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Abstract

Study objectives: Conventional sleep scoring is based on the scoring criteria of the American As-
sociation of Sleep Medicine (AASM) but may not be suited to describe sleep in critically ill children
admitted to the Pediatric Intensive Care Unit (PICU). In this study, an anomaly detection model using
Gaussian Models trained on sleep stages in data from non-critically ill children is developed to assess if
polysomnography(PSG)-derived electroencephalography (EEG) data from critically ill children can be
categorized into sleep stages based on these AASM scoring criteria.

Methods: A retrospective study at Erasmus MC Sophia Children’s Hospital, using PSG recordings
obtained in non-critically ill children between 2017 and 2021 and in critically ill children between 2020
and 2022.
Gaussian Models were individually trained for each sleep stage using data from non-critically ill children.
Anomaly detection was carried out by computing the Mahalanobis Distances and assigning datapoints
to specific sleep stages or categorizing them as anomalous. Errors were quantified by calculating the
ratio of anomalous epochs to the total number of epochs. The trained Gaussian Models were applied to
distinct sleep stages in the data from non-critically ill children. Subsequently, the models were applied
to data from critically ill children to determine the categorization of their epochs. This was also analyzed
over time and involved comparisons related to medication, mechanical ventilation, and the severity of
illness assessed by the PELOD-2 score.

Results: In non-critically ill children the models obtained validation errors aligning with the margin
error of the training set. The models could not fully differentiate the distinct sleep stages. In critically ill
children, the majority of epochs were classified into multiple sleep stages. High error rates were evident
for sleep stages N1, R, and N. Some patients exhibited elevated error rates specifically for sleep stage
N1. REM sleep was reduced, consistent with findings from previous studies. In contrast, N3 sleep did
not show a reduction. When compared to the sleep stage labels assigned by neurophysiologists, the
model classified epochs into multiple sleep stages, while neurophysiologists frequently used the label
N. A higher PELOD-2 score did not consistently correlate with an increased occurrence of anomalous
classifications in the epochs of these patients to those with lower PELOD-2 scores.

Discussion: Overlap of sleep stages was observed in non-critically ill children. Epochs from criti-
cally ill children were classified into multiple sleep stages without clear associations in time or severity
of illness. Building upon the established anomaly detection framework is recommended by employing
more advanced anomaly detection methods using an informative feature selection. This study marks
an initial step, indicating that applying the AASM scoring criteria may not be suitable for characterizing
sleep in critically ill children.
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2
Introduction

Critically ill children admitted to the Pediatric Intensive Care Unit (PICU) experience sleep disruptions,
resulting from underlying illness and exposure to the PICU environment [1–7]. Additionally, the admin-
istration of centrally-acting medication can be disruptive to their normal sleep-wake rhythm [7]. It has
been suggested that poor quality of sleep may contribute to delirium, compromised immune function,
and prolonged mechanical ventilation in critically ill patients [6]. In addition to the crucial role of sleep
in the recovery of critically ill individuals, the restorative benefits of sleep are fundamental for the neu-
rocognitive development of children [7]. Bedside and real-time sleep monitoring at the PICU would
allow for individually targeted interventions to improve the sleep of critically ill children. However, sleep
in critically ill children may differ from healthy sleep presenting a challenge to accurately classify sleep
in this population.

Conventionally, sleep is visually assessed using information derived from electroencephalography
(EEG), electrooculography (EOG), and electromyography (EMG) as part of polysomnography (PSG)
[7–10]. Sleep in healthy people can be distinguished into rapid eye movement (REM) sleep and non-
rapid eye movement (NREM) sleep. NREM is subdivided into stages N1 (NREM 1), N2 (NREM 2), and
N3 (NREM 3), where N1 represents the lightest sleep and N3 the deepest sleep [11]. NREM serves
a restorative and rest-facilitating role, while REM is considered crucial for brain development and the
consolidation of memory [2, 11, 12]. In normal sleep, REM sleep and NREM sleep alternate cyclically.

A normal awake EEG demonstrates continuity, symmetry, and an anterior-posterior gradient. The
anterior (frontal) side of the brain exhibits faster, lower amplitude frequencies and the posterior (oc-
cipital) side shows slower, higher amplitude frequencies. During a resting state with closed eyes, a
posterior dominant rhythm (PDR) is commonly observed. Normal EEG is variable and shows reactivity
to external stimuli. Based on the tracings, the state of wakefulness, drowsiness, or sleep stages can
be determined. Examples of the EEG characteristics of the wakefulness and the sleep stages can be
seen in Figure 2.1 and in the figures included in the Appendix. Drowsiness is seen as diffuse slowing
and attenuation of the EEG with slow, roving eye movements. In the transition from drowsiness to N1
sleep, the PDR disappears, and positive sharp transients of sleep (POSTS) together with vertex waves
can be seen. The N2 stage is characterized by sleep spindles and K-complexes, where sleep spin-
dles are small symmetric bursts of higher-frequency activity and K-complexes are very high amplitude,
symmetric waveforms. The K-complexes are the largest voltage events on a normal EEG that typically
occur during auditory stimuli while asleep [11, 13]. The EEG during NREM typically transitions from
alpha waves associated with wakefulness to shorter frequency theta waves associated with sleep [11].
In stage N3, an individual is least responsive to external stimuli indicating a high arousal threshold. The
N3 sleep stage is referred to as slow wave sleep (SWS) because it is marked by diffuse and synchro-
nized, high-amplitude, and low-frequency delta activity [11, 13]. The frequency of rapid eye movement
(REM), the characteristic of REM sleep, increases overnight. This is observed as sharply contoured
opposing waveforms arising in the frontal regions. REM sleep exhibits low-voltage and high-frequency
EEG [11, 13].
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Figure 2.1: EEG signal for the different sleep stages [13–15]

Sleep stages are manually assigned to 30-second epochs of PSG recordings according to the scor-
ing criteria of the American Association of Sleep Medicine (AASM) [8–10, 16]. Conventional sleep
staging is based on the described typical EEG characteristics. Since atypical EEG findings are fre-
quently present in critically ill patients, the use of conventional sleep stages in ICU patients has limited
value [6, 7, 17–19]. Besides, the AASM scoring criteria are not validated for use in critical illness [6,
16]. Moreover, age-related development changes affect both PSG and EEG characteristics [13, 16].

Since the execution of PSG measurements and the manual assignment of sleep stages to the PSG
recordings are done in retrospect and are burdensome, expensive, and time-consuming, many have
sought to develop automatic sleep scoring methods [4–6, 8–10, 16, 20]. Little research to characterize
EEG patterns in critically ill children has been performed and the development of accurate automatic
sleep scoring tailored for this population remains a challenge. Classification models that have been de-
veloped and trained on data from non-critically ill children have shown poor performances when applied
to data from critically ill children admitted to the PICU. This raises the question of whether the sleep
of critically ill children is comparable to sleep in non-critically ill children [21]. Sleep-scoring algorithms
developed for classifying the sleep of adults in the Intensive Care Unit (ICU) or neonates in the Neona-
tal Intensive Care Unit (NICU) are typically assessed by comparing their performance to conventional
sleep staging. This evaluation often includes an assessment of the inter- and intra-observer variability
associated with manual scoring [19, 22–27]. To the best of our knowledge, no studies have reassessed
the appropriateness of employing conventional sleep staging based on the AASM scoring criteria for
characterizing sleep in critically ill children within a PICU setting. There is a possibility that using alter-
native scoring criteria could provide a more suitable description of sleep in critically ill children admitted
to the PICU.

To explore EEG patterns of sleep in critically ill children compared to non-critically ill children, we
propose an alternative approach based on anomaly detection. Anomaly detection methods prove to
be valuable in cases where only one class is well-represented and the other class is absent, poorly
sampled, or not well-defined [28] [29]. These methods can effectively identify observations, events,
or patterns that deviate from the rest of the data. Anomaly detection methods can operate with prior
knowledge of a single class, allowing the determination of whether novel data can be assigned to a
specific single class or not [29–33]. Importantly, these methods do not depend on uniform class sizes
and abundant instances of anomalous data, making them highly flexible to each patient case [20, 30–
34]. Considering that the sleep of non-critically ill children can be systematically categorized using the
AASM scoring criteria, while the sleep of critically ill children is diverse and challenging to characterize,
employing anomaly detection with non-critically ill children’s data as the target class provides a tailored
approach to explore anomalies in sleep patterns of critically ill children compared to the well-defined
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non-critically ill class.

The primary objective of this study was to develop an anomaly detection model to assess whether
PSG-derived EEG data from critically ill children could be categorized into sleep stages based on the
AASM scoring criteria. The sleep stages of PSG-derived EEG data from non-critically ill children were
treated as a single class and it was evaluated if the PSG-derived EEG data from critically ill children
could be assigned to this specific class. A secondary aim was to explore the effectiveness of the
anomaly detection model in identifying sleep stages as anomalous, considering each sleep stage as
a single class. Additionally, the classification of PSG-derived EEG data from critically ill children into
sleep stages over time was evaluated.



