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Abstract

This thesis aims to assess robustness of networks by evaluating the performance of node
attack strategies, the applicability and accuracy of different approaches, and to increase
robustness of networks through analysing protecting methods, including link addition
and node protection strategies. To be specific, the relative size of the Largest Connected
Component (rLCC) and Average Two-Terminal Reliability (ATTR) are chosen to be
the performance metrics to evaluate the robustness of networks. In the assessment of
network robustness, simulations are employed for ten distinct attack strategies, which
include random attack, non-updated and updated degree attacks, non-updated and
updated stochastic degree attacks, non-updated and updated betweenness attacks,
and greedy attack. Three analytical approximation methods are implemented and
discussed, alongside the testing of a machine learning-based approach. Regarding the
enhancement of network robustness, the comparative analysis involves thirteen link
addition strategies and four node protection strategies. In all node removal scenarios, it
is observed that the updated betweenness attack emerges as the most harmful strategy.
Moreover, analytical approximations are proved to be effective means of evaluating
network robustness in the scenario of predicting robustness for synthetic networks
under random attack. Machine learning based methodologies show high accuracy
in predicting robustness of synthetic networks, exhibiting acceptable error rates in
predicting robustness of real-world networks. Besides, the updated betweenness link
addition strategy and targeted betweenness-based node protection exhibit the highest
efficacy in protecting networks against the most harmful attacks.
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1
Introduction

Complex networks, such as those seen in social networks and the World Wide Web,
provide a concise and potent means to represent the interconnected structure of diverse
complex systems. Within these networks, nodes stand for entities, and edges signify
various types of relationships or links [1][2]. In practical scenarios, numerous networks
exhibit pronounced vulnerability to malicious attacks. Therefore, it is essential to
develop effective methods for evaluating the robustness of existing networks in order
to reduce potential losses. These assessments have a wide range of applications; for
instance, consider the representation of a power grid system [3] as a network. This
system is vulnerable to both intentional hostile actions and natural disasters, in addition
to the effects of component aging and other contributing factors. The destruction
of a power grid can result in widespread power outages, economic disruption, and
public safety concerns, with long-term impacts on essential services and potential
environmental consequences. In such a context, a comprehensive analysis of the
consequences of various types of attacks becomes crucial in ensuring an uninterrupted
and dependable power supply.

In this thesis, the performance of different attack strategies is evaluated according to
the extent of reduction of the performance metrics rLCC and ATTR. The applicability
and accuracy of different approaches assessing robustness of networks, including
analytical approximations and machine learning-based approach, are analysed. Various
increasing robustness methods are implemented and the performance of which is
compared.

1.1. Objectives
The objectives of this thesis are:

1. Simulate how different attack strategies will impact on the robustness of different
networks.

1



2 Chapter 1. Introduction

2. Try different approaches to assess the robustness of networks under specific
attack strategies. Further investigate the performance of these methods.

3. Find approaches to increase the robustness of networks under attacks, and
evaluate the performance of different approaches.

1.2. Related work
In this section, we review relevant literature on network robustness assessments and
enhancement strategies, focusing on attack and protection mechanisms.

First of all, it is of significance to define what is robustness of networks. In [4],
Van Mieghem et al. provide a description and a structured approach for assessing the
robustness of network topology. It defines an ‘R-value’, which serves as a performance
metric applicable to the service and is scaled to the range between 0 and 1. Consequently,
an ‘R-value’ of 0 signifies the lack of network ‘goodness’, while an R-value of 1 indicates
perfect ‘goodness’. The relative size of the Largest Connected Component [5] and
Average Two-Terminal Reliability [6] are two crucial metrics proposed to evaluate the
robustness of networks, as they reflect the connectivity of a graph.

The influence of attacks on different networks is further investigated. Some
researchers focus on node attack. Schneider et al. conduct simulations to evaluate
the connectivity robustness [7] considering the size of the largest component during
degree-based attack. In [8], Pu et al. analyze network controllability robustness in
the presence of vulnerabilities across diverse network topologies. The investigation
discerns that, in terms of its impact on network controllability robustness, degree-based
attacks exhibit greater efficiency compared to random attacks. Furthermore, Lu et al.
also conduct research on controllability robustness on networks in [9]. They take a
deeper look in the controllability on both synthetic and real-world networks under
attack strategies which are random, degree-based and betweenness-based.

To investigate changes in network robustness when nodes are removed, one can
use the generating function derived from the degree distribution, see Newman et al.
[10], who study the theory of random graphs with arbitrary distributions of vertex
degree. They compute numerous statistical characteristics of random graphs through
the utilization of generating functions. In [11], Kenett et al. evaluate the analytical
structure and the results concerning percolation principles in a Network of Networks
(NoN) consisting of n interconnected random networks. Based on the investigation,
Kooĳ et al. further investigate the analytical approximations in [12], computing the
minimum fraction of the number of driver nodes in directed networks subject to node
removals.

For robustness prediction, there is a substantial amount of research using machine
learning-based approaches to predict network robustness. For instance, a lot of
work is done by Chen et al. [13, 14, 15, 16]. They conduct experiments based on
machine learning approaches, using a knowledge-based Predictor for the Controllability
Robustness (iPCR) [13], Learning Feature Representation-based Convolutional Neural
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Network(LFR-CNN) [14] and Spatial Pyramid Pooling Convolutional Neural Network
(SPP-CNN) [15] to predict the connectivity and controllability robustness of different
networks. They compare the performance among different methods and further
investigate the influence of the distribution of training data distributions [16].

In terms of increasing robustness, Masak et al. explore the effects of degree of nodes
and the distance between the targeted nodes in link adding with two-step selections
based on degrees or distances in [10]. In [17], Wang and Van Mieghem designed and
compared two practical methods for stepwise maximizing the algebraic connectivity
of a network that grows by adding edges. In [18], Louzada et al. propose a novel
approach for altering the network’s structure to enhance its robustness. The new
rewiring method is based on the evolution of the network’s largest component during
a sequence of targeted attacks.

1.3. Contributions
The main contributions of this thesis are:

1. In simulations, the structural metrics rLCC and ATTR are used to evaluate the
connectivity robustness of different networks.

2. Analytical approximations are computed on both real-world networks and
synthetic networks. The performance of them is analysed.

3. The performance of a convolutional neural network model is evaluated.
4. Increasing robustness approaches, including link adding and node protection,

are experimented with and explored in this thesis.
5. Metric energy is used to compare the performance of different attack and

protecting strategies

1.4. Approaches
The step by step approaches used in this project are described below:

1. Carry out a literature study to learn existing approaches assessing network
robustness and understand the current developments. Learn what kind of attack
strategies can be applied in the simulation and what type of protecting strategies
can be applied.

2. Learn how analytical approximation works to acquire a basic understanding of
the algorithm. Study machine learning, learning the basic principals and how
this approach can be applied in assessing the robustness of networks.

3. Apply different attack strategies on real-world networks (from Topology Zoo) of
small size. Evaluate the performance of different attack strategies on networks
with different degree sequences.
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4. Apply different attack strategies on synthetic networks (Erdős-Rényi and Barabási-
Albert networks). Evaluate the performance of different attack strategies on
networks with a specific property.

5. Apply analytical approximations on both real-world and synthetic networks.
Analyze the performance of this approach.

6. Train machine learning models with existing data, apply the models and compare
the outcome with simulated results.

7. Apply different protection methods on both real-world and synthetic networks.
Analyze the performance of these protecting methods.

1.5. Thesis outline
The structure of this thesis is as follows:

1. Chapter 2 introduces basic knowledge about graph theory, including graph
metrics, performance metrics and graph models related to this thesis.

2. Chapter 3 describes different types of attack strategies, including random, tar-
geted degree, targeted betweenness and greedy attacks, followed by a detailed
elaboration of analytical approximations for random and targeted degree at-
tacks. The Machine learning-based approach for predicting the robustness of
the networks, called Spatial Pyramid Pooling Convolutional Neural Network
(SPP-CNN), is also introduced.

3. Chapter 4 introduces two types of strategies for increasing the robustness of the
networks, including link adding strategies and node protection strategies.

4. Chapter 5 represents the simulations, analytical approximations and predictions
implemented in the experiments. The experiments encompass a variety of
graph models, featuring both synthetic networks such as the Erdős–Rényi and
Barabási–Albert graphs, as well as real-world networks primarily sourced from
the Topology Zoo dataset. The performance of different attack strategies is
compared. The performance of analytical approximations is discussed. The
performance of the machine learning approach is explored. The performance of
different increasing robustness strategies is compared and discussed.

5. Chapter 6 presents the conclusion and future work.



2
Background

In this chapter, related background is introduced. Section 2.1 introduces some basic
knowledge about Node centrality, in which three types of node centrality used in the
study are described. Section 2.2 introduces the performance metrics which represent
the robustness of a network. Section 2.3 introduces the dataset, including synthetic
networks and real-world networks, used in the experiments.

2.1. Node centrality
In graph theory, a graph is a fundamental mathematical structure [19] employed to
represent relationships and connections between nodes and links. Node centrality
indicates the topological importance of a node in a graph.

This section introduces three types of node centrality.

2.1.1. Degree

The degree of a node [19] is a fundamental concept that represents the number of
neighboring nodes which are directly connected to the node. The degree of a node
provides important information about the connectivity and structure of the network.

The degree of a node 𝑖 is denoted as 𝑑𝑖 in a graph 𝐺(𝑁,𝐿), with 𝑁 nodes and 𝐿

links. The higher values of the degree of a node, the more important role the node
plays in the network.

Some basic concepts concerning degree are mentioned as follows.

The maximum degree of a graph is defined as:

𝑑max = max
𝑖∈𝐺

𝑑𝑖 . (2.1)

5



6 Chapter 2. Background

The minimum degree of a graph is defined as:

𝑑min = min
𝑖∈𝐺

𝑑𝑖 . (2.2)

The average degree [19] of a graph, which can serve as an indicator to assess
whether the graph exhibits a dense or sparse structure, is defined as:

𝐸[𝐷] = 1
𝑁

𝑁∑
𝑖=1

𝑑𝑖 =
2𝐿
𝑁

. (2.3)

2.1.2. Betweenness

Betweenness [19] is a concept in network analysis that quantifies the importance of a
node within a graph based on its role in facilitating shortest paths between pairs of
other nodes. It measures how often a node lies on the shortest path between other
nodes in the graph. Mathematically, the betweenness (𝑏𝑖) of a node 𝑖 in a graph 𝐺 is
defined as:

𝑏𝑖 =
∑
𝑠≠𝑣≠𝑡

𝜎𝑠𝑡(𝑖)
𝜎𝑠𝑡

, (2.4)

where 𝑠 and 𝑡 are distinct nodes in the graph 𝐺, 𝜎𝑠𝑡 is the total number of shortest
paths from node 𝑠 to node 𝑡, and 𝜎𝑠𝑡(𝑖) is the number of those shortest paths that pass
through node 𝑖.

In simpler terms, betweenness measures the fraction of all shortest paths in the
graph that pass through a particular node. Nodes with high betweenness are often
critical for maintaining efficient communication and flow in networks. Their removals
can have a significant impact on network connectivity and efficiency.

Some basic concepts concerning betweenness are mentioned in the following
sections. The maximum betweenness of a graph is defined as:

𝑏max = max
𝑖∈𝐺

𝑏𝑖 . (2.5)

The minimum betweenness of a graph is defined as:

𝑏min = min
𝑖∈𝐺

𝑏𝑖 . (2.6)

2.1.3. Eigenvector

In the context of graph theory, the eigenvector centrality of a graph [20] refers to
a numerical value associated with a specific mathematical representation of the
graph, known as its adjacency matrix. The eigenvector centrality provides important
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information about the structural properties of the graph and has various applications
in network analysis, physics, and other fields.

The eigenvector centrality of a graph can be formally defined as follows:

Given a graph 𝐺 with an adjacency matrix 𝐴, the centrality for node 𝑖 is the 𝑖− 𝑡ℎ

element of an eigenvector associated with the largest eigenvalue𝜆 of 𝐴. The eigenvector
𝑥 is defined by the equation:

𝐴𝑥 = 𝜆𝑥. (2.7)

Eigenvector centrality is significant because it provides insights into various graph
properties, including the graph’s connectivity, spectral gap, and other structural
characteristics.

Some basic concepts concerning eigenvector centrality are mentioned in the follow-
ing sections. The maximum eigenvector centrality of a graph is defined as:

𝑥max = max
𝑖∈𝐺

𝑥𝑖 , (2.8)

and the minimum eigenvector centrality of a graph is defined as:

𝑥min = min
𝑖∈𝐺

𝑥𝑖 , (2.9)

where 𝑥𝑖 indicates the eigenvector centrality for node 𝑖.

