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The variational multiscale method has been shown to perform well for large-eddy simulation~LES!
of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and
small-scale components. The subgrid model then acts only on the small scales of motion, unlike
conventional LES models which act on all scales of motion. For homogeneous isotropic turbulence
and turbulent channel flows, the multiscale model can outperform conventional LES formulations.
An issue in the multiscale method for LES is choice of scale partition and sensitivity of the
computed results to it. This is the topic of this investigation. The multiscale formulation for channel
flows is briefly reviewed. Then, through the definition of an error measure relative to direct
numerical simulation~DNS! results, the sensitivity of the method to the partition between large- and
small-scale motions is examined. The error in channel flow simulations, relative to DNS results, is
computed for various partitions between large- and small-scale spaces, and conclusions drawn from
the results. ©2004 American Institute of Physics.@DOI: 10.1063/1.1644573#

The numerical method uses a Fourier basis in the
streamwise and spanwise directions, and modified Legendre
polynomials in the wall-normal direction. Full details of the
numerical procedure can be found in Hugheset al.1 The ve-
locity field is decomposed into large-~ū! and small-scale~u8!
components

u5ū1u8, ~1!

according to the wave numbers in the streamwise and span-
wise directions and the polynomial order in the wall-normal
direction. The partition of the scales is denoted by a scalar
N̄. A mode, given by (kx ,ny ,kz), is part of the ‘‘large-scale’’
motions if
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wherekx andkz are the wave numbers in the streamwise and
spanwise directions, respectively, andny is the polynomial
order in the wall-normal direction. Modes which do not form
part of the large-scale motions constitute the small-scale ba-
sis. All the results presented in the following use 32 modes in
each spatial direction.

For all multiscale cases, the subgrid stress is calculated
from

t52nT¹su8, ~3!

wherenT is the eddy viscosity and¹su8 denotes the sym-
metrical part of the small scales velocity gradient. The eddy
viscosity may depend on the large, small, or on all scales.
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For the static ‘‘large–small’’ multiscale version of the Sma-
gorinsky model1–3 the eddy viscosity is calculated from large
scales

nT5~CsD!2u¹sūu, ~4!

where Cs is the Smagorinsky constant andD is a
discretization-dependent length scale. For the static ‘‘small–
small’’ version of the Smagorinsky model,1–3 the eddy vis-
cosity is calculated from small scales

nT5~CsD!2u¹su8u. ~5!

The third multiscale model used in this study utilizes the
dynamic procedure for calculating the Smagorinsky param-
eter,CsD.4,5 Once the termCsD has been computed, based
on the flow field, the eddy viscosity is calculated from all
scales~i.e., large plus small scales!

nT5~CsD!2u¹suu. ~6!

This version will be denoted dynamic ‘‘all-small.’’ Details of
the adopted implementation for computing the Smagorinsky
parameter can be found in Hugheset al.1 Once the eddy
viscosity has been calculated, the subgrid stress is calculated
according to Eq.~3!. It is apparent that there are a number of
possible ways to combine the dynamic procedure with the
multiscale method. The rationale behind the choice made
here is as follows: In our initial studies of static multiscale
methods, we used the sameCs as for the static Smagorinsky
model~0.1 in all cases!. We made no attempt to optimizeCs

for the multiscale cases. Analogously, here in our initial
study of a dynamic multiscale procedure, we selected the
CsD obtained by the conventional dynamic procedure.
Again, no attempt was made to optimizeCsD for the dy-
namic multiscale case. Clearly, to do so would offer potential
further improvements and would constitute a worthwhile av-
enue of research. Studies have been initiated in which the
Germano identity4 is directly applied to the multiscale mod-
els. We hope to report upon this in the near future.

Turbulent channel flows at Ret5180, Ret5395, and
Ret5590 have been previously computed using the static
large–small and small–small multiscale formulations.1,3

Here, results are presented at Ret5395 for the dynamic all-
small formulation (N̄/N850.5), the conventional dynamic
Smagorinsky model, and DNS data.6 Full details of the nu-
merical formulation and the channel configuration can be
found in Hugheset al.2 Mean velocity profiles are compared
in Fig. 1. The multiscale results are so close to the DNS
results that it is difficult to distinguish the two responses. The
velocity fluctuations in each spatial direction are shown in
Fig. 2. Both LES models perform well in predicting the
streamwise fluctuations. However, the multiscale model is
significantly better than the conventional dynamic model in
the other two spatial directions.

