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This paper investigates to what extent the relative orbital elements of two satellites flying 
in formation can be estimated making use of inter-satellite range measurements only. Since 
the determination of relative orbital elements does not require the orientation of the relative 
orbit with respect to absolute inertial space to be resolved, as would be the case for absolute 
orbital elements, the question arises whether relative range measurements alone can be 
sufficient to solve the problem of interest. Providing an answer to this question is both of 
academic and practical interest, especially for formation flying missions utilizing very small 
satellites that are limited in their capabilities. To this end, a linearized relative dynamics 
model is implemented using an iterative batch least-squares algorithm to estimate rectilinear 
relative positions and velocities, which are subsequently converted to relative orbital 
elements for a number of test cases. Furthermore, the observability of the system is analyzed 
to investigate which relative orbital elements are most observable.  

Nomenclature 
Roman Symbols 
A = state matrix 
a = semi-major axis 
ax, ay, az = perturbing accelerations in x-, y-, or z-direction 
Cov(·,·) = covariance 
c = cosine function 
du = mean argument of latitude difference 
e = relative eccentricity vector 
e = eccentricity 
ex, ey = eccentricity vector entries 
G = Gramian matrix 
H = partial derivatives matrix 
h = vector containing the modeled measurements 
i = relative inclination vector 
i = inclination 
ix, iy = inclination vector entries 
j = number of iterations 
M = mean anomaly 
m = number of observations 
n = orbital mean motion 
o = Hill frame unit vector 
P = covariance matrix 
r = relative position vector in Hill coordinates 
r = inter-satellite range 
s = sine function 
t = time 
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U = orthonormal matrix of a singular value decomposition 
u = mean argument of latitude 
V = eigenvector matrix 
v = relative velocity vector in Hill coordinates 
x = relative state vector in Hill coordinates 
x  = time derivative of the relative state vector in Hill coordinates 
, ,x y z  = relative radial, along-track and cross-track position in the Hill frame 

, ,x y z    = relative radial, along-track and cross-track velocity in the Hill frame 

, ,x y z    = relative radial, along-track and cross-track acceleration in the Hill frame 

z = measurement vector 
 
Greek symbols 
Γ = transformation matrix 
Δ = difference operator 
δ = orbital element difference operator 
δ = relative orbital elements vector 
θ = phase of the relative inclination vector 
κ = condition number of the singular value matrix Σ 
Λ = information matrix 
λ = mean longitude 
 = Earth’s gravitational constant 
ρ = inter-satellite pseudorange 
ρab = correlation between ‘a’ and ‘b’ 
Σ = singular value matrix 
Σ = singular value 
σ = (co-)variance 
(t,0) = state transition matrix from t = 0 to t 
φ = phase of the relative eccentricity vector 
Ω = right ascension of the ascending node 
ω = argument of perigee 
 
Subscripts 
0 = initial epoch 
d = deputy satellite 
nt = product n·t acting as cosine or sine function argument 
u = mean argument of latitude u acting as cosine or sine function argument 

, ,x y z  = relative radial, along-track and cross-track position in the Hill frame 

, ,x y z    = relative radial, along-track and cross-track velocity in the Hill frame 

 
Superscripts 
apr =  a priori 
lsq = least-squares solution 
ref = reference state 
* = adapted matrix 

I 
I. Introduction 

n the field of satellite formation flying, it is of key interest to reduce ground operations efforts as this may 
limit mission functionality due to visibility restrictions and may drive mission costs. Thus, the formation has to 

handle as many tasks as necessary autonomously. One task that lends itself well to this is the guidance, navigation 
and control of the formation 

As pointed out by D’Amico and Montenbruck1, formation flying satellites are able to autonomously control the 
formation geometry when the relative orbital elements of the satellites are known. Expression of the formation 
geometry using relative orbital elements namely allows the use of Gauss’ variational equations, adapted to near-
circular non-equatorial orbits, for formation control. As these equations provide the change of the relative orbital 
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elements due to an impulsive thrust in a certain direction and at a certain location, they are an excellent tool to solve 
the maneuver planning problem1.  

To increase the autonomy of the formation, the relative orbital elements can be obtained using onboard sensors 
that sense either the relative positions or the absolute positions (e.g. using GPS) of the satellites in the formation. 
Studies carried out by Markley2, Psiaki3, Yim et al.4, Doolittle et al.5, Woffinden and Geller6,7, and Kang et al.8 for 
autonomous (relative) orbit determination of multiple satellites have assumed that relative line-of-sight and possibly 
relative range measurements are available from onboard sensors. Chavez and Lovell9 limited the sensor information 
to only inter-satellite range measurements, but the cases they considered were limited to in-plane motions only. 

The objective of this work is to investigate to what extent the relative orbital elements of two satellites flying in 
formation in a low Earth orbit (LEO) can be estimated using a linearized relative dynamics model and inter-satellite 
range measurements only. Throughout the paper, the satellite denoted as the ‘chief’ is assumed to have a circular 
orbit. The other satellite will be denoted as the ‘deputy’. The satellites perform inter-satellite range measurements 
using a locally generated radiofrequency ranging signal. As the fundamental properties of the problem are to be 
analyzed, a most simple case is set up. The deputy satellite uses a single antenna to transmit the ranging signal to the 
chief satellite, which uses one receiver antenna to pick up the signal and determine the relative range. It is further 
assumed that the location of the antennas coincides with the center of mass of the satellites, which implies that 
relative line-of-sight measurements cannot be performed. It is assumed that the range measurements are perfect. The 
range measurements are treated together with a dynamic model of the satellites’ relative motion to estimate their 
relative orbit using an iterative batch least-squares algorithm. This estimator has been selected over sequential filters 
to eliminate process noise buildup for long observation arc lengths. Several test cases are investigated and their 
results are discussed. 

II. Orbital Dynamics Modeling 
Since the relative orbital elements of two co-orbiting satellites are to be determined, an appropriate coordinate 

frame in which the relative motion can be described is the Hill frame10. This frame is centered at the chief spacecraft 
with the radial unit vector ox aligned with the orbit radius vector, the normal unit vector oz aligned with the orbit 
angular momentum vector, and the tangential unit vector oy directed such that a right-handed Cartesian reference 
frame is formed. The relative motion of the deputy with respect to the chief is expressed through Hill coordinates as 
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T
    , , , , ,

T
x y z x y z x r v     (1) 

where the vectors r and v denote the relative positions  , ,
T

x y z  and velocities  , ,
T

x y z   , respectively. 