2.2. Performance Metrics
Performance metrics [21] are a well-known area in the conventional analysis of
graphs. They are always used to explain robustness of a network, and determine
how much damage is induced by node or link removal. In this thesis, the robustness
of a network is measured by two structural metrics, the relative size of the Largest
Connected Component (rLCC) [5] and Average Two-Terminal Reliability (ATTR) [6].
The performance of different attack and protection strategies is measured by Energy.
The detailed introductions to these Performance metrics are presented in the following
sections.

2.2.1. rLCC

The rLCC is the ratio of the size of the largest cluster of connected nodes to the original
number of nodes N [5]. It reflects the connectivity of the graph. Thus rLCC satisfies:

𝑟𝐿𝐶𝐶 =
𝐿𝐶𝐶

𝑁
, (2.10)

where LCC is the number of nodes in the largest connected component and N is the
number of nodes in the considered network.
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2.2.2. ATTR

ATTR is defined as the number of connected node pairs divided by the total amount of
node pairs [6]. It corresponds to the probability that a randomly chosen pair of nodes
can reach each other, and therefore provides a global measure of connectivity between
all pairs of nodes. When the network is fully connected, ATTR equals one. In cases
where the network is not fully connected, ATTR is determined by dividing the sum
of the number of pairs of nodes in each connected component by the total number of
pairs of nodes in the entire network. Therefore ATTR satisfies:

𝐴𝑇𝑇𝑅 =

∑𝑚
𝑖=1

(𝑛𝑖

2
)(𝑁

2
) , (2.11)

where 𝑚 is the number of connected components, 𝑛𝑖 is the number of nodes in each
connected component, and 𝑁 is the number of nodes in the network.

Energy

Energy is used to evaluate the performance of different attacks and increasing robust-
ness strategies. It is computed by averaging the summed up metrics (rLCC and ATTR
in this thesis) throughout the attack process. The higher the energy is, the worse the
performance of the attack strategy is, or the better the performance of the increasing
robustness strategy is. It is defined by:

𝐸𝑚𝑒𝑡𝑟𝑖𝑐 =

∑𝑛𝑚
𝑖=1𝑚𝑖

𝑁
, (2.12)

where 𝑛𝑚 denotes the number of removed nodes, 𝑚𝑖 represents the metrics (rLCC or
ATTR) after 𝑖 node(s) is/are removed, and N is the number of nodes in the network.

2.3. Dataset
This section introduces the dataset used in the study, including three synthetic graphs
and the real-world network dataset.

2.3.1. Synthetic graphs

A random graph is a mathematical model used in graph theory to represent a type of
graph that is generated in a probabilistic or stochastic manner. In a random graph, the
edges between nodes are determined based on a certain probability distribution or
random process. In this thesis, three graph models are used.

Erdős–Rényi model

The Erdős–Rényi (ER) random graph model [22], named after mathematicians Paul
Erdős and Alfréd Rényi, is a foundational model in network theory and graph theory.
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It is employed to stochastically generate random graphs characterized by two primary
parameters:

𝑛: The total number of nodes in the graph.

𝑝: The edge formation probability between any pair of nodes.

In the 𝐺(𝑛, 𝑝) model, a graph is created by connecting labeled nodes in a random
manner. Each edge’s inclusion in the graph is determined independently, with a
probability of 𝑝. The degree distribution of the graph follows a binomial form, denoted
as:

𝑃(𝐷 = 𝑘) =
(
𝑛−1
𝑘

)
𝑝𝑘(1− 𝑝)𝑛−1−𝑘 . (2.13)

The average degree is:
𝐸[𝐷] = (𝑛−1)𝑝. (2.14)

The ER model facilitates the generation of graphs exhibiting a spectrum of sparsity or
density, contingent upon the 𝑝 value, with lower 𝑝 values yielding sparser graphs and
higher 𝑝 values resulting in denser graphs.

Barabási–Albert model

The Barabási–Albert (BA) model [23], introduced by Albert-László Barabási and Réka
Albert, represents a stochastic graph model designed to emulate scale-free networks—a
characteristic feature of various real-world networks. The BA model is characterized
by two primary parameters:

𝑛: The total number of nodes in the graph.

𝑚: The number of new links established when adding a new node.

In the 𝐺(𝑛,𝑚) model, a graph is created by adding links and nodes on a star
network of 𝑚+1 nodes. To be specific, new nodes are subsequently introduced into the
evolving graph, each connecting to 𝑚 existing nodes. The selection of existing nodes
to which a new node attaches is governed by a preferential attachment mechanism,
with nodes more highly connected (i.e., possessing a higher degree) being more likely
to attract new connections. With a node 𝑖 of degree 𝑑𝑖 , the probability of connection
between a new node and the node 𝑖 is denoted as:

𝑝𝑖 =
𝑑𝑖∑
𝑗∈𝐺 𝑑 𝑗

. (2.15)

The BA random model is frequently deployed for the simulation of networks that
mirror the structural properties encountered in diverse real-world network systems,
rendering it a valuable instrument in the analysis of complex systems.
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Configuration model

The Configuration Model [24] is a random graph model used in network science to
generate graphs with a specified degree sequence. It can generate graphs with a
prescribed degree distribution. The resulting graphs are typically random and may not
capture other structural properties seen in real-world networks, such as community
structure or clustering.

2.3.2. Topology Zoo

The Topology Zoo [25] is a collection of 233 interconnected and undirected network
datasets, compiled from publicly available information provided by network operators.
Many studies focused on evaluating and enhancing network robustness rely on data
sourced from the Topology Zoo. In this thesis, the analysis of real-world networks
is mainly based on networks from the Topology Zoo. Four networks are chosen to
display the performance of different approaches as examples. Some basic properties
are shown in the Table. 2.1

|𝑉 | |𝐸 | 𝐷𝑎𝑣𝑔

𝐺𝑒𝑎𝑛𝑡2012 40 61 3.05
𝐺𝑎𝑟𝑟201103 61 89 2.92
𝐷𝑒𝑙𝑡𝑎𝑐𝑜𝑚 113 183 3.24
𝑈𝑠𝐶𝑎𝑟𝑟𝑖𝑒𝑟 158 189 2.39

Table 2.1: Basic properties of chosen networks in Topology Zoo. In the table, |𝑉 | indicates the number
of nodes; |𝐸 | indicates the number of edges; 𝐷𝑎𝑣𝑔 indicates the average degree.

2.3.3. Network Repository

The Network Repository [26] stands as a pioneering resource, offering both interactive
data access and network-related datasets for real-time visual analytics. It distinguishes
itself not only as the first of its kind but also as the most extensive repository of network
data, encompassing thousands of datasets across more than 30 domains, ranging
from biological to social networks. This diverse and comprehensive collection of
network graph data holds immense value, facilitating significant research discoveries
and serving as a benchmark for various applications and fields, such as network
science, bioinformatics, machine learning, data mining, physics, and social science.
The repository includes a wide array of network data types, including relational,
attributed, heterogeneous, streaming, spatial, and time series data, as well as non-
relational machine learning datasets. All graph datasets are made easily accessible in
a standardized format. Furthermore, the Network Repository boasts an interactive
graph analytics engine that enables users to visualize network structures, glean macro-
level statistics about the graph data, and explore essential micro-level properties of
nodes and edges. Several networks are chosen to display the performance of different
approaches as examples. Some basic properties are shown in Table. 2.2
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|𝑉 | |𝐸 | 𝐷𝑎𝑣𝑔

𝑜𝑑𝑒𝑝𝑎400 400 802 4.01
𝑝𝑜𝑤𝑒𝑟−494− 𝑏𝑢𝑠 494 1080 4.37
𝑛𝑒𝑡𝑧4504− 𝑑𝑢𝑎𝑙 615 1171 3.81
𝑝𝑜𝑤𝑒𝑟−662− 𝑏𝑢𝑠 662 1568 4.74

Table 2.2: Basic properties of chosen networks in Network Repository. In the table, |𝑉 | indicates the
number of nodes; |𝐸 | indicates the number of edges; 𝐷𝑎𝑣𝑔 indicates the average degree.





3
Assessing the robustness of networks

by attacking nodes

To assess the robustness of networks, different attack strategies are applied and
corresponding simulations are conducted. In the experiments, various types of attacks
are considered that lead to node removals. Removals of links are not considered in
this thesis. The detailed description of these attack strategies is shown in the Section
3.1. Afterwards, the prediction methods, including analytical approaches introduced
and a Machine learning-based approach, are described in 3.2

3.1. Attack strategies
In graph theory, attack strategies involve different techniques for disturbing a network
by singling out particular nodes within the graph. These methods are typically explored
in the context of network robustness, aiming to assess how effectively a network can
endure attacks. In this section, four types of attack strategies are introduced.

3.1.1. Random attack

In the random attack strategy, nodes are removed randomly, and the structural metrics
are derived each time after a node is removed. To be specific, in this attack strategy,
every node has the same probability to be removed, which equals 𝑃𝑟(𝑛𝑜𝑑𝑒) = 1

𝑛 , where
n is the number of nodes in the network.

3.1.2. Targeted degree-based attacks

In the attack strategy based on degree, nodes are removed in regard to the degree of
the node. In this section, two normal ways and two stochastic ways to remove nodes

13
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are discussed.

Degree attacks

For degree attacks, nodes are removed directly based on the degree of the node. The
types of removing are classified as non-updated and updated degree attacks, and they
are introduced as follows:

• Non-updated degree attack: In non-updated degree attacks, the degree of each
node in the network is derived before the attack is applied. Each node is removed
in descending order according to its degree based on the originally derived
degree sequence. In that process, if there are multiple nodes with the same value
of degree, they will share the same probability to be removed and the algorithm
will randomly pick one of them to be removed.

• Updated degree attack: In updated degree attacks, the degree of each node in the
network is derived each time before an attack is applied, and then the node with
the highest degree is picked to be removed. In that process, if there are multiple
nodes with the same value of degree, they will share the same probability to be
removed and the algorithm will randomly pick one of them to be removed.

Stochastic degree attacks

For the Stochastic degree attack, the probability of attacking a node, is proportional
to some power of its degree. To be specific, if it is assumed that the probability of
removing node 𝑖 with degree 𝑘𝑖 is denoted by 𝑝𝑖 , then 𝑝𝑖 satisfies:

𝑝𝑖 =
𝑘𝛼
𝑖∑

𝑗∈𝑁 𝑘𝛼
𝑗

(3.1)

where N indicates the node set in the network applied. Here 𝛼 is a predefined
parameter, indicating the extent to which the degree affects the node removal. The
larger the absolute value of 𝛼 is, the more the attack strategy is influenced by degree.
To describe the effect of 𝛼 in detail, if 𝛼 = 0, each node shares the same probability
to be removed. It is regarded as random attack in that case. If 𝛼 > 0, the nodes with
larger degree share higher probability to be removed. If 𝛼 < 0, the nodes with larger
degree share lower probability to be removed. In the thesis, two cases are considered:
𝛼 = 1 and 𝛼 = 10.

• Non-updated stochastic degree attack: In non-updated stochastic degree attacks,
the probability of each node to be removed is derived before the attack is applied.
Each node is then removed according to the derived probability sequence.

• Updated stochastic degree attack: In updated stochastic degree attacks, the
probability of each node to be removed is derived and renewed each time before
a node is removed. The removal each time for each node is based on the updated
derived probability sequence.
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3.1.3. Targeted betweenness-based attacks

In targeted betweenness-based attacks, a node is removed based on the betweenness
of the node. A node is removed directly based on the betweenness of the node. In this
section, the types of removing are classified as non-updated and updated betweenness
attacks. They are introduced in the following sections.

• Non-updated betweenness attacks: In non-updated betweenness attacks, the
betweenness of each node in the network is derived before the attack is applied.
Nodes are removed in descending order according to the originally derived
betweenness sequence. In the process, if there are multiple nodes with the same
value of betweenness, they will share the same probability to be removed and
the algorithm will randomly pick one of them to be removed.

• Updated betweenness attacks: In updated betweenness attacks, the betweenness
of each node in the network is derived each time before the attack applied, and
then the node with the highest betweenness is picked to be removed. In the
process, if there are multiple nodes with the same value of betweenness, they
will share the same probability to be removed and the algorithm will randomly
pick one of them to be removed.

3.1.4. Greedy attacks

For greedy attacks, the aim is to remove the node which will result in the smallest
value of a metric in each step. In this thesis, the metric is chosen as rLCC. In that
process, if there are multiple nodes which will result in the same smallest value of
rLCC after they are removed, they will share the same probability to be removed and
the algorithm will randomly pick one of them be removed.

3.2. Prediction strategies
Prediction methods in graph theory encompass both analytical approximations and
machine learning-based approaches to forecast various characteristics or behaviors
within networks. In this section, analytical approximations for rLCC and ATTR are
demonstrated in detail at first, followed by the description of the machine learning-
based approach.