3
Data collection and preparation

3.1. Study population
For this master thesis, two independent datasets were used. The full methodology is described in Twist
(2023) and Cramer (2023) [21, 35]. In short, the first dataset contained PSG recordings of non-critically
ill children who underwent a PSG between 2017 and 2022 at the PICU of the Erasmus MC Sophia Chil-
dren’s Hospital, Rotterdam, the Netherlands, to diagnose or follow up on conditions such as obstructive
sleep apnea (OSA) or neuromuscular disease. Considering the EEG changes during maturation, eight
age categories were defined: 0-2 months, 2-6 months, 6-12 months, 1-3 years, 3-5 years, 5-9 years,
9-13 years, 13-18 years [13, 16, 21]. For patients born preterm (<37 weeks gestational age), age was
corrected until the postnatal age of 2 years. Fifteen patients were included in each age category, re-
sulting in a total of 120 PSG recordings [4, 5]. Due to the retrospective study design, informed consent
was waived by the Medical Research Ethics Committee (MREC) of the Erasmus MC (MEC-2021-0121)
[4, 5, 21]. The PSG data obtained from the recordings of non-critically ill children are further referred
to as ’PSG data’.

The second dataset contained PSG recordings prospectively obtained from critically ill children ad-
mitted to the PICU of Erasmus MC Sophia Children’s Hospital between 2020 and 2022. These patients
were included in either a study investigating the circadian rhythm in children admitted to the PICU (Crit-
ical Clock: Netherlands Trial Register (NTR): NL8533) or a trial investigating the effect of continuous
nutrition versus intermittent nutrition with an overnight fasting period in PICU patients (ContInNuPIC
trial: NTR NL7877). Again, the full methodology of these studies is described by Cramer et al., Twist
et al., and Veldscholte et al. [21, 35–37]. In summary, patients term born up to 18 years of age with an
expected PICU stay of more than 48 hours were eligible for inclusion in these studies [5, 21]. Exclu-
sion criteria for the ContInNuPIC trial mainly concerned contra-indications for prolonged fasting. For
the Critical Clock study, the exclusion criteria were formulated to exclude pre-existing disruptions in
circadian rhythm and to ensure the feasibility of blood draws for measuring melatonin and cortisol. The
exclusion criteria were premature newborns, diagnosis of a syndrome associated with mental retar-
dation, hydrocortisone use in the three days before admission, melatonin use in the 24 hours before
admission, weight below two kilograms, and expected not to receive an arterial line during the study
period. Both studies also excluded patients transferred from another ICU, patients previously included
in the study, and patients who participated in trials with conflicting study procedures. Both studies
were approved by review committees and MREC provided permission for the use of the patient data in
this study (MEC-2021-0121) [5]. All participants and/or their parents or legal guardians gave informed
consent to participate in the trials. Given the potential discomfort of the PSG measurement, separate
consent was asked on the day of the measurement [5, 21]. The PSG data obtained from the recordings
of critically ill children admitted to the PICU are further referred to as ’PICU data’. The patient charac-
teristics including age, gender, PSG or PICU indication, medical history, and sedative or analgesic
medication that was administered during the PSG measurement, were collected for all patients of both
datasets [4, 5]. For the analysis of the PICU dataset, a Pediatric Logistic Organ Dysfunction Score 2
(PELOD-2) was calculated to describe the severity of the organ dysfunction of the patients [38, 39].

3.2. Data acquisition
In the target PSG dataset, all patients underwent a PSG using an eight-channel EEG, two EOG elec-
trodes, and two chin EMG electrodes. The EEG electrodes included the frontal (F3, F4), central (C3,
C4), occipital (O1, O2) and auricular (A1, A2) electrodes and were placed according to the international
10/20 system [16]. The PSG measurements were recorded at a sampling frequency of 250 or 256 Hz,
depending on the device used (Brain RT, OSG, Rumst, Belgium or Morpheus, Micromed Sp.A., Treviso,
Italy) [4, 5, 21]. The PSGmeasurements started once patients went to bed at their habitual bedtime and
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stopped in the morning. The last PSG recording was used whenever patients had undergone multiple
PSG measurements [4, 21].

In various patients in the novel PICU dataset, the frontal, central, and occipital electrodes were only
placed on one side of the brain to minimize the patient’s discomfort. As described previously, the mea-
surements were performed using the EEG electrodes: either F3, C3, and O1, or F4, C4, and O2, with
the electrodes A1, A2, and Fz [21, 35]. Patients included in the PICU dataset were enrolled within the
first 24 hours of PICU admission. 24-hour PSG measurements were performed on days 1, 3, 7, and
14, allowing for a one-day margin for logistical considerations. The majority of the patients in the PICU
dataset underwent a single PSG measurement, either due to a short PICU stay or because there was
no parental/legal guardian consent for a second PSG measurement. For the other patients, priority
was given to PSG measurements performed on days when light or sound measurements were taken,
or samples were collected for melatonin and cortisol assays [21, 36, 37].

The PSG recordings for patients in the target PSG dataset were scored by experienced sleep tech-
nologists under the supervision of an experienced clinical neurophysiologist. The sleep stages were
assigned per 30-second epochs of the PSG recordings according to the AASM scoring criteria. For
patients younger than 2 months, sleep was distinguished in REM and NREM and the recommended
transitional sleep stage for these young infants was not used [21]. The N stage was used by sleep
technicians for epochs that had the characteristics of NREM but could not be classified as either N1,
N2, or N3 [4, 5, 21].

3.3. Preprocessing and feature extraction
3.3.1. Preprocessing
The preprocessing steps involved the detection and removal of various artifacts from the PSG record-
ings [4, 35]. Additionally, to enhance the data quality, a 16th-order Butterworth band-pass filter was
applied. This filter, with a frequency range of 0.5-48 Hz, removed irrelevant frequencies from the EEG
signals. These preprocessing steps were uniformly applied to both datasets [4].

3.3.2. Feature selection
The initial feature selection and extraction steps are described in Hiemstra (2021). In essence, features
were selected based on definitions and applications in sleep studies in adults and neonates. The cal-
culated features were extracted from each epoch of the PSG recordings. An overview of the selected
features can be found in the Supplementary Materials section A.2. [4].

In this study, a deliberate subset of selected features was employed for model development. The
initial decision was to focus on the development of the model using EEG features since these reflect
the processes regulating states of vigilance and controlling most physiologic parameters [40]. In the
study by Twist et al. (2023), numerous features were computed across multiple unipolar and bipolar
EEG derivations, resulting in a substantial number of features [4, 35]. Due to the associated high com-
putational costs, a decision was made to develop the model by focusing on a single EEG derivation
along with its corresponding features.

The recommended EEG derivations for sleep scoring are F4-A1, C4-A1, and O2-A1 with the back-
up derivations F3-A2, C3-A2, and O1-A2 [16, 41]. The reference electrode was chosen at the opposite
side of the head. The A1 and A2 electrodes here refer to the mastoid electrodes (also known as M1
and M2) [42]. Linking the electrodes to a mastoid reference avoids near-field and cancellation effects.
Cancellation effects occur when the EEG activity of two electrodes has almost the same amplitude
and electrical polarity leading to a loss or reduction in EEG amplitude [16]. Hiemstra (2021) extracted
features from EEG derivations F3-A2, C3-A2, and O1-A2. In most critically ill patients, the electrodes
were placed on a single side of the brain to minimize discomfort, and this predominantly occurred on the
right side. Consequently, it was decided to use the features from the EEG derivations of the right side
of the brain for model development. For some critically ill patients, the electrodes were placed on the
left side of the brain. Assuming both sides of the brain are symmetric, features from EEG derivations
of the left side were selected for model application in these patients.
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The AASM recommends the use of at least the central EEG derivations (C4-M1, C4-Fpz) with the
frontal and occipital derivations as a backup [16, 43]. This makes these central derivations likely to
be present in a variety of PSG recordings and therefore a strategic choice for model development [43].
Arousals, defined as temporary disruptions of sleep by wakefulness or brief increases in alertness due
to external stimuli or spontaneous changes in wakefulness levels, are more effectively detected by
central derivations than frontal derivations [16]. Additionally, sleep spindles and vertex waves are most
effectively detected over the central regions. Consequently, it was decided to choose EEG derivation
C3-A2 for model development. Since K-complexes are best detected in frontal regions and PDR max-
imal observed in the occipital regions, it was also assessed whether incorporating EEG derivations
F3-A2 and O1-A2 would enhance the overall performance of the model [16].

Figure 3.1: Recommended EEG derivations for sleep scoring [42].

3.4. Sleep stages
In this study, the term ’sleep stages’ encompasses wake, N1, N2, N3, REM, and N. The ’N’ label is
assigned to epochs with characteristics of NREM sleep, but where no distinction can be made between
N1, N2, or N3 due to atypical or absence of typical EEG characteristics.



4
Model development

4.1. Anomaly detection model and theory
In every sleep stage, most of the selected features from EEG derivation C3-A2 were normally dis-
tributed. A figure showing the distributions of these features in epochs from sleep stage N2 is included
in the Supplementary Materials section A.3. . The description of the training set {xi}, i = 1, . . . , N
was obtained using an anomaly detection method, where x represents a vector. An univariate normal
distribution can describe the probability density function (PDF) of a single feature, for instance, age.
PDF describes the probability of a continuous variable. It provides information about how likely differ-
ent values of the feature are to occur. When there is more than one feature (for example age, gender,
and birthplace) a multivariate normal distribution (mnv) PDF can be determined. This describes the
distribution of a random vector x including different features. These features may be correlated to one
another. The mvn PDF can be described with the formula:

f(x;µ,Σ) = 1

(2π)p/2 det(Σ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

x : The n-dimensional random vector.
µ : The mean vector.
Σ : The covariance matrix.

det(Σ) : The determinant of the covariance matrix.
(x− µ)T : Transpose of the vector x− µ.

