
ImprovingLocalWeatherObservations
throughDiffusionModel

Hongrui Liu

May 2025

Improving Local
Weather Observations

through Diffusion
Model

by

Hongrui Liu

to obtain the degree of Master of Science
in Applied Mathematics at the Delft University of Technology,
to be defended publicly on Monday May 26, 2025 at 13:00 PM.

Student number: 6005608
Project duration: November 1, 2024 – May 20, 2025
Thesis committee: Prof. dr. H. Kekkonen, TU Delft, Chair and Responsible supervisor

Prof. dr. J. Sun, TU Delft, Core member and Daily supervisor
Prof. dr. A. Heinlein, TU Delft, Core member
Prof. dr. R. Verzijlbergh, TU Delft, Daily supervisor

Acknowledgments

Two years have passed in the blink of an eye. Every day spent in Delft is deeply etched in my
memory. As I look back, my heart is filled with gratitude for all those who have supported and
accompanied me on this journey.

First and foremost, I want to thank myself. Graduating from TU Delft has never been an
easy feat. Over these two years, I faced numerous exams, countless assignments, and relentless
deadlines. Yet, every ounce of effort and perseverance has been more than worth it.

I am profoundly grateful to my parents, Mr. Qilin Liu and Ms. Qiong Li. Their unwavering
support and encouragement have been my greatest strength. Behind every decision I made, they
stood silently by my side, offering unconditional love and sacrifice.

I also want to thank my friends—both those from China (Yishu Liu, Yu Chen, Ziqing Zhang,
Xiaoling Xia, Yijun Li, etc.)and those I have come to know here in the Netherlands (Wei Liu,
Yuran Wang, Xiner Zhou, Chen Liang, Jun Lin, Zhewen Gao, Yanqi Hong, Shipeng Liu, etc.).
Thank you for patiently listening during my moments of doubt, sharing joyful gatherings, and
joining me in study sessions. Your companionship has been a precious source of comfort and
strength.

My sincere thanks go to my thesis supervisors, Dr. Hanne Kekkonen, Dr. Jing Sun and Dr.
Remco Verzijlbergh. Your guidance and insightful feedback have greatly enriched my research
and helped me refine my work. I am also deeply thankful to Whiffle for entrusting me with this
project and providing invaluable support throughout my thesis journey. Furthermore, I appre-
ciate all the professors who have taught me; your profound knowledge and rigorous academic
spirit have been instrumental in broadening my horizons.

With a heart full of gratitude, I cherish every bit of support and encouragement I have received.
It is because of you all that I stand where I am today. Moving forward, I will carry this gratitude
with me and face the future with courage and determination.

Hongrui Liu

Delft, May 2025

i

Abstract

Reconstructing high-resolution wind fields from sparse, low-resolution observations is a critical
yet ill-posed problem in meteorological modeling. Classical approaches, such as Computational
Fluid Dynamics (CFD), are often too computationally intensive to meet the demands of real-
time or large-scale industrial applications. Meanwhile, conventional data-driven methods like
Convolutional Neural Networks (CNNs) tend to produce overly smoothed outputs and struggle
to recover fine-scale structures, especially under severe data sparsity.

This thesis explores the use of diffusion-based generative models for super-resolution in wind
field reconstruction. A progressive SR3 (Super-Resolution via Repeated Refinement) frame-
work is developed, combining a multi-stage architecture with stochastic denoising processes
to gradually reconstruct high-resolution outputs. Extensive experiments demonstrate that the
progressive SR3 consistently outperforms CNN-based baselines in terms of reconstruction accur-
acy, perceptual quality, and robustness. Furthermore, a joint training strategy improves both
performance and computational efficiency by enabling end-to-end optimization across stages.

The findings support the use of probabilistic diffusion models for meteorological super-resolution
tasks and emphasize the effectiveness of progressive refinement in handling large upscaling
factors. This approach provides a promising pathway for enhancing data-driven post-processing
in atmospheric modeling.

The data is provided in https://gitlab.com/whiffle-public/whiffle-open-data, and code
is available at: https://github.com/Homjui/Upscale_wind_field.

Keywords: diffusion models, SR3, super-resolution, wind field.

ii

https://gitlab.com/whiffle-public/whiffle-open-data
 https://github.com/Homjui/Upscale_wind_field

Contents

1 Introduction 1
1.1 Related Work . 1

1.1.1 Super-resolution methods in meteorological application 2
1.1.2 Diffusion models for high-resolution weather reconstruction 4
1.1.3 Research gap . 5

1.2 Structure of Thesis . 6

2 Mathematical Backgrounds 8
2.1 Super-resolution . 8

2.1.1 Downsampling methods . 8
2.1.2 The inverse problem view . 9
2.1.3 Super-resolution techniques . 10
2.1.4 Quality assessment . 11