3.2.1. Analytical Approximations

Analytical approximation algorithms [27] are efficient algorithms that find approximate
values of structural metrics under different attacks. Conducting this study holds both
practical value and significance due to its efficiency compared to simulations, offering
a considerably shorter time requirement, while still yielding relatively precise results.
This thesis discusses three analytical approximation methods, approximating rLCC
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and ATTR under random attacks and stochastic degree attacks in two cases.

Analytical Approximations of rLCC under random attacks

To derive the analytical approximation of rLCC [10], the generating function [28] for
the degree distribution of the network need to be firstly derived:

𝐺0(𝑥) =
∑∞

𝑘=0 𝑝𝑘𝑥
𝑘 , (3.2)

where 𝑝𝑘 =
𝑛𝑘

𝑁 (𝑛𝑘 denotes the number of nodes with degree 𝑘, and 𝑁 denotes the total
number of nodes), 𝑥 is an arbitrary variable, and 𝑘 is the corresponding degree. The
average degree is denoted by

< 𝑘 >= 𝐺′
0(1). (3.3)

Afterwards, the generating function for excess degree distribution [29] is derived as:

𝐺1(𝑥) =
1

< 𝑘 >

∑∞
𝑘=1 𝑘𝑝𝑘𝑥

𝑘−1 =
1

< 𝑘 >
𝐺′

0(𝑥). (3.4)

Under random attacks, as the proportion of nodes being removed increases with the
ongoing attack, the generating function for degree [30] becomes:

𝐺0(𝑥) = 𝐺0(𝑝+(1− 𝑝)𝑥), (3.5)

and the average degree is derived as:

< 𝑘 > =< 𝑘 > (1− 𝑝). (3.6)

Then the generating function for excess degree distribution is derived as:

𝐺1(𝑥) =
1

< 𝑘 >
𝐺′

0(𝑥). (3.7)

The relative size of the largest connected component 𝑆 can be computed with the
generating functions [29] for degree and excess degree distributions known. It is
derived as:

𝑆 = 1−𝐺0(𝑢), (3.8)

where 𝑢 is the smallest non-negative real solution of

𝑢 = 𝐺1(𝑢). (3.9)
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Analytical Approximations of ATTR for random attack

The analytical approximation of ATTR is derived after the analytical approximation of
rLCC is computed. The first step is to derive lower and upper bounds for the ATTR.
Here, a network with 𝑁 nodes and the size of the largest connected component 𝐿𝐶𝐶 is
considered. For the lower bound, it is assumed that all components outside the largest
one are isolated nodes with degree 0. For this case, we obtain:

𝐴𝑇𝑇𝑅𝑚𝑖𝑛 =

(𝐿𝐶𝐶
2
)(𝑁

2
) . (3.10)

Under this assumption, the average size of the connected components other than the
𝐿𝐶𝐶, denoted by 𝜇𝑚𝑖𝑛 , satisfies:

𝜇𝑚𝑖𝑛 = 1 (3.11)

For the upper bound, it is assumed that the remaining connected components are
as large as possible. To determine the upper bound, a number 𝐻 is defined as:

𝐻 = 𝑚𝑖𝑛{𝐿𝐶𝐶,𝑁 −𝐿𝐶𝐶}, (3.12)

and two parameters 𝑄 and 𝑅 are defined by the equation:

𝑁 −𝐿𝐶𝐶 =𝑄𝐻 +𝑅, (3.13)

where 𝑄 indicates the number of second largest connected components, and 𝑅 indicates
the number of nodes in the smallest connected component in that case. The upper
bound is then derived as:

𝐴𝑇𝑇𝑅𝑚𝑎𝑥 =

(𝐿𝐶𝐶
2
)
+𝑄

(𝐻
2
)
+
(𝑅
2
)(𝑁

2
) . (3.14)

In this case, the average size of the connected components outside the 𝐿𝐶𝐶 (𝜇𝑚𝑎𝑥) is
derived as follows: If 𝐻 = 𝑁 −𝐿𝐶𝐶, it is derived as:

𝜇𝑚𝑎𝑥 = 𝐻, (3.15)

if 𝐻 ≠ 𝑁 −𝐿𝐶𝐶 and 𝑅 = 0, it is derived as:

𝜇𝑚𝑎𝑥 =
𝑁 −𝐿𝐶𝐶

𝑄
, (3.16)

if 𝐻 ≠ 𝑁 −𝐿𝐶𝐶 and 𝑅 ≠ 0, it is derived as:

𝜇𝑚𝑎𝑥 =
𝑁 −𝐿𝐶𝐶

𝑄+1 . (3.17)
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For the general case, according to [10], the average size of connected components
outside the 𝐿𝐶𝐶, denoted as �̄�, is derived as:

�̄� =
2

2−< 𝑘 >𝑢2/(1−𝑆)
, (3.18)

where 𝑆 is the previously computed analytical approximation of rLCC and u is the
solution of Eq.(3.9). With the average sizes of the connected components outside the
𝐿𝐶𝐶 of the lower bound case and the upper bound case being derived, and the average
size of connected components outside the 𝐿𝐶𝐶 being known, a parameter 𝛽 can be
derived in such a way that the weighted average of 𝜇𝑚𝑖𝑛 and 𝜇𝑚𝑎𝑥 is equal to �̄�:

�̄� = 𝛽𝜇𝑚𝑖𝑛 +(1−𝛽)𝜇𝑚𝑎𝑥 . (3.19)

The parameter 𝛽 is then solved as:

𝛽 =
�̄� −𝜇𝑚𝑎𝑥

𝜇𝑚𝑖𝑛 −𝜇𝑚𝑎𝑥
. (3.20)

The final estimate for the ATTR is derived by taking a weighted average of 𝐴𝑇𝑇𝑅𝑚𝑖𝑛

and 𝐴𝑇𝑇𝑅𝑚𝑎𝑥 as:
𝐴𝑇𝑇𝑅∗ = 𝛽𝐴𝑇𝑇𝑅𝑚𝑖𝑛 +(1−𝛽)𝐴𝑇𝑇𝑅𝑚𝑎𝑥 . (3.21)

Analytical Approximations for stochastic degree attacks

In the previous section, it is introduced that a parameter 𝛼 is required to be fixed in
advance, and we choose two cases with 𝛼 = 1 and 𝛼 = 10. The analytical approximations
also focus on the corresponding two cases, approximating the structural metrics of
networks under non-updated stochastic degree attacks. The derivation of the analytical
approximations for non-updated stochastic degree attacks refers to the previous analysis
of analytical approximations for random attacks. It is supposed that the changes of the
generating functions for degree and excess degree distributions correspond to those in
a random attack. In that case, the fraction 𝑝 of removed nodes under targeted attacks
are mapped onto the effective proportion 𝑝 of nodes under random node attack. The
aim is to derive the effective proportion 𝑝 to substitute the original 𝑝 mentioned in the
previous section for computing the analytical approximations of rLCC under random
attacks. With the 𝑝 computed, rLCC and ATTR can be then computed following the
steps described in the previous section.

Case of 𝜶 = 1

The derivation of 𝑝 in that case is proposed in [12]. It is calculated by:

𝑝 = 1−
𝑓 𝐺

′
𝛼( 𝑓 )

< 𝑘 >
, (3.22)
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where 𝐺𝛼(𝑥) =
∑∞

𝑘=0 𝑝𝑘𝑥
𝑘𝛼 , and in this case, 𝐺𝛼(𝑥) =

∑∞
𝑘=0 𝑝𝑘𝑥

𝑘 with 𝛼 = 1 (where
𝑝𝑘 =

𝑛𝑘

𝑁 , 𝑛𝑘 denotes the number of nodes with degree 𝑘, and 𝑁 denotes the total number
of nodes). Here < 𝑘 > is the average total degree of the initial network. 𝑓 is derived by
the equation: 𝐺𝛼( 𝑓 ) = 1− 𝑓 .

Case of 𝜶 = 10

The derivation of 𝑝 in that case is proposed in [12]. It is calculated by:

𝑝 =

∑𝑘=𝑘
𝑘=𝑘𝑚𝑎𝑥

𝑝𝑘𝑘

< 𝑘 >
, (3.23)

where 𝑘𝑚𝑎𝑥 denotes the largest degree, and degree 𝑘 is derived by the equation when
𝑘 satisfies: ∑𝑘=𝑘

𝑘=𝑘𝑚𝑎𝑥
𝑝𝑘 = 𝑝. (3.24)

3.2.2. Machine learning-based approach

A type of Convolutional Neural Network is developed by the team of Guanrong
Chen, which is called the Spatial Pyramid Pooling Convolutional Neural Network
(SPP-CNN)[15]. The novel framework introduces a spatial pyramid pooling layer
positioned between the convolutional and fully-connected layers. This addresses the
prevalent problem of incongruity found in CNN-based prediction methods, thereby
enhancing its adaptability and extending its applicability.

As depicted in Figure 3.1, an 𝑁 ×𝑁 input image yields 𝐿 𝑁′×𝑁′ feature maps,
where 𝐿 denotes the quantity of filters in the last convolutional layer. Within the
SPP layer, these feature maps are partitioned into three distinct tiers of spatial bins,
sized at 1× 1, 2× 2, and 4× 4, and subsequently subjected to max pooling with
corresponding dimensions. Following this process, an output representation vector
of size 𝑝𝐿 is produced as the SPP layer’s output, where both 𝐿 and 𝑝 are predefined
hyperparameters. Consequently, regardless of the input image’s size, a fixed-length
𝑝𝐿-vector is generated for input into the fully-connected layers. In the thesis, three
pyramid pooling levels are employed, with sizes of 1×1, 2×2, and 4×4, respectively.
Empirical evidence has confirmed that the performance of the SPP layer remains
unaffected by variations in pyramid bin settings.

Prediction error

To evaluate the performance of the machine learning model, prediction error [31]
is often used. In this thesis, the errors in prediction refer to the variances between
the actual values of the dependent variable and the values predicted by the machine
learning model. To be specific, we define vt = {𝑣𝑡(𝑖)}𝑁−1

𝑖=0 and vp =
{
𝑣𝑝(𝑖)

}𝑁−1
𝑖=0 as the

simulated and the predicted robustness curves respectively, where 𝑖 indicates the
number of experiments conducted. The prediction error 𝜉 is defined as:
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Figure 3.1: The convolutional neural network structure with a spatial pyramid pooling layer

𝜉 =
1
𝑁

𝑁−1∑
𝑖=0

𝜉(𝑖), (3.25)

where 𝜉(𝑖) = |𝑣𝑡(𝑖)−𝑣𝑝(𝑖)|, 𝑖 = 0,1, ..., 𝑁 −1. The lower the value of the prediction error,
the better the prediction performance of the model.



4
Increasing the robustness of networks

This chapter delves into the realm of network robustness, exploring approaches aimed
at augmenting the robustness of networks. Two strategies for increasing robustness
are investigated. Section 4.1 introduces a strategy achieved through the incorporation
of additional links. Section 4.2 introduces a strategy realised by protecting nodes.

4.1. Link addition strategies
This section describes different link addition strategies in detail. Link addition strategies
protect the networks by increasing their connectivity before the attacks are processed.
To be specific, a specific number of links are added through specific approaches before
attacks.

4.1.1. Random link additions

In random link addition strategy, links between each node are added randomly. To
explain it in detail, in this strategy, every link in the complement graph of the graph is
of the same probability to be added, which is 1

𝑛𝑐
, where 𝑛𝑐 is the number of edges in

the complement graph of the network.

4.1.2. Targeted degree-based link additions

To explore the influence of degree, the targeted degree-based link addition strategy
is applied. In this protection strategy, all the potential links to be added (links in the
complement graph) are weighted by the degree of their vertices by 𝑊(𝑑𝑖 𝑗) = 𝑘𝑖 ∗ 𝑘 𝑗 ,
where 𝑘𝑖 and 𝑘 𝑗 indicate the degree of the vertices in the original network. The strategy
is classified as four different strategies and they are introduced as follows.

21
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Non-updated minimum degree link additions

In non-updated minimum degree link addition strategy, the degree weight of each
link in the complement network is derived before the process of adding links. Links
are added in ascending order according to its degree weight based on the original
derived degree weight sequence. In that process, if there are multiple links with the
same value of degree weight, they will share the same probability to be added and the
algorithm will randomly pick one of them to add.

Non-updated maximum degree link additions

In non-updated maximum degree link addition strategy, the process for adding links is
similar to that in non-updated minimum degree link addition strategy. The difference
is that, after the the degree weight of each link in the complement network is derived,
links are added in descending order according to the original derived degree weight
sequence.

Updated minimum degree link additions

In updated minimum degree link addition, the degree weight of each link in the
complement network is derived each time before a link is added. The link with the
lowest degree weight is then picked to be added. In that process, if there are multiple
links with the same value of degree weight, they will share the same probability to be
added and the algorithm will randomly pick one of them to add.

