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Abstract

Learning deterministic finite automata (DFAs) from labeled traces is a key problem
with applications in software analysis and system modeling. SAT-based methods are
effective but can be slow when dealing with large datasets. To address this, we propose
a sampling method that selects a smaller, but still representative set of traces. Our
approach groups traces with similar suffixes and uses edit distance to choose diverse
examples. The proposed sampling performs better than random uniform sampling and
significantly better than heuristic algorithms.

1 Introduction

A deterministic finite automaton (DFA) is a well-known language model that can be used to
recognize a regular language. Identifying the smallest DFA that is consistent with a given
set of labeled traces is a well-studied problem in grammatical inference [1]. DFA learning
has applications in various fields such as computational linguistics, bioinformatics, speech
processing, and verification [2].

Finding the smallest consistent DFA can be a very difficult problem. It has been shown
that finding a consistent DFA of fixed size is NP-Complete [3]. While optimal algorithms
exist, due to the computational complexity of the problem, heuristic algorithms have also
been developed.

According to Heule and Verwer [2], challenging problems, such as those in the Abbadingo
challenge problem set [4], are too large for current state-of-the-art SAT solvers. To solve such
problems, heuristic methods, such as EDSM, are required. EDSM is a heuristic that tries
to find a local optimum. Thus, whilst EDSM is generally faster than an optimal method, it
is guaranteed to find the global optimum only given infinite data [4].

The encoding used in [2] needs O(n?|V|) SAT clauses, where n is the size of the identified
DFA and V is the training set of labeled traces. This means that the time in which we solve
a problem is directly correlated to the size of the training set. Thus, eliminating traces that
do not grant information from the training set improves the running time of the algorithm,
potentially allowing us to use the SAT solver to solve problems which we could not solve
before.

As shown by Smetsers, Moerman, and Jansen [5], a minimal characteristic sample exists,
i.e., a minimal set of traces that contains enough information to uniquely identify a DFA.
Unfortunately, identifying the minimal characteristic sample requires prior knowledge of the
DFA, so we cannot identify this sample and use it to construct the optimal DFA. In this
paper, we develop 2 heuristics in which we try to approximate the characteristic sample as
closely as possible and test them against each other, against random sampling, and against
a model learned with EDSM on the whole dataset. To do this, we use an intuition that can
be derived from the Myhill-Nerode theorem, namely the idea that in order to merge two
states in a DFA, they must not have any distinguishing extension, i.e. all possible extensions
lead to equivalent states (accepting or rejecting). From this, if there are many traces that
end with the same suffix in our training set, we remove some of them, trying to keep the
most distinguishing ones.

Our experiments show that DFA models minimised from samples extracted by the two
heuristics that we propose perform significantly better than models that are created from
the whole dataset using the EDSM heuristic. Additionally, they perform marginally better
than models obtained from random sampling.



2 Literature Review

In this section, we present the two primary approaches to identifying DFAs: heuristic meth-
ods, such as EDSM, and optimal methods based on SAT encodings. We then look at the
Myhill-Nerode theorem and some of its consequences that will help us with subsampling.
Finally, we introduce the Levenshtein distance which will be used as a metric for quantifying
the similarity between traces.

2.1 DFA Identification

A Deterministic Finite Automaton (DFA) is formally defined as a 5-tuple (Q, 2, 6, qo, F),
where @ is a finite set of states, 3 is a finite set of input symbols (the alphabet), § : @x¥X — Q
is the transition function, gy € @ is the initial state, and F' C @ is the set of accepting (final)
states [9]. Given a finite set of positive and negative sample strings, referred to as the input
sample, the goal of DFA identification is to find the smallest DFA which is compatible with
those strings.

A state-merging algorithm works by first constructing a special tree-shaped DFA, called
an augmented prefix tree acceptor (APTA), from the input sample, and then merging the
states of this APTA. In an APTA, two strings reach the same state only if they share the
same prefix until that state, hence the name prefix tree. An APTA is augmented because
it contains states for which it is not yet known whether they are accepting or rejecting. In
an APTA, merging two states means creating a single state that inherits all the transitions
of the original states. A merge is only allowed if the two states are both either accepting
or rejecting. In a state-merging algorithm, merges are iteratively performed until no more
merges are possible [2].

The evidence-driven state merging (EDSM) algorithm is currently the most successful
heuristic algorithm for DFA identification. It uses a simple scoring heuristic to determine
which merge it should perform next[4]. More advanced variants of the algorithm exist, where
search techniques are used in order to explore other paths than the one given by standard
EDSM [11][12].