A. Clohessy-Wiltshire 
In case of a Keplerian two-body motion, a circular chief orbit, and spacecraft separations much smaller than the 

chief’s semi-major axis, the Clohessy-Wiltshire (CW) equations can be used to express the linearized relative 
spacecraft dynamics in the Hill frame11: 

 

2

2

2 3

2
x

y

z

x ny n x a

y nx a

z n z a

  
 

 

 
 



 (2) 

with , ,x y z    denoting relative accelerations, ai perturbing accelerations in x-, y-, or z-direction and n the orbital mean 

motion of the chief satellite, which is defined as 

 
3

n
a


  (3) 

with μ the Earth’s gravitational constant and a the semi-major axis. We are interested in the homogeneous solution 
to this set of equations and can therefore set the perturbing accelerations to zero, allowing us to rewrite Eq. (2) as 
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    t x Ax t  (4) 

or 

 2

2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3 0 0 0 2 0
0 0 0 2 0 0
0 0 0 0 0

x x
y y
z z
x n n
y n
z zn

    
    
    
       
             




 
 
 

x
y


  (5) 

Since the state matrix A is time invariant, the state transition matrix Φ(t,0), mapping the state at time t0 = 0 to the 
state at time t, is easily obtained using the matrix exponential11 

  

 

   

 

2 1
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0 0 0 0
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t e
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n
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n c s c
ns c

 
 

 
   

   
 
 
      

AΦ   (6) 

with cnt equal to cos(nt) and  snt equal to sin(nt). Now, the system’s evolution can be described as 

      ,0 0t tx Φ x . (7) 

B. Relative Orbital Elements 
Just as the description of a satellite’s absolute orbit using rectilinear positions and velocities often provides little 

insight into the geometry of the orbit, so do the CW equations often provide little insight into the geometry of the 
formation. Describing an absolute satellite orbit through six Kepler elements, of which five out of six are constant 
for Keplerian motion, allows a simple geometric representation. For this reason, representations have been 
developed that express the relative motion of two satellites in terms of relative orbital elements. Following Ref. 12, 
the relative motion of two closely spaced satellites is expressed in relative orbital elements as 

 

 

 sin

d

x xd x

y yd y

x d

y d

d

a a aa
e e e
e e e
i i i
i i
u u u





 



  
     

     
            

α 


i

. (8) 

Here, the subscript d refers to the deputy and the δ operator denotes orbital element difference. Furthermore, a is the 
semi-major axis, e is the eccentricity, i is the inclination, Ω is the right ascension of the ascending node, and u is the 
mean argument of latitude, which is equal to the sum of the argument of perigee and the mean anomaly (u = ω + M). 
Note that Ref. 12 uses the relative mean longitude δλ instead of δu. This representation is based on the concept of 
relative eccentricity and inclination vectors which are expressed as1 

 
cos cos

  and  
sin sin

e
     

     
  

e i 



. (9) 
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The amplitudes of the relative e/i-vectors are denoted by δe and δi respectively while the phases of the relative 
e/i-vectors are denoted by φ and θ. Note that the relative orbital elements of δα have dimensionless or angular 
quantities and that 

 

   

   

22

22

cos cos   ,    ,  atan

sin sin    ,      ,  atan

y
x d d x y

x

y
y d d x y

x

e
e e e e e e

e

i
e e e i i i

i


      




      



 
      


 

      
 


. (10) 

Using the mean argument of latitude u as independent variable and assuming small δα components (δα << 1), a 
first-order mapping between Hill coordinates and relative orbital elements can be performed that provides the 
dimensionless relative Cartesian position vector r/a as a function of the relative orbital elements δα 

 

 
   

 
0

cos

3 2 2 sin

sin

x a a e u

y a a u u e u

z a i u

  

  

 

  

    

 

 . (11) 

In the above set of equations, u0 is the mean argument of latitude at the initial time t0 and δλ is the relative mean 
longitude defined as 

    cosd du u i      . (12) 

Differentiating Eq. (11) with time provides the equations for the relative velocities. Doing this and rewriting 
gives 

 

1 0 0 0
3

2 2 0 cot 1
2
0 0 0 0
0 0 0 0
3

2 2 0 0 0
2
0 0 0 0

u u

u u
x

yu u

u u x

y
u u

u u

c s
a ax

du s c i a ey
a es cz

ns ncx a i
y a

n nc ns
z a u

nc ns







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        
          
   
          
 





i

 
   (13) 

with du = u - u0, cu = cos(u) and su = sin(u). 
In case δa = 0 and δu = -(Ωd - Ω)cos(i), the resulting relative motion is completely determined by the amplitude 

and phase of the relative e/i-vectors, cf. Fig. 1. If φ = θ, an intrinsically safe e/i-vector separation is achieved since 
the minimum cross-track separation between the two spacecraft is now min(aδe,aδi), which is never (0,0)13. 

 

 
Figure 1. Relative in-plane (left) and out-of-plane (right) motion of the deputy with respect to the chief with 
e/i-vector separation in the Hill frame, after Ref. 13. 
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III. Batch Least-Squares Algorithm 
An iterative batch leas-squares algorithm is used to estimate the relative state vector x of the two satellites at 

time t0. The estimator setup and outputs are described in the next subsections. 

A. Estimator Setup 
The observed inter-satellite range r at time t is modeled as the Euclidian norm of the relative position vector. The 

measured inter-satellite pseudorange ρ at time t is assumed to be perfect, giving 

            2 2 2t r t t x t y t z t     r . (14) 

The measurements are collected in the measurement vector z. Using a linearized relationship between the 
measurements and state vector x 

   z H x  (15) 

with 

 

 

 
ref

ref

ref



  

  





x x

z z h x

x x x

h x
H

x

 (16) 

where h(x) is the vector containing the modeled measurements as a function of the reference state xref, the sum of 
squares of the residual error gets minimized by 

   1T T
 x H H H z . (17) 

The matrix H contains the partial derivatives of the modeled observations with respect to the instantaneous state: 

    
 

 
 

 
 

, , , 0, 0, 0
t t t

t
x t y t z t

     
     

H  . (18) 

Since we are not interested in the instantaneous state but in the state at time t0, Eq. (15) has to be rewritten as 

   0,0t t t t tt       z H x H Φ x H x0

1

. (19) 

Here the measurement matrix Ht* contains the partial derivatives of the measurements at time t with respect to the 
state vector at epoch t0. If the measurements of m observation times 0 mt t   are used to determine the state at t0, the 

observation model is given by 

 