Σ−1 : Inverse of the covariance matrix.
p : The number of dimensions.

Figure 4.1: Histograms of probability density functions of N1 sleep (outliers not removed). Left the histogram of the probability
density functions of four selected features and at the right is the histogram of the probability density functions of all 50 selected

features for EEG channel C3-A2.

A low probability density means that the observation can be considered as an outlier according
to the distribution. In figure Figure 4.1, examples of histograms of PDFs are illustrated. The PDF of
all the 50 selected features from the EEG channel happened to show a high peak at low probability
density. This can be explained by the quadratic term d2 = x21 + x22 + ... + x2n in the exponent of mvn

9



4.1. Anomaly detection model and theory 10

PDF
(
− 1

2 (x− µ)TΣ−1(x− µ)
)
, where x is a d-dimensional vector. As the dimensionality increases, d2

becomes larger, and exp(−d2 becomes very small or zero. This results in the PDF containing numer-
ous zeros or small values, leading to a concentration of probability at low-density levels. To illustrate
the normality or anomaly of data set compared to the training set, it was chosen to compute the Maha-
lanobis Distance (MD).

When assessing the potential anomaly of a data point compared to a dataset, the metrics Euclidean
Distance (ED) and MD can quantify the separation between this data point and the dataset. The ED is
a straightforward measure that calculates the straight-line distance between a data point and the center
of a dataset. The formula of the ED between is:

dE =

√√√√ N∑
i=1

(xi − µi)
2

where xi represents the values of the features of the datapoint along the horizontal axis, and µi

represents the corresponding values of the features of the dataset’s center along the vertical axis in
the coordinate plane. N is the number of dimensions. However, if features are correlated to one
another, the ED may present inaccuracies and give misleading information about the proximity of the
data point to the actual distribution of the dataset [44]. MD offers a more robust metric by normalizing
the ED using the inverse covariance matrix. The covariance indicates how features vary together [45].
When dealing with datasets where features have different scales and are correlated, which is typically
the case in real-world datasets, MD is a more reliable metric since it adjusts for the orientation and
scaling of the features. Hence, MD ensures a robust measure of distance that reflects the underlying
structure of the dataset [44]. The formula of MD is:

D =
√
(x− µ)TΣ−1(x− µ)

where D is the MD, x the feature vector of the data point, µ the mean vector containing the means
of each feature, and Σ−1 the inverse covariance matrix of the features [44]. (x − µ) ensures that the
distribution is centered at the origin and the inverse covariance matrix Σ−1 normalizes the features by
their variance. It considers the covariance and the correlation of the features, giving equal weight to all
features. In this study, a Gaussian Model for anomaly detection using MD is developed. In this context,
a datapoint corresponds to an epoch.

Figure 4.2: Difference between Euclidean Distance (left) and Mahalanobis Distance (right)

To assess anomalies using this Gaussian Model, a threshold needs to be set. This threshold ac-
counts for potential lower-quality epochs, balancing anomaly detection and model performance. This
threshold is based on a specific percentile of the MDs within the training set. Subsequently, the MDs
of test data can be compared against this threshold to identify anomalies. An epoch is classified as an
anomaly if the calculated MD for this epoch exceeds the threshold. Conversely, if the MD falls below
the threshold, the epoch can be assigned to the training set. This is visually illustrated in Figure 4.3
and Figure 4.2, where the training set and the anomalies are separated by the threshold.
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Figure 4.3: Anomaly detection using Mahalanobis Distance

4.2. Gaussian Model development
For each sleep stage, the features were extracted for each 30-second epoch and were used as input
data for the Gaussian Model. The model was trained using five-fold cross-validation with grouping on
patient level ensuring data integrity. To address redundancy due to 100% feature correlation, a small
value was added to the diagonal of the covariance matrix. Consequently, five trained Gaussian Models
of all sleep stages were produced as visualized in Figure 4.4.

Subsequently, each trained Gaussian Model was applied to PSG data from other sleep stages to
evaluate the errors of the model. The errors represent the fraction of anomalous epochs relative to the
total number of epochs in the dataset. For the validation set, this is similar to the false negatives in
a confusion matrix as this set is derived from the same dataset as the training set. The errors of the
distinct sleep stages correspond to the true negatives in a confusion matrix.

Figure 4.4: Representation of the Gaussian Models of all sleep stages in the feature space

It was assessed whether the Gaussian Model could be improved by performing subanalyses. As
described in chapter 3, it was evaluated whether the model’s performance could be enhanced by us-
ing different bipolar EEG derivations for feature selection. The performance of the model using EEG
derivation F3-A2, O1-A2, and the average of F3-A2, O1-A2, and C3-A2 was evaluated. The selected
features followed a Gaussian distribution. However, these were characterized by large outliers. To
improve the representation of the underlying structure of the distribution of the training set, the outlier
values were removed from the features. A percentage of outlier values for each feature was removed,
followed by the exclusion of epochs containing missing values from the dataset. The impact of exclud-
ing different percentages of outlier values on the model’s performance was evaluated. The outliers
were only removed from the training set. Additionally, it was evaluated whether normalizing the feature
values would enhance the model’s performance despite the normalization process in the MD calcula-
tion. Normalization was performed with a mean equal to zero and a standard deviation equal to one.

Furthermore, cross-validation with grouping was conducted to ensure the separation of patients
across folds. Consequently, the five folds did not precisely contain the same number of epochs, con-
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tributing to variation in the validation error. To check whether the validation error would be more accu-
rate without defining the groups, cross-validation without group specifications was also performed.

4.3. Application of the Gaussian Model on data from critically ill
children

After establishing confidence in the model’s performance, the model could be applied to data from criti-
cally ill patients, referred to as PICU data. The labels assigned by the neurophysiologists were removed
from the data to evaluate the classification of sleep stages performed by the model. The MD of each
epoch of the PICU dataset was calculated using the mean parameter values derived from each trained
Gaussian Model. Due to high computational costs, the MD of each epoch was not computed within
each fold. For each epoch, it was determined whether the MD fell below or exceeded the threshold
derived from the model to identify anomalies.

Similar to the errors of the distinct sleep stages in the model development, the errors of the PICU
data were calculated. The proportion of epochs classified as anomalies among all epochs for a partic-
ular PICU patient was determined. This corresponds to the true negatives in a confusion matrix.

The framework of the entire model is illustrated in figure Figure 4.5. The sleep stages were used
as input data to train the Gaussian Models. Subsequently, each trained Gaussian Model was applied
to distinct sleep stages, indicated in the middle. Once confidence in the model was established, the
Gaussian models were applied to the PICU data, as illustrated in pink.

Figure 4.5: Framework of the model.
PSG = polysomnography; PICU = pediatric intensive care unit; W = wake; N1 = NREM1 = non-rapid eye movement stage 1;
N2 = NREM2 = non-rapid eye movement stage 2; N3 = NREM3 = non-rapid eye movement stage 3; R = REM = rapid eye
movement; MD = Mahalanobis Distance; θ = threshold; C = covariance matrix; μ = mean vector; εt = training error; εv =

validation error; εo = distinct sleep stage error; εp = PICU error;



4.4. Analysis of the classification of data from critically ill children over time 13

4.4. Analysis of the classification of data from critically ill children
over time

Some critically ill patients underwent multiple PSG measurements. Initially, one measurement per pa-
tient was included in the analyses. Subsequently, the other available PSG measurement, not scored
by the neurophysiologist, was incorporated into this analysis. Discrepancies between these two mea-
surements, performed at different points in time, were assessed, taking into consideration the patient’s
medical condition, quantified by the PELOD score, and the administration of medication.
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Polysomnography data and patient

characteristics
A total of 120 non-critically ill children and 23 critically ill children admitted to the PICU were included
in this study. From the non-critically ill children, 155199 epochs were obtained. The distribution of
these epochs by sleep stage is illustrated in Table 5.1. The non-critically ill children had a median age
of 36.5 ± 64 months and most of them underwent a PSG measurement for suspected or follow-up of
airway obstruction (n=61) or neuromuscular disease (n=32). The patient characteristics are available
in Table 5.2. Regarding the critically ill children, 67992 epochs were obtained. The critically ill children
had a median age of 2 ± 8. The patient characteristics of the critically ill children are available in
Table 5.2 and Table 5.3.

Table 5.1: Distribution epochs by sleep stage. PSG = polysomnography; W = wakefulness; N1 = NREM stage 1 = non-rapid
eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has

characteristics of NREM but could not be classified as N1, N2, or N3.

Sleep stages PSG data Percentages
W 37532 24%
N1 11308 7%
N2 29439 19%
N3 35591 23%
R 29478 19%
N 11851 8%

Total 155199 100%

Table 5.2: Patient characteristics of the non-critically ill and critically ill children. PICU = Pediatric Intensive Care Unit; PSG =
polysomnography; IQR = interquartile range.

Patient characteristic PSG dataset (n=120) PICU dataset (n=23)
Median age ± IQR (months) 36.5 ± 64 2 ± 8

Males/females (number of patients) 62/58 10/13
PSG/PICU indication, Airway obstruction: 50.8 (n=61) Cardiothoracic surgery: 26.1 (n=6)
% total of patients Neuromuscular disease: 26.7 (n=32) Neuromuscular disease: 8.7 (n=2)
(number of patients) Pulmonary disease: 7.5 (n=9) Heart disease/failure: 13.0 (n=3)

Central sleep apnea: 7.5 (n=9) Pulmonary disease: 26.1 (n=6)
Unknown: 7.5 (n=9) Sepsis: 8.7 (n=2)

Others: 17.4 (n=4)
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Table 5.3: Patient characteristics of the critically ill children. PICU = Pediatric Intensive Care Unit; f = female; m = male; PELOD = performance of the pediatric logistic organ dysfunction.