In [2], Heule and Verwer propose another way in which we can identify a DFA. Based on
a reduction of DFA identification to a graph coloring problem [8], they reduce the problem
into an instance of the satisfiability problem (SAT). In the graph coloring translation, a
distinct color is used for every state of the identified DFA, whilst the nodes in the graph
coloring instance represent the labeled traces. Two nodes are connected if merging them
would result in an accepting state being merged with a rejecting state. Directly encoding
the graph coloring constraints into a SAT instance results in |Q]?|V|? clauses, where Q
is the set of states of the DFA and V is the set of training labeled traces. Heule and
Verwer use auxiliary variables to represent the problem more efficiently, resulting in |Q|?|V|
clauses. They additionally apply symmetry breaking and add redundant clauses to improve
the runtime of the algorithm.

2.2 The Myhill-Nerode Theorem

This subsection is based on [6].

Definition Let L C ¥* be any language over the alphabet ¥. For x,y € ¥*, we call
z € ¥* a distinguishing extension of x and y if exactly one of xz and yz is in L (where zz
is the concatenation of z and z). If such a z exists, we say that z and y are distinguishable
by L; otherwise we say x and y are indistinguishable by L.



Suppose L is a regular language recognized by a DFA D. Let Qp(s) be the state D is in
after reading s. If Qp(z) = Qp(y), we will have Qp(zz) = Qp(yz) for any word z, so that
D either accepts both xz and yz or rejects both. On the other hand, even if Qp(z) # Qp(y),
it is still possible for x and y to be indistinguishable by L. In this case, the two states are
equivalent, and can be combined into one without changing the behaviour of the DFA.

Proposition 1. Let L C ¥* be any language over the alphabet Y. Define ~j to be
the relation on ¥* where x~y iff x and y are indistinguishable by L. Then ~, is reflexive,
symmetric, and transitive so that ~p, is an equivalence relation on X*.

An equivalence relation ~ on a set S induces equivalence classes which partition S into
subsets of elements related to each other by ~.

Proposition 2. Let L be regular and let D be its minimal DFA with states {qo, q1, - - -, qn }-
We can then systematically define the equivalence classes of ~y, to be the sets S; = {w €
¥ | Qo(w) = ).

It follows from Proposition 2 that if a DFA D has no states which are equivalent to each
other, then x and y are in the same equivalence class iff Qp(z) = Qp(y) and that D has the
least amount of states possible.

We can now state the following theorem:

Theorem Let L C ¥* be a language. Then L is regular if and only if the number
of equivalence classes of ~ is finite. Furthermore, if L is regular, then the number of
equivalence classes of ~, is also the number of states in the minimal DFA for L.

2.3 Levenshtein Distance

This subsection is based on [7].

Definition The Levenshtein distance or the minimum edit distance between two strings
is defined as the minimum number of edit operations (insertion, deletion, substitution)
needed to transform one string into the other.

For example, the minimum edit distance between the words kitten and sitting is 3. We
can turn the k into an s (sitten), turn the e into an i (sittin) and finally add a g to the end
(sitting).

3 Methodology

In this section, we present a key takeaway from the Myhill-Nerode theorem, which forms the
basis of our sampling algorithm. We then present two variations of the sampling algorithm,
called Binary Search k Sampling and Dynamic k& Sampling.

3.1 Sampling Algorithm

From the Myhill-Nerode theorem, we know that in order to merge two states in a DFA, they
must have no distinguishing extension, i.e., all possible extensions lead them to equivalent
states. From this, we can draw the intuition that traces which end in the same substring
and produce the same output are similar. Specifically, if we have two traces xz and yz that
produce the same output, it is likely that, in the minimal DFA, x and y lead to the same
state, meaning that there is substantial overlap in the information encoded by those two
traces. This means that removing one of the two traces from the training sample is unlikely
to affect the final DFA.
Based on this intuition, we can derive the following sampling algorithm:



1. Split the data into accepting and rejecting traces.
2. Find an integer value k.

3. Split the traces into groups, where the strings in each group end in the same k char-
acters.

4. Sample from these groups.

The first three steps can be seen in Algorithm 1.

Choosing the right value for k is essential to the sampling algorithm described above.
If it is too large, it will result in too many groups, rendering our sampling ineffective. If
the value is too small, the resulting groups are not representative enough. We propose two
different methods for choosing k, both of which will be evaluated experimentally.

3.2 Dynamic k£ Sampling

This method starts with a fixed value of k. We take 10% of the required samples, then
increment k by 1 and repeat until we have enough samples. We only increment k& by 1 in
order to avoid creating a small number of groups too quickly. Incrementing by another value
might also skip over values that capture important patterns in the data, leading us to miss
useful traces during sampling.