2.2 Deep Neural Networks . 12
2.2.1 Neural networks structure . 13
2.2.2 Autoencoder . 14
2.2.3 Training methods . 16

3 Super-resolution via Repeated Refinement 19
3.1 Diffusion Models . 19

3.1.1 Forward process . 20
3.1.2 Reverse process . 22
3.1.3 Training objective . 23
3.1.4 Modified training obejective . 26
3.1.5 Denoising diffusion probabilistic models 28

3.2 Super-Resolution via Repeated Refinement . 31
3.2.1 Conditional forward and reverse process 32
3.2.2 Training SR3 . 33
3.2.3 Sampling via SR3 . 35

4 Experiments 37
4.1 Experiment Setup . 37

4.1.1 Dataset description . 37
4.1.2 Model structure . 38
4.1.3 Experiment design . 39

4.2 Experiment Results . 40
4.2.1 High-resolution reconstruction via progressive upscaling 40
4.2.2 High-resolution reconstruction via directly upscaling 43
4.2.3 Hyperparameters tuning . 45

iii

4.2.4 Joint learning of progressive SR3 . 47

5 Discussion and Conclusion 50
5.1 Conclusions . 50
5.2 Future Research Directions . 51

iv

1 Introduction

Sustainability has become a critical global concern, driving substantial investments from govern-
ments and organizations worldwide. The European union, for instance, has allocated significant
funding to initiatives promoting renewable energy sources, recognizing their potential to mitig-
ate climate change by reducing carbon emissions [54]. Among these renewable energy sources,
wind energy stands out due to its scalability and minimal environmental footprint [2]. However,
optimizing wind energy production requires high-resolution wind data, which can provide pre-
cise support for research areas such as wind farm optimization [8], air quality monitoring [53],
and wildfire risk assessment [17].

Accurately capturing wind behavior remains a significant challenge due to two primary diffi-
culties. First, turbulence exhibits complex, inherently random dynamics influenced by various
atmospheric factors, including humidity, pressure, and temperature [39]. Second, practical con-
straints on measurement infrastructure and associated costs limit the availability of turbulence
observations, resulting in sparse data coverage. The combination of turbulence complexity and
practical measurement limitations makes obtaining high-resolution wind data a persistent chal-
lenge.

To address this issue, researchers have explored multiple approaches to infer high-resolution
turbulence data from sparse observations. Experimental techniques such as Particle Image Ve-
locimetry (PIV) [1] enable the capture of detailed turbulent flow structures, while Computational
Fluid Dynamics (CFD) [3] methods, including large eddy simulation (LES) [46] and Direct Nu-
merical Simulation (DNS), provide numerical solutions for turbulence modeling. Despite their
accuracy, these approaches are computationally expensive and time-consuming [6], limiting their
practicality in real-time and large-scale industrial applications.

In recent years, data-driven methodologies have emerged as promising alternatives in turbulence
mechanics [7, 44, 56]. By integrating sparse measurement data with machine learning models,
researchers have leveraged deep learning techniques, such as Convolutional Neural Networks
(CNNs) [13] and Generative Adversarial Networks (GANs) [9], to enhance spatial and temporal
resolution, effectively reconstructing turbulence fields with reduced computational effort. With
the advancement of deep learning methods, Diffusion Models (DMs) have demonstrated super-
ior performance in high-resolution reconstruction problems [10] due to their ability to learn the
underlying probability distribution of datasets. Motivated by these advancements, this study
explores the application of DMs for turbulence field reconstruction, aiming to enhance the res-
olution of sparse wind observations efficiently and accurately.

1.1 Related Work

The thesis explores the application of DMs in enhancing the accuracy and resolution of local
weather observations. This research intersects two key areas: meteorological upscaling tech-

1

niques and DMs. The first research domain, often referred to as super-resolution methods [13],
includes both traditional numerical and statistical approaches as well as modern data-driven
techniques. Although DMs, a class of deep generative models that have shown remarkable suc-
cess in image processing tasks [10], are still in the early stages of recognition in meteorological
applications, their probabilistic formulation and ability to generate high-quality data have made
them increasingly relevant. Recent studies suggest their potential in improving the resolution
and accuracy of weather observations [40].

1.1.1 Super-resolution methods in meteorological application

In many application scenarios of computer vision, from everyday photography to refining satel-
lite [51] and medical images [22], Super-resolution tasks are of high demand. Super-resolution
problem, which aims to enhance low-resolution images into high-resolution counterparts, re-
ceived tremendous focus due to its ill-posed nature. In literature, a wide range of classical
super-resolution methods have been explored, including prediction-based methods [25], edge-
based methods [52] and statistical methods [27], etc. As deep learning continues to evolve,
super-resolution techniques based on deep neural networks have gained increasing attention.
Early methods leveraged CNNs, while more recent approaches have adopted GANs, which offer
alternative solutions to the super-resolution problem.