Updated maximum degree link additions

The updated maximum degree link addition is similar to the updated maximum
degree link addition strategy. The difference is that, each time after the degree weight
of each link in the complement network is derived, the link with highest degree weight
is picked to be added.

4.1.3. Targeted betweenness-based link additions

The impact of betweenness is also explored. In targeted betweenness-based link
addition strategy, links in the complement graph are weighted by the betweenness
of their vertices by 𝑊(𝑏𝑖 𝑗) = 𝑏𝑖 ∗ 𝑏 𝑗 , where 𝑏𝑖 and 𝑏 𝑗 indicate the betweenness of the
vertices in the original network. The strategy is classified as four types and they are
introduced as follows.

Non-updated minimum betweenness link additions

In non-updated minimum betweenness link addition strategy, the betweenness weight
of each link in the complement network is derived before the process of adding links.



4.1. Link addition strategies 23

Links are added in ascending order according to the original derived betweenness
weight sequence. In that process, if there are multiple links with the same value
of betweenness weight, they will share the same probability to be added and the
algorithm will randomly pick one of them to add.

Non-updated maximum betweenness link additions

In non-updated maximum betweenness link addition strategy, the process for adding
links is similar to that in non-updated minimum betweenness link addition strategy.
The difference is that, after the betweenness weight of each link in the complement
network is derived, links are added in descending order according to the original
derived betweenness weight sequence.

Updated minimum betweenness link additions

In updated minimum betweenness link addition, the betweenness weight of each link
in the complement network is derived each time before a link is added. The link with
the lowest betweenness weight is then picked to be added. In that process, if there are
multiple links with the same value of betweenness weight, they will share the same
probability to be added and the algorithm will randomly pick one of them to add.

Updated maximum betweenness link addition

The updated maximum betweenness link addition is similar to updated maximum
betweenness link addition strategy. The difference is that, each time after the between-
ness weight of each link in the complement network is derived, the link with the
highest betweenness weight is picked to be added.

4.1.4. Targeted eigenvector centrality-based link additions

An exploration is also carried out to understand the significance of eigenvector centrality.
In targeted eigenvector centrality-based link addition strategy, links in the complement
graph are weighted by the eigenvector centrality of their vertices by 𝑊(𝑥𝑖 𝑗) = 𝑥𝑖 ∗ 𝑥 𝑗 ,
where 𝑥𝑖 and 𝑥 𝑗 indicate the eigenvector centrality of the vertices in the original network.
The strategy is classified as four types and they are introduced as follows.

Non-updated minimum eigenvector centrality link additions

In non-updated minimum eigenvector centrality link addition strategy, the eigenvector
centrality weight of each link in the complement network is derived before the process
of adding links. Links are added in ascending order according to the original derived
eigenvector centrality weight sequence. In that process, if there are multiple links with
the same value of eigenvector centrality weight, they will share the same probability to
be added and the algorithm will randomly pick one of them to add.
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Non-updated maximum eigenvector centrality link additions

In non-updated maximum eigenvector centrality link addition strategy, the process
for adding links is similar to that in non-updated minimum eigenvector centrality
link addition strategy. The difference is that, after the eigenvector centrality weight of
each link in the complement network is derived, links are added in descending order
according to the original derived eigenvector centrality weight sequence.

Updated minimum eigenvector centrality link additions

In updated minimum eigenvector centrality link additions, the eigenvector centrality
weight of each link in the complement network is derived each time before a link is
added. The link with the lowest eigenvector centrality weight is then picked to be
added. In that process, if there are multiple links with the same value of eigenvector
centrality weight, they will share the same probability to be added and the algorithm
will randomly pick one of them to add.

Updated maximum eigenvector centrality link additions

The updated maximum eigenvector centrality link addition is similar to updated
maximum eigenvector centrality link addition strategy. The difference is that, each
time after the eigenvector centrality weight of each link in the complement network is
derived, the link with highest eigenvector centrality weight is picked to be added.

4.2. Node protection strategies
In this section, different node protection strategies are explained. Node protection
strategies protect the networks by preventing specific nodes from being attacked. In
node protection, only the protection of nodes with high values for certain metrics is
considered. This rationale stems from the general principle that nodes with higher
metric values tend to hold more prominent and influential roles [19].

4.2.1. Targeted degree-based node protection

The importance of degree is investigated in targeted degree-based node protection
strategy. In this protection strategy, the degree of each node in the network is
determined before the attack is applied. Based on the derived degree sequences,
specific proportions of nodes with highest degree are picked and protected from being
attacked. To be specific, each node is protected in descending order according to its
degree. In that process, if there are multiple nodes with the same value of degree, they
will share the same probability to be protected and the algorithm will randomly pick
one of them to be protected.
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4.2.2. Targeted betweenness-based node protection

Betweenness is also considered in node protection. In the targeted betweenness-based
node protection strategy, the betweenness of each node in the network is derived
before the attack is applied. Based on the derived betweenness sequences, specific
proportions of nodes with highest betweenness are picked and protected from being
attacked. To be specific, each node is protected in descending order according to
its betweenness. In that process, if there are multiple nodes with the same value of
betweenness, they will share the same probability to be protected and the algorithm
will randomly pick one of them to be protected.

4.2.3. Targeted eigenvector centrality-based node protection

Another metric which we do research on is eigenvector centrality. In the targeted
eigenvector centrality-based node protection strategy, the eigenvector centrality of each
node in the network is derived before the attack is applied. Based on the derived
eigenvector centrality sequences, specific proportions of nodes with highest eigenvector
centrality are picked and protected from being attacked. To be specific, each node is
protected in descending order according to its eigenvector centrality. In that process, if
there are multiple nodes with the same value of eigenvector, they will share the same
probability to be protected and the algorithm will randomly pick one of them to be
protected.





5
Result and analysis

In this chapter, the simulations, analytical approximations and predictions for perfor-
mance metrics of synthetic networks and real-world networks under different attack
strategies, which are introduced in chapter 3 are firstly shown in section 5.1. In section
5.2, two network increasing robustness methods are implemented under the case of
updated betweenness attack strategy.

5.1. Robustness assessing results
In this section, all the different attack strategies simulated on Erdős–Rényi graphs,
Barabási–Albert graphs, and real-world graphs from the Topology Zoo are demon-
strated. Analytical approximations, which can be regarded as a way of prediction,
are implemented on the networks under random attacks and stochastic degree at-
tacks. Prediction is also conducted by the machine learning-based approach. It is
implemented on networks under random attacks and updated degree attacks.

5.1.1. Simulations on synthetic networks

In order to assess the performance of the ten attack strategies, simulations on two
different kinds of synthetic graphs are conducted.

ER random graphs

To evaluate the performance of the attack strategies, simulations are conducted on ER
random networks with total number of nodes equal to 1000 and the edge formation
probability equal to 0.008. One network with specific parameters is firstly generated
and the network is then attacked by different strategies. The metric values at each
step under attacks is recorded. The final result of each attack strategy is obtained by

27
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averaging the results of 300 generated networks. The average rLCC and ATTR with
respect to the proportion of removed nodes for different attack strategies are depicted
in Fig. 5.1.

(a) rLCC (b) ATTR

Figure 5.1: Comparison of different attack strategies on Erdős–Rényi graphs (1000,0.008). Ten strategies
are applied. The x-axis denotes the proportion of nodes removed, the y-axis denotes the performance

metrics, which indicate robustness of the network. The blue curves represent the performance of
random attacks. The orange curves represent the performance of degree attacks. The green curves

represent the performance of updated degree attacks. The red and purple curves represent the
performance of stochastic degree attacks with 𝛼=1 and with 𝛼=10 respectively. The brown and pink

curves represent the performance of stochastic updated degree attacks with 𝛼=1 and with 𝛼=10
respectively. The grey curves represent the performance of betweenness attacks. The olive curves

represent the performance of updated betweenness attacks. The cyan curves represent the performance
of greedy attacks.

From the figures, it is found that both rLCC and ATTR decrease with increasing
number of nodes in the network being removed. To be specific, when one attack
strategy is more harmful than another attack strategy in regard to rLCC with a specific
proportion of nodes being removed, this attack strategy still does more harm to the
network in ATTR with the corresponding proportion of nodes being removed.

Comparing the overall performance of the attack strategies, apart from the stochastic
degree attacks, upon Erdős–Rényi graphs, it is found that the performance of updated
betweenness attacks are the best, followed by the performance of updated degree
attacks. Degree and betweenness attack strategies show similar impacts on the
networks, and they perform worse than updated degree attacks. Greedy attack
strategy is the second best attack strategy. The difference of the performance between
greedy attacks and degree/betweenness attacks becomes larger after about 43% of
nodes being removed. Random attacks shows the worst performance. Analysing the
stochastic degree attacks, with the increase of parameter 𝛼, the strategy becomes more
harmful to the network. Besides, the updated attack strategies always outperform
the non-updated attack strategies. For all the attack strategies, at the beginning, with
that Erdős–Rényi graphs is generated purely random, all the curves coincides with
each other. This is because when a node is removed, the remaining nodes still form a
fully connected network at the very beginning. In other words, the size of the Largest
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Connected Component remains similar as it changes in the previous stage. After
approximately 35% of nodes are removed, differences among each strategy become
significant.

BA random graphs

Simulations are conducted upon a BA random network with the total number of nodes
equal to 300 and the number of edges that a newly added node forms when it joins
the network equal to three. One network with specific parameters is firstly generated
and the network is then attacked by different strategies. The metric values at each step
under attacks is recorded. The final result for each simulation is obtained by averaging
the result of 300 networks. The average rLCC and ATTR with respect to the proportion
of removed nodes for different attack strategies are depicted in Fig. 5.2.

(a) rLCC (b) ATTR

Figure 5.2: Comparison of different attack strategies on Barabási–Albert graphs (500,3). Ten strategies
are applied. The x-axis denotes the proportion of nodes removed, the y-axis denotes the performance

metrics, which indicate robustness of the network. The blue curves represent the performance of
random attacks. The orange curves represent the performance of degree attacks. The green curves

represent the performance of updated degree attacks. The red and purple curves represent the
performance of stochastic degree attacks with 𝛼=1 and with 𝛼=10 respectively. The brown and pink

curves represent the performance of stochastic updated degree attacks with 𝛼=1 and with 𝛼=10
respectively. The grey curves represent the performance of betweenness attacks. The olive curves

represent the performance of updated betweenness attacks. The cyan curves represent the performance
of greedy attacks.

Comparing the performance of different attack strategies on Barabási–Albert graphs,
what is different from the observation in Erdős–Rényi graphs case is that, firstly, the
curves do not coincide at the beginning. It is due to that Barabási–Albert network
model generates networks by iteratively adding nodes and connecting them to existing
nodes based on preferential attachment,and it is not a purely random process. In
that case, the Largest Connected Component varies with the changes in the attack
process. The second difference is that the performance differences between degree
attacks and updated degree attacks, betweenness attacks and updated betweenness
attacks are smaller in the Barabási–Albert graphs case. To be specific, the updated
strategies are much better than the non-updated strategies in Erdős–Rényi graphs
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case while the performance of these two types of strategies does not differ much in
the Barabási–Albert graphs case. In addition, the degree attack strategy outperforms
betweenness attack strategy in the simulation.

5.1.2. Simulations on real-world networks

To assess the performance of the ten attack strategies, simulations on real-world graphs
are conducted. The real-world networks used in the simulations are from the Topology
Zoo. In this section, firstly, the simulations on a network named ‘Deltacom’ are
analysed. ‘Deltacom’ is a network with 113 nodes and with degree sequence [0 3 50 31
8 7 4 6 1 1 2]. The sequence gives a concise representation of the distribution of nodes in
the network based on their degrees. Each number indicates the number of nodes with
a specific degree, starting from degree 0 and incrementing by 1 for each subsequent
number in the sequence. Afterwards, to analyse the performance of different attack
strategies on real-world networks. The energy metric, which is introduced in Section
2.2, is computed for all networks in the Topology Zoo and then averaged.

When conducting a simulation for one attack strategy, the network is firstly read
and then attacked by different strategies. The metric values at each step under attacks
is recorded. The final result for each simulation is obtained by averaging the result of
300 networks. The average rLCC and ATTR with respect to the proportion of removed
nodes for different attack strategies are depicted in Fig. 5.3.

(a) rLCC (b) ATTR

Figure 5.3: Comparison of different attack strategies on network ‘Deltacom’. Ten strategies are applied.
The x-axis denotes the proportion of nodes removed, the y-axis denotes the performance metrics, which
indicate robustness of the network. The blue curves represent the performance of random attacks. The

orange curves represent the performance of degree attacks. The green curves represent the
performance of updated degree attacks. The red and purple curves represent the performance of

stochastic degree attacks with 𝛼=1 and with 𝛼=10 respectively. The brown and pink curves represent
the performance of stochastic updated degree attacks with 𝛼=1 and with 𝛼=10 respectively. The grey
curves represent the performance of betweenness attacks. The olive curves represent the performance

of updated betweenness attacks. The cyan curves represent the performance of greedy attacks.