Patient Gender Age category Day measurement PICU indication Medication Intubated PELOD
after admission PICU during measurement score

PICU001 f 0-2 months 2 Abdominal surgery - No 3
PICU002 f 0-2 months 2 Pulmonary hypertension Midazolam, opioids Yes 9
PICU003 f 0-2 months 8 Pulmonary hypertension Midazolam, opioids, esketamine Yes 7
PICU004 f 0-2 months 2 Metabolic disease Opioids, esketamine No 6
PICU005 f 0-2 months 2 Cardiothoracic surgery Opioids Yes 8
PICU006 f 0-2 months 13 Cardiothoracic surgery Midazolam Yes 5
PICU007 f 0-2 months 8 Heart disease - No 2
PICU008 m 0-2 months 13 Heart disease Midazolam No 2
PICU009 m 0-2 months 13 Neuromuscular disease Midazolam Yes 7
PICU010 m 0-2 months 2 Respiratory infection - No 5
PICU012 f 2-6 months 3 Heart failure Midazolam, esketamine Yes 9
PICU013 m 2-6 months 6 Sepsis Midazolam, opioids, esketamine Yes 11
PICU014 m 2-6 months 2 Respiratory insufficiency - No 7
PICU015 f 2-6 months 7 Cardiothoracic surgery Midazolam, opioids, esketamine Yes 9
PICU016 f 2-6 months 7 Cardiothoracic surgery Midazolam, opioids Yes 14
PICU018 f 2-6 months 7 Cardiothoracic surgery Midazolam No 4
PICU020 m 6-12 months 1 Cardiothoracic surgery Opioids No 3
PICU021 m 1-3 years 1 Respiratory infection Midazolam, opioids Yes 7
PICU022 m 1-3 years 7 Respiratory insufficiency Midazolam, opioids Yes 7
PICU024 f 9-13 years 3 Sepsis Midazolam, opioids Yes 7
PICU025 m 13-18 years 3 Cerebral hematoma + post-resuscitation Opioids Yes 8
PICU026 m 13-18 years 12 Post-resuscitation Opioids, esketamine Yes 9
PICU027 f 13-18 years 2 Neuromuscular disease Opioids Yes 5
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Results: model development

Following subanalyses, the best performing model was obtained using EEG derivation C3-A2 and ex-
cluding 0.2% of the outliers in the selected features. This led to the deletion of approximately 0.5%
of the epochs in the training set. Normalization did not lead to significant improvement in the model’s
performance. Importantly, the normalization of feature values is integrated within the MD calculation.

The threshold of the Gaussian Model was set at 90%, allowing a 10% margin in the training set to
classify sleep stages. The model demonstrated accurate performance using cross-validation without
explicitly defining groups, resulting in validation errors hovering at 0.1. These validation errors align
with the margin error in the training set. When implementing grouped cross-validation, the observed
errors demonstrated a slightly extended range to the 0.1 benchmark. However, the decision was made
to proceed with grouped cross-validation to maintain data integrity.

The results of the final model development using a threshold of 90% can be seen in Table 6.1. Each
row represents a Gaussian Model trained on an indicated sleep stage. Each column signifies a sleep
stage on which the Gaussian Model is applied. The values presented in this table illustrate the errors of
the model, the number of epochs classified as anomalous compared to the total number of epochs for
that sleep stage. The value for which the row and the column represent the same sleep stage signifies
the validation error. The validation error is approximately 0.1 as expected since this data is derived
from the same dataset as the training set. The remaining errors are expected to be large, approaching
1.0, since these are obtained from the application of a trained Gaussian Model on distinct sleep stages.
As an illustration, consider the Gaussian Model trained on sleep stage N1 in row two, which exhibits an
error of 0.757 when applied to sleep stage N3 in column four. This signifies that 0.76% of the epochs in
sleep stage N3 can be considered anomalous, and 24% of the epochs can be assigned to sleep stage
N1. The Gaussian Models consistently classify a substantial portion of epochs in sleep stage wake
as anomalous, as indicated by the errors exceeding 0.5. Contrarily, the Gaussian Model specifically
trained on sleep stage wake exhibits low errors across various sleep stages. This implies that only a
limited number of epochs in these sleep stages are considered anomalous, while the majority can be
assigned to sleep stage wake.

Table 6.1: Errors of the Gaussian Models applied on distinct sleep stages. W = wake; N1 = NREM stage 1 = non-rapid eye
movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has

characteristics of NREM but could not be classified as N1, N2, or N3.

W N1 N2 N3 R N
W 0.105 0.086 0.084 0.038 0.052 0.030
N1 0.885 0.082 0.783 0.757 0.468 0.130
N2 0.577 0.282 0.086 0.388 0.097 0.177
N3 0.683 0.417 0.238 0.110 0.191 0.106
R 0.708 0.413 0.495 0.717 0.116 0.184

The theoretical relationships among sleep stages can be approximated by analyzing these errors.
A plausible scenario illustrating the orientation of sleep stages is visualized in Figure 6.1. The fractions
are expressed as percentages, with each noted in the color corresponding to the trained Gaussian
Model for the sleep stage presented in the row. As an illustration, sleep stage N2 is visually presented
in pink. All percentages highlighted in pink correspond to the errors associated with the row represent-
ing sleep stage N2 when applied to the respective columns. To provide an example, 58% of sleep
stage wake lies outside sleep stage N2, given that the error is 0.577. Noticeably, the sleep stage wake
is illustrated as a large circle enclosing the majority of the data from the other sleep stages.
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To optimize the visualization of selected features extracted from sleep stages in a lower-dimensional
space, Principal Component Analysis (PCA) was conducted. A principal component delineates a direc-
tion in the feature space where the data exhibits the most variability [46]. The first two principal compo-
nents are illustrated in Figure 6.2, as these components encapsulate the greatest variance within the
dataset. As can be observed, the majority of the data is located in the bottom left corner of the scatter
plot, and again overlap is seen for the sleep stages with wake varying the most.

Figure 6.1: Visualizations of the anomaly errors. W = wake; N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 =
NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement.

Figure 6.2: Visualization of the first two principal components of the selected features in the sleep stages. W = wake; N1 =
NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement.
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Results: critically ill children

For all epochs from the PICU data, it was determined whether the calculated MD exceeded or fell below
the threshold. Again, the error signifies the number of epochs categorized as anomalous to the total
number of epochs. These errors can be read from Table 7.1. To assess the potential assignment of
PICU data to sleep stage N, the Gaussian Model was also trained specifically on sleep stage N (final
row). Visual representations in Figure 7.1 show histograms of the MDs of the two distinct PICU files,
alongside the MDs for the training and validation sets of the N1 stage. Notably, the majority of the
epochs in these patient files exceed the threshold and can be categorized as anomalous. The errors
associated with these patient files, PICU002 and PICU0018, are 0.925 and 0.927, respectively. Con-
versely, patient files with errors approaching zero indicate that nearly all epochs align with the sleep
stage specified in the corresponding row.

Patients with a PICU indication of heart disease exhibited notably high error rates in sleep stages
N1, N2, R, and N. The patient with heart failure demonstrated elevated error rates in N2 and R, with
relatively high errors in N1 and N. Those with a PICU indication of cardiothoracic surgery showed rela-
tively high error rates in sleep stage N. Patient PICU009 displayed high errors across all classes, while
a patient with a neuromuscular disease, similar to PICU009, exhibited relatively high errors in R and
N and medium errors in N2 and N3. Patients with respiratory infection or respiratory insufficiency had
the highest errors in sleep stages R and N. Patient PICU024 showed very high errors in sleep stages
N1, N2, and R, with relatively high errors in sleep stage N. Another patient with sepsis only had a high
error rate in sleep stage N. The patient with the highest PELOD-2 score did show high error rates for
stages N1, N2, R, and N.