CNNs have been widely employed as a fundamental approach for addressing the super-resolution
problem, leveraging their ability to capture the nonlinear relationships between input and output
data through spatial feature extraction via filtering operations. Dong et al. [11] pioneered the
application of CNNs for super-resolution, which have since inspired various advancements in
different domains. Building on this foundation, Fukami et al. [13] expanded CNNs to weather
and climate applications where they utilized CNNs to reconstruct high-resolution turbulent flow
fields from coarse input data, effectively capturing essential spatio-temporal dynamics with high
fidelity. Similarly, Liu et al. [35] developed a CNN-based classification system for extreme
climate event detection, achieving an accuracy of 89%–99% in identifying phenomena such as
tropical cyclones, atmospheric rivers, and weather fronts.

Numerous studies have demonstrated that the adoption of CNNs significantly enhances model
performance across a range of applications. Weyn et al. [57] constructed a deep CNN-based
framework for global weather forecasting, achieving stable long-term predictions and outperform-
ing coarse-resolution numerical weather prediction models in short- to medium-range forecasts.
Liu et al. [34] further extended CNN architectures by introducing the static CNNs and the
Multiple Temporal Paths CNNs (MTPC), designed to extract both spatial and temporal fea-
tures. Their results showed that the MTPC model exhibited superior accuracy in reconstructing
turbulent flows and outperformed static models in capturing anisotropic turbulence character-
istics, highlighting the potential of CNN-based approaches for advancing data-driven weather
and climate modeling.

2

Beyond supervised learning methods, unsupervised learning architectures, particularly GANs,
provided useful inspirations on how to tackle super-resolution problems. In the GANs frame-
work, a generator is trained to capture the underlying data distribution by generating synthetic
samples that attempt to deceive a discriminator, which evaluates their authenticity [15]. Ledig
et al. [31] were among the first to introduce GAN-based architectures for super-resolution,
demonstrating that incorporating pixel- and feature-based loss functions led to the generation
of more perceptually realistic images compared to previous state-of-the-art methods. Inspired
by their work, many studies have extended GANs to weather and climate applications. Stengel
et al. [51] applied GANs to super-resolve wind velocity and solar irradiance, demonstrating its
potential for renewable energy resource assessment. Similarly, Chen et al.[9] applied GANs to
radar echo data super-resolution, effectively preserving edge details and textural features critical
for meteorological analysis.

In addition to standard GANs, researchers have explored variational and physics-informed GANs
architectures to better capture complex problem settings and data structures. Xie et al. [58]
developed a conditional GAN with temporal and spatial discriminators to generate coherent
and detailed four-dimensional physics fields using low-resolution inputs. Their results showed
that physics-aware data augmentation was able to enhance the accuracy and efficiency of the
model. Yousif et al. [61] proposed a multi-scale super-resolution GAN with a physics-based
loss function, which achieved accurate results with reduced training data and computational
cost. Their approach successfully handled both laminar and turbulent flow regimes, showcasing
the potential of physics-aware GANs for super-resolution tasks in geophysical and atmospheric
sciences.

Beyond CNNs and GANs, various deep learning architectures have been explored for super-
resolution tasks, including recursive neural networks [28] and residual attention networks [62],
etc. These methods incorporates novel mechanisms to enhance feature extraction, stability,
and reconstruction fidelity, while they are interconnected in their objective of learning high-
resolution representations from degraded inputs. Wang et al. [55] considered that the primary
differences among deep learning-based super-resolution methods can be categorized into several
key aspects: the choice of network architectures [26], the formulation of loss functions [23] and
the learning principles and optimization strategies employed during training [32].

Despite the substantial advancements in deep learning-based super-resolution models, determ-
ining the most effective architecture remains an open challenge, as each approach has its own
strengths and limitations. CNN-based models have demonstrated strong performance in ex-
tracting spatial features and are computationally efficient, making them well-suited for real-time
applications [13]. However, they often struggle with capturing long-range dependencies, which
limits their ability to reconstruct fine-grained details in highly complex scenes [55]. GAN-based
models, on the other hand, have been particularly successful in producing perceptually realistic
high-resolution outputs [31], but they suffer from issues such as mode collapse and instability

3

during training [15]. Additionally, while GANs can generate sharp and visually appealing res-
ults, they may not always preserve physical consistency in scientific applications such as weather
forecasting and fluid dynamics [51, 58, 61].

1.1.2 Diffusion models for high-resolution weather reconstruction

The introduction of DMs, pioneered by Ho et al. [19], represents a paradigm shift in generative
modeling, offering a compelling alternative to the long-standing dominance of GANs [10]. These
models have demonstrated remarkable success in image generation and reconstruction tasks,
including super-resolution. Unlike adversarial training in GANs, which often suffers from mode
collapse and instability, DMs employ a probabilistic denoising framework that ensures more
stable and diverse outputs [47]. The fundamental mechanism of classical DMs, as established
by Ho et al. [19], is based on a two-stage process: a forward noising process and a reverse
denoising process. These structured noise-to-data mapping enables DMs to capture intricate
spatial strucures, making them highly effectively for super-resolution applications.

