosc pre]= generate profile(Nw dsd pre,Do dsd pre,mu*ones(1,512),

Psi1 ,Phi1s,Kdp1,Kdp coeff,dco coeff,flag);

At this point the dsd is retrieved and the self-consistency relationships are set,
so this commands performs the computations for the assessment described in
Chapter 6.

att coeff=[0.25 0.02];

flag=1;

The attenuation parameters are defined and flag is set to indicate the attenu-
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ation correction stage.

[z post zdr post]=attenuation correction(z pre,zdr pre,Phi1s,att coeff);

This command performs the attenuation correction for the Z and Zdr profiles.

[Do dsd post Nw dsd post Z dsd post Zdr dsd post]=get DSD(z post,zdr post,mu,flag);

[Psidpdsd post Phidpdsd post Kdpdsd post dcodsd post Psidpsc post Phidpsc post

Kdpsc post dcosc post]= generate profile(Nw dsd post,Do dsd post,mu*ones(1,512),

Psi1,Phi1s,Kdp1,Kdp coeff,dco coeff,flag);

The same assessment routines are carried out, with attenuation correction in-
cluded as contrasted to before.

Figure C.1: The IDRA offline processing tool during visualization of the reflec-
tivity PPI of 1 Aug 2008, 01:00:17 UTC.
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