In this case, the updated betweenness attacks still outperform any other attack
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strategies. The betweenness and greedy attack strategies perform well before about
20% of nodes are moved, while they are exceeded by degree and updated degree attack
afterward. The greedy attack strategy outperforms any other attack strategy initially,
but other attack methods surpass its performance after about 3% of nodes are attacked.

To explore the overall performance of the attacks, 233 networks in the Topology
Zoo are used and simulations are conducted on them. As it is noticed that when about
80% of nodes are removed, both metrics approach zero, only the metrics before 80% of
removed nodes are considered and used to compute the energy. With the energy for
each network computed as 𝐸𝑖(𝑚𝑒𝑡𝑟𝑖𝑐) =

∑𝑛𝑚
𝑖=1 𝑚𝑖

𝑁 , the averaged energy for a specific attack
strategy computed as 𝐸𝑚𝑒𝑡𝑟𝑖𝑐 =

∑𝑛
𝑖=1𝐸𝑖(𝑚𝑒𝑡𝑟𝑖𝑐)

𝑛 , where n indicates the number of networks.
The results are shown in the Table 5.1

𝑟𝑛𝑑 𝑛𝑑𝑒𝑔 𝑢𝑑𝑒𝑔 𝑛𝑏𝑒𝑡 𝑢𝑏𝑒𝑡 𝑔𝑟𝑒𝑒𝑑𝑦 𝑛𝑑𝑒𝑔(𝛼 = 1) 𝑢𝑑𝑒𝑔(𝛼 = 1) 𝑛𝑑𝑒𝑔(𝛼 = 10) 𝑢𝑑𝑒𝑔(𝛼 = 10)
𝐸𝑟𝐿𝐶𝐶 0.389 0.169 0.149 0.229 0.141 0.166 0.2954 0.2953 0.221 0.201
𝐸𝐴𝑇𝑇𝑅 0.236 0.077 0.070 0.138 0.061 0.075 0.1970 0.1969 0.133 0.12555

Table 5.1: Average energy for networks in the Topology Zoo. In the table, 𝑟𝑛𝑑 indicates random attacks;
𝑛𝑑𝑒𝑔 indicates non-updated degree attacks; 𝑢𝑑𝑒𝑔 indicates updated degree attacks; 𝑛𝑏𝑒𝑡 indicates
non-updated betweenness attacks; 𝑢𝑏𝑒𝑡 indicates updated-betweenness attacks; 𝑔𝑟𝑒𝑒𝑑𝑦 indicates

greedy attacks; 𝑛𝑑𝑒𝑔(𝛼 = 1) indicates non-updated stochastic degree attacks for the case when 𝛼 = 1;
𝑛𝑑𝑒𝑔(𝛼 = 1) indicates updated stochastic degree attacks for the case when 𝛼 = 1; 𝑛𝑑𝑒𝑔(𝛼 = 10) indicates
non-updated stochastic degree attacks for the case when 𝛼 = 10; 𝑢𝑑𝑒𝑔(𝛼 = 10) indicates non-updated

stochastic degree attacks for the case when 𝛼 = 10

From the table, in both the case of rLCC or ATTR, the averaged energy for random
attacks is always the largest, and therefore the random attack process is regarded as
the worst strategy. Besides, with the minimum averaged energy occurring in updated
betweenness attacks both in the simulations of rLCC and ATTR, updated betweenness
attacks are regarded as the best strategy. Generally, higher rLCC energy indicates
higher ATTR energy. Based on the results shown in the table, the performance of
the attack strategies, from the best to the worst, is ranked as: updated betweenness
attacks, updated degree attacks, greedy attacks, non-updated degree attacks, updated
stochastic degree attacks with 𝛼 = 10, non-updated stochastic degree attacks with
𝛼 = 10, non-updated betweenness attacks, updated stochastic degree attacks with
𝛼 = 1, non-updated stochastic degree attacks with 𝛼 = 1, random attacks.

5.1.3. Analytical approximations on synthetic networks

In this section, the performance of the analytical approximations is analysed. It includes
the approximations under random attacks and the approximations under stochastic
degree attacks with 𝛼=1 and 𝛼=10. The simulations are conducted on Erdős–Rényi
graphs, Barabási–Albert graphs, and real-world graphs.
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ER random graphs

To evaluate the performance of the analytical approximations, we conduct simulations
upon ER random networks with the total number of nodes equal to 1000 and the edge
formation probability equal to 0.008. The analytically approximated rLCC and ATTR
are depicted in Fig. 5.4 and they are compared with the corresponding simulated
results.

(a) rLCC(random) (b) ATTR(random)

(c) rLCC(analytical(𝛼=1)) (d) ATTR(analytical(𝛼=1))

(e) rLCC(analytical(𝛼=10)) (f) ATTR(analytical(𝛼=10))

Figure 5.4: Evaluation of analytical approximations on Erdős–Rényi graphs (1000,0.008). Three types of
attack are applied. The x-axis denotes the proportion of nodes removed, the y-axis denotes the

performance metrics, which indicate the robustness of the network. The blue curves represent the
simulated results. The orange curves represent the corresponding analytical approximations.
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The figures show that the two curves coincide well in the case of random attacks,
especially when the algorithm approximates ATTR. The approximation becomes worse
when the algorithm approximates the stochastic degree attacks. The difference between
the two curves becomes larger when 𝛼 increases from 1 to 10. Moreover, from the
figures, the algorithm can approximate ATTR better than rLCC, as the gap between
the curves becomes smaller.

BA random graphs

We conduct simulations upon BA random networks with total number of nodes equal
to 500 and the number of edges that a newly added node forms when it joins the
network equal to 3. The analytically approximated rLCC and ATTR are depicted in
Fig. 5.5 and they are compared with the corresponding simulated results.

The simulations on BA networks show similar results as the simulations on ER
networks. The difference is that performance of analytical approximation for stochastic
degree attacks becomes worse.

5.1.4. Analytical approximations on real-world networks

To assess the performance of analytical approximations, simulations on real-world
graphs are conducted. The real-world networks used in the simulations are from the
Topology Zoo. In this section, the simulations on the ‘Deltacom’ network are analysed.
The analytically approximated rLCC and ATTR are depicted in Fig. 5.6 and they are
compared with the corresponding simulated results.

An unexpected observation from the results is that the analytical approximations
of random attacks perform much worse than what is observed in the case of synthetic
networks.

Further simulations to analyse analytical approximations

As it is observed that the analytical approximations do not fit well with the simulated
results, the performance of this approach is discussed. It is described in Section 3.2.1
that the analytical approaches are driven by the given generating function, which is
derived from the degree sequence. Concisely stated, with a known degree sequence of
a network, an approximation of the metrics under different attacks can be computed.
It is known that a particular degree sequence can be yielded from a variety of distinct
graphs. Therefore, it is considered that the analytical approximations are the averaged
results of all the simulations of the networks with the same degree sequence under
corresponding attacks. Configuration model graphs are used to generate connected
graphs with the same degree sequence. In the simulations, one hundred thousand
configuration model graphs with the same degree sequence as the network ‘Deltacom’
are generated to compare with simulation and analytical approximation results. The
comparison is shown in Fig. 5.7.
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(a) rLCC(random) (b) ATTR(random)

(c) rLCC(analytical(𝛼=1)) (d) ATTR(analytical(𝛼=1))

(e) rLCC(analytical(𝛼=10)) (f) ATTR(analytical(𝛼=10))

Figure 5.5: Evaluation of analytical approximations on Barabási–Albert graphs (500,3). Three types of
attack are applied. The x-axis denotes the proportion of nodes removed, the y-axis denotes the
performance metrics, which indicate robustness of the network. The blue curves represent the
simulated results. The orange curves represent the corresponding analytical approximations.
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(a) rLCC(random) (b) ATTR(random)

(c) rLCC(analytical(𝛼=1)) (d) ATTR(analytical(𝛼=1))

(e) rLCC(analytical(𝛼=10)) (f) ATTR(analytical(𝛼=10))

Figure 5.6: Evaluation of analytical approximations on network ‘Deltacom’. Three types of attack are
applied. The x-axis denotes the proportion of nodes removed, the y-axis denotes the performance

metrics, which indicate robustness of the network. The blue curves represent the simulated results. The
orange curves represent the corresponding analytical approximations.
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(a) rLCC(random) (b) ATTR(random)

Figure 5.7: Comparison among simulations on configuration model graphs, simulations and analytical
approximations on network ‘Deltacom’ under random attacks. The x-axis denotes the proportion of

nodes removed, the y-axis denotes the performance metrics, which indicate robustness of the network.
The blue curves represent the simulation results for the configuration model graphs. The orange curves
represent the simulation results. The red curves represent the corresponding analytical approximations.

It is observed that the curves for the configuration model graphs include the curves
of analytical approximation on both rLCC and ATTR, but do not include the curves
of simulated result. To explore the reason, we pick another network ‘Geant2012’
characterized by a notably distinct degree sequence from the Topology Zoo. It is
with degree sequence of [0 8 13 5 5 6 1 1 0 0 1]. Compared with the degree sequence
of ‘Deltacom’ of [ 0 3 50 31 8 7 4 6 1 1 2], the number of nodes with low degree in
‘Geant2012’ is much less. The comparison among simulations on configuration model
graphs, simulations and analytical approximations on network ‘Geant2012’ under
random attacks is shown in Fig. 5.8.

(a) rLCC(random) (b) ATTR(random)

Figure 5.8: Comparison among simulations on configuration model graphs, simulations and analytical
approximations on network ‘Geant2012’ under random attacks. The x-axis denotes the proportion of
nodes removed, the y-axis denotes the performance metrics, which indicate robustness of the network.
The blue curves represent the simulation results for the configuration model graphs. The orange curves
represent the simulation results. The red curves represent the corresponding analytical approximations.
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It is observed that the curves for the configuration model graphs include the curves
of analytical approximations and the curves of simulated results on both rLCC and
ATTR. A preliminary conclusion is made that the configuration model graphs tend to
generate networks characterized by a relatively small number of nodes with low degree.
To convince this conclusion, another network ‘UsCarrier’ with the degree sequence
[0 8 101 32 14 2 1] from the Topology Zoo is picked. It has 101 nodes with degree of
2, and thus based the previous conclusion drawn, the curves for the configuration
model graphs should include the curves of analytical approximation on both rLCC
and ATTR, but not include the curves of simulated results, which is of the same as
the observation in the results of ‘Deltacom’. The comparison among simulations on
configuration model graphs, simulations and analytical approximation on network
‘UsCarrier’ under random attacks is shown in Fig. 5.9. Fig. 5.9 proves the previous

(a) rLCC(random) (b) ATTR(random)

Figure 5.9: Comparison among simulations on configuration model graphs, simulations and analytical
approximations on network ‘UsCarrier’ under random attacks. The x-axis denotes the proportion of

nodes, the y-axis denotes the performance metrics, which indicate robustness of the network. The blue
curves represent the simulation results for the configuration model graphs. The orange curves

represent the simulation results. The red curves represent the corresponding analytical approximations.

conclusion made. Besides, an assumption is also made with that it is always observed
that the curves for the configuration model graphs include the curves of analytical
approximations on both rLCC and ATTR, which is that the analytical approximations
are the averaged results of all the simulations of the networks with the same degree
sequence under corresponding attacks (random attacks).

5.1.5. Machine learning based predictions on synthetic networks

This section shows the prediction on synthetic networks using SPP-CNN models
under random attacks and updated degree attacks. The simulations are conducted
on two Erdős–Rényi networks and a Barabási–Albert network. To train the models,
nine representative synthetic network models are chosen to be used as training
dataset, including Barabási–Albert (BA) scale-free, extreme homogeneous (EH) ,
Erdös-Rényi (ER) random-graph , q-snapback (QS) , random hexagon (RH), random
triangle (RT), generic scale-free (SF), Newman–Watts small-world (SW-NW), and
Watts–Strogatz small-world (SW-WS) network models. The average degree of each
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instance of the network is assigned in a reasonably random manner. The average
degree range is set as < 𝑘 >∈ [5,10] for the two SW models, < 𝑘 >∈ [4,8] for RH,
< 𝑘 >∈ [3,6] for RT, while for the other models < 𝑘 >∈ [6,12]. There are two sets of
synthetic network models, 𝑆1 = {𝐵𝐴,𝐸𝐻,𝐸𝑅,𝑄𝑆,𝑅𝐻,𝑅𝑇,𝑆𝐹,𝑆𝑊 −𝑁𝑊,𝑆𝑊 −𝑊𝑆},
and 𝑆2 = {𝐸𝑅,𝑄𝑆,𝑆𝐹,𝑆𝑊 −𝑁𝑊}. The corresponding network size ranges are set as
𝑁1 ∈ [700,1300], and 𝑁2 =∈ [300,700]. For each model, 1000 networks are randomly
generated. The adjacency matrix for each network is then used to be part of the training
data. The attack simulations are also conducted, and rLCC (as the dataset only contains
data of rLCC, only rLCC prediction is considered. ATTR is not considered) in that
process is recorded to be the other part of the training data. The iteration time for
training the models is set as 20.