Rombach et al. [38] demonstrated the ability of DMs to generate high-resolution and realistic
images, showcasing their potential in addressing complex image tasks. Building on this found-
ation, researchers have extended DMs to the climate and weather domains, leveraging their
generative capacity to enhance the availability and resolution of meteorological data. Merizzi
et al. [37] applied DMs to address the temporal lag in reanalysis datasets by formulating the
problem as a super-resolution task, thereby improving the accessibility of high-resolution climate
data. Ling et al. [33] introduced a two-stage diffusion framework to enhance long-term rainfall
prediction by mitigating issues such as blurriness and spatial distortions. Their approach first
captures temporal dependencies in a low-resolution setting before refining spatial structures
via high-resolution reconstruction, achieving a 5%-10% improvement over baseline methods.
Hatanaka et al. [16] employed score-based DMs to refine coarse numerical weather prediction
outputs into high-resolution satellite observations, demonstrating substantial improvements in
day-ahead solar irradiance forecasting.

As tasks become increasingly complex, traditional DMs often struggle to meet the growing
demands of high-resolution reconstruction and computational efficiency. Consequently, recent
advancements have led to refined variations of DMs, tailored to specific super-resolution chal-
lenges. Conditional DMs, such as Super-Resolution via Repeated Refinement (SR3) [43] and
Cascaded Diffusion Models (CDMs) [20], incorporate high-resolution conditioning signals to en-
hance reconstruction fidelity, outperforming conventional methods in both perceptual quality
and structural coherence. Latent Diffusion Models (LDMs) [38], another prominent variant,
map data into a lower-dimensional latent space for the diffusion process, significantly improving
computational efficiency without sacrificing visual quality. Additionally, score-based DMs [49]
leverage score matching to iteratively denoise and reconstruct high-resolution images, further
enhancing the accuracy of fine-grained details in generated outputs. These innovations collect-

4

ively expand the applicability of DMs in scientific and engineering domains, particularly for
high-resolution climate and atmospheric modeling.

Rybchuk et al. [40] pioneered the use of LDMs for reconstructing three-dimensional turbulence
from sparse, noise-free observations. Their research highlighted the ability of LDMs to address
inherent uncertainties through ensemble generation, providing diverse and realistic samples. In
subsequent work, Rybchuk et al. [41, 42] expands LDMs into temporal dimensions. Their results
demonstrated a high correlation with ground truth and a low bias in turbine inflow predictions.
Mardani et al. [36] introduced Residual Corrective Diffusion Modeling (CorrDiff), a two-stage
generative framework. Different from classical DMs, CorrDiff separates the deterministic and
stochastic components of the data: the first stage uses a U-Net to predict large-scale atmospheric
trends, while the second stage employs DMs to refine residual errors and capture fine-scale
variability. This focus on residual modeling proves highly effective for weather data, where
small-scale details are critical.

1.1.3 Research gap

Data-driven methods, particularly deep learning, have been extensively applied to weather up-
scaling problems, achieving computationally cheaper and more time-efficient results compared
to traditional numerical approaches such as CFD [3]. Nevertheless, several important challenges
remain:

• From model selection perspective, while DMs have been demonstrated as highly effective
for super-resolution tasks in computer vision domains [10], their application in weather
observation upscaling remains largely unexplored. Most existing research has focused on
CNNs and GANs to reconstruct high-resolution data from sparse weather observations [13,
14], with little attention given to the potential of DMs. This research gap may be attributed
to the relatively recent emergence of DMs. Given their superior performance in generating
high-fidelity reconstructions with improved stability compared to GANs, investigating their
role in weather upscaling presents a promising avenue for future research.

• From the dimension of super-resolution perspective, the majority of DMs weather super-
resolution studies prioritize improving the temporal resolution of meteorological data, ad-
dressing issues such as time lag [37] and forecast accuracy [16, 33]. However, practical
constraints on measurement infrastructure of meteorological data makes geographical up-
scaling equally crucial. Fine-grained spatial upscaling can enhance the ability to capture
localized weather features with higher precision, enabling more accurate regional climate
modeling and better applicability in real-world scenarios, such as wind energy forecasting
[8] and extreme weather prediction [35].

• From super-resolution tasks perspective, existing studies applied DMs to meteorological
super-resolution on rainfall [33] and solar irradiance [16], with relatively few investigations

5

into turbulence modeling. Whereas, wind flow exhibits high stochasticity and nonlinear
dynamics, making it particularly challenging to capture and reconstruct accurately [24].
The absence of extensive research on turbulence upscaling highlights a critical gap, as
high-resolution wind field reconstruction is essential for applications in sustainable energy
utilization [8], aviation safety [53], and climate risk assessment [17].

Given these research gaps, this thesis aims to explore the application of DMs in turbulence
geographical upscaling, filling a critical void in the field. By leveraging the strengths of DMs in
generating high-fidelity reconstructions, this study seeks to enhance the precision of wind flow
modeling. Improving the resolution of turbulence data has significant practical implications,
particularly in optimizing wind energy generation, where a more accurate representation of wind
patterns can lead to better resource allocation and efficiency in sustainable energy utilization.