The distribution of epochs per patient, categorized into different sleep stages, is visually represented
in Figure 7.2. The prevalence of epochs classified into multiple sleep stages leads to overlapping per-
centages of the total number of epochs in each sleep stage. The count of epochs assigned to a given
number of sleep stages is detailed in Figure 7.3. Importantly, the y-axis ranges differ between figures
due to the accumulation of epochs in the distribution figure resulting from classification into multiple
sleep stages. The segments with a value of zero in this bar plot indicate unclassified epochs. For in-
stance, 68% of the epochs in patient file PICU009 remained unclassified. In Figure 7.2, it is evident that
certain patient files lack epochs classified into sleep stages N2 and REM. The proportion of epochs cat-
egorized as stages wake and N1 remained relatively consistent across all patients. The specific count
of epochs corresponding to the data presented in these figures can be found in the Supplementary
Materials (section A.5). The total count of epochs classified into each sleep stage can be read from
Table 7.2. It’s important to note that the percentages overlap as epochs are classified into multiple
sleep stages. When comparing the distribution of epochs by sleep stage in PICU data with that of PSG
data (Table 5.1 and Table 7.2, it becomes evident that, in both distributions, wake and N3 are the most
prominent stages. Stages N1 and N have the least number of epochs in PSG data which are stages R
and N in PICU data.
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Table 7.1: Errors of the Gaussian Models of the different sleep stages applied on data from critically ill children. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 = non-rapid eye movement stage
1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P012 P013 P014 P015 P016 P018 P020 P021 P022 P024 P025 P026 P027
W 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.001 0.995 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.044 0.000 0.000 0.000 0.000 0.000 0.000
N1 0.289 0.925 0.201 0.053 0.543 0.149 1.000 0.961 1.000 0.258 0.554 0.056 0.300 0.053 0.201 0.927 0.000 0.588 0.431 0.998 0.262 0.258 0.289
N2 0.558 0.940 0.365 0.125 0.655 0.308 1.000 0.988 1.000 0.497 0.964 0.188 0.359 0.125 0.365 1.000 0.000 0.638 0.612 0.997 0.309 0.497 0.557
N3 0.400 0.029 0.132 0.055 0.025 0.103 0.506 0.118 1.000 0.185 0.258 0.020 0.018 0.055 0.132 0.247 0.506 0.007 0.014 0.518 0.011 0.185 0.667
R 0.772 0.941 0.506 0.228 0.762 0.418 1.000 1.000 1.000 0.810 1.000 0.334 0.714 0.228 0.506 1.000 0.000 0.755 0.849 0.996 0.524 0.810 0.772
N 0.878 0.862 0.683 0.523 0.734 0.757 0.819 0.758 0.684 0.794 0.675 0.899 0.741 0.523 0.683 0.845 0.819 0.775 0.821 0.699 0.695 0.793 0.878

*P refers to PICU in the column names.
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Figure 7.1: Examples of histograms of the Mahalanobis Distances for PICU002 (left) and PICU018 (right) together with the
Mahalanobis Distances for the training and validation set of sleep stage N1

Figure 7.2: Distribution of epochs by sleep stage. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 =
non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage

which has characteristics of NREM but could not be classified as N1, N2, or N3.
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Figure 7.3: Number of sleep stages per PICU patient classified by the model. PICU = Pediatric Intensive Care Unit.

Table 7.2: Distribution of epochs by sleep stage: total counts. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM
stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N =

N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

Sleep stages PICU data Percentages
W 65339 96%
N1 36131 53%
N2 27755 41%
N3 54490 80%
R 18643 27%
N 16784 25%

Total 67992

For all PICU patients, it was analyzed whether discernible patterns in the temporal evolution of
classifications could be identified. Figure 7.4 presents the MDs for PICU003, illustrating instances with
moderate errors for the sleep stages. The striped red line represents the threshold for the Gaussian
Model. The errors for sleep stage W, N1, N2, N3, R, and N were 0.000, 0.201, 0.365, 0.132, 0.506,
and 0.683, respectively. Notably, clusters of patterns can be discerned in the MDs of this patient,
characterized by periods of MD enlargement followed by subsequent reduction. Epochs with MDs
exceeding the threshold were classified as anomalous, and the ratio of anomalous epochs to the total
number of epochs represents the error rate for the patient file. For some patients, the clusters in the
MDs were less prominent, and in other patients, it was observed that nearly all epochs were classified
as anomalous. Figures of these examples are available in the Supplementary Materials section A.6
(Figure A.14, Figure A.15, Figure A.16).
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Figure 7.4: Mahalanobis Distances over time for PICU003. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM
stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N =

N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

The results of manual sleep scoring by neurophysiologists are available in Figure 7.5. These results
can be compared to the model’s classification previously shown in Figure 7.2. Given the hypothesis
that PICU data may not align with the sleep stages defined by AASM criteria, it’s crucial not to treat the
labels assigned by the neurophysiologists as absolute truth. Notably, discrepancies in the classification
of epochs into sleep stage N are evident when comparing the bar plots of the model and of manual
scoring. As can be observed, in 11 of the 23 patients, no labels of N1 and N3 were assigned to the
epochs by the neurophysiologists. They more often assign sleep stage N to epochs. The total number
of epochs assigned per sleep stage can be read from Table 7.3.
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Figure 7.5: Number of epochs per PICU patient assigned by the neurophysiologists to the different sleep stages. PICU =
Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 =
NREM stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM but could not be classified as

N1, N2, or N3.

Table 7.3: Labels assigned by the neurologists. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 =
non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage

which has characteristics of NREM but could not be classified as N1, N2, or N3.

Sleep stages PICU data Percentages
W 22704 40%
N1 3429 6%
N2 6235 11%
N3 5203 9%
R 3005 5%
N 16016 28%

Total 56592
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Results: classifications over time

When another PSG recording of PICU patients was available, it was included in this analysis to assess
discrepancies between two measurements at different points in time. From six patients in total, a
second measurement was available. The patient characteristics can be read from Table 8.1. Note that
in three patients the PELOD-2 score is reduced during the second recording as compared to the first
recording. The lowest PELOD-2 score is two, observed in the second recording of PICU000, a patient
who was also not on mechanical ventilation during this recording. Three patients maintained the same
PELOD-2 score in both recordings, although one of them received different medications during these
measurements. The duration between the two recordings for all patients was 4 days or more.

Table 8.1: Characteristics PICU patients with longitudinal measurements. PICU = Pediatric Intensive Care Unit; PELOD =
pediatric logistic organ dysfunction.

Patient file Day of measurement PICU indication Medication Intubation PELOD-2 score
PICU000A* 3 Cardiac diseases Midazolam Yes 7
PICU000B* 10 Cardiac diseases Midazolam No 2
PICU005A 2 Cardiothoracic surgery Opioids Yes 8
PICU005B* 7 Cardiothoracic surgery Midazolam Yes 5
PICU006A* 6 Cardiothoracic surgery Midazolam Yes 5
PICU006B 13 Cardiothoracic surgery Midazolam Yes 5
PICU021A 1 Respiratory infection Midazolam, opioids Yes 7
PICU021B* 7 Respiratory infection Midazolam, opioids Yes 6
PICU022A* 3 Respiratory insufficiency Midazolam, opioids Yes 7
PICU022B 7 Respiratory insufficiency Midazolam, opioids Yes 7
PICU026A* 3 Post-resuscitation Midazolam Yes 9
PICU026B 12 Post-resuscitation Opioids, esketamine Yes 9

* These recordings were not included in the previous analyses of critically ill children.

The errors corresponding to each recording are detailed in Table 8.2. Surprisingly, discrepancies
between measurements PICU006A and PICU006B can be observed, despite their similar patient char-
acteristics. Furthermore, a discrepancy in the number of epochs classified into stages N1, N2, and R is
observed betweenmeasurements PICU000A and PICU000B, which also exhibit a difference in PELOD-
2 scores. Intriguingly, a higher PELOD-2 score does not necessarily correlate with a higher error, as
can be observed in the recordings PICU005A and PICU005B. During the second recording, this patient
received midazolam instead of opioids. It is noticeable that errors were higher during measurements
PICU005B and PICU026A, during which the patient received midazolam, compared to measurements
in which they received opioids and/or esketamine. This was more prominent in patient PICU026.

The distributions of epochs by sleep stage and the counts of epochs assigned to a given number of
sleep stages are illustrated in Figure 8.1 and Figure 8.2. Again it is important to notice that the ranges of
the y-axis differ due to the accumulation of the counts of epochs in the figure illustrating the distribution
of epochs by sleep stage. The recordings of PICU000, PICU006, and PICU026 exhibit significant
differences in the sleep stages their epochs are assigned to. The three remaining patients exhibited
a consistent pattern in the proportions of sleep stages across both recordings. Regarding the patients
with recordings with and without midazolam administration, the epochs of recording PICU026A were
categorized into fewer distinct sleep stages than recording PICU026B, aligning with the larger margin
of error. However, the differences in errors between recording PICU005A and PICU005B were not
substantial enough to visually impact the distribution of classifications.
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Table 8.2: Errors of the Gaussian Models of the different sleep stages applied on data from critically ill children. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 = non-rapid eye
movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

PICU000A PICU000B PICU005A PICU005B PICU006A PICU006B PICU021A PICU021B PICU022A PICU022B PICU026A PICU026B
W 0.055 0.011 0.000 0.000 0.230 0.000 0.000 0.119 0.000 0.000 0.048 0.000
N1 0.729 0.380 0.543 0.706 0.994 0.149 0.588 0.455 0.364 0.431 0.991 0.258
N2 0.921 0.448 0.655 0.745 0.994 0.308 0.638 0.560 0.548 0.612 0.997 0.497
N3 0.186 0.116 0.025 0.122 0.988 0.103 0.007 0.266 0.013 0.014 0.457 0.185
R 0.988 0.598 0.762 0.783 0.994 0.418 0.755 0.559 0.741 0.849 1.000 0.810
N 0.875 0.769 0.734 0.720 0.777 0.757 0.775 0.621 0.667 0.821 0.707 0.793
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Figure 8.1: Epoch distribution across sleep stages per PICU patient. PICU = Pediatric Intensive Care Unit; W = wake;
N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM =
rapid eye movement; N = N-stage which has characteristics of NREM but could not be classified as N1, N2, or

N3.