ER random graphs

Predictions are conducted upon an ER random network with total number of nodes
equal to 1000 and the edge formation probability equal to 0.008. The adjacency matrix
of the ER network is obtained and integrated into the model, which has been trained
using the training set denoted as 𝑆1. This training set encompasses networks of sizes
within the range 𝑁1 ∈ [700,1300]. Subsequently, the model’s performance is evaluated
through testing. The adjacency matrix of this ER network is derived and is put into the
model trained by training set 𝑆1, which is of network size range as 𝑁1 ∈ [700,1300],
to be tested. The predicted rLCC under random attacks and updated degree attacks
is depicted in Fig. 5.10 and it is compared with the corresponding simulated result.
From the figures, it is found that the two curves coincide well in random attacks. The

(a) rLCC(random) (b) rLCC(updated degree)

Figure 5.10: Predictions on an Erdős–Rényi graph (1000,0.008) under random attacks and updated
degree attacks. The x-axis denotes the proportion of nodes removed, the y-axis denotes the

performance metric, which indicates robustness of the network. The blue curves represent the
predicted results. The orange curves represent the corresponding simulated results.

performance of prediction on updated degree attacks is reasonably adequate.
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BA random graphs

Predictions are conducted upon a BA random network with total number of nodes
equal to 500 and the number of edges that a newly added node forms when it joins
the network equal to 3. The adjacency matrix of the BA network is computed and
incorporated into the model that underwent training using the dataset 𝑆2 , where the
network sizes fall within the interval 𝑁1 ∈ [300,700]. This model is then subjected
to testing to assess its performance. The predicted rLCC under random attacks
and updated degree attacks is depicted in Fig. 5.11 and it is compared with the
corresponding simulated results. The performance of this model is similar to that of

(a) rLCC(random) (b) ATTR(updated degree)

Figure 5.11: Predictions on a Barabási–Albert graph (500,3) under random attacks and updated degree
attacks. The x-axis denotes the proportion of nodes removed, the y-axis denotes the performance

metric, which indicates robustness of the network. The blue curves represent the predicted results. The
orange curves represent the corresponding simulated results.

the model testing ER network. The performance of prediction on random and updated
degree attacks is reasonably adequate.

5.1.6. Predictions on real-world networks

This section shows the performance of predictions on real-world networks using
SPP-CNN models. The predictions focus on random attacks only. To train the model,
1000 real-world networks are selected randomly and used as training data, denoted as
𝑆𝑟 . The network size ranges within 𝑁𝑟 ∈ [300,700]. The predictions of rLCC under
random attacks are depicted in Fig. 5.12.

The figures show the results of prediction on real-world networks named ‘power-
662-bus’, ‘power-494-bus’, ‘netz4504-dual’ and ‘odepa400’ from the Network Repository.
It is found that there are large gaps between the prediction curves and simulation
curves of ‘power-662-bus’, ‘power-494-bus’ and ‘odepa400’, which indicates a bad
performance on predictions. We then further explore the prediction performance of
the SPP-CNN model on real-world networks by applying the test set. The test set
consists of 100 real-world networks with network size ranges within 𝑁𝑟 ∈ [300,700].
Based on section 3.2.2, the prediction error 𝜉 is calculated as 𝜉 = 1

𝑁

∑𝑁−1
𝑖=0 𝜉(𝑖). With the
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(a) power-662-bus(rLCC, random) (b) power-494-bus(rLCC, random)

(c) netz4504-dual(rLCC, random) (d) odepa400(rLCC, random)

Figure 5.12: Predictions on real-world networks under random attacks. The x-axis denotes the
proportion of nodes removed, the y-axis denotes the performance metric, which indicates robustness of

the network. The blue curves represent the predicted results. The orange curves represent the
corresponding simulated results.
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test set, the overall prediction errors of the 100 networks are shown in the box plot in
Fig. 5.13

Figure 5.13: Prediction error comparison in the form of a boxplot

The prediction errors indicate the average gaps between the prediction and simula-
tion curves. The box plot shows an acceptable result with that most predicted results
are of an error ranging from 0.025 and 0.1. Based on the observation, we define a
prediction result with prediction error smaller than 0.025 as a good prediction and a
prediction result with prediction error larger than 0.1 as a bad prediction. Fig. 5.14
shows one example in each case with good and bad predictions.

(a) a good prediction example(rLCC) (b) a bad prediction example(rLCC)

Figure 5.14: Predictions on real-world networks under random attacks. The x-axis denotes the
proportion of nodes removed, the y-axis denotes the performance metric, which indicates robustness of

the network. The blue curves represent the predicted results. The orange curves represent the
corresponding simulated results.

5.2. Robustness increasing results
In this section, all protection strategies are performed on networks under random
attack strategy and updated betweenness attack strategy. In this section, we only focus
on rLCC, as based on the previous observation, ATTR always shows a similar trend as
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rLCC in the process of nodes being attacked.

5.2.1. Link additions on synthetic networks

In order to assess the performance of the thirteen link addition strategies, we conduct
simulations on synthetic networks. To validate the effectiveness of the increasing
robustness strategies, we choose random attacks and updated betweenness attacks to
test the robustness of networks.

Case 1: under random attacks

Simulations are conducted on an ER random network with the total number of nodes
equal to 100 and the edge formation probability equal to 0.1. In each case, the increasing
robustness strategies are conducted before the attacks are simulated. To be specific,
links are added according to certain link addition strategies to the original ER random
networks at first, and then the newly constructed network is attacked. Four cases
are explored for each link addition strategy, where 1%, 5%, 10% and 20% of links are
added. The final result for each simulation is obtained by averaging the results of 300
networks after being protected and then attacked. The average rLCC with respect to
the proportion of removed nodes for different link addition strategies are depicted in
Fig. 5.15, Fig. 5.16, Fig. 5.17, and Fig. 5.18.

(a) rLCC(random)

Figure 5.15: Performance of random link additions on Erdős–Rényi graphs (100,0.1) under random
attacks. The x-axis denotes the proportion of nodes removed, the y-axis denotes rLCC. The blue curves
represent the case when no link is added. The blue curves represent the case when no link is added.
The orange, green, red and purple curves represent the case when 1%, 5%, 10% and 20% of links are

added respectively.

From the figures, it is observed that all the link addition strategies do not exert
a significant impact on the robustness of the networks under random attacks with
the observation that all the five curves almost coincide with each other through the
whole process in each case. After about 70% of nodes are removed, the impact of
link addition strategy becomes slightly more significant with more links being added.
Based on the observation, it is considered that the ER network already exhibits a degree
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(a) rLCC(non-updated min degree) (b) rLCC(updated min degree)

(c) rLCC(non-updated max degree) (d) rLCC(updated max degree)

Figure 5.16: Comparison of targeted degree-based link additions on Erdős–Rényi graphs (100,0.1)
under random attacks. The x-axis denotes the proportion of nodes removed, the y-axis denotes rLCC.
The blue curves represent the case when no link is added. The blue curves represent the case when no
link is added. The orange, green, red and purple curves represent the case when 1%, 5%, 10% and 20%

of links are added respectively.
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(a) rLCC(non-updated min betweenness) (b) rLCC(updated min betweenness)

(c) rLCC(non-updated max betweenness) (d) rLCC(updated max betweenness)

Figure 5.17: Comparison of targeted betweenness-based link additions on Erdős–Rényi graphs (100,0.1)
under random attacks. Thirteen strategies are applied. The x-axis denotes the proportion of nodes

removed, the y-axis denotes rLCC. The blue curves represent the case when no link is added. The blue
curves represent the case when no link is added. The orange, green, red and purple curves represent

the case when 1%, 5%, 10% and 20% of links are added respectively.
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(a) rLCC(non-updated min eigenvector centrality) (b) rLCC(updated min eigenvector centrality)

(c) rLCC(non-updated max eigenvector centrality) (d) rLCC(updated max eigenvector centrality)

Figure 5.18: Comparison of targeted eigenvector centrality-based link additions on Erdős–Rényi graphs
(100,0.1) under random attacks. Thirteen strategies are applied. The x-axis denotes the proportion of
nodes removed, the y-axis denotes rLCC. The blue curves represent the case when no link is added. The

blue curves represent the case when no link is added. The orange, green, red and purple curves
represent the case when 1%, 5%, 10% and 20% of links are added respectively.
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of robustness under random attacks due to the random nature of edge formation,
making it less sensitive to additional links. To be specific, in a random attack scenario
where nodes are removed randomly, the attack strategy does not specifically target
nodes with added links. The random nature of the attack means that any node in the
network, whether it has additional links or not, has an equal chance of being removed.
Therefore, the added links may not provide targeted protection to the most critical
nodes.

Though the performance of link addition strategies in the scenario of random attacks
is unsatisfactory, it is noticed that the performance of different protection strategies
still varies. Therefore we explore the overall performance of each link addition strategy
by calculating the energy in each case. The computed energy in terms of different
proportions of links added is shown in the Table 5.2.

𝑜𝑟𝑔 𝑟𝑛𝑑 𝑛𝑑𝑚𝑖𝑛 𝑢𝑑𝑚𝑖𝑛 𝑛𝑑𝑚𝑎𝑥 𝑢𝑑𝑚𝑎𝑥 𝑛𝑏𝑚𝑖𝑛 𝑢𝑏𝑚𝑖𝑛 𝑛𝑏𝑚𝑎𝑥 𝑢𝑏𝑚𝑎𝑥 𝑛𝑒𝑚𝑖𝑛 𝑢𝑒𝑚𝑖𝑛 𝑛𝑒𝑚𝑎𝑥 𝑢𝑒𝑚𝑎𝑥

𝐸𝑟𝐿𝐶𝐶(0.01) 0.5433 0.5436 0.5443 0.5441 0.5433 0.5431 0.5443 0.5447 0.5437 0.5435 0.5444 0.5443 0.5440 0.5433
𝐸𝑟𝐿𝐶𝐶(0.05) 0.5433 0.5448 0.5452 0.5458 0.5436 0.5439 0.5455 0.5457 0.5443 0.5441 0.5455 0.5458 0.5436 0.5434
𝐸𝑟𝐿𝐶𝐶(0.1) 0.5433 0.5457 0.5470 0.5472 0.5442 0.5447 0.5463 0.5472 0.5436 0.5449 0.5463 0.5472 0.5436 0.5441
𝐸𝑟𝐿𝐶𝐶(0.2) 0.5433 0.5480 0.5480 0.5491 0.5450 0.5461 0.5481 0.5489 0.5454 0.5452 0.5475 0.5489 0.5451 0.5449

Table 5.2: Energy for ER networks. In the table, 𝑜𝑟𝑔 indicates the case with no link addition strategy
applied; 𝑟𝑛𝑑 indicates random link additions; 𝑛𝑑𝑚𝑖𝑛 indicates non-updated minimum degree link

additions; 𝑢𝑑𝑚𝑖𝑛 indicates updated minimum degree link additions; 𝑛𝑑𝑚𝑎𝑥 indicates non-updated
maximum degree link additions; 𝑢𝑑𝑚𝑎𝑥indicates updated maximum degree link additions; 𝑛𝑏𝑚𝑖𝑛
indicates non-updated minimum betweenness link additions; 𝑢𝑏𝑚𝑖𝑛 indicates updated minimum
betweenness link additions; 𝑛𝑏𝑚𝑎𝑥 indicates non-updated maximum betweenness link additions;
𝑢𝑏𝑚𝑎𝑥 indicates updated maximum betweenness link addition; 𝑛𝑒𝑚𝑖𝑛 indicates non-updated
minimum eigenvector centrality link additions; 𝑢𝑒𝑚𝑖𝑛 indicates updated minimum eigenvector

centrality link additions; 𝑛𝑒𝑚𝑎𝑥 indicates non-updated maximum eigenvector centrality link additions;
𝑢𝑒𝑚𝑎𝑥 indicates updated maximum eigenvector centrality link additions.