The thesis research is closely related to the work of Rybchuk et al. [40], who focus on the
reconstruction of inpainting of turbulence using DMs. Both studies leverage DMs to recover
fine-grained spatial turbulence data in local regions. However, there are several key distinctions
between this thesis and their research.

First, in terms of objectives, while Rybchuk et al. [40] address the problem of inpainting masked
areas within a wind field, this thesis focuses on reconstructing high-resolution turbulence data
from limited sparse observations. Although both tasks can be regarded as interpolation and
extrapolation of incomplete dataset, the fundamental difference lies in the nature of the miss-
ing information. Inpainting typically assumes large, contiguous missing regions, which poses
challenges in preserving global spatial consistency. In contrast, sparse reconstruction involves
scattered and irregularly sampled data points, which makes it particularly difficult to recover
fine-scale structures and local coherence [4]. Both are inherently difficult problems but demand
different strategies due to the distinct characteristics of their missing data.

Second, in terms of methodology, both studies adopt DMs as the core framework, but they utilize
different model variants. Rybchuk et al. [40] employ LDMs, which operate in a compressed latent
space to improve efficiency [38], whereas this thesis adopts SR3, a super-resolution DMs designed
to directly enhance spatial resolution conditioning on low-resolution inputs [43]. The primary
distinction lies in between computational efficiency and reconstruction accuracy. LDMs reduce
computational costs by working in a lower-dimensional representation, potentially sacrificing
fine details, while SR3 preserves high-frequency features by operating in pixel space, making it
more suitable for super-resolution problems.

1.2 Structure of Thesis

The remainder of this thesis is organized as follows:

• Section 2 presents the mathematical background necessary to understand the core method-
ology. It first introduces the super-resolution problem from an inverse problem perspective

6

and discusses common downsampling methods and quality metrics. It then summarizes
foundational deep learning concepts, including neural network structures, autoencoders,
and optimization techniques.

• Section 3 introduces the Super-Resolution via Repeated Refinement (SR3) framework. It
details the theory of diffusion models, then formalizes SR3 for super-resolution tasks, where
the training and sampling procedures are thoroughly discussed and rigorously derived.

• Section 4 describes the experimental setup and implementation. It includes dataset pre-
paration, model configurations, training procedures, and baseline comparisons with CNNs.
Experiments cover both direct and progressive upscaling strategies, hyperparameter tuning
and joint learning.

• Section 5 discusses the experimental results, providing insights into model behavior and
architectural choices. The section also presents final conclusions and suggests directions
for future work.

7

2 Mathematical Backgrounds

2.1 Super-resolution

Super-resolution refers to the process of reconstructing high-resolution image from its corres-
ponding low-resolution image. This technique has numerous practical applications, including
medical diagnosis, face recognition, and autonomous driving. Mathematically, a super-resolution
model aims to recover a high-dimensional data y ∈ RD×D from its low-resolution counterpart
x ∈ Rd×d, where the low-resolution data is typically downscaled by a factor of s, such that
d = D/s. Consequently, super-resolution can be viewed as either an interpolation or extrapola-
tion process, depending on the desired resolution.

2.1.1 Downsampling methods

Given the high-resolution data y ∈ RD×D, the corresponding low-resolution data x ∈ Rd×d (with
a scaling factor s = D/d) is typically generated through a downsampling operation Ds:

x = Ds(y) + ϵ, (1)

where ϵ represents noise or other uncertainties introduced during the downsampling process.
The downsampling operator Ds can take various forms, depending on how the information
is reduced from high-resolution to low-resolution. Common downsampling techniques include
pooling, interpolation, and sparsification.

• Pooling operates by selecting a summary statistic, such as the maximum or average, from
a small region of the high-resolution data y. This can be represented mathematically as:

xi,j = max
(p,q)∈Ni,j

yp,q,

where Ni,j is a local neighborhood around grid point (i, j) in the high-resolution data y,
and xi,j is the corresponding low-resolution grid point value. Pooling reduces the spatial
dimensions of the data while retaining key features.

• Interpolation generates lower-resolution data by averaging or selecting grid point values
from the high-resolution data y based on a specified factor s. This can be represented
mathematically as:

x = Is(y),

where Is denotes the interpolation operator. Common interpolation methods include

8

nearest-neighbor, bilinear, and bicubic interpolation. This approach allows dimension
reduction in the least cost of damaging the perceptual quality.

• Sparsification refers to selectively retaining a subset of the most important or most relevant
components from the high-resolution data y. This can be represented mathematically as:

x = Ss(y),

where Ss denotes a sparsification operation, which reduces the number of retained coeffi-
cients. This approach is often used in compressed sensing where only the most informative
components are kept.

