
Preliminary Design of Offshore Wind Turbine Support Structures:
The Importance of Proper Mode Shape Estimation

P. van der Male

Offshore Wind Group

Department of Offshore Engineering

Technical University of Delft

p.vandermale@tudelft.nl

Abstract

Offshore wind turbines are highly exposed to time-
varying loads. For support structures, estimation of
the fatigue damage during the lifetime of the struc-
ture is an essential design aspect. This already
applies for the preliminary design stage. In deter-
mining the dynamic amplification in the frequency
domain, modal analysis is a common tool. This
paper describes a main drawback of the applica-
tion of modal analysis in preliminary support struc-
ture design. Exact mode shapes are not available,
due to the concentrated inertia of the rotor nacelle
assembly (RNA). Generally the mode shapes of
a cantilever beam are applied, in which the RNA
mass is neglected. In analyzing three turbine types
(V90-3.0MW, SWT-3.6-107 and NREL 5-MW), an
overestimation of dynamic amplification due to sea
level loading is observed. Estimation of the struc-
tural response at the second natural frequency turns
out to be poor. Within the range of considered RNA
masses, the actual magnitude of the tower top mass
does affect the relative error of the modal analysis
much. Besides, by increasing the tower and sup-
port structure stiffness, the relative error diminishes.

Keywords: offshore wind, support structure, pre-
liminary design, fatigue, frequency domain.

1 Introduction

In preliminary support structure design for offshore
wind turbines, frequency domain analysis poten-
tially is a powerful tool to estimate lifetime fatigue
damage [7, 11]. Compared to time domain analysis,
computational effort can be saved and hence in-
creased opportunities for design optimization exist.

The commonly applied approach for frequency do-
main analysis in the preliminary support structure
design phase is modal analysis [1]. However, the

structural characteristics of a traditional offshore
wind support structure do not suit the modal anal-
ysis procedure very well, due to the presence of
the concentrated mass and dashpot at the free end
[8]. Moreover, since the system is damped non-
classically, the assumption that the structural motion
is dictated by classical normal modes is not valid [3].

This paper presents the results of a comparative
study between structural response determined with
modal analysis and the exact response determined
on the basis of direct Fourier transformation. The
objective is to establish to what extent the applica-
tion of estimated modes in modal analysis leads to
inaccurate response estimation. The independent
variables on which this study is based are the RNA,
the first natural frequency of the system and the
load positioning, either at the tower top, or at mean
sea level. For this purpose, a simple continuous 1D
wind turbine model is adopted, consisting of a pris-
matic cantilever beam with a concentrated mass at
the free end. This model typically represents a wind
turbine with monopile support structure. Structural
motion is restricted to the fore-aft modes and only
steady state response is considered. RNA char-
acteristics are varied by considering three turbine
types: V90-3.0MW, SWT-3.6-107 and NREL 5-MW.
The model is evaluated analytically.

This defined model is applicable for the preliminary
design phase. Its simplicity enables straightforward
comparison of the calculation methods. Whether
the calculated structural response coincides with the
actual response, to be obtained via measurements,
highly depends on the accuracy of the defined struc-
tural characteristics.

2 Model description

The support structure is modelled by means of a
prismatic cantilever beam of length L, as depicted
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in Figure 1. Within this one-dimensional model, the
x-axis coincides with the neutral axis of the unde-
formed beam. The lateral deflection w is a function
of the free variables x and time t. EI represents
the bending stiffness of the beam, ρ is the mate-
rial density and A the cross sectional area. Lin-
ear elasticity is assumed, which implies that EI is
constant, irrespective of the occurring deformation.
Structural damping, incorporated by cd, represents
damping effects due to internal material friction and
dissipation of energy at joints. Damping due to soil-
structure and fluid-structure interaction is generally
superposed to the structural damping [7].

Figure 1: Representation of support structure
model.

In order to take into account the dynamic effects
of the RNA, the concentrated mass M and vis-
cous damping C are added to the free end of the
cantilever beam. The numerical values of these pa-
rameters are determined on basis of an assumed
rigid rotor. Effects of rotor flexibility are already pro-
cessed in the tower top loading. The model can
be extended by considering the rotary inertia of the
RNA and the compressive force in the tower. This
comparative study in this paper however, is limited
to the disturbing effect of the RNA mass, which is
thought to affect the structural response most.

To investigate the response to either wind, wave
or ice loads, the external force P is imposed on the
model. The position of this force is determined by
the length L1, measured from the origin of the x-w
coordinate system.