3.3 Binary Search £ Sampling

In this method, we choose a target number of groups and perform a binary search on k to
find the closest value that gives approximately that number of groups. As we want multiple
samples from each group, the target number of groups should be lower than the target
number of samples. For this paper, we set the number of target groups to be equal to the
number of target traces divided by 5. We do this because we want to take five samples from
each group. If any of the resulting groups has fewer than five traces, we supplement the
sample with diverse traces from other groups. This method can be seen in Algorithm 3.

When selecting samples from each group, we aim to ensure that the traces are as different
as possible from each other. To achieve this, we compute the Levenshtein distance between
each pair of traces. We then select the five traces with the highest minimum distance to any
other trace. This method is shown in Algorithm 2.

Algorithm 1: Group by suffix

Input: A set of traces T,where each trace is a tuple (label, length, string) and an
integer k
Output: A dictionary mapping (label, suffix) to a list of traces

1 Initialize empty map groups from (label, suffix) to list;
2 foreach (label, length, string) in T do

3 if k < length of trace then

4 | key « last k characters of trace;

5 else

6 L key < trace;

7 Append (label, length, trace) to groups|(label, key)];
8 return groups;




Algorithm 2: Choose Diverse Traces

Input: A list of traces T
Output: A list of sampled traces S
if |T'| <5 then
‘ return 7T’
Initialize empty list S ;
for i <~ 0 to |T| — 1 do
; Initialize min__dist < +o0;
for j < 0to |T|—1do
if j # i then
Compute d < Levenshtein.distance(T'[i], T'[5]);
if d <min_dist then
L man__dist < d;
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11 | Append (min_dist, T/[i]) to S;

12 Sort S in descending order by min_ dist;
13 return the first 5 elements of S

Algorithm 3: Binary Search for Optimal k

Input: A list of traces T', target number of samples n
Output: An integer value k
low + 1;
high < max(length of trace € T');
target _groups < n/5;
while low < high do

mid < [ (low + high)/2];

if |group_by_suffiz(T, mid)| > target groups then

low + mid + 1;
else
L high + mid,
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return low;

4 Experimental Setup

To test the accuracy of different sampling methods, we use a custom dataset of problems,
generated using the cod{] created by Max Pieters, which implements the trace generating
method from the StaMInA competition [10]. We generated DFAs of size 9 to 13, with 50%
of the final states being accepting and with the size of the training set + testing set equal to
2-|Q|?, where @ is the set of states in the DFA. Furthermore, the dataset is balanced such
that 50% of the traces are accepting and 50% are rejecting. On these datasets, we perform
5-fold cross-validation. We split a dataset into 5 parts, using 4 of them as the training set
with the remaining one as the testing set. We repeat this process 5 times, such that each of
the 5 folds is used once as the testing set. The generator we use ensures that a data point

IThe code can be found at:https://github.com/Max-Pieters/DFA-GeneratorFunctions
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cannot appear more than once in a set, therefore duplicate traces are not a concern. This
yields 25 instances on which we will test the sampling methods.

We will use classification accuracy as the metric for evaluation. Since the dataset is
balanced with 50% accepting traces and 50% rejecting traces, we will use regular accuracy
rather than balanced accuracy. We will compare the proposed sampling methods against
random sampling and an instance of the EDSM algorithm. Sampling will be performed at
various percentages of the full dataset, specifically 25%, and 50%. In order to further assess
the effectiveness of the models derived from the sampling techniques, we will also test them
on the entire training set from which the samples were taken. High accuracy on this set
would suggest that most of the eliminated traces were redundant.

The datasets we will use to test these methods are balanced in terms of the distribution
of accepting and rejecting states, as well as accepting and rejecting traces. Moreover, since
our generator produces traces through random walks across the DFA, each state in the DFA
should be represented fairly evenly. For this reason, we expect all sampling methods under
evaluation, including random sampling, to perform reasonably well.

All experiments will be conducted using the FlexFringe library, with Glucose as the SAT
solver. The tests will be run on an Intel i5-11400H at 2.70 GHz with 16 GB of memory,
running Ubuntu 24.04. The standard random number generator from Python was used
without setting a fixed seed.

5 Results

Table 1: Average accuracy of EDSM heuristic vs optimal learning with different sampling
methods at 25% and 50%, on the testing set.