2.1.2 The inverse problem view

Once the downsampling operator Ds is defined, the super-resolution problem can be formulated
as learning its inverse D−1

s , which aims to reconstruct high-resolution data from corresponding
low-resolution observations, as illustrated in Figure 1.

Figure 1: Super-resolution problem structure. From an inverse perspective, a single low-resolution data
x ∈ Rd×d can correspond to multiple plausible high-resolution reconstructions y1, y2, y3 ∈ RD×D, which

highlights the ill-posed nature of the super-resolution problems.

However, from the perspective of inverse problems, super-resolution is inherently ill-posed. The
key reason lies in the fact that the downsampling operation Ds is lossy: it discards fine-grained
details such as high-frequency components. As a result, the inverse mapping D−1

s is not unique.
That is, multiple plausible high-resolution realizations can correspond to the same low-resolution
input, especially when they share similar coarse structures. This one-to-many mapping nature in-
troduces ambiguity and uncertainty into the reconstruction process, making the super-resolution
task fundamentally challenging.

9

2.1.3 Super-resolution techniques

To address the ill-posed nature of the super-resolution problem, a variety of techniques have
been developed to approximate the inverse of the downsampling operator D−1

s . Broadly, these
approaches can be categorized into two groups: classical methods and data-driven methods.

(a) Classical methods

Classical approaches to super-resolution focus on reconstructing high-resolution image by lever-
aging predefined mathematical models or image structure priors. These methods do not require
training on large datasets and often rely on statistical techniques or analytical assumptions
about the nature of image data [55].

Among classical methods, interpolation techniques, such as bilinear and bicubic interpolation,
form the most straightforward and widely-used family. These methods assume local smoothness
or continuity in image intensity values and use this assumption to estimate unknown high-
resolution pixels.

However, the relationship between pixels is often more intricate than what can be captured
by simple interpolation rules, especially for dataset representing natural or physical processes.
As a result, interpolation-based methods are limited in their ability to accurately recover fine-
scale structures and high-frequency components lost during super-resolution. Nevertheless, their
computational efficiency and ease of implementation make them a useful baseline approach or
preprocessing step for validating and initializing more sophisticated super-resolution models,
especially in scenarios where ground truth data is scarce or unavailable [55].

There are various interpolation methods applied in the literature, such as spline, nearest-neighbor
and Lanczos interpolation. Two widely-used interpolation techniques in super-resolution tasks
are:

• Bilinear interpolation estimates the value of the high-resolution grid point value ym,n by
computing a weighted average of the four nearest neighboring values in the low-resolution
grid, denoted as (m1, n1), (m1, n2), (m2, n1), and (m2, n2). The interpolation can be
formulated as:

ym,n ≈
∑

i∈{1,2}

∑
j∈{1,2}

(mi −m)(nj − n)xmi,nj . (2)

Although bilinear interpolation is computationally efficient and simple to implement, it
often introduces noticeable blurring, as it relies on a linear approximation of the underlying
relationships and does not account for complex data structures.

• Bicubic interpolation extends this idea by considering a larger 4×4 neighborhood surround-
ing the target point (m,n) and applying cubic convolution along both spatial dimensions.

10

The interpolated value is computed as:

ym,n ≈
2∑

i=−1

2∑
j=−1

P (m− i) · P (n− j) · I(i, j), (3)

where P (·) is a cubic interpolation kernel (e.g., the Keys or Catmull-Rom kernel), and
I(i, j) denotes the grid point intensity in the low-resolution input. Bicubic interpolation
generally produces smoother and sharper results than bilinear interpolation, as it leverages
a larger spatial context and better captures intensity variations and edge information [55].
However, it is also more computationally demanding.

(b) Data-driven methods

With the emergence of machine learning, data-driven approaches have become the dominant
paradigm in super-resolution. These methods aim to learn an approximate inverse mapping
D−1

s directly from data, by modeling the relationship between paired low-resolution inputs x
and high-resolution targets y.

Broadly speaking, there are two primary perspectives for modeling D−1
s in data-driven settings:

• Discriminative models treat super-resolution as a supervised regression task, where the
goal is to learn a deterministic mapping f : x 7→ y. Such as CNNs [11].

• Generative models approach super-resolution from a probabilistic perspective, modeling
the conditional distribution p(y | x). This formulation allows for capturing the inherent
uncertainty and the one-to-many nature of the inverse problem. Such as GANs [31] and
DMs [10].

2.1.4 Quality assessment

In super-resolution tasks, especially for image-based applications, evaluation metrics go beyond
standard accuracy measures. Since the goal is to recover high-quality images from low-resolution
inputs, both pixel-wise fidelity and perceptual similarity are essential. The following metrics are
commonly used to assess reconstruction quality:

• Accuracy

Mean Squared Error (MSE) is a pixel-wise measure of the average squared difference
between the reconstructed image ŷ and the ground truth image y with D×D pixels. It is
defined as:

MSE =
1

D2

D∑
i=1

D∑
j=1

(yi,j − ŷi,j)
2 .