Figure 8.2: Number of sleep stages per PICU patient classified by the model. PICU = Pediatric Intensive Care Unit; W =
wake; N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R =
REM = rapid eye movement; N = N-stage which has characteristics of NREM but could not be classified as N1,

N2, or N3.
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Discussion

The present study introduces an alternative approach to assess whether PSG-derived EEG data from
critically ill children could be categorized into sleep stages based on the AASM scoring criteria by
employing anomaly detection using Gaussian Models. The models trained on the sleep stages of
PSG-derived EEG data from non-critically ill children using EEG derivation C3-A2 for feature selection
resulted in validation errors aligning with the margin error of 10% of the training set. However, these
models experienced challenges in effectively differentiating the sleep stages, resulting in a large over-
lap of epochs between sleep stages. A comparable trend emerged when applying these models to data
from critically ill children, where a significant proportion of their epochs were categorized into multiple
sleep stages. Interestingly, a higher PELOD-2 score did not consistently correlate with an increased
number of anomalous classifications in the epochs of these patients to those with lower PELOD-2
scores.

To the best of our knowledge, this is the first study that explores sleep during critical illness and its
alignment with conventional AASM sleep stages using anomaly detection methods. Previous studies
that aimed to develop automated sleep scoring algorithms for non-critically ill and critically ill children
already suggested that critically ill children may experience different sleeping patterns compared to
non-critically ill children [21, 35]. Anomaly detection emerges as a valuable approach to identifying
potential deviations in EEG patterns between critically ill and non-critically ill children. Unlike classifica-
tion methods relying on balanced class labels in the dataset, anomaly detection models only use labels
from the target class, in this case, PSG recordings of non-critically ill children. Evaluation of anomaly
detection models varies from classification methods, and standard metrics like precision and recall may
not directly apply. Previous studies in medical applications using anomaly detection methods typically
used actual labels from ’abnormal data’ to assess performance using metrics such as area under the
curve, sensitivity, and specificity [30, 31, 33, 34, 47, 48]. The study’s hypothesis challenges the as-
sumption that critically ill children’s data align with AASM sleep stages, and thus, labels assigned by
neurophysiologists cannot be considered absolute truth. The anomaly detection model solely relies on
prior knowledge of labels from PSG recordings of non-critically ill children. The model focuses on cap-
turing true anomalies while minimizing false positives. This evaluation was conducted on the validation
set, making direct comparisons to traditional classification methods challenging.

Previous studies evaluating interrater reliability in manual sleep scoring for healthy adults reported
a Cohen’s kappa of 0.76 for overall sleep staging. Per sleep stage, the Cohen’s kappa values were
0.70, 0.24, 0.57, 0.57, and 0.69 for the W, N1, N2, N3, and R stages, respectively [49]. The moderate
Cohen’s kappa value of N2 can be a result of confusion with stage N1. Typically, after a K complex
and a sleep spindle are detected once, the stage is scored as N2 even if the N2 features are no longer
feasible. The poor agreement of stage N1 can be caused by the fact that the transition from wake to
N1 can be difficult to recognize, especially in patients exhibiting spare alpha activity. Scoring discrep-
ancies are most common in epochs of transition from one stage to another [49]. The overall Cohen’s
kappa values for patients in an intensive care unit was 0.51-0.56, consistent with challenges highlighted
in previous studies regarding sleep quantification in critical care settings [21, 49, 50]. Considering the
complexities observed in interrater reliability, achieving a distinct separation between sleep stages may
prove challenging, particularly in critically ill children admitted to the PICU. While Twist et al. (2023) suc-
cessfully classified two- and three-state sleep stages in non-critically ill children, the anomaly detection
model in our study faced difficulties in effectively distinguishing between stages, reflecting the inherent
complexities of sleep stage classification. Upon evaluating the errors of the Gaussian Models across
various sleep stages, it became apparent that the models trained on a specific sleep stage did not con-
sistently produce a comparable error rate when applied to the same sleep stage as if it were treated
distinctly. Notably, a Gaussian Model trained on the wake stage primarily assigned epochs from other
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sleep stages to wake. Conversely, models trained on other stages exhibited larger errors when applied
to wake, indicating the majority of the wake class was considered anomalous by these models. This
inconsistency suggests that the feature values of wake may span a wide range, resulting in an over-
lap with feature values from other stages. Factors such as muscle activity, influencing gamma activity
in EEG, may impact the estimation of gamma activity representing wake [51]. Conversely, Gaussian
Models trained on N1 and R demonstrated substantial errors when applied to wake, N2, and N3 but
resulted in a low error when treated as distinct sleep stages for other Gaussian Models. This suggests
that the feature values for N1 and R may fall within a more restricted range.

Once confidence was established in the model’s accurate validation errors using EEG derivation
C3-A2 for feature selection, these models were subsequently applied to PICU data to assess epoch
classifications. In the majority of the PICU patients, the error rate was high for sleep stages N2, R, and
N. Additionally, many patients had a high error rate for N1. A significant proportion of epochs were
classified into multiple sleep stages, partly due to the overlapping nature found in the sleep stages of
non-critically ill children, as indicated by the model. The findings of this study align with prior research
on sleep patterns in the PICU. Earlier studies on critically ill children in the PICU reported a significant
reduction or absence of REM sleep, as well as a reduced proportion of N3 sleep [21, 52–54]. In our
investigation, a notable error rate was observed for sleep stage R in the majority of the patients, indi-
cating that the model assigned a small number of epochs to this stage. Conversely, error rates for N3
were not as high for most patients. It’s important to note that comparing the percentages of sleep stage
distribution in critically ill children with those in non-critically ill children is challenging due to the over-
lap resulting from the classification of epochs into multiple sleep stages. Despite this challenge, it is
notable that the proportion of N3 sleep is not reduced in various critically ill children. Both non-critically
and critically ill children predominantly exhibit N3 as the most prevalent or one of the most prevalent
sleep stages. The distribution of sleep stages in PICU patients reveals that most of the epochs were
classified as wake and N3, followed by N1 and N2, with the fewest epochs assigned to stages R and N.
This trend mirrors the distribution of the PSG dataset, where wake and N3 were predominant, followed
by N2 and R, and the fewest epochs were assigned to N1 and N. Surprisingly, only eight patients in-
cluding three with more than one epoch, had unclassified epochs. Some epochs were classified into
a single sleep stage, while others were categorized into multiple sleep stages, leading to overlapping
percentages. Neurophysiologists primarily label data as wake and N where the model might classify
epochs into multiple sleep stages. In critically ill children, when an epoch exhibits characteristics of
NREM but cannot be classified into N1, N2, or N3, neurophysiologists assign the label N to this epoch.
Notably, a substantial portion of the PICU data was only classified into stages REM, N, or wake by neu-
rophysiologists. Epochs exhibiting atypical EEG characteristics are typically assigned to sleep stage N
by neurophysiologists, resulting in a stage with a diverse range of feature values. However, the Gaus-
sian Model of sleep stage N is trained using PSG data, likely possessing distinct EEG characteristics
compared to PICU patients labeled as N by neurophysiologists. The neurophysiologists assigned the
label N to a notably larger proportion of epochs compared to the model’s classifications. According to
the AASM scoring criteria, epochs should be classified into the predominant sleep stage when charac-
teristics of multiple sleep stages are detected within the epoch [16]. Contrary to the model classifying
epochs into multiple sleep stages, neurophysiologists typically assign epochs to a single sleep stage.

Previous studies reported atypical sleep patterns in mechanically ventilated patients [6, 52]. A study
focused on children with severe acute bronchopneumonia during mechanical ventilation, exploring var-
ious sedation levels, revealed that those under sedation exhibited slower EEG activity during sleep,
diffuse delta wave activity, and a loss of N1 and REM stages. Notably, the deep sedated group demon-
strated a significantly higher incidence of REM stage loss and a decrease in N2 sleep compared to
the lightly sedated group [52]. This validates a prior report suggesting that benzodiazepines could
decrease REM and increase N2 sleep in ventilated children [55]. Furthermore, the report indicated
that the sleep cycle returned to normal without N1 or REM loss after weaning [52]. Unlike the refer-
enced study, our analysis did not consider the level of sedation. Instead, a longitudinal analysis was
conducted to assess variations in classifications over time in the context of underlying illness and medi-
cation. Among patients with two available PSG recordings, one was mechanically ventilated during the
first measurement and not during the second. Interestingly, this patient exhibited a similar number of
epochs classified as N1. Although REM sleep was absent during mechanical ventilation, it reappeared
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after weaning, aligning with the findings of the aforementioned study. The PELOD-2 score was lower
during the PSG recording after weaning from mechanical ventilation. However, when assessing all
PICU patients, those on mechanical ventilation did not show higher error rates than non-ventilated pa-
tients. Among patients with two available PSG recordings, higher error rates were observed during the
recording in which midazolam was administered. For one patient, significantly higher errors for stages
N1, N2, and R were noted during the measurement with midazolam compared to the measurement
without it. Surprisingly, in all critically ill patients, an increase in the PELOD-2 score did not necessarily
correlate with higher error rates. It is crucial to emphasize that, even though these comparisons are
drawn among sleep stages, these stages might not depict the sleep states in critically ill children. The
disparities between the results of prior studies and the findings in the present study also suggest the
challenges associated with defining the EEG patterns of critically ill children.

The present study has several strengths worth mentioning. It established a robust framework for
anomaly detection, laying a foundation for future developments in this area. Given that prior research
indicates potential differences in the sleep of critically ill children compared to non-critically ill children,
a thorough exploration of sleep patterns in critically ill children becomes imperative. Anomaly detec-
tion proves to be a valuable tool in identifying potential deviations in EEG patterns among critically
ill children, particularly considering that the data from critically ill children is poorly sampled and not
well-defined. The assessment of results on a per-sleep-stage basis provides valuable insights into the
potential divergence in sleep patterns among critically ill children as compared to non-critically ill chil-
dren.