 
 

 

00

1 1

1 1

00

11
0

1 1

,0

,0

,0
m m

tt

t t

m t m t

tz
tz

z t
 






 

                               

HH Φ

H Φ H
z x

H Φ H

   0x . (20) 

However, inter-satellite range measurements are known to be insensitive to the orientation of the orbit plane14, 
leading to an ill-conditioned normal equations matrix (HTH). In such cases, a priori information can be used to make 
the normal equations matrix well conditioned again. Then, the least-squares solution is11 
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   0 0 0 0
lsq ref apr ref T   x x P Λ x x H z

0



 (21) 

with the information matrix Λ the inverse of the a priori covariance matrix Papr, given by 

 . (22) 

2

2

2

2

2

2

0 0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

apr
x

apr
y
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apr z

apr
x
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y
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z










 
 
 
 

 
 
 
 
 

P






The terms on the diagonal are the a priori variances of the state components. The matrix P in Eq. (21) is the 
covariance matrix of the least-squares estimate and is given by 

   1T   P Λ H H . (23) 

The term  in eq. (21) serves as a ‘constraint’ to prevent large deviations from the a priori estimate. 

When j iterations are performed to improve the estimator result, the above can be expressed as 

 0 0
apr refΛ x x 

   1
0 0 0 0
j j j apr j jT j     x x P Λ x x H z . (24) 

B. Transformation of Estimator Results 
As just described, the estimator determines the relative state at t0 in Hill coordinates and provides the 

corresponding covariance matrix P. However, we are interested in the relative state expressed in relative orbital 
elements since this provides more geometrical insight. The conversion to relative orbital elements is done as 
follows. 

Taking the inverse of the 6x6 matrix in Eq. (13) allows determination of the relative orbital elements, resulting in 

 

2
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2
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s
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n

s i
du c i du

n n n








 
 
 
 

    
    
    
       
    
          

 
 

  
 








. (25) 

Without loss of generality, for u = u0 = 0, the above simplifies to 
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2
4 0 0 0 0

2
3 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

0 0 1 0 0 0
2

0 1 cot 0 0

x

y

x

y

n

a a x
na e y

a e z
na i x

a i y
n za u

i
n








 
 
 
    
    
             
    
          
 
  
 

 Γx



. (26) 

Since n is assumed to be known (in theory, n (and thus a) can be determined from the period of the inter-satellite 
range variation, which is equal to the chief’s orbital period of 2π/n), five of the six equations above can be solved. If 
either δu or i is known, then also the last equation can be solved. Here, it is assumed that i is known from ground-
based observations. 

The rows of the transformation matrix Γ in Eq. (26) also give the partial derivatives of the relative orbital 
elements with respect to the state vector. This allows the determination of the covariance matrix of the relative 
orbital elements using 

  Cov , Ta a  α α ΓPΓ  (27) 

with the units of Cov(aδα,aδα) being m2. 

IV. Observability Analysis 
According to Ref. 15, an nth-order linear time-varying system is locally observable only if its Gramian G is full 

rank. For the current system, the Gramian is defined as 

 T G H H . (28) 

Note that this matrix is the inverse of the covariance matrix without a priori information. Although observability can 
now be readily determined by computing the rank of G, this does not provide much insight: The system is either 
observable or not. Therefore, a singular value decomposition (SVD) of G is performed to obtain more insight in the 
observability of the system. However, before this is done, the units of the entries in G need to be normalized. 
Denoting G as 

  (29) rr rv

vr vv


 
 

G G
G

G G







and multiplying the 3x3 submatrices Grv and Gvr by n and the submatrix Gvv by n2 results in a new Gramian, G*, 
with units m-2 

 . (30) rr rv
2

vr vv

n

n n
 
 
 

G G
G

G G

The singular value decomposition is performed as 

  (31) T G UΣV
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where Σ = diag(Σ1 , Σ2 , … , Σn) is a diagonal matrix of singular values and U and V are orthonormal matrices. The 
singular values in Σ in fact denote the gain of matrix G* in various directions and are arranged in order of decreasing 
gain. Furthermore, the columns of the matrix V are eigenvectors of the matrix G*TG*. As column vi corresponds to 
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singular value Σi, the eigenvector corresponding to the largest singular value is the direction with highest gain. In 
other words, eigenvector v1 is the most observable ‘direction’ of the system and the largest value in that vector is the 
most observable state component. A further measure of observability that the SVD provides is the condition number 
κ of Σ. The condition number is defined as the ratio of the largest and the smallest singular value in Σ. A small value 
for κ indicates a good accuracy in the estimate (well-conditioned) whilst a large value for κ indicates poor accuracy 
(ill-conditioned). Since a small κ also indicates that all state components have comparable singular values, all state 
components will be well observable and thus can be estimated with good accuracy. If κ is larger, some state 
components have become less observable and can therefore not be estimated with the same accuracy as before. 

Because an iterative batch LSQ algorithm is used, the observability of the system will change for each iteration 
since an updated reference state and an updated normal equations matrix are produced. The final result will therefore 
depend on the observability of the system in the last iteration and not of that in the first iteration. Thus, when the 
observability of the system is determined in the next section, this is done for the last iteration and not for the initial 
conditions.  

Note that an alternative method to solve the issues with the units in the Gramian is provided by Ref. 16. There, 
the observability of the system is determined using the covariance matrix. In that case, the smallest singular value 
resulting from the SVD is the best observable state component. Normalization of the covariance matrix is performed 
in Ref. 16 by congruently transforming it using the square root of the information matrix: 

  P ΛP Λ . (32) 

The singular values and eigenvectors are then calculated relative to the initial conditions of the system, provided that 
a priori information is used. This work however will use the Gramian to determine the observability of the system. 

V. Simulation Results 

A. Simulation setup 
The absolute orbit of the chief spacecraft is assumed to be perfectly Keplerian with the following values for the 

absolute orbital elements at time t0: 

 .  07028 km  ,  0  ,  97.99   ,  0   ,  0   ,  0a e i M         

Since we are interested in the observability of the system, the propagation of the orbits of the two satellites is 
performed using the CW equations. Thus, the dynamics in the estimator perfectly match the dynamics of the system 
under consideration. Out of a total of eight test cases considered for this study, the four most interesting ones are 
discussed here. These test cases are: 

 
1a) 2D relative ellipse, 
1b) 2D relative ellipse with drift in along-track direction, 
2a) 3D safe ellipse, 
2b) 3D safe ellipse with drift in along-track direction. 
 