2.1 Equation of motion

As the angle between the deformed neutral axis
and the x-axis is assumed to be close to zero, the
system of Figure 1 can be described on the basis
of geometrical linearity, which results in a single
equation of motion for a continuous system. Sim-
ilar systems have been described many times, for
instance in [9], where use is made of the Kronecker
Delta function to generate homogeneous boundary
conditions.

On this bases, the equation of motion as adopted
for this research becomes

EI
∂4w

∂x4
=− ρA∂

2w

∂t2
− cd

∂w

∂t

− δ(x− L−)
(
M
∂2w

∂t2
+ C

∂w

∂t

)
+ δ(x− L1)P,

for 0 ≤ x ≤ L.

(1)

With the application of the Kronecker Delta function
δ(x), the concentrated mass, mass moment of in-
ertia and dashpot are implemented at the free end
of the cantilever beam. The time dependent con-
centrated load function P is positioned by L1. By
setting L1 equal to L− the load is positioned at the
tower top.

2.2 Boundary conditions

At x = 0, the beam is clamped. The boundary con-
ditions at this position can be formulated as

w|x=0 =
∂w

∂x

∣∣∣∣
x=0

= 0. (2)

At the free end, two dynamic boundary conditions
are needed to solve the problem. As the rotor prop-
erties are already incorporated in equation (1), the
conditions can be defined as zero:

∂2w

∂x2

∣∣∣∣
x=L

=
∂3w

∂x3

∣∣∣∣
x=L

= 0. (3)

2.3 Initial conditions

As only the steady state response to load excitation
is analyzed, no initial conditions need to be formu-
lated.



3 Analysis procedures

3.1 Modal analysis

The existence of orthogonal modes forms the ba-
sis of modal analysis. Due to the presence of the
concentrated mass and dashpot at the free end,
not all operators in equation (1) are self-adjoint and
the derivation of orthogonal modes is a considerable
task [8]. Moreover, since the system is damped non-
classically, the assumption that the structural motion
is dictated by classical normal modes is not valid [2].

Nevertheless, while simply assuming that classical
normal modes do exist, exact mode shape expres-
sions can be derived, as was done in [12]. Yang and
Wu [15] derived exact eigensolutions by treating the
system in a compact spatial state space form. The
common practice in software with dynamic applica-
tions is even simpler. Mode shapes are estimated by
neglecting the disturbing concentrated components.
Considering the wind turbine support structure, this
comes down to the mode shapes of a cantilever
beam.

By defining the mode shape at each natural fre-
quency n as φn as a function of x, the solution of
(1) can be written as

w =

∞∑
n=1

φnqn, (4)

where qn is a function of time only. After substitution
of (4) into (1), the system of equations can be de-
coupled into n equations of motion on the basis of
modal orthogonality. This is done by multiplication
of equation (1) by φn and subsequent integration of
the expression over the length L. The equation of
motion per natural mode yields

Knqn = −Mn
d2qn
dt2
− Cn

dqn
dt

+ Pn, (5)

where Kn, Mn, Cn, and Pn are respectively the
generalized stiffness, generalized mass, general-
ized damping and generalized external force per
mode n:

Kn = EI

∫ L

0

φn
d4φn
dx4

dx, (6)

Mn =ρA

∫ L

0

φ2ndx+M φ2n
∣∣
x=L

, (7)

Cn = cd

∫ L

0

φ2ndx+ C φ2n
∣∣
x=L

, (8)

Pn = Pφn|x=L1
. (9)

As stated before, the general approach to solve
equation (5) is by setting the mode shape functions
equal to the shape functions of a prismatic can-
tilever beam, which satisfy the boundary conditions
(2) and (3). In order to analyze the resulting sys-
tem of equations in the frequency domain, integral
transformation can be applied.

It should be remembered that the decoupling of
(1) took place under the assumption that classi-
cal normal modes do exist, despite the presence
of nonclassical damping. Though incorrect, this is
a common assumption in the evaluation of model
analysis and is therefore also employed in this com-
parative study.

3.2 Direct Fourier transform

Instead of first decoupling equation (1) on the basis
of modal orthogonality and subsequently analyze
the decomposed system with the help of an integral
transformation, the system can also be transformed
instantly to an ordinary differential equation. Though
transient responses can be analyzed with the help
of Laplace transformation, for the current study use
is made of Fourier transformation. Doing so, the
analyses in this paper are restricted to the steady
state response.