However, certain limitations of the present study warrant also need to be addressed. The method-
ology for feature selection, as outlined in van Twist et al. (2023), involved the calculation of features
from various EEG channels, which was adopted for model development in this study. Unfortunately,
the use of all these features resulted in excessively high computational costs, needing a reduction in
the number of features. Traditional approaches for feature selection based on importance or principal
component analysis were considered inadequate, as the anomaly detection model does not distinguish
between two classes but rather differentiates one class from all other data. These techniques risk ex-
cluding features that may not provide significant information about a specific sleep stage but could play
a crucial role in highlighting noteworthy deviations within the overall dataset. Therefore, the feature
selection process in this study was based on clinical and PSG technical considerations. The AASM
recommends the use of at least one of the following EEG electrode combinations for sleep scoring: C4-
A1, C3-A2, C4-Fpz, or C3-Fpz [16]. Fpz-Cz is the most commonly used EEG channel in current tools
for sleep staging based on single-channel design [56]. However, the Fpz electrode was not placed
during the PSG measurements in this study. C3-A2 is a frequently chosen single EEG channel in previ-
ous studies focused on sleep staging [56]. Given the AASM recommendations and the available EEG
electrode combinations, EEG derivation C3-A2 or C4-A1 was selected for feature selection in this study.
Consequently, model development was conducted using a single EEG channel for feature selection to
minimize computational demands. Other studies have also proposed automatic sleep scoring methods
relying solely on EEG, employing either multi-channel or single-channel analysis for efficiency reasons
[40]. While previous studies achieved accuracies above 75% with single-channel EEG information, it
is acknowledged that the performance of single-channel EEG-based automatic scoring is slightly lower
than that of multi-channel EEG or multi-signal approaches, especially in REM sleep [40].

A fundamental limitation is the constrained amount of data, precluding subgroup analysis. Obtain-
ing more data from critically ill children is imperative to gain deeper insights into their sleep patterns.
Additionally, this study lacked a comprehensive investigation of the data quality of the PICU files, as the
preprocessing steps were adopted from a previous study and not reassessed. The artifact detection
algorithm should be re-evaluated to optimize data quality. Since PICU data epochs are analyzed inde-
pendently and completeness of the PICU data does not have to be maintained, clusters of epochs with
low quality could be excluded. Furthermore, it is possible that some of the additional PSG recordings
included for the longitudinal analysis were not part of the initial analyses due to low quality. Therefore,
considering the selective deletion of certain epochs from the PICU data is worthwhile. Moreover, the
mean values of the parameters from the cross-validation with the Gaussian Models were used to cal-
culate the MDs of the epochs and categorize them due to efficiency reasons. Calculating the MDs of
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these epochs within the cross-validation might be more robust. Obtaining more PSG recordings per
patient is crucial for gaining deeper insights into differences in sleep staging over time and for varying
degrees of illness. However, it is essential to consider that the initial patient inclusion at the PICU was
challenging due to the severity of their illness, and obtaining consent for multiple measurements was
met with hesitancy from parents.

After achieving a substantial increase in data volume, it is advisable to conduct subgroup analyses.
To evaluate pediatric EEGs, it is crucial to assess whether observed patterns align with maturational
age [16]. Therefore, integrating age categories into anomaly detection models is imperative, establish-
ing classes for each sleep stage within each age category to facilitate comparisons among critically
ill children within the same age range. Given the evolving nature of EEG characteristics during de-
velopment, incorporating age-specific classes enhances model accuracy [16]. In the present study, a
discernible pattern of sleep stage fluctuation occurring in clusters was noted among various patients.
The temporal evolution of classifications demonstrated a non-random formation of clusters. Introduc-
ing a sliding window could be a valuable enhancement to evaluate how the model’s performance might
improve. Typically, manual scoring incorporates information from preceding and subsequent epochs
when classifying a given epoch. Assessing the model’s performance by using the preceding epoch as
a priori information for the current epoch, and updating this context iteratively, could provide valuable in-
sights. However, real-time sleep scoring may face challenges due to the contextual importance in sleep
scoring. Additionally, further exploration of the feature selection process is recommended. Selecting
features that effectively represent the model’s objective is crucial. Reassessing the chosen features
for EEG derivations and evaluating whether additional features should be incorporated is beneficial.
Exploring outcomes using features derived from amplitude-integrated (aEEG) electrodes, given their
non-invasive nature, is worthwhile. Although aEEG lacks a mastoid reference, potentially impacting
cancellation effects, evaluating model performance using EEG derivation C3-C4 for feature selection
can serve as an initial step. EMG helps to classify the wake stage from the rest of the sleep stage.
However, its contribution to accuracy is negligible [4, 43]. EEG plays a vital role in discerning between
different NREM stages, while EOG assists in distinguishing between REM and NREM stages. Integrat-
ing EOG signals into single EEG channels for feature selection may enhance the model’s performance,
particularly for distinguishing REM sleep [57].

In the context of anomaly detection using Gaussian Models, it is acknowledged that a Gaussian may
not fully capture the entire training dataset. The simplicity and interpretability of the Gaussian Model
make it suitable for smaller datasets, yet its limitations prompt the exploration of more advancedmodels.
Building upon this framework with Gaussian Mixture Models (GMM) is recommended. GMM, represent-
ing a weighted sum of Gaussian component densities, can provide a more nuanced description of the
training set by approximating arbitrarily shaped densities. Developing more advanced models aligns
with the necessity for a larger dataset to establish robustness. [58]. An illustration of the GMM in
red and the Gaussian in blue is given in Figure 9.1. Additionally, comparing the results of supervised
learning with those of anomaly detection could give insights into model performance and distinctions
between the two approaches. It is conceivable that a Gaussian Model encapsulates datapoints of two
sleep stages within its description of the training set, whereas a supervised learning model might delin-
eate a boundary between the two classes as illustrated in Figure 9.2.

In conclusion, the current study effectively established an anomaly detection framework using Gaus-
sian Models to analyze the sleep patterns of critically ill children. Anomaly detection is a valuable ap-
proach in this context, given the well-defined sleep of non-critically ill children according to the AASM
scoring criteria, whereas characterizing sleep in critically ill children represents challenges. Overlap in
sleep stages was seen in data from non-critically ill children and epochs from critically ill children were
classified into multiple sleep stages. The discrepancy between our model classifying epochs into multi-
ple sleep stages and the neurophysiologists’ typical assignment to sleep stage N suggests a potential
limitation in the applicability of the AASM scoring criteria to critically ill children. While our implemen-
tation of the Gaussian Model has been successful, it would be imperative to explore more advanced
anomaly detection models. Additionally, a critical reassessment of the feature selection process is im-
perative, focusing on features that are both informative and distinctively suited to the objectives of the
anomaly detection model. After refining this anomaly detection framework and building confidence in
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its application, conclusive insights into the sleep patterns of critically ill children admitted to the Pedi-
atric Intensive Care Unit can be drawn. This understanding will contribute significantly to advancing
knowledge in the sleep of critically ill children and, consequently, potentially in tailoring interventions to
individually target and improve their sleep.

Figure 9.1: Example of a Gaussian (blue) and Gaussian Mixture Models (red).

Figure 9.2: Example of Gaussian (blue) and a boundary obtained by supervised learning (orange).
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A
Supplementary Materials

A.1. Electroencephalography characteristics of the different sleep
stages

Figure A.1: Normal EEG during wakefulness [13]. EEG = electroencephalography.

Figure A.2: Positive occipital sharp transients of sleep (POSTS) arise in N1 sleep and can persist in later sleep stages [13]. N1
= NREM stage 1 = non-rapid eye movement stage 1.
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Figure A.3: Vertex waves seen in N1 sleep [13]. N1 = NREM stage 1 = non-rapid eye movement stage 1.

Figure A.4: Sleep spindles characterizing N2 sleep [13]. N2 = NREM stage 2 = non-rapid eye movement stage 2.
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Figure A.5: K complexes characterizing N2 sleep [13]. N2 = NREM stage 2 = non-rapid eye movement stage 2.

Figure A.6: Delta activity seen in N3 sleep [13]. N3 = NREM stage 3 = non-rapid eye movement stage 3.
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Figure A.7: Very sharply countered opposing waveforms in R sleep [13]. R = REM = rapid eye movement.

A.2. Feature selection

Figure A.8: Overview of all calculated features from each epoch of all PSG recordings. PSG = polysomnography.

Details and formulas of the feature calculation can be found in Hiemstra (2021) [4].

A.3. Distributions of selected features
Figure A.8, Figure A.9, Figure A.10, Figure A.11, Figure A.12 and Figure A.13 illustrate examples of
the distributions of the selected features from EEG derivation C3-A2 for N2 sleep.
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Figure A.9: Feature distributions
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Figure A.10: Feature distributions
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Figure A.11: Feature distributions



A.4. Results subanalyses 42

Figure A.12: Feature distributions

Figure A.13: Feature distributions

A.4. Results subanalyses
A.4.1. Performance evaluation using different electroencephalography deriva-

tions
The model has been trained using various EEG derivations along with their corresponding features to
assess whether this approach enhances performance.
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Table A.1: Errors of sleep stage predictions using a Gaussian fit trained specifically for a particular sleep stage - EEG
derivation F3-A2. EEG = electroencephalography; PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 =
non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage

which has characteristics of NREM but could not be classified as N1, N2, or N3.