Case 1a is a closed-form periodic motion with a period of 2π/n, which implies that the observability of the 

system does not increase for observation periods larger than one orbit. Case 1b however is not closed-form periodic, 
which should increase its observability over time. Contrary to case 1, the relative orbit in case 2 includes cross-track 
motion, which will affect the observability. Again due to the along-track drift, case 2b will be more observable than 
case 2a. The drift cases are all assumed to be due to a differential semi-major axis of 10 m. The true relative state 
components at t0 for all cases are presented in Table 1. One hundred range measurements are performed per orbit for 
all cases. The number of orbits simulated is between 0.1 and 10 with steps of 0.1 orbits. For all four cases, a priori 
information is assumed to be available and can either be of poor or good quality. In case the a priori information is 
of poor quality, the initial state estimate is +100 m and +100n m/s off on all axes and the a priori variances are 
1002 m2 for the positions and 1002n2 m2/s2 for the velocities. When good quality a priori information is available, the 
initial state estimate is +10 m and +10n m/s off on all axes and the a priori variances are 102 m2 for the positions and 
102n2 m2/s2 for the velocities. 
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

 

B. Case 1: 2D Relative Ellipse 
The relative orbits for this case are depicted in Fig. 2. The position of the chief is indicated by the red cross while 

the position of the deputy at time t0 is indicated by a green circle. First, the results for the case without drift will be 
discussed, followed by a discussion of the results for the case with along-track drift. 

1. 2D Relative Ellipse Without Drift (Case 1a) 
Due to the use of range measurements only, multiple ambiguous solutions exist for this problem. These are four 

elliptical orbits (aδix = ±1732.1 m and aδu = ±1000 m) and two pendulum orbits (aδex = ±1000 m), where a 
pendulum orbit is defined to be a relative orbit with cross-track motion but without along-track or radial motion. All 
these orbits will result in the same measurements and are thus equally valid solutions for the batch LSQ. Thus, if the 
initial state estimate is too far off the true state, the algorithm can converge to one of the ambiguous solutions, which 
is what happens in case only poor quality a priori information is available. Even the constraint imposed by 

 cannot prevent this. For that to have any effect, the a priori covariances must be unrealistically small 

compared to the a priori state estimation error. 

 0 0
apr jΛ x x

Between an observation arc length of 0.1 and 1 orbit, the error in the estimation of the relative orbit shows a 
somewhat erratic behavior. For these observation arc lengths, the Gramian is not always full rank and its condition 
number decreases from 1.1·1016 at the start to ~1·105 at one orbit with a few large deviations from the general trend 
(i.e., a large increase in the condition number resulting in a decrease in matrix rank). This explains the erratic 
behavior for the state estimate between 0.1 and 1 orbit. For observation arc lengths longer than one orbit, the 
estimator always converges to a pendulum orbit with aδu = -1000 m and aδix = 1732.1 m. The other relative orbital 
elements are estimated to be zero The Gramian is always full rank and its condition number grows from ~7500 at 
one orbit to ~4.4·105 at ten orbits, which implies that this problem is locally observable and well conditioned during 
that period but that the observability deteriorates for longer measurement arcs.  

 
 

 

  
      (a)                 (b) 

Figure 2. 2D relative ellipse without (a) and with (b) along-track drift. The position of the chief is indicated by 
the red cross while the position of the deputy at time t0 is indicated by a green circle. 

Table 1. Summary of test cases. 
Case Relative state elements at t0 for Hill coordinates and for relative orbital elements 

 
0x  

[m] 

0y  

[m] 

0z  

[m] 

0x  

[m/s] 

0y  

[m/s] 

0z  

[m/s] 

 aδa 

[m] 

aδex  

[m] 

aδey  

[m] 

aδix 

[m] 

aδiy 

[m] 

aδu 

[m] 

1a 1000 0 0 0 -2.143 0  0 -1000 0 0 0 0 

1b 1000 0 0 0 -2.149 0  -10 -1010 0 0 0 0 

0 -1000 0 0 2a 1000 0 0 0 -2.143 -1.072  0 -1000 

2b 1000 0 0 0 -2.149 -1.072  -10 -1010 0 -1000 0 0 
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x

 
For the case where good quality a priori information available, it can be argued that it is not unrealistic to assume 

that we also know the type of relative orbit (e.g., along-track, pendulum, ellipse) the satellites are in. Given that this 
case is a closed-form periodic solution of the CW equations, the relationships 0 02y n   and 0 02y x   

Table 2. Estimation errors and standard deviations for an observation arc length of 10 orbits for case 1a using 
good quality and ‘proper’ a priori information. 
  

0x  

[m] 

0y  

[m] 

0z  

[m] 

0x  

[mm/s] 

0y  

[mm/s] 

0z  

[mm/s] 

aδa 

[m]  

aδex  

[m] 

aδey  

[m] 

aδix 

[m] 

aδiy 

[m] 

aδu 

[m] 

Estimation 
error 

0.02 -0.06 -7.80 -0.03 -0.04 -11.48 ~0 -0.02 0.03 -10.71 7.80 1.09 

Standard 
deviation 

0.03 0.14 7.18 0.06 0.07 10.41 ~0 0.03 0.06 9.71 7.18 1.01 

n hold. 

Therefore,  and 0 02apr apry nx  0 02apr apry x  n  must hold as well. Thus, for this case, a ‘proper’ a priori relative state 

estimate requires that  and 0
apr 2200y n  0 50aprx n . With ‘proper’ a priori conditions in place, the only incorrect 

solution the estimator can converge to is the incorrect ambiguous solution on the same relative orbit, which will 
occur if the a priori estimate is closer to this solution than to the correct solution. 

When good quality and ‘proper’ a priori dynamics are applied, the estimator is able to improve upon the a priori 
estimate for all observation arc lengths and converges to the correct state estimate. However, this is completely due 
to the use of the information matrix Λ in the estimator since now the rank of the Gramian is almost always five, 
indicating a locally non-observable system. Since the relative motion repeats after one orbit, no new information 
regarding the dynamics is added, which results in similar estimation accuracies for all observation arcs longer than 
one orbit. As shown in Table 2, the estimation errors and standard deviations of the estimate stabilize at relatively 
large values for the out-of-plane components for observation arc lengths longer than one orbit. The reason for this is 
as follows. For an observation arc length of ten orbits, the singular values are 

 7 3 2 1 2
1 2 3 4 5 64.0 10 ,  1.3 10 ,  4.9 10 ,  6.6 10 ,  1.2 10 ,  5.0 10 14                   . 