In order to evaluate the structural response in the
frequency domain, Fourier transformation is applied
as follows:

f̃(ω) =

∫ ∞
−∞

f(t)e−iωtdt, (10)

where f(t) represent a function in the time domain
and f̃(ω) the transformed function in the domain
of the excitation frequency ω. i is

√
−1 and ω the

excitation frequency.

By applying the integral of equation (10), the par-
tial differential equation (1) can be transformed into
the following ordinary differential equation:



EI
d4w̃

dx4
=ρAω2w̃ − icdωw̃

+ δ(x− L−)
(
Mω2w̃ − iCωw̃

)
+ δ(x− L1)P̃ ,

for 0 ≤ x ≤ L.

(11)

4 Reference turbines

The comparative analysis is performed on the basis
of three reference turbines: V90-3.0 MW, SWT-
3.6-107 and NREL 5-MW. All turbines are oriented
horizontally upwind and contain three blades. From
[6, 10, 13], the rotor diameter, the operational rotor
speed and the total mass of the RNA are obtained.
The turbine properties are summed up in Table 1.

The turbines chosen represent three power classes
and therefore varying rotor diameters and RNA
masses.

4.1 Support structure design

4.1.1 Support structure design frequencies

The design of support structures is based on the
operational intervals of the turbine rotor. From these
intervals the so-called 1P and 3P ranges can be
derived. 1P refers to the passing frequency of each
blade separately and 3P to the passing frequency of
any blade from support structure perspective, given
that the turbine is three bladed. Table 2 presents
the 1P and 3P frequency ranges of the three con-
sidered turbines.

On the basis of the 1P and 3P frequency ranges,
three support structure design frequency ranges
can be distinguished, commonly called the soft-
soft, soft-stiff and stiff-stiff frequency range. Design
in the soft-soft range, meaning a first natural fre-
quency smaller than the 1P frequencies, generally
results in a highly flexible support structure, and
design problems with respect to acceptable defor-
mations are to be expected. Moreover, it is also in
this frequency range that sea waves possess the
largest amount of energy. Considering this all, it is
not very likely that support structures for offshore
wind turbines are designed in the soft-soft range.
The stiff-stiff range on the other hand, meaning a
first natural frequency larger than the 3P frequen-
cies, requires a very stiff foundation. In general,

monopile foundations cannot be applied to achieve
this requirement. An important premise of this study
is that the structural characteristics of the support
structure and turbine tower are more or less con-
stant over the length. Monopile designs aiming at
too high first natural frequencies require structural
dimensions that cannot be produced and installed
and are therefore left out of consideration.

The focus of this study is on the soft-stiff range. Pri-
marily, all designs are based on the upper bound fre-
quency of the 1P range. In order to analyze trends
in structural response, the frequency range up to the
upper bound of the 3P range is considered. Though
this range includes frequencies which are undesir-
able for support structure design, it helps to regard
the results in a broader perspective.

4.1.2 Estimation of support structure cross-
sectional dimensions

In order to compare the structural response de-
termined with modal analysis to the frequency do-
main response, structural properties of the support
structure need to be established. These properties,
which comprise the cross sectional area A and the
second moment of area I, can be estimated on the
basis of the first natural frequency and the RNA
mass. To do so, use is made of the modal analysis
procedure, i.e. the natural mode shape of a can-
tilever beam without top mass.

By setting the D/t ratio at 80 the following rela-
tion between the pile diameter and the first natural
frequency ω1 can be derived:

ω2
1 =

1

640

[
πED4

∫ L
0
φ1

d4φ1

dx4 dx
159

25600ρπD
2
∫ L
0
φ21dx+M φ21|x=L

]
,

(12)

in which D represents the outer diameter of the
monopile and tower, t the corresponding wall thick-
ness, and E Young’s modulus of both tower and
support structure material. [14] presents a value of
80 as initial estimate for the monopile foundation.
Though the tower may be produced with a higher
D/t ratio, the value of 80 is kept constant over the
entire length of the structure.

It should be noted that the dimensions derived rep-
resent equivalent values for a prismatic beam struc-
ture, as the actual dimensions will vary with height.
This simplification affects the modal analysis and
frequency domain analysis equally.



Table 1: Properties of the reference turbines.

Turbine type Rotor diameter Rotor speed RNA mass
[m] [rpm] [t]

V90-3.0MW 90 8.6-18.4 111
SWT-3.6-107 107 5-13 220
NREL 5-MW 126 6.9-12.1 350

Table 2: 1P and 3P frequency ranges.