11

A lower MSE indicates higher reconstruction fidelity.

• Peak derivation ratio

Peak signal-to-noise ratio (PSNR) is one of the most widely used objective metrics to
quantify the quality of lossy image reconstruction. It is derived from the MSE and the
maximum possible pixel value P :

PSNR = 10 · log10
(

P 2

MSE

)
.

PSNR is expressed in decibels (dB), and a higher PSNR typically corresponds to better
reconstruction quality.

• Structural similarity

Unlike MSE and PSNR, which are pixel-wise error metrics, structural similarity index
(SSIM) is designed to model perceptual similarity more closely to the human visual system.
It considers structural information based on three components: luminance, contrast, and
structure. The SSIM between two images y and ŷ is defined as:

SSIM(y, ŷ) = (2µyµŷ + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

ŷ + C2)
,

where µy, µŷ are the mean intensities, σy, σŷ are standard deviations, and σyŷ is the
covariance between the two images. C1 and C2 are small constants to stabilize the division.
SSIM values range from -1 to 1, with 1 indicating perfect structural similarity.

2.2 Deep Neural Networks

Data-driven approaches are widely utilized in solving real-world problems. These methods aim to
extract information, uncover patterns, and develop mathematical models to facilitate inference
and prediction, providing theoretical support for various studies. This discipline is commonly
referred to as statistical learning, or machine learning in the field of computer science.

The core idea of statistical learning is to quantitatively derive a mathematical function f that
maps an input vector x to its corresponding output y based on a dataset D containing N input-
output pairs. This dataset is represented as D = {(xi, yi)}Ni=1. In this context, the function
f represents the underlying relationship between the input x and the output y, which can be
learned from the data. Statistical methods are employed to extract information from the dataset,
and the goal is to "learn" an estimated form of the mapping function f , denoted as f̂ .

Traditional models, such as linear regression and logistic regression, assume that f has a known
form, such as a linear or polynomial function. Consequently, the estimated function f̂ is modeled
as a parametric function. For example, the parametric polynomial f

12

y = f(x;w) = w0 + w1x+ w2x
2 + · · ·+ wNxN .

In these models, the primary objective is to estimate the coefficients w = (w1, w2, · · · , wN)

based on the given dataset D. However, as the complexity of the problem increases, it becomes
apparent that not all relationships between input x and output y can be expressed in a predefined
functional form. Therefore, more complex, nonlinear mappings are needed to estimate f , leading
to the development of neural networks.

2.2.1 Neural networks structure

To generalize the linear model, one common approach is to express the output as a linear
combination of nonlinear basis functions hi(x), instead of directly using the input features x.
This allows the model to capture more complex relationships between input and output. The
model can be written as:

ŷ = f(x;w) = H

(
D∑
i=1

wihi(x)
)
, (4)

where hi(x) denotes the i-th basis function, wi is the corresponding weight, and H(·) is an
optional activation function. For regression tasks, H is typically the identity function, while for
classification tasks, it may represent a non-linear activation such as the sigmoid or softmax.

Figure 2: Neural Network structure. A neural network consists of an input layer (yellow block), several hidden
layers (green block), and an output layer (blue block). The connections between neurons in different layers

represent weights W: black lines indicate non-zero weights, while gray lines indicate weights equal to zero. Each
hidden neuron applies a nonlinear activation function h(·) (represented by the blue curve inside each node) to a

weighted sum of its inputs.

Neural networks (NNs) extend the basis function formulation (4) into a layered and compos-

13

itional structure. As illustrated in Figure 2, the input is a vector x ∈ Rd and the output is
y ∈ RD. The network is composed of an input layer, an output layer, and N intermediate layers
known as hidden layers, with respective dimensions d1, d2, . . . , dN . Each hidden layer consists
of multiple computational units, commonly referred to as neurons, which apply a weighted sum
followed by a nonlinear activation function to their inputs. Denoting the activation of the k-th
hidden layer as z(k), the neural network can be formulated as:

z
(1)
j = h

(
d∑

i=1

w
(0)
ij xi + b

(0)
j

)
= hj

(
W(0)x + b(0)

)
,

z
(2)
j = h

(
d1∑
i=1

w
(1)
ij z

(1)
i + b

(1)
j

)
= hj

(
W(1)z(1) + b(1)

)
,

· · ·

z
(N)
j = h

dN−1∑
i=1

w
(N−1)
ij z

(N−1)
i + b

(N−1)
j

 = hj

(
W(N−1)z(N−1) + b(N−1)

)
,

yi =

dN∑
i=1

w
(N)
ij z

(N)
i + b

(N)
j =

(
W(N)z(N) + b(N)

)
j
.

Here, h(·) is a nonlinear activation function such as the sigmoid function h(a) = 1
1+exp(−a) or

the ReLU function h(a) = max(0, a), which introduces nonlinearity into the network.