The very small value for Σ6 indicates that the state represented by eigenvector v6 is the least observable state and 
is unobservable in practice. The corresponding eigenvector matrices for Hill coordinates (Vx) and for relative orbital 
elements (Vδα) are 

 

0.89 0.04 0.45 0.02 0.00
0.00 0.29 0.00 0.96 0.00
0.00 0.00 0.00 0.01 0.95
0.01 0.95 0.10 0.29 0.00
0.45 0.09 0.89 0.03 0.00

0.00 0.00 0.00 0.01 0.32

      
     
         
     

     
    
    

xV

0.00 1.00 0.00 0.00
0.01 0.00 1.00 0.00
0.32 0.00 0.00 1.00

    ,     
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.95 0.02 0.02 0.00



      
                   
      
      
            

αV

0.02 0.00 0.00
0.02 0.00 0.00

0.00 0.00 0.00
0.00 0.33 0.95
0.14 0.94 0.32

0.99 0.13 0.05

   
        
    
    
     
    



 


   

. 

It is known16 that large differences between singular values, such as between Σ1 and Σ 2, are an indication for the 
existence of a special linear combination of state components. When inspecting the eigenvectors of the SVD, we see 
that this is indeed the case: The most observable eigenvector in Hill coordinates is a clear hint at the well known 
relationship11 0 04 2a x y    n . Thus, it can be expected that the most observable state for the relative orbital 

elements is the relative semi-major axis. And indeed, Vδα shows that this is true. Furthermore, the results for the 
eigenvector matrices agree with intuition in that the most observable state components are the in-plane components 
while the least observable state components are the out-of-plane components. Due to the fact that there is no out-of-
plane motion and that the out-of-plane state components are the least observable states, it is not surprising that these 
states are poorly estimated. Figure 3 depicts how the eigenvectors of the SVD evolve over time for the relative 
orbital elements. Stabilization occurs after roughly one orbit, which agrees with the observation that no new 
information is added after that period. Note that Fig. 3 shows the absolute values of the elements of the eigenvectors. 

Note that for different initial relative states, the observability of the various state components changes. For 
instance, δey becomes more observable than δex and δix becomes more observable than δiy in case x0 = 0. In addition, 
the direction of all eigenvectors changes for different initial relative states, except for v1, which always stays the 
same. Thus, the linear combination between 0x  and  is always preserved while other seemingly present linear 0y
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3

combinations (like e.g. between  and  in eigenvectors v5 and v6) vanish. For this subcase, the differential semi-

major axis is always the most observable state component, followed by the other in-plane state components (δex, δey, 
and δu), which are in turn followed by the out-of-plane state components (δix and δiy). 

0z

1.4

0z

7 30 ,

 

2. 2D Ellipse With Drift in Along-Track Direction (Case 1b) 
Using a good quality and ‘proper’ a priori state estimate results in a correct estimate for the relative state for all 

observation arc lengths. For almost all observation arc lengths the Gramian is full rank and κ ≈ 1010, indicating an 
observable but not very well conditioned system. Due to the extra information caused by the along-track drift, the 
estimation for this case is slightly better than for case 1a, cf. Table 3. The singular values and the corresponding 
observability eigenvectors for an observation arc length of ten orbits are now 

 2 1 2
1 2 3 4 5 64.1 10 ,  1  4.6 10 ,  7.4 10 ,  1.0 10 ,  2.1 10                

0.02
0.96

0.00
0.

0.
0.00


 









0.00
0.0
1.00

0.00
0.00
0.0



 














 

 

0.89 0.03 0.45      0.00 1.00 0.01 0.00       0.02 0.00 0.00  
0.00 0.27 0.02 0
0.00 0.00 0.00
0.01 0.96 0.08 27
0.45 0.07 0.89 03

0.00 0.00 0.00 0

   
   
   
      

    
      

xV

0.00 0.01 1.00 0.01
0.00 0.00 0.01 1.00

    ,     
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
1.00 0.02 0.02 0.00



                
     
     
          

αV

0.02 0.00 0.00
0.00 0.00 0.00
0.00 0.00 1.00
0.14 0.99 0.00
0.99 0.14 0.00

   





    
    
    
    
    
        

. 

We again see similar relations between the different eigenvectors as in case 1a. In addition, just as for case 1a, when 
we choose initial conditions such that x0 is close to 0, δix is more observable than δiy and δey is more observable than 
δex. 

Since the along-track drift provides extra information, it is interesting to investigate whether after a certain 
observation arc length a correct estimate for the initial relative state can be obtained even with poor quality a priori 
information. Running the estimator as such leads to the following. For observation arc lengths less than one orbit, 
the behavior of the estimate is erratic and can be very far off from the correct solution, which is caused by a lack of 
observation data. For observation arc lengths of one up to roughly six orbits, the relative orbit is estimated to be a 
pendulum orbit. This estimate quite suddenly changes to the ambiguous solution on the correct elliptical relative 
orbit for observation arc lengths of roughly six orbits or more, cf. Fig. 4. Unfortunately, convergence to the incorrect 
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Figure 3. Evolution over time of the observability eigenvectors for the relative orbital elements for case 1a 
when using a good quality and ‘proper’ a priori state estimate. The values for the elements of the eigenvectors 
are shown in absolute values. 
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ambiguous initial relative state cannot be prevented in this setting since a rigid body rotation of the formation from 
the correct initial relative state to the incorrect ambiguous initial relative state cannot be distinguished using range 
measurements alone. It depends entirely on the initial estimate whether or not the solution converges to the 
ambiguous solution or not. Notice in Fig. 4 that the change in the estimation occurs when the estimate for the 
relative semi-major axis is close to its true magnitude (but with wrong sign). Once the estimator has converged to 
the correct relative orbit, the standard deviations in the solution are similar to those shown earlier for this case with 
the standard deviations of the out-of-plane state components much worse than those of the in-plane state 
components. 