DFA Size‘EDSM Random?25 Binary25 Dynamic25 Random50 Binary50 Dynamic50

9 75.4 60.4 51 54.4 99.2 98.5 100
10 74 64.4 66.8 65.4 93 97 95.6
11 97.6 70.2 57.2 61.6 89 96.8 97.8
12 79.4 75.4 73.4 72.6 90.6 94.8 89.6
13 77 72.2 51.4 72.6 97.4 98 97.4
Average ‘ 80.6 68.5 59.9 65.3 93.8 97 96.1

The results of the experiments are presented in Table 1. We can see that, no matter the
chosen sampling method, taking 25% of samples is too sparse to get a good result. Sampling
at 50% of the dataset seems to do better than EDSM with all three methods, with random
sampling being the worst and binary search sampling being the best. To evaluate each
method against the others and to make sure that the results are statistically significant, we
can perform a p-test on each pair of the 4 methods: EDSM, random, binary and dynamic.
Since we cannot assume anything about the distribution of our results, we use a Wilcoxon
signed-rank test.

The improvements of all three 50% sampling techniques over EDSM are highly signifi-
cant (p < 0.001), according to the p-values shown in Table 1. Random sampling performs
noticeably worse than both binary and dynamic sampling when comparing the 50% methods
among themselves (p = 0.018 and p = 0.021, respectively). Nonetheless, there is no statisti-
cally significant difference between dynamic and binary sampling (p = 0.35), indicating that
both approaches function similarly well. All things considered, these findings demonstrate



Table 2: Pairwise Comparison of Sampling Methods (p-values)

‘ EDSM Random50 Binary50 Dynamic50

EDSM - 0.0002 0.00003 0.00003
Random50 - - 0.018 0.021
Binary50 - - - 0.35
Dynamic50 - - - -

Note: Values represent p-values from Wilcoxon signed-rank tests. Only upper triangle values are shown for
clarity.

that employing a more knowledgeable sampling technique, such as binary or dynamic search
at 50%, significantly beats EDSM and random sampling.

Another way to evaluate these sampling methods is by testing the models they generate
on the entire training set from which the samples were drawn. A high accuracy should indi-
cate that the traces that were removed were mostly redundant or less informative, meaning
that the sampled subset effectively captures the patterns of the full dataset. We can see
the results of this test in Table 3. All 3 sampling methods perform very well, with Binary
Search Sampling getting the highest accuracy at 98.5%.

Table 3: Accuracy on Full Training Set for Different Sampling Methods

Sampling Method Accuracy (%)
Random Sampling (50%) 96.9
Binary Search Sampling (50%) 98.5
Dynamic Sampling (50%) 97.6

6 Ethical Analysis

6.1 Reproducibility of Experiments

The DFAs used in our experiments were self-generated. To ensure transparency, we provide
both the generator code and the resulting DFAs. The DFAs are available in both DOT and
JSON formats, allowing for easy visualization as diagrams and parsing by validation tools.
Additionally, the code used for data sampling and validation is published alongside this
paper. The code and data can be found at https://github.com/mateih/DFASampling.

6.2 Ethical Considerations

Like any data-driven model, DFA learning can be misused. It could be used for harm-
ful purposes such as user surveillance, behavioral manipulation, privacy invasion, or even
helping attackers reverse-engineer systems for cyberattacks. Although DFA models are in-
terpretable, the ethical responsibility depends on how they are used and the kind of data
they are trained on.
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7 Conclusions and Future Work

We presented two efficient ways in which we can reduce the training set of traces used for
learning DFAs, whilst maintaining high accuracy. Using an implication of the Myhill-Nerode
theorem, we can find groups of traces that provide similar information, allowing us to remove
some of them from the training set. By doing this, we can speed up the learning process
without losing too much accuracy. Our experimental results show that models minimized
using our two proposed methods outperform those obtained through random sampling and
the EDSM heuristic.

The datasets used in our experiments were balanced, which helped random sampling
perform well. A possible next step is to try the experiments again using unbalanced datasets
to check if the three sampling methods maintain their performance. We expect that in this
environment, random sampling would perform significantly worse. Another experiment
could be to measure how much time sampling actually saves in practice.

Although our methods show promise, our experiments also indicate that sampling too
much can be very detrimental to the accuracy of the learned model. Thus, sampling is
best used when we know that a dataset is dense, allowing us to remove some traces whilst
still maintaining high accuracy. One potential improvement to our approach is to adapt the
algorithm so that, instead of sampling at a fixed rate, it selectively removes samples it deems
redundant with a certain confidence level. This is left as future work. This adaptation would
make the algorithm more flexible, as it could also be used on sparser datasets.
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