Turbine type 1P range 3P range
[rad/s] [rad/s]

V90-3.0MW 0.90-1.93 2.70-5.78
SWT-3.6-107 0.52-1.36 1.57-4.08
NREL 5-MW 0.72-1.27 2.17-3.80

4.1.3 Structural length

Figure 2 shows the composition of the structural
length L. This length comprises:

– Tower length, which is build up from the rotor
radius and a clearance length.

– Supersea and subsea support structure
length, taking into account tidal variations, ex-
treme waves and platform clearance.

– Fixity length, representing the additional
length enabling the clamped boundary condi-
tions at x = 0.

The lengths chosen typically represent North Sea
conditions. In accordance with [5], the fixity length
is set at 3.5D.

4.2 Damping

4.2.1 Aerodynamic damping

Due to the motion of a structural element in fluctuat-
ing wind, the actual load the structure experiences
is affected. Generally, the load is reduced, or, stated
differently, the resistance to motion increases. This
phenomenon is called aerodynamic damping. The
aero-elastic properties of an operating turbine rotor
amplify the significance of this type of damping.

During the preliminary design phase, the turbine
rotor is designed separately, under the assumption
that the flexible rotor is rigidly fixed at the hub. From
this analysis follow the tower top interface forces,
which already are corected for aerodynamic damp-
ing resulting from rotor blade flexibility. Additional
aerodynamic damping follows from rigid body fore-
aft motion of the operating rotor. The concentrated
dashpot at the tower top (see Figure 1) represents
this additional damping.

Figure 2: Structural length composition.

Proper estimation of the amount of this type of
damping still remains a considerable task. Never-
theless, for constant speed turbines a closed form
formula is derived [4]. For soft and light support
structures, a damping ratio of 4.0% for aerodynamic
damping is reasonable to adopt, for stiff structures
this value can drop to 1.0% [7, 11]. This damping
ratio ξ1 expresses a percentage with respect to the
first mode critical damping ccr;1. As for the direct so-
lution in the frequency domain no mode shapes are
determined, this damping ratio is translated into an
actual damping value, with the help of equation (7)
and (8), by



C =
ξ1ccr;1
φ21|x=L

=
2ξ1M1ω1

φ21|x=L
. (13)

C is determined as 4.0% of ccr;1 for the lower bound
first natural frequency. If the support structure de-
sign is adjusted, the value of C remains unaffected.

4.2.2 Structural damping

Burton et al. [1] suggest a value between 0.5 and
1.0% for structural damping. Again, on this basis an
actual damping value can be determined by mak-
ing use of the generalized damping and generalized
mass:

cd =
2ξ1M1ω1∫ L
0
φ21dx

. (14)

For the current evaluations, the first mode damp-
ing ratio resulting from structural damping is set at
1.0%.

As for the derived aerodynamic damping it should
be noted that equation (13) and (14) make use of
inaccurate mode shapes. The damping values de-
rived are affected by this inaccuracy.

4.3 Load positioning

With respect to the location of the oscillating load,
two scenarios are distinguished. Firstly, the load is
positioned at the tower top (L1 = L). This scenario
represents fluctuating wind load on the rotor. Sec-
ondly, the load is positioned at mean sea level. Do-
ing so, the effect of waves or oscillating load effects
due to floating ice is simulated. Whereas the first
scenario mainly excites the first fore-aft mode of the
support structure, from the second mode significant
higher mode excitation can be expected.

5 Result comparison

On the basis of the structural characteristics of the
turbines, the dynamic amplification of the tower top
deflection due to an oscillating load at the tower top
is determined. The modal analysis is limited to the
response to the first two fore-aft modes. Figure 3
presents the results for varying excitation frequency.
The vertical axis gives the actual dynamic amplifi-
cation, determined by the ratio of the absolute value
of the dynamic deflection and the static deflection.

From Figure 3 it follows that the dynamic amplifi-
cation at the first natural frequency, predicted with
the modal analysis, equals the amplification deter-
mined with the help of direct Fourier transformation.
Also no visual difference between the resonance
frequencies themselves can be observed. The lat-
ter is obviously not the case for the second reso-
nance frequency, which is shown to be importantly
higher when Fourier transformation is applied. This
is caused by the poor prediction of the mode shape
of the second natural mode in the modal analysis.
In estimating the second mode shape, the turbine
rotor inertia cannot be neglected. Nevertheless, the
structural response at the second natural frequency
can be considered as negligibly small. This implies
that, considering the first two natural modes, the
structural response to tower top loading can be pre-
dicted reasonably well by the modal analysis with
the estimated mode shapes.