The change in observability after six orbits is also very well visualized in the observability eigenvectors, cf. 
Fig. 5. Notice from Fig. 5 that the observability of the relative semi-major axis stays constant with time and that δu 
is the least observable state component up to roughly six orbits, which explains why the estimator converges to a 
pendulum orbit up to this time (and why it also did that for case 1a with poor a priori information). The change in 
observability of the various states is accompanied by a jump in the condition number of 2·105 to ~108. If we now 
increase the error in the a priori estimation by one order of magnitude, the estimator requires an observation arc 
length of roughly 8.2 orbits before it converges to the incorrect ambiguous initial relative state. When we change the 
sign of the estimation errors, the estimator converges to the correct initial relative state after roughly 3.3 orbits. 
Changing the differential semi-major axis to 100 m to increase the drift rate leads to an incorrect ambiguous initial 
relative state estimate after roughly 1.5 orbits. Increasing the number of observations per unit of time has no effect 
on the observation arc length needed to arrive at the correct ambiguous solution. Thus, the magnitude and sign of the 
initial estimation errors as well as the relative drift rate have a large impact on the observation arc length needed 
before the estimator converges to the correct solution. 

 

 
American Institute of Aeronautics and Astronautics 

 

 

13

 

Table 3. Estimation errors and standard deviations for an observation arc length of 10 orbits for case 1b using 
good quality and ‘proper’ a priori information. 
  

0x  0y  

[m] 

0z  

[m] 

0x  

[mm/s] 

0y  

[mm/s] 

0z  

[mm/s] 

aδa 

[m]  

aδex  aδey  

[m] [m] [m] 

aδix 

[m] 

aδiy 

[m] 

aδu 

[m] 

Estimation 
error 

0.01 -0.03 -6.65 -0.01 -0.03 -9.61 ~0 -0.01 0.01 -8.97 6.65 0.93 

Standard 
deviation 

0.03 0.12 7.04 0.05 0.06 9.73 ~0 0.03 0.04 9.08 7.04 0.99 
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Figure 4. Evolution over time of the errors in the estimation of the relative orbital elements for case 1b with 
poor quality a priori information. 
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Figure 5. Evolution over time of the observability eigenvectors for the relative orbital elements for case 1b
with poor quality a priori information. The elements of the eigenvectors are shown in absolute values. 

C. Case 2: 3D Safe Ellipse 
Compared to case 1, this case is more complex due to the existence of cross-track components in the relative 

motion. This has profound effects for both cases considered. The relative orbits for this case are depicted in Fig. 6. 

1. 3D Safe Ellipse Without Drift (Case 2a) 
In case of poor quality a priori information, the result obtained for this case is similar to the result obtained in 

case 1a: The rank of the Gramian is always six and the condition number for observation arcs longer than 1 orbit 
grows from ~7500 at ~1 orbit to 4.4·105 at 10 orbits, indicating a well-conditioned system for which the 
observability is very comparable to that of case 1a. For observation arcs longer than 1 orbit, the least observable 
state component is δu and the estimator always converges to a pendulum orbit. 

In case of a good quality and ‘proper’ a priori state estimate, the estimator converges to the correct relative orbit 
for all observation arc lengths. However, this case differs from case 1a in that now the out-of-plane state 
components do not necessarily have the largest errors and standard deviations, cf. Table 4, which is caused by the 
existence of out-of-plane relative motion. The singular values and corresponding observability eigenvectors for an 
observation arc of 10 orbits are: 
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0.89 0.04 0.41 0.02 0.18      0.00 1.00 0.00 0.00        0.02 0.00 0.00 

  7 3 2 1 0
1 2 3 4 5 63.3 10 ,  1.1 10 ,  4.9 10 ,  8.5 10 ,  8.6 10 ,  2.3 10                 

 
0.00 0.28 0.00 0.80 0.00
0.00 0.13 0.04 0.58 0.00
0.01 0.94 0.12 0.15 0.00
0.45 0.10 0.81 0.03 0.36

0.00 0.05 0.40 0.02 0.9

    
        
     

       
           

xV

0.53 0.00 0.98 0.00
0.80 0.00 0.00 0.95

    ,     
0.27 0.00 0.19 0.00
0.00 0.00 0.00 0.32

1 0.00 0.02 0.02 0.02



                  
       
      
             

αV

0.02 0.19 0.00
0.06 0.00 0.31
0.00 0.98 0.01
0.12 0.00 0.94

0.99 0.00 0.13

   






         
    
    
     
         

. 

Just as for case 1a, the rank of the Gramian is almost always five, indicating a locally non-observable system. It is 
noted that the chosen initial relative state for this case is a limit case for which δa, δex and δix can be estimated 
relatively well. For all other initial states where x0 ≠ 0, the standard deviation in the estimation of these state 
components is larger. However, the relative semi-major axis is always the most observable state component and its 
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estimation strongly improves with time. For an observation arc length of more than 1 orbit, the results for the other 
relative orbital elements either do not improve with time or improve much less fast.  
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 

 

Table 4. Estimation errors and standard deviations for an observation arc length of 10 orbits for case 2a using 
good quality and ‘proper’ a priori information. 
  

0x  

[m] 

0y  

[m] 

0z  

[m] 

0x  

[mm/s] 

0y  0z  

[mm/s] 

aδa 

[m]  

aδex  

[m] 

aδey  

[m] 

aδix 

[m] 

aδiy 

[m] 

aδu 

[m] [mm/s] 

Estimation 
error 

~0 0.66 -0.99 0.35 0.01 -0.02 ~0 ~0 -0.33 -0.02 0.99 0.14 

Standard 
deviation 

0.07 5.34 8.02 2.86 0.14 0.34 ~0 0.07 2.67 

 

0.32 8.02 1.13 

 

 
      (a)                (b) 

Figure 6. 3D safe ellipse without (a) and with (b) along-track drift. 

2. 3D Safe Ellipse With Drift in Along-Track Direction (Case 2b) 
When using good quality and ‘proper’ a priori information, the rank of the Gramian is always six and the 

condition number varies between 1·106 at ~1 orbit to 5.5·106 after 10 orbits, which indicates a well-conditioned 
system. In fact, the observability of this case is orders of magnitude better than case 1b. This is reflected in the result 
for the state estimation, cf. Table 6, which is much better than for case 1b. This result is also clearly expressed in the 
singular values, where the difference between Σ2 and Σ 6 is only three orders of magnitude, and the corresponding 
observability eigenvectors: 

  7 3 2 1 1
1 2 3 4 5 63.4 10 ,  1.2 10 ,  4.5 10 ,  8.4 10 ,  2.1 10 ,  6.2 10                 

 . 
0.00 0.26 0.02 0.82 0.51
0.00 0.10 0.03 0.54 0.83
0.01 0.96 0.08 0.16 0.22
0.45 0.06 0.79 0.03 0.01

0.00 0.04 0.46 0.02

      
        
      

       
           

xV

0.01 0.01 0.98 0.01
0.01 0.00 0.01 0.98

    ,     
0.00 0.00 0.22 0.00
0.41 0.00 0.00 0.21

0.01 0.89 0.02 0.02



                     
       
       
             

αV

0.02 0.00 0.22
0.05 0.21 0.00

0.00 0.01 0.98
0.15 0.96 0.01

0.01 0.99 0.16 0.01

     
          
     
     
           

It is noted that for this case, between ~1 and ~5.5 orbits, δix is more observable than δiy. For longer observation 
arc lengths, δiy is more observable than δix. This change in observability does not happen for case 1b with good 
quality and ‘proper’ a priori information. 