From the table, for the case where 1% of total links are added, the updated minimum
betweenness link addition strategy shows the best protecting performance with the
highest energy observed. The worst performance occurs in updated maximum degree
link addition strategy, with value of energy equal to 0.5431. For the case where 5% of
total links are added, updated minimum degree and updated minimum eigenvector
centrality link addition strategies show the best protecting performance, while the
lowest energy is found in updated maximum eigenvector centrality link addition
strategy. For the case where 10% of total links are added, the three updated minimum
certain metric link addition strategies all show the best performance, and the non-
updated maximum eigenvector centrality link addition strategy shows the worst
performance. For the case where 20% of total links are added, updated minimum
degree link addition strategy shows the best protecting performance,and the updated
maximum eigenvector centrality link addition strategy shows the worst performance.

To summarize, minimum link addition strategies always outperform the maximum
strategies, with the fact that the best protecting strategies are always found in minimum
link addition strategies, and the worst protecting strategies are always found in
maximum link addition strategies. Because the values of the energy differ slightly
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in each case, to convince the summary and to find new observations, we further
investigate the performance of these link addition strategies for the networks under
updated betweenness attacks. The reason why this attack strategy is picked is that
the updated betweenness attacks are the most harmful attack strategy based on the
observations in previous sections.

Case 2: under updated betweenness attacks

To further investigate the performance of the thirteen protecting strategies, simulations
are conducted on the ER random networks with total number of nodes equal to 100
and the edge formation probability equal to 0.1. The simulation processes are the same
as what is done in case 1, except for that the networks are under updated betweenness
attacks after their robustness is increased through certain approaches. The final result
for each simulation is obtained by averaging the result of 300 networks after being
protected and then attacked. The average rLCCs with respect to the proportion of
removed nodes for different link addition strategies are depicted in Fig. 5.19, Fig. 5.20,
Fig. 5.21, and Fig. 5.22.

(a) rLCC(random)

Figure 5.19: Performance of random link additions on Erdős–Rényi graphs (100,0.1) under updated
betweenness attacks. The x-axis denotes the proportion of nodes removed, the y-axis denotes rLCC.

The blue curves represent the case when no link is added. The blue curves represent the case when no
link is added. The orange, green, red and purple curves represent the case when 1%, 5%, 10% and 20%

of links are added respectively.

Compared with the figures in case 1, in which networks are under random attacks,
it is found that the influence of the link addition strategies becomes more significant
with the observation of the gaps among the five curves in some cases. It is clear from
the figures that the maximum certain metric link addition strategies perform much
worse than the minimum certain metric link addition strategies, as it is noticed that
the five curves almost coincide with each other with the maximum certain metric
link addition strategies applied. It indicates that the protection barely increases the
robustness of the networks. This is because the minimum certain metric link addition
strategies help to increase the degree, which also generally indicates an increase in
betweenness, for the nodes with low certain metrics. Meanwhile, the strategies do
no protection on the nodes which are already crucial enough and therefore still have
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(a) rLCC(non-updated min degree) (b) rLCC(updated min degree)

(c) rLCC(non-updated max degree) (d) rLCC(updated max degree)

Figure 5.20: Comparison of targeted degree-based link additions on Erdős–Rényi graphs (100,0.1)
under updated betweenness attacks. The x-axis denotes the proportion of nodes removed, the y-axis
denotes rLCC. The blue curves represent the case when no link is added. The blue curves represent the
case when no link is added. The orange, green, red and purple curves represent the case when 1%, 5%,

10% and 20% of links are added respectively.
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(a) rLCC(non-updated min betweenness) (b) rLCC(updated min betweenness)

(c) rLCC(non-updated max betweenness) (d) rLCC(updated max betweenness)

Figure 5.21: Comparison of targeted betweenness-based link additions on Erdős–Rényi graphs (100,0.1)
under updated betweenness attacks. The x-axis denotes the proportion of nodes removed, the y-axis
denotes rLCC. The blue curves represent the case when no link is added. The blue curves represent the
case when no link is added. The orange, green, red and purple curves represent the case when 1%, 5%,

10% and 20% of links are added respectively.
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(a) rLCC(non-updated min eigenvector centrality) (b) rLCC(updated min eigenvector centrality)

(c) rLCC(non-updated max eigenvector centrality) (d) rLCC(updated max eigenvector centrality)

Figure 5.22: Comparison of targeted eigenvector centrality-based link additions on Erdős–Rényi graphs
(100,0.1) under updated betweenness attacks. The x-axis denotes the proportion of nodes removed, the
y-axis denotes rLCC. The blue curves represent the case when no link is added. The orange, green, red

and purple curves represent the case when 1%, 5%, 10% and 20% of links are added respectively.
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high possibility to be removed under updated betweenness attacks. Though the
originally more important nodes are removed under the updated betweenness attack,
the remaining nodes become more important because of the link addition strategies. In
that case, the networks become more robust with the centrality of the nodes, which are
originally less important and are less likely to be removed, increases. On the contrary,
the maximum certain metric link addition strategies always increase the centrality of
nodes which are already important. After protection is conducted, the nodes with high
centrality are still of higher possibility to be attacked, and in that case, the strategies do
not sufficiently protect the networks.

Comparing figures in the scenarios with updated and non-updated minimum
certain metric link addition strategies, with larger gaps found between the curves
indicating networks without protections and the curves indicating networks under
protection, it is concluded that the updated strategies always outperform the non-
updated strategies. The reason is that the updated strategies exhibit a superior capacity
to enhance the centrality of less significant nodes when compared to the non-updated
strategies.

To compare the overall performance, energy is calculated in each case. The
computed energy in terms of different proportions of links added is shown in the Table
5.3.

𝑜𝑟𝑔 𝑟𝑛𝑑 𝑛𝑑𝑚𝑖𝑛 𝑢𝑑𝑚𝑖𝑛 𝑛𝑑𝑚𝑎𝑥 𝑢𝑑𝑚𝑎𝑥 𝑛𝑏𝑚𝑖𝑛 𝑢𝑏𝑚𝑖𝑛 𝑛𝑏𝑚𝑎𝑥 𝑢𝑏𝑚𝑎𝑥 𝑛𝑒𝑚𝑖𝑛 𝑢𝑒𝑚𝑖𝑛 𝑛𝑒𝑚𝑎𝑥 𝑢𝑒𝑚𝑎𝑥

𝐸𝑟𝐿𝐶𝐶(0.01) 0.4232 0.4249 0.4299 0.4321 0.4232 0.4232 0.4304 0.4323 0.4233 0.4232 0.4286 0.4300 0.4231 0.4236
𝐸𝑟𝐿𝐶𝐶(0.05) 0.4232 0.4310 0.4353 0.4491 0.4233 0.4234 0.4352 0.4510 0.4233 0.4232 0.4333 0.4435 0.4235 0.4240
𝐸𝑟𝐿𝐶𝐶(0.1) 0.4232 0.4380 0.4392 0.4614 0.4233 0.4233 0.4391 0.4629 0.4232 0.4233 0.4372 0.4564 0.4236 0.4242
𝐸𝑟𝐿𝐶𝐶(0.2) 0.4232 0.4508 0.4450 0.4763 0.4235 0.4234 0.4448 0.4774 0.4233 0.4232 0.4426 0.4734 0.4248 0.4253

Table 5.3: Energy for ER networks. In the table, 𝑜𝑟𝑔 indicates the case with no link addition strategy
applied; 𝑟𝑛𝑑 indicates random link additions; 𝑛𝑑𝑚𝑖𝑛 indicates non-updated minimum degree link

additions; 𝑢𝑑𝑚𝑖𝑛 indicates updated minimum degree link additions; 𝑛𝑑𝑚𝑎𝑥 indicates non-updated
maximum degree link additions; 𝑢𝑑𝑚𝑎𝑥indicates updated maximum degree link additions; 𝑛𝑏𝑚𝑖𝑛
indicates non-updated minimum betweenness link additions; 𝑢𝑏𝑚𝑖𝑛 indicates updated minimum
betweenness link additions; 𝑛𝑏𝑚𝑎𝑥 indicates non-updated maximum betweenness link additions;
𝑢𝑏𝑚𝑎𝑥 indicates updated maximum betweenness link addition; 𝑛𝑒𝑚𝑖𝑛 indicates non-updated
minimum eigenvector centrality link additions; 𝑢𝑒𝑚𝑖𝑛 indicates updated minimum eigenvector

centrality link additions; 𝑛𝑒𝑚𝑎𝑥 indicates non-updated maximum eigenvector centrality link additions;
𝑢𝑒𝑚𝑎𝑥 indicates updated maximum eigenvector centrality link additions.

As it is analysed that all of the link addition strategies based on maximum certain
metrics do not effectively protect the networks, and that they all show close performance,
it is concluded that the worst attack strategies are not necessary to be discussed. From
the table, for all the cases, it is found that the updated minimum betweenness link
addition strategy always demonstrates superior network protection performance with
the highest value of energy. Therefore, it is concluded that the updated minimum
betweenness link addition strategy is the best protection strategy when the networks
are under updated betweenness attacks.
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5.2.2. Link additions on real-world networks

After the performance of different link addition strategies on synthetic networks is
evaluated and analysed, we would also like to check the performance of the strategies
on real-world networks. It is acknowledged that the performance of the strategies
would vary with that the topology of real-world networks differs. In this section, we
only focus on link addition strategies with 5% and 20% of links added, and a network
named ‘Garr201103’ to investigate if maximum certain metric link addition strategies
still perform much worse than the minimum certain metric link addition strategies.
In the simulations, we also would like to evaluate the performance of random link
addition strategy. It is assumed that the network is under random attacks and updated
betweenness attacks.

Case 1: under random attacks

Simulations are conducted on the network named ‘Garr201103’ from the Topology
Zoo. ‘Garr201103’ is a network with 58 nodes and with degree sequence [0 33 9 2 5 1
3 2 1 0 1 0 1]. The final result for each simulation is obtained by averaging the result
of 300 ‘Garr201103’ networks after being protected and then attacked. All the link
addition strategies are simulated. The average rLCC with respect to the proportion of
removed nodes for the case of 5% links being added is depicted in Fig. 5.23.

In the cases where 5% links are added, the orange, green and red curves coincide
with each other in each plot, and thus it is hard to distinguish the performance.
However, even with only 5% links being added, there are noticeable increases on the
robustness of the networks.

The average rLCC with respect to the proportion of removed nodes for the case of
20% links being added is depicted in Fig. 5.24.

In the case where 20% links are added, it is noticed that, for most of the time
in the process of node removals, the red curves are above the green curves, which
indicates that the performance of the minimum certain metric link addition strategies
outperforms that of the maximum certain metric link addition strategies. It is interesting
that the random link addition strategy is the a good strategy with the rLCC in which is
the highest in most cases. The updated minimum betweenness link addition strategy
is still the best protection strategy when the network is under random attacks.

Case 2: under updated betweenness attacks

The network named ‘Garr201103’ now faces updated betweenness attacks. With all
the link addition strategies being simulated, we firstly focus on the case of 5% links
being added. The results are depicted in Fig. 5.25.

It is observed that there are noticeable increases on the robustness of the networks
with only 5% links being added.
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(a) rLCC(non-updated betweenness(0.05)) (b) rLCC(updated betweenness(0.05))

(c) rLCC(non-updated degree(0.05)) (d) rLCC(updated degree(0.05))

(e) rLCC(non-updated eigenvector centrality(0.05)) (f) rLCC(updated eigenvector centrality(0.05))

Figure 5.23: Comparison of different link addition strategies on a real-world network named
‘Garr201103’ under random attacks with 5% of links added. The x-axis denotes the proportion of nodes
removed, the y-axis denotes the performance metric, rLCC to be specific, which indicates robustness of
the network. The blue curves represent the case when no link is added. The orange curves represent

the results of random link addition strategies. The green and red curves represent the results of
maximum and minimum link addition strategies respectively.
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(a) rLCC(non-updated betweenness(0.2)) (b) rLCC(updated betweenness(0.2))

(c) rLCC(non-updated degree(0.2)) (d) rLCC(updated degree(0.2))

(e) rLCC(non-updated eigenvector centrality(0.2)) (f) rLCC(updated eigenvector centrality(0.2))

Figure 5.24: Comparison of different link addition strategies on a real-world network named
‘Garr201103’ under random attack with 20% of links added. The x-axis denotes the proportion of nodes
removed, the y-axis denotes the performance metric, rLCC to be specific, which indicates robustness of
the network. The blue curves represent the case when no link is added. The orange curves represent

the results of random link addition strategies. The green and red curves represent the results of
maximum and minimum link addition strategies respectively.
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(a) rLCC(non-updated betweenness(0.05)) (b) rLCC(updated betweenness(0.05))

(c) rLCC(non-updated degree(0.05)) (d) rLCC(updated degree(0.05))

(e) rLCC(non-updated eigenvector centrality(0.05)) (f) rLCC(updated eigenvector centrality(0.05))

Figure 5.25: Comparison of different link addition strategies on a real-world network named
‘Garr201103’ under updated betweenness attacks with 5% of links added. The x-axis denotes the

proportion of nodes removed, the y-axis denotes the performance metric, rLCC to be specific, which
indicates robustness of the network. The blue curves represent the case when no link is added. The

orange curves represent the results of random link addition strategies. The green and red curves
represent the results of maximum and minimum link addition strategies respectively.
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The average rLCC with respect to the proportion of removed nodes for the case of
20% links being added is depicted in Fig. 5.26

(a) rLCC(non-updated betweenness(0.2)) (b) rLCC(updated betweenness(0.2))

(c) rLCC(non-updated degree(0.2)) (d) rLCC(updated degree(0.2))

(e) rLCC(non-updated eigenvector centrality(0.2)) (f) rLCC(updated eigenvector centrality(0.2))

Figure 5.26: Comparison of different link addition strategies on a real-world network named
‘Garr201103’ under updated betweenness attacks with 20% of links added. The x-axis denotes the

proportion of nodes removed, the y-axis denotes the performance metric, rLCC to be specific, which
indicates robustness of the network. The blue curves represent the case when no link is added. The

orange curves represent the results of random link addition strategies. The green and red curves
represent the results of maximum and minimum link addition strategies respectively.