With respect to the three different turbines, no re-
markable differences can be identified. In all cases,
the first mode dynamic amplification factor is slightly
less than 10. Secondly, the second natural fre-
quency is underestimated by the modal analysis
approach in each case, whereas the structural re-
sponse is overestimated in all cases.

When the oscillating load is transferred to mean sea
level, resonance peaks are observed at the same
natural frequencies. This is shown in Figure 4.
Considering peak sizes, there is a remarkable dif-
ference. The modal analysis shows to overestimate
the dynamic amplification at both the first and the
second natural frequency, irrespective of the turbine
type. The structural response at the second natural
frequency cannot be neglected. As the frequency
content of wave loading is mainly concentrated in
the lower frequency range, up to 2.5 rad/s, it is un-
likely that the second natural mode is to be excited,
especially since the actual second natural frequency
is even higher than predicted with modal analysis.
The fact that wave spectra, like JONSWAP and Pier-
son Moskowitz, represent linearized wave loading
and do not account for breaking waves can, how-
ever, not be ignored.

Figure 5 shows the frequency responses due to sea
level loading over a frequency bandwidth of 0.50
rad/s in the vicinity of the first natural frequency.
These graphs clearly show the difference in dy-
namic amplification following from both methods.
For each turbine, modal analysis overestimates
the response compared to the results obtained by
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Figure 3: Dynamic amplification of the tower top deflection due to tower top loading, for the (a) V90-3.0MW,
(b) SWT-3.6-107 and (c) NREL 5-MW.
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Figure 4: Dynamic amplification of the tower top deflection due to sea level loading, for the (a) V90-3.0MW,
(b) SWT-3.6-107 and (c) NREL 5-MW.



0
1
2
3
4
5
6
7
8
9

10
11
12

1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20

D
yn
am

ic
 a
m
pl
ifi
ca
tio

n 
fa
ct
or
 [‐
]

 [rad/s]

V90‐3.0MW ‐ Frequency response to sea level loading

Fourier transform

Modal analysis

0
1
2
3
4
5
6
7
8
9

10
11
12

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60

D
yn
am

ic
 a
m
pl
ifi
ca
tio

n 
fa
ct
or
 [‐
]

 [rad/s]

SWT‐3.6‐107 ‐ Frequency response to sea level loading

Fourier transform

Modal analysis

(a) (b)

0
1
2
3
4
5
6
7
8
9

10
11
12

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

D
yn
am

ic
 a
m
pl
ifi
ca
tio

n 
fa
ct
or
 [‐
]

 [rad/s]

NREL 5‐MW ‐ Frequency response to sea level loading

Fourier transform

Modal analysis

(c)

Figure 5: Dynamic amplification at first natural frequency of the tower top deflection due to sea level loading,
for the (a) V90-3.0MW, (b) SWT-3.6-107 and (c) NREL 5-MW.

Fourier transformation. The latter approach is most
precise. Also a slight overestimation of the first nat-
ural frequency becomes visible. These differences
instantly follow from the error in the mode shape
prediction, by which both the effect of the concen-
trated load and the effective damping are affected.

Within the limits of the adopt support structure
model, the three turbines merely represent different
top masses. Besides, due to different rotor veloci-
ties, the 1P and 3P frequency ranges vary, and so
do the design values of the first natural frequency. In
general, the observed response characteristics for
each turbine are equivalent. The most remarkable
differences between the results of the analysis pro-
cedures are the dynamic amplification due to sea
level loading, which is overestimated in all cases
by the modal analysis, and the value of the second
natural frequency, which is underestimated by the
modal analysis in all cases.

By adjusting the support structure design, the first
natural frequency can be increased. Figure 6 shows
relative differences between the structural response
determined with the two analysis procedures for

varying first natural frequencies. Firstly, Figure 6(a)
presents the development of the maximum dynamic
amplification factor determined with modal analy-
sis relative to the factor determined with the help
of Fourier transformation. It is shown that for all
turbines the ratio between the amplification factors
due to tower top excitation is more or less 1.0, ir-
respective of the first natural frequency of the tur-
bine. When considering sea level excitation, the
ratio shows a strong decline for increasing first nat-
ural frequencies. This implies that the estimated first
natural mode becomes more correct if the stiffness
of tower and support structure is enhanced.