When now using poor quality a priori information, the result is an incorrect ambiguous relative initial state 
estimate after an observation arc length of 8.5 orbits or more, cf. Fig. 7. Between 1 and 8.5 orbits, the estimated 
relative orbit is a pendulum orbit, which is again caused by δu being the least observable state component up to then. 
Again, the observation arc length required before the estimator converges to the correct relative orbit depends on the 
drift rate and the error in the initial relative state estimate. Note that the change in observability now occurs later 
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than for case 1b and that the condition number now jumps from 6.5·105 to only 4·106, indicating a much better 
observable system after the change in observability than for case 1b. 
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Table 6. Estimation errors and standard deviations for an observation arc length of 10 orbits for case 2b using 
good quality and ‘proper’ a priori information. 
  

0x  

[m] 

0y  

[m] 

0z  

[m] 

0x  

[mm/s] 

0y  

[mm/s] 

0z  

[mm/s] 

aδa 

[m]  

aδex  

[m] 

aδey  

[m] 

aδix 

[m] 

aδiy 

[m] 

aδu 

[m] 

Estimation 
error 

-0.01 ~0 ~0 ~0 0.01 -0.03 ~0 0.01 ~0 -0.02 ~0 ~0 

Standard 
deviation 

0.08 0.14 0.19 0.06 0.18 0.38 ~0 0.08 0.06 0.36 0.19 0.09 
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Figure 7. Evolution over time of the errors in the estimation of the relative orbital elements for case 2b with 
poor quality a priori information. 

D. Note on the Estimation Accuracy of the Semi-Major Axis 
For all cases treated in this paper, it has been observed that the differential semi-major axis can always be 

estimated with almost perfect accuracy. As is shown in Refs. 17-19, this is not a coincidence since for near-circular 
orbits, the accuracy of the estimation of the relative semi-major axis is given by Refs. 17-19 as 

 2
2

4 1
2 4a x xy x yn n

2
y           (33) 

where xy   is the correlation between the state components x  and y  and is defined as 

 
 

   
Cov ,

Cov , Cov ,

xy x y
xy

x y

x y

x x y

  


 
  






 y
. (34) 

For the conditions 1xy    and 2y x n   , which are called the correlation and balance conditions 

respectively, the result for Eq. (33) is 0a  . As n = 1.08·10-3 rad/s, it is easy to verify with the results provided in 

subsections V.A and V.B that the balance condition indeed approximately holds for the cases shown. In addition, 
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although not shown in the paper, the correlation between x  and y  is also always very close to -1 for the cases 

considered and thus both conditions hold, leading to an almost perfect estimate for the differential semi-major axis. 
However, as is proven in Ref. 18, a perfect estimate for the relative semi-major axis is not achievable in practice. 
The reason for this is that in practice, a sequential estimator, e.g. an extended Kalman filter (EKF), will be used. 
According to Ref. 18, the earlier mentioned correlation and balance conditions are intrinsically incompatible for an 
EKF and can therefore never be achieved simultaneously. With current dynamic models and using carrier-phase 
differential GPS (CDGPS) to estimate relative positions, Ref. 18 reports that typical correlations observed in 
practice are ≈ -0.1, which is far off the desired value of -1. Since the estimator used in this analysis does not suffer 
from process noise and since in this analysis the dynamic model is perfect, the correlation and balance requirements 
can be met. 

VI. Conclusions & Future Work 
In this paper, an analysis has been performed on the observability of the relative orbital elements for two 

satellites flying in formation in a low Earth orbit. Information on the change in relative state with time was provided 
by inter-satellite range measurements only which were processed in a batch least-squares algorithm together with a 
perfect dynamic model in order to estimate the initial relative state. The observability of the various relative orbital 
elements was analyzed using a singular value decomposition of the Gramian matrix. Several test cases with 2D and 
3D relative elliptical motion and with and without drift in along-track direction were analyzed. 

For observation arc lengths less than one orbit, the observability of the system generally improves for increasing 
observation arc length due to the addition of new information on the system dynamics. To achieve a correct initial 
relative state estimate in this phase, it is vital to have good quality a priori information. In case of poor quality a 
priori information, the behavior of the solution is very erratic due to the continuously changing observability for the 
different relative orbital elements. 

No along-track drift and observation arc lengths larger than one orbit lead to the following. For good quality and 
‘proper’ a priori information (‘proper’ here means a correct initial estimate of the type of relative orbit), the actual 
system itself becomes locally unobservable. Yet, due to the use of the information matrix in the estimator, a solution 
can be obtained that is close to the true initial relative state. When only in-plane motion is present, the estimation of 
the out-of-plane states is relatively poor due to them being the least observable states and due to the in-plane motion 
only. When out-of-plane motion is also present, the out-of-plane states are still the least observable states, but they 
are not necessarily the states for which the estimation errors and standard deviations are the largest. Starting with 
poor quality a priori information leads to a locally observable and well-conditioned system with a condition number 
on the order of 103 to 105, but the estimated relative orbit is a pendulum orbit (a relative orbit without a differential 
semi-major axis but with a relative inclination) due to the relative mean argument of latitude δu being the least 
observable state component. Surprisingly, there is no apparent difference in observability between the in-plane and 
out-of-plane case here. 

The inclusion of along-track drift has profound implications for observation arc lengths longer than one orbit. In 
case of good quality and ‘proper’ a priori information, the system is now locally observable. For in-plane motion 
only however, the condition number of the system is rather high (order 1010), leading to an only slightly better state 
estimate than in case of a closed-form periodic relative orbit. When out-of-plane motion is added, the drift leads to a 
significantly better estimate than for the no drift case, which is caused by the system now having a much lower 
condition number (order 106). Especially the estimation of the out-of-plane states improves significantly here. For 
the case of poor quality a priori information, the extra information resulting from the along-track drift allows the 
estimator to converge to the correct relative orbit after sufficient information has been gathered, which is not 
possible when drift is absent. However, due to ambiguity, convergence to the correct initial relative state cannot be 
guaranteed. The point in time where the change in observability occurs depends on the type of relative orbit (2D or 
3D), the magnitude and sign of the initial estimate and on the drift rate. The number of observations has no influence 
on this. For the 3D case, the observability of the system after the change in observability, which then becomes of 
order 106, is better than for the 2D case, which becomes of order 108. 