W N1 N2 N3 R N
W 0.112 0.115 0.114 0.066 0.066 0.032
N1 0.885 0.202 0.781 0.820 0.457 0.157
N2 0.344 0.200 0.067 0.282 0.107 0.128
N3 0.801 0.502 0.300 0.099 0.213 0.108
R 0.703 0.396 0.449 0.634 0.116 0.143

Table A.2: Errors of sleep stage predictions using a Gaussian fit trained specifically for a particular sleep stage - EEG
derivation O1-A2. EEG = electroencephalography; PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 =
non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage

which has characteristics of NREM but could not be classified as N1, N2, or N3.

W N1 N2 N3 R N
W 0.124 0.071 0.054 0.032 0.039 0.012
N1 0.764 0.165 0.585 0.644 0.431 0.144
N2 0.373 0.194 0.067 0.226 0.114 0.153
N3 0.569 0.348 0.196 0.097 0.217 0.152
R 0.619 0.312 0.205 0.410 0.096 0.138

Table A.3: Errors of sleep stage predictions using a Gaussian fit trained specifically for a particular sleep stage - EEG
derivation C3-A2, F3-A2, and O1-A2. EEG = encephalography; PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM
stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N =

N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

W N1 N2 N3 R N
W 0.114 0.091 0.084 0.036 0.052 0.025
N1 0.845 0.150 0.717 0.740 0.452 0.144
N2 0.431 0.225 0.073 0.299 0.106 0.152
N3 0.685 0.422 0.245 0.102 0.207 0.122
R 0.677 0.373 0.383 0.587 0.110 0.155

A.4.2. Performance evaluation after removing outliers in feature values
Deleting 0.2% of the outlying values from the selected features and subsequent deletion of epochs with
missing data resulted in the errors reported in table Table A.4.

Table A.4: Number of epochs removed from the original dataset after deleting the 0.2% outlying values per selected feature.
PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2;

N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM but could not be
classified as N1, N2, or N3.

Original number of epochs Number of epochs removed Percentage removed epochs

W 37532 1365 3.64%
N1 11308 499 4.41%
N2 29439 817 2.78%
N3 35591 1042 2.93%
R 29478 811 2.75%
N 11851 499 4.21%

A.4.3. Performance evaluation using normalized feature values
The errors in sleep stage predictions, obtained from a Gaussian fit specifically trained for a particular
sleep stage using normalized feature values from the EEG derivation C3-A2, are illustrated in table
Table A.5.
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Table A.5: Errors of sleep stage predictions using a Gaussian fit trained specifically for a particular sleep stage using
normalized feature values. EEG = electroencephalography; W = wake; N1 = NREM stage 1 = non-rapid eye movement stage
1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM

but could not be classified as N1, N2, or N3.

W N1 N2 N3 R
W 0.111 0.062 0.029 0.040 0.021
N1 0.383 0.105 0.101 0.392 0.058
N2 0.632 0.260 0.108 0.469 0.139
N3 0.809 0.446 0.277 0.114 0.279
R 0.679 0.317 0.343 0.648 0.124

A.4.4. Evaluation of the cross-validation process within the model
The calculated errors of the model using cross-validation without defining groups can be read from
table Table A.6. It can be seen that the errors of the validation set are approximately 0.1.

Table A.6: Cross-validation without defining groups. W = wake; N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 =
NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM but

could not be classified as N1, N2, or N3.

W N1 N2 N3 R

W 0.100 0.082 0.078 0.045 0.033
N1 0.886 0.097 0.782 0.757 0.469
N2 0.584 0.285 0.100 0.400 0.099
N3 0.829 0.509 0.289 0.100 0.233
R 0.702 0.407 0.491 0.712 0.099
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A.5. Results model application to data from critically ill children

Table A.7: Epoch distribution across sleep stages per PICU patient. PICU = Pediatric Intensive Care Unit; W = wake; N1 =
NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement;

N = N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

W N1 N2 N3 R N Total number of epochs
PICU001 3157 2246 1397 1894 719 385 3157
PICU002 1229 92 74 1194 73 170 1229
PICU003 2930 2341 1862 2543 1448 930 2930
PICU004 2895 2744 2534 2736 2236 1382 2896
PICU005 2909 1331 1003 2836 692 775 2910
PICU006 2972 2528 2058 2665 1729 721 2972
PICU007 2711 0 0 1402 0 515 2837
PICU008 2913 113 35 2571 0 707 2916
PICU009 12 0 0 0 0 758 2399
PICU010 2869 2129 1443 2339 546 592 2869
PICU012 2999 1341 107 2230 0 978 3005
PICU013 2931 2768 2380 2872 1951 295 2931
PICU014 3370 2359 2162 3311 965 874 3370
PICU015 2895 2744 2534 2736 2236 1382 2896
PICU016 2930 2341 1862 2543 1448 930 2930
PICU018 2129 156 0 1604 0 331 2130
PICU020 2711 0 0 1402 0 515 2837
PICU021 6108 2515 2211 6068 1496 1376 6108
PICU022 3479 1980 1351 3431 525 624 3480
PICU024 2423 4 7 1168 9 729 2423
PICU025 2741 2024 1894 2712 1305 837 2741
PICU026 2869 2129 1443 2339 546 593 2869
PICU027 3157 2246 1398 1894 719 385 3157
Total 65339 36131 27755 54490 18643 16784 67992

(96%) (53%) (41%) (80%) (27%) (25%)
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Table A.8: The total count of epochs per PICU patient classified into each sleep stage. PICU = Pediatric Intensive Care Unit

0 1 2 3 4 5 6
PICU001 0 599 723 437 604 738 56
PICU002 0 27 955 162 25 51 9
PICU003 0 186 450 316 515 818 645
PICU004 1 91 84 148 265 1078 1229
PICU005 1 49 1276 474 348 441 321
PICU006 0 104 424 320 370 1243 511
PICU007 84 1097 1437 219 0 0 0
PICU008 1 242 1982 637 48 6 0
PICU009 1636 756 7 0 0 0 0
PICU010 0 352 433 517 892 469 206
PICU012 5 195 1483 822 472 28 0
PICU013 0 24 157 329 442 1770 209
PICU014 0 48 734 411 949 872 356
PICU015 1 91 84 148 265 1078 1229
PICU016 0 186 450 316 515 818 645
PICU018 1 340 1508 260 21 0 0
PICU020 84 1097 1437 219 0 0 0
PICU021 0 33 3067 694 688 983 643
PICU022 0 44 1194 797 796 511 138
PICU024 0 847 1250 322 2 2 0
PICU025 0 22 557 275 556 658 673
PICU026 0 351 433 519 890 471 205
PICU027 0 599 723 436 605 738 56

Table A.9: Number of epochs per PICU patient assigned to each sleep stage by the neurophysiologists. PICU = Pediatric
Intensive Care Unit; W = wake; N1 = NREM stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM
stage 3; R = REM = rapid eye movement; N = N-stage which has characteristics of NREM but could not be classified as N1,

N2, or N3.

W N1 N2 N3 R N Total number of epochs
PICU001 1698 603 658 166 32 0 3157
PICU002 484 0 0 355 82 308 1229
PICU003 1625 63 147 925 138 32 2930
PICU004 1030 0 0 0 87 1779 2896
PICU005 675 0 224 980 303 728 2910
PICU006 1055 0 0 0 758 1159 2972
PICU007 1303 516 704 230 63 21 2837
PICU008 237 0 0 0 0 2679 2916
PICU009 830 338 958 128 145 0 2399
PICU010 1441 145 676 541 66 0 2869
PICU012 1780 0 0 0 117 1108 3005
PICU013 326 0 0 0 318 2287 2931
PICU014 1282 0 0 0 350 1738 3370
PICU015 1030 0 0 0 87 1779 2896
PICU016 1667 169 147 868 79 0 2930
PICU018 1652 0 0 0 93 385 2130
PICU020 1303 516 704 230 63 21 2837
PICU021 189 3660 1486 613 160 0 6108
PICU022 1220 476 1030 562 192 0 3480
PICU024 2423 0 0 0 0 0 2423
PICU025 368 0 329 52 0 1992 2741
PICU026 1441 145 676 541 66 0 2869
PICU027 1698 603 658 166 32 0 3157
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A.6. Mahalanobis Distances over time
In Figure A.14, the MDs of PICU010 for stages N1 and N3, corresponding to moderate errors, also fluc-
tuate in clusters. For comparison, Figure A.15 presents another patient file with instances having both
low and high errors. In this figure, the clusters are less prominent. Patient PICU009 has remarkably
high errors compared to the other PICU patients. The computed MDs are illustrated in Figure A.16.
While a small portion of the epochs is assigned to sleep stage N, the majority of epochs consistently
were categorized as anomalous by all other Gaussian Models, with MDs surpassing the thresholds.

Figure A.14: Mahalanobis Distances over time for PICU010. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM
stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N =

N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.

Figure A.15: Mahalanobis Distances over time for PICU002. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM
stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N =

N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.
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Figure A.16: Mahalanobis Distances over time for PICU009. PICU = Pediatric Intensive Care Unit; W = wake; N1 = NREM
stage 1 = non-rapid eye movement stage 1; N2 = NREM stage 2; N3 = NREM stage 3; R = REM = rapid eye movement; N =

N-stage which has characteristics of NREM but could not be classified as N1, N2, or N3.
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