Figure 6(b) shows the development of the ratio of
the second natural frequencies for increasing first
natural frequency. Also here a strong convergence
to a ratio 1.0 can be observed, which implies that for
a higher first natural frequency, the estimated mode
shape becomes more correct. A remarkable aspect
of both Figure 6(a) and (b) is that the trendlines for
the different turbines are overlapping. All curves
follow approximately the same trajectory, which im-
plies that the differences in RNA mass, from 111 t
for the V90-turbine to 350 t for the NREL-turbine, do
not affect the relative difference between the analy-



0.98

1.00

1.02

1.04

1.06

1.08

1.10

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

DA
F M

od
al
 a
na

ly
si
s/
DA

F F
ou

rie
r t
ra
ns
fo
rm
[‐
]

1 [rad/s]

Relative difference dynamic amplification factors

V90‐3.0MW ‐ Sea level excitation
V90‐3.0MW ‐ Tower top excitation
SWT‐3.6‐107 ‐ Sea level excitation
SWT‐3.6‐107 ‐ Tower top excitation
NREL 5‐MW ‐ Sea level excitation
NREL 5‐MW ‐ Tower top excitation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0


2;
M
od

al
 a
na

ly
si
s/


2;
Fo
ur
ie
r t
ra
ns
fo
rm
[‐
]

1 [rad/s]

Relative difference second natural frequency

V90‐3.0MW

SWT‐3.6‐107

NREL 5‐0MW

(a) (b)

Figure 6: Relative differences between structural response determined by modal analysis and Fourier
transformation as a function of ω1 of the (a) dynamic amplification factor DAF at the first natural frequency,

and (b) second natural frequency ω2.

sis procedures much.

The first natural frequencies are varied by adjust-
ing the pile diameter D, in accordance with equa-
tion (12). In a number of cases, unrealistically
large monopile and tower diameters are required to
achieve the aimed for natural frequency. Within the
limits of this paper this is accepted, as the objective
is to explore differences between the two analysis
procedures. The overall validity of the fixity length
can also be doubted. Nevertheless, this approach
is adopted for all support structure designs, as its
effect is easily traceable and therefore limitedly dis-
turbing.

6 Conclusions

In preliminary support structure design for offshore
wind turbines, fatigue damage can be estimated in
the frequency domain. Doing so, commonly modal
analysis is applied to determine the structural re-
sponse. Due to the structural characteristics of a
simple wind turbine modal, especially the concen-
trated RNA mass at the tower top, modal analysis
cannot be applied straightforwardly. Use is made of
the mode shapes of a cantilever beam, without the
concentrated mass.

This paper assesses the effect of these assumed
mode shapes, by comparing the structural response
of a support structure model for preliminary design
determined with modal analysis and with Fourier
transformation. The latter analysis procedure can
cope with the concentrated RNA mass. The model
is kept simple intentionally: prismatic support struc-
ture and turbine tower is assumed and the foun-

dation stiffness is taken into account by an addi-
tional fixity length. The comparison is done for three
turbines, which principally represent different RNA
masses. In increasing order: V90-3.0MW, SWT-
3.6-107 and NREL 5-MW. With respect to loading
scenarios, tower top loading and sea level loading
are distinguished.

Considering tower top loading, modal analysis pre-
dicts the structural response at the first natural
frequency accurately, with a deviation of the dy-
namic amplification of less than 1%. In case of
sea level loading, modal analysis overestimates
the first mode structural response for relative soft
support structures, up to approximately 9% for the
SWT-3.6-107 and NREL 5-MW turbines. Regarding
the second natural mode, the natural frequency is
generally underestimated, and the dynamic ampli-
fication overestimated. The second mode shape
estimation can be considered as poor.

It is shown that by increasing the stiffness of tower
and support structure, the relative difference be-
tween the analysis procedures diminishes. This ap-
plies both for the dynamic amplification due to sea
level loading and the value of the second natural
frequency. Nevertheless, if for economic reasons a
relatively soft structure is designed, the more accu-
rate analysis based on Fourier transformation may
be worthwhile to consider for fatigue damage esti-
mation. From the overlapping curves in Figure 6 it
can be concluded that the difference in RNA mass
does not affect the relative difference between the
analysis procedures much. This implies that the
conclusions drawn on the basis of the observed re-
sponses are valid, irrespective of the RNA mass.
As the procedures should give the same result for



undamped systems with zero RNA mass, it can be
expected that for small tower top masses the ob-
served deviation establishes quickly.
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