The observability of the system in the cases with drift is of practical interest since in reality a drift-free relative 
motion is impossible to achieve. Thus, provided that the satellites are allowed to drift for a sufficiently long amount 
of time, the system will always be observable, even though it can take a long time before the estimator converges to 
the correct relative orbit. However, as already stated, in case of poor quality a priori information the estimator can 
converge to an incorrect solution due to ambiguity. If no other means are available, this ambiguity can only be 
resolved using a small maneuver in a known direction. Once the ambiguity has been resolved, the satellites can be 
guided and controlled into a non-drifting relative state which, due to the information gained in the drifting state, can 
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be estimated with good accuracy. The relative semi-major axis is always the most observable state, followed by the 
relative eccentricity vector components. The relative mean argument of latitude and the relative inclination vector 
components are always the least observable states. 

Future work on this topic will concentrate on the incorporation of the J2 perturbation into the dynamic model, 
which is expected to increase the observability of the system in case of absolute orbit propagation using more 
realistic gravity fields. Furthermore, a comparison will be made between the observability of the relative orbital 
elements obtainable with noisy inter-satellite range measurements only and with a combination of noisy inter-
satellite range measurements and noisy relative line-of-sight measurements. The latter measurements will be 
constructed from inter-satellite range measurements obtained with multiple antennas on the same satellite. This 
comparison will allow the identification of those cases where the combination of inter-satellite range, range 
measurement error, and antenna baseline is such that the additional noisy relative line-of-sight measurements do not 
substantially increase the observability of the system. This is of both practical and academic interest since for those 
cases, a relatively simple system with inter-satellite range measurements only would perform just as well as a more 
complex system with added relative line-of-sight measurements. 

References 
1D’Amico, S. and Montenbruck, O., “Proximity Operations of Formation-Flying Spacecraft Using an Eccentricity/Inclination 

Vector Separation,” Journal of Guidance, Control & Dynamics, Vol. 29, No. 3, 2006, pp. 554-563. 
2Markley, F., “Autonomous Navigation Using Landmark and Inter-Satellite Data,” Proceedings of the AIAA/AAS 

Astrodynamics Conference, Seattle, WA, USA, Aug. 20-22, 1984. 
3Psiaki, M., “Autonomous Orbit Determination for Two Spacecraft from Relative Position Measurements,” Journal of 

Guidance, Control & Dynamics, Vol. 22, No. 2, 1999, pp. 305-312. 
4Yim, J., Crassidis, J., Junkins, J., “Autonomous orbit determination of two spacecraft system using relative line of sight 

vector measurements,” Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Maui, HI, USA, AAS paper 04-257, 2004. 
5Doolittle, C., Chavez, F., Lovell, T., “Relative Orbit Element Estimation for Satellite Navigation,” Proceedings of AIAA 

Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, Aug. 15-18, 2005. 
6Woffinden, D. and Geller, D., “Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital 

Rendezvous,” Journal of Guidance, Control & Dynamics, Vol. 30, No. 5, 2007, pp. 1455–1469. 
7Woffinden, D. and Geller, D., “Observability Criteria for Angles-Only Navigation,” IEEE Trans. On Aerosp. And Elec. 

Syst., Vol. 45, No. 3, 2009, pp.1194-1208. 
8Kang, W., Ross, M., Pham, K., Gong, Q., “Autonomous Observability of Networked Multisatellite Systems,” Journal of 

Guidance, Control & Dynamics, Vol. 32, No. 3, 2009, pp. 869-877. 
9Chavez, F. and Lovell, T., “Relative-Orbit Element Estimation for Satellite Navigation and Guidance,” Proceedings of the 

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, RI, USA, Aug. 16-19, 2004. 
10Hill, G.W., “Researches in the Lunar Theory,” American journal of Mathematics, Vol. 1, 1878, pp. 5-26. 
11Montenbruck, O. and Gill, E., “Satellite Orbits – Models, Methods, Applications,” 1st ed., 3rd printing, Springer-Verlag 

Berlin Heidelberg, 2005, ISBN 978-3-540-67280-7. 
12D’Amico, S., De Florio, S., Larsson, R., Nylund, M., “Autonomous formation keeping and reconfiguration for remote 

sensing spacecraft,” Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, Sept. 28 – 
Oct. 2, 2009. 

13Gill, E., D’Amico, S., Montenbruck, O., “Autonomous Formation Flying fort he PRISMA Mission,” Journal of Guidance, 
Control & Dynamics, Vol. 44, No. 3, 2007, pp. 671-681. 

14Cai, Z., Zhao, D., Chen, J., Jiao, W., “Research on Autonomous Orbit Determination of Navigation Satellite Based on 
Crosslink Range and Orientation Parameters Constraining,” Journal of Geo-Spatial Information Science, Vol. 9, No. 1, March 
2006, pp.18-23. 

15Huxel, P., “Navigation Algorithms and Observability Analysis for Formation Flying Missions,” Ph.D. dissertation, 
University of Texas at Austin, Austin, TX, USA, 2006. 

16Ham, F. and Brown, R., “Observability, Eigenvalues, and Kalman Filtering,” IEEE Trans. On Aerosp. And Elec. Syst., Vol. 
AES-19, No. 2, March 1983, pp. 269-273. 

17Carpenter, J. and Alfried, K., “Navigation Accuracy Guidelines for Orbital Formation Flying,” Journal of the Astronautical 
Sciences, Vol. 53, No. 2, 2005, pp. 207-219. 

18How, J.P., Alfried, K.T., Breger, L., Mitchell, M., “Semimajor Axis Estimation Strategies,” Proceedings of the 2nd 
International Symposium on Formation Flying Missions and Technologies, Washington DC, USA, Sept. 14-16, 2004. 

19Lane, C. and Axelrad, P., “Relative Semimajor Axis Uncertainty in High Earth Orbits,” Journal of Guidance, Control, and 
Dynamics, Vol. 30, No. 6, 2007, pp. 1827-1830. 

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

30
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
78

85
 