To examine the sensitivity of the multiscale formulations
to the scale partition, the deviation of the LES results from
the DNS results is quantified for the mean velocity and the
velocity fluctuations. All quantities are nondimensional and
are averaged in the streamwise and spanwise directions, and
in time. All results presented here are for Ret5395. An initial

study was performed for the Ret5180 case and the results
and conclusions were similar to those for Ret5395. Conse-
quently, the Ret5180 results are not shown. For the static
large–small, and small–small Smagorinsky models,Cs

50.1. Note that no wall damping function is used for any
calculations.

The first quantity examined is the mean flow. The errore
in the mean flow is defined as

e5S 1

d E2d/2

d/2

~UDNS
1 2ULES

1 !2dyD 1/2

, ~7!

whereU1 is the mean velocity,d is the channel height, and
the y direction is normal to the wall. The error is examined
for the previously outlined multiscale cases: The large–small
model; the small–small model; and the dynamic all-small
model. For each LES model, the error is shown as a function
of the scale partitionN̄. The error in the mean velocity pro-
file is shown in Fig. 3. For the static multiscale models, we
have included results for scale partitionsN̄516,18,...,32. For
the dynamic multiscale model, we have included results for
N̄58,10,...,24. These ranges include the optimal locations
and are sufficient to determine the sensitivity of the results as
we move away from the optimal locations. In addition to the
error at each computed scale partition, Fig. 3 includes a qua-
dratic least-squares fit for each case. For the static large–
small and small–small cases, the error drops rapidly when
the partition ratio is close to 0.65. Increasing the size of the
large-scale space~increasing N̄/N8), the error increases
steadily as the no model case is approached (N̄/N851). De-
creasing the size of the large-scale space, the error increases
rapidly away fromN̄/N850.65. While the static large–small
and small–small formulations can yield very accurate re-
sults, there is sensitivity to the partition between large and
small scales. This is evident in the form of the least-squares
fitted quadratic polynomial for the two static cases. The pa-
rabolas are steep away from the optimal partition and the
minima are considerably below the parabolas. Clearly, the
data are more ‘‘V’’ shaped that parabolic. The smallest error
for the dynamic multiscale case is close toN̄/N850.5. In
contrast to the static large–small and small–small formula-
tions, the dynamic multiscale model is relatively insensitive
to the scale partition. This is manifest in the ‘‘flatness’’ of the
fitted quadratic polynomial and the lower minimum. While

FIG. 1. Mean streamwise velocity profile at Ret5395. For the multiscale
result N̄516.
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the minimum error for the dynamic multiscale model is
slightly larger than that for the other static cases, there exists
a broad range of partitions for which the dynamic multiscale
model produces satisfactory results. The relative insensitivity
of the dynamic multiscale model can be attributed to its en-
hanced ability to adapt and respond to the flow conditions.
Reference plateaus for the static Smagorinsky model, a
coarse DNS~i.e., no model! and the dynamic Smagorinsky
model are included for comparison purposes. As may be in-
ferred from Fig. 1, the conventional dynamic model is quite
accurate for this case.

The error in the velocity fluctuations for the three mul-
tiscale models is shown in Fig. 4. Again, a quadratic polyno-
mial has been fitted to the results. The error is calculated as

e5S 1

d E2d/2

d/2

~~uDNS
1 2uLES

1 !21~vDNS
1 2vLES

1 !2

1~wDNS
1 2wLES

1 !2!dyD 1/2

, ~8!

whereu1, v1, and w1 are the fluctuations in the stream-
wise, wall-normal and spanwise directions, respectively. The
error results for the velocity fluctuations follow the same
trend as the errors for the mean velocity profile. Reference
plateaus are provided for a coarse DNS and the dynamic
Smagorinsky model. The static Smagorinsky model plots
off-scale in this case. The static large–small and small–small
cases attain their minimum error at approximatelyN̄/N8
50.6. As for the mean flow, the minimum error for the dy-
namic multiscale model is at a lower partition ratio,N̄/N8
50.5. Again, the error increases slowly for the dynamic mul-
tiscale model as the partition moves away from the optimal
point. The flat nature of the dynamic multiscale error across
different partition ratios indicates its relative insensitivity to
the scale partition. A broad band of partition ratios yield
satisfactory results, both in terms of the mean flow and

FIG. 2. RMS velocity fluctuations in the~a! streamwise,~b! wall-normal
and ~c! spanwise directions at Ret5395. For the multiscale resultsN̄516.

FIG. 3. Error in the mean velocity profile as a function of multiscale parti-
tion.

FIG. 4. Error in the velocity fluctuations as a function of multiscale parti-
tion.
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velocity fluctuations. Hence, in future channel flow simula-
tions with the dynamic multiscale method, a partitionN̄/N8
close to 0.5 could be expected to yield good results and is
recommended; for the static multiscale methods, partitions
N̄/N8 in the range 0.6–0.7 may also be recommended.
Smaller partitions are not recommended as they can behave
erratically. This seems due to the very small fraction of large-
scale modes which is approximately equal to (N̄/N8)3. The
static cases are again more sensitive to this than the dynamic
case. As partitions approach the coarse DNS limit,N̄/N8
→1, all results behave fairly smoothly and almost monotoni-
cally. This may be seen for the static multiscale cases in Figs.
3 and 4. The dynamic multiscale model behaves similarly
~not shown!.

The sensitivity of the variational multiscale method for
LES to the partition between large and small scales has been
investigated and quantified. It has been shown that the mul-
tiscale method, in combination with a dynamic procedure for
calculating the Smagorinsky parameter, is relatively insensi-
tive to the chosen partition. For the static multiscale models,
the computed results are highly accurate at the optimal par-
tition ratio, but are more sensitive to the partition than the
dynamic multiscale model.
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