It is noticed that the impact of protecting strategies becomes more significant
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compared with the case when 5% links are added. Random link addition strategy still
performs well in this case.

5.2.3. Node protection on synthetic networks

This section assesses the performance of the three node protection strategies. Simula-
tions on an Erdős–Rényi graph are conducted. The property of the network is chosen
the same as that in the simulations assessing link addition strategy, with total number
of nodes equal to 100 and the edge formation probability equal to 0.1. The performance
of different node protection strategies is tested under the scenarios of random attacks
and updated betweenness attacks.

Case 1: under random attacks

Simulations are conducted on ER random networks G(100, 0.1). In each case, a certain
proportion of nodes are protected based on certain properties of the nodes. To provide
specific details, the protection strategy involves protecting 1%, 5%, and 10% of the
network’s nodes with the highest degree, betweenness, and eigenvector centrality.
These protected nodes remain intact and are not subject to removal during subsequent
ongoing random attacks. The final result for each simulation is obtained by averaging
the result of 300 networks after being protected and then attacked. The average rLCC
with respect to the proportion of removed nodes is depicted in Fig. 5.29.

The figures indicate that the node protection strategies exert almost no impact
before approximately 70% of nodes are removed, and the impact becomes slightly more
significant afterwards. To analyse it in detail, when the networks are not protected,
the probability for the remaining nodes are removed is 1

𝑛−𝑛𝑟𝑚𝑣
, where 𝑛 is the total

number of nodes and 𝑛𝑟𝑚𝑣 is the number of removed nodes. When the node protection
strategies are applied, the probability for the remaining nodes are removed is 1

𝑛−𝑛𝑟𝑚𝑣−𝑛𝑝𝑟𝑡
,

where 𝑛𝑝𝑟𝑡 is the number of protected nodes. Consider the case when the networks are
best protected (when 10% of the nodes are protected), the probability for the remaining
less important nodes are removed becomes 1

0.9𝑛−𝑛𝑟𝑚𝑣
. Compared with the unprotected

case, the probability difference to remove the less important nodes is calculated as
0.1

(0.9− 𝑛𝑟𝑚𝑣
𝑛 )(1− 𝑛𝑟𝑚𝑣

𝑛 ) , from which it is found that the difference becomes larger with more
nodes removed. That means that with more nodes being removed, the more likely
the less important nodes are chosen to be removed when protection strategies are
applied. When only a small amount of nodes are removed, the probability difference is
small and thus the performance difference is small. However, our observation reveals
that despite the protection of the more significant nodes, the robustness of networks
experiences only a modest enhancement. It is considered that the ER network already
exhibits a degree of robustness under random attacks due to the random nature of
edge formation, and protecting 10% of nodes does not exert significant impact on the
robustness.

Besides, it is also observed that with more nodes being protected, the networks
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(a) rLCC(1%)

(b) rLCC(5%)

(c) rLCC(10%)

Figure 5.27: Protection on Erdős–Rényi networks (100,0.1) under random attacks. The x-axis denotes
the proportion of nodes removed, the y-axis denotes the rLCC, which indicates robustness of the
network. The blue curves represent the results when no protection is applied. The orange curves

represent the results when targeted betweenness-based node protection. The green curves and the red
curves represent the results when targeted degree-based and eigenvector centrality-based node

protection are applied.



5.2. Robustness increasing results 59

become more robust against attacks.

Case 2: under updated betweenness attacks

Simulations are conducted on ER random networks G(100, 0.1). The protection strategy
involves protecting 1%, 5%, and 10% of the network’s nodes with the higher degree,
betweenness, and eigenvector centrality. These protected nodes remain intact and are
not subject to removals during subsequent ongoing updated betweenness attacks. The
final result for each simulation is obtained by averaging the result of 300 networks after
being protected and then attacked. The average rLCC with respect to the proportion
of removed nodes is depicted in Fig. 5.30.

The figures show that the protection strategies perform well on increasing the
robustness of the networks under updated betweenness random attacks, especially after
more than 40% of nodes are removed. From the plot of 10% of nodes being protected,
it is observed that the orange curve, which indicates the targeted betweenness-based
node protection, is always above other curves, indicating its best performance among
the three protection strategies. This is reasonable, as the networks are under updated
betweenness attacks, protecting the nodes with highest betweenness can best maintain
the robustness of the networks. The previous observation that with more nodes being
protected, the networks become more robust against attacks is also proved according
to the figures.

5.2.4. Node protection on real-world networks

This section assesses the performance of the three node protection strategies on real-
world networks. Simulations on a network named ‘Garr201103’ are conducted. The
performance of different node protection strategies is tested under the scenarios of
random attacks and updated betweenness attacks.

Case 1: under random attacks

Simulations are conducted on the network named ‘Garr201103’. The protection strategy
involves protecting 1%, 5%, and 10% of the network’s nodes with the higher degree,
betweenness, and eigenvector centrality. These protected nodes remain intact and are
not subject to removal during subsequent ongoing random attacks. The final result
for each simulation is obtained by averaging the result of 300 networks after being
protected and then attacked. The average rLCC with respect to the proportion of
removed nodes is depicted in Fig. 5.29.

In this case, it is found that the node protection strategies perform well on the
real-world network under random attacks, which is different from what is observed in
the case of protecting Erdős–Rényi networks. Unlike Erdős–Rényi networks, real-world
graphs generally lack robustness against random attacks, and therefore, protecting a
certain proportion of critical nodes can significantly increase their robustness.
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(a) rLCC(1%)

(b) rLCC(5%)

(c) rLCC(10%)

Figure 5.28: Protection on Erdős–Rényi networks (100,0.1) under updated betweenness attacks. The
x-axis denotes the proportion of nodes removed, the y-axis denotes the rLCC, which indicates

robustness of the network. The blue curves represent the results when no protection is applied. The
orange curves represent the results when targeted betweenness-based node protection. The green

curves and the red curves represent the results when targeted degree-based and eigenvector
centrality-based node protection are applied.
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(a) rLCC(1%)

(b) rLCC(5%)

(c) rLCC(10%)

Figure 5.29: Protection on a real-world network named ‘Garr201103’ under random attacks. The x-axis
denotes the proportion of nodes removed, the y-axis denotes the rLCC, which indicates robustness of
the network. The blue curves represent the results when no protection is applied. The orange curves
represent the results when targeted betweenness-based node protection. The green curves and the red

curves represent the results when targeted degree-based and eigenvector centrality-based node
protection are applied.
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Moreover, it also proves that generally, with more nodes being protected, the
networks become more robust against attacks.

Case 2: under updated betweenness attacks

Simulations are conducted on the network named ‘Garr201103’. The protection strategy
involves protecting 1%, 5%, and 10% of the network’s nodes with the higher degree,
betweenness, and eigenvector centrality. These protected nodes remain intact and are
not subject to removals during subsequent ongoing updated betweenness attacks. The
final result for each simulation is obtained by averaging the result of 300 networks after
being protected and then attacked. The average rLCC with respect to the proportion
of removed nodes is depicted in Fig. 5.30.

The figures show that the protection strategies perform well on increasing the
robustness of the networks under updated betweenness random attacks, even protecting
only one node increases the robustness of the networks to some extent. From the
plot of 5% and 10% of nodes being protected, it is observed that the orange curves,
which indicate the targeted betweenness-based node protection, are above other curves
before 25% of nodes removed, indicating its superior performance among the three
protection strategies during the initial phase of the attacks. This observation indicates
an overall best performance for the targeted betweenness-based node protection among
the whole process.
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(a) rLCC(1%)

(b) rLCC(5%)

(c) rLCC(10%)

Figure 5.30: Protection on a real-world network named ‘Garr201103’ under updated betweenness
attacks. The x-axis denotes the proportion of nodes removed, the y-axis denotes the rLCC, which
indicates robustness of the network. The blue curves represent the results when no protection is

applied. The orange curves represent the results when targeted betweenness-based node protection.
The green curves and the red curves represent the results when targeted degree-based and eigenvector

centrality-based node protection are applied.





6
Conclusion

In this thesis, the research focuses on the evaluation of performance of different
approaches applied to assess and increase robustness of networks. It begins with
robustness assessment, where ten attack strategies and three analytical approximation
methods are implemented and discussed, and a Machine Learning-based method is
tested. Afterwards, the increase of robustness is done by comparing the performance
of thirteen link addition and four node protection strategies.

For the simulations of ten attack strategies, which includes random attack, targeted
degree-based attacks, targeted betweenness-based attacks, and greedy attacks, it
is found that the performance of updated betweenness attacks is the best in all
simulations on the ER networks, BA networks, and real-world networks, and random
attack strategy is always the worst in all the simulations. In the case of synthetic
networks, this conclusion is found intuitively by observing the plots, as the curves which
indicate updated betweenness attacks and random attack are of the lowest and highest
values of rLCC and ATTR respectively in the whole process of attacks. In the case of
real-world networks, the conclusion is drawn by calculating the average energy for each
attack strategy applied on 233 networks from the Topology Zoo. In the simulations of
real-world networks, it is also found that greedy attack strategy always outperforms
any other attack strategy at the very beginning, but its performance is surpassed by
other attack methods after certain proportion of nodes are attacked. Furthermore,
compared with non-updated attack strategies, the updated attack strategies are always
better, with the cost of higher computational complexity, as the graph metrics are
updated every time after one node is removed.

For the analytical approximations, when they are implemented on ER networks,
the approximations of rLCC and ATTR for random attack and stochastic degree attacks
show close fit to the simulations, especially in the case of random attack. However,
when the approximations are implemented on BA networks, though it shows perfect
performance in the case of random attack, the analytical methods for stochastic degree
attacks perform badly. When they are applied on real-world networks, even the
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performance for the scenario of random attack is notably inadequate. The reason is
then explored by conducting simulations on the networks which are of the same degree
distribution as the chosen real-world network, and it is concluded that the analytical
approximation for random attack is, in the case of random attack, the averaged value
of rLCC and ATTR of all configuration models of the same degree distribution.

For the predictions, the SPP-CNN shows good performance in the case of both
random and targeted-degree attacks when the targeted predicted models are synthetic
networks. Besides, the SPP-CNN also shows acceptable performance in the case of
both random and targeted-degree attacks when the targeted predicted models are
real-world networks with the prediction error fluctuating around 0.005.

For the protecting strategies, thirteen link addition strategies, including random
link addition, targeted degree-based link addition, targeted betweenness-based link
addition, and targeted eigenvector centrality-based link addition, are simulated and
compared. By computing the energy for each link addition strategy simulation on
synthetic network, it is found that the updated minimum betweenness link addition
strategy always demonstrates superior network protection performance with highest
value of energy always observed, and thus it is considered that the updated minimum
certain metric link addition strategy is the best when the networks are under corre-
sponding attacks. In addition, the maximum certain metric link addition strategies
perform much worse than the minimum certain metric link addition strategies, and the
updated strategies outperform the non-updated strategies. In the case of real-world
networks, one more observation is found that random link addition strategy shows
exceptional performance in the simulations. In terms of node protection, it is analysed
that the targeted certain metric-based node protection strategy is the best when the
networks are under corresponding attacks.

For future work, we would like to address the following aspects:

1. Focusing on the topological properties of real-world networks, we should find
out the relationship between them and the performance of attacks and protecting
strategies.

2. We should further investigate the analytical approximation approaches, especially
the approximations for targeted degree-based attacks, exploring the reason behind
the inadequate performance on both synthetic and real-world networks.

3. We should optimize the machine learning model, or find a more suitable model
to predict the robustness of networks, with that the existing model shows not
perfect performance on real-world networks. The optimization can also focus on
the training data set. By analyzing the property of the networks in the training
data set, we should find out the most proper data set to be trained so that the
prediction error is minimised.
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