Therefore, NNs learn from the data by optimizing a series of transformations through layers
of interconnected neurons, capturing the mapping function f using connection weights between
layers W(i) and biases b(i). This process can be expressed iteratively as:

NN h
W(i),b(i) = b(N) + W(N)h

(
b(N−1) + W(N−1)h

(
· · ·h

(
b(0) + W(0)x

)
· · ·
))

= b(N) + W(N)z(N) ◦ z(N−1) ◦ · · · ◦ z(1) ◦ x.

2.2.2 Autoencoder

In the network structure depicted in Figure 2, the input is represented as x ∈ Rd and the output
as y ∈ RD, where typically d > D. However, when the number of output units matches the
number of input units, the network is trained to generate an output y that closely approximates
the corresponding input x. This specific type of neural network was introduced by Hinton and
Zemel [18] and is known as an Autoencoder (AE). The aim of AE is to reconstruct a output y
that is close to input x.

The structure of an AE is illustrated in Figure 3. The network consists of two primary compon-

14

ents: the encoder and the decoder. These can be viewed as two successive functional mappings,
denoted as F1 and F2, respectively.

The encoder mapping F1 projects the original d-dimensional input data x onto a lower M -
dimensional subspace, known as the latent space, producing a latent representation z(x). The
decoder mapping F2 subsequently reconstructs the input data from the latent representation,
yielding an output y(z) that approximates x. An illustrative example of an AE in action is
presented in Figure 4.

Figure 3: Autoencoder Structrue. An autoencoder consists of three main components: an encoder (yellow
block), a latent space (green block), and a decoder (blue block). The encoder F1 maps the input vector x from a

high-dimensional space to a lower-dimensional latent space z, while the decoder F2 reconstructs the original
input from the latent representation, producing an output y that has the same dimensionality as the input.

Figure 4: Autoencoder example. The encoder F1 maps a d-dimensional input space (d = 3) into a
M -dimensional latent space (M = 2), reducing the dimensionality of the data. The decoder F2, which then

reconstructs the original data from the latent representation, defines how the latent space is embedded in the
d-dimensional input space. Since F2 can be nonlinear, the resulting embedding of M -dimensional latent space

can be non-planar.

A key extension of the AE is the Variational Autoencoders (VAEs) [29], which introduces a
probabilistic interpretation of the latent space. In VAEs, the latent representation z is treated
as a random variable with a prior distribution p(z). Typically, this prior is chosen as an isotropic
Gaussian distribution, i.e., z ∼ N (0, I), to enforce a structured latent space. Then this structure

15

serves as a fundamental block in the construction of rich generative models, for example, diffusion
models explored in this thesis.

2.2.3 Training methods

Once the network architecture is defined, the next step is to train the model to approximate the
underlying function f from data. Given a dataset D = {(xi, yi)}Ni=1, the neural network aims to
learn a mapping f̂ such that the predicted output f̂(xi) is as close as possible to the true target
yi.

This is achieved by minimizing a predefined loss function L(w), which quantifies the discrepancy
between the predictions f̂(x) and the ground truth y. For example, in the case of an autoencoder,
the loss function quantifies the discrepancy between the input x and its reconstructed counterpart
y in MSE magnitude. It is commonly defined as:

L(w) =
1

2

N∑
n=1

‖y(xn,w)− xn‖2,

where w represents the parameters of the neural network to be optimized.

After defining the loss function, the training process seeks to estimate the optimal function f̂

by minimizing the empirical loss over the training set D. This is typically formulated as the
minimization of a loss function L(w) with respect to the model parameters w.

Figure 5: Gradient descent. The loss function L(w) landscape are complex with multiple local minima (red
points). The goal of gradient descent is to minimize the loss function by iteratively updating the parameter w in
the direction of the negative gradient, −∇L(w). Starting from a point w, the algorithm takes a step ∆w along

−∇L(w) to reach the next iterate (blue points), descending the loss function.

In simple cases, where the model is linear and the loss function is convex, this optimization
problem can sometimes be solved analytically. However, when more expressive models are used,
such as deep neural networks that introduce multiple layers of nonlinearity, the resulting loss

16

function often becomes highly non-convex. This complexity arises from the structure of the
model used to approximate f , rather than from f itself, which remains unknown in most real-
world scenarios. As illustrated in Figure 5, the non-convex nature of the loss landscape can lead
to numerous local minima or saddle points, making the optimization problem more challenging.
To cope with this, iterative optimization methods such as gradient descent are widely used,
although they do not guarantee convergence to the global minimum.

Intuitively, in the weight space, the loss function can be visualized as a surface with peaks and
valleys, as shown in Figure 5. Minimizing the loss function is analogous to descending toward
the lowest valley. Suppose the current weight vector is w, representing a point in the weight
space, and a small perturbation is applied to reach w +∆w. The corresponding change in the
loss function can be approximated as

∆L ≈ (∆w)T∇L(w),

where ∇L(w) denotes the gradient of the loss function, which points in the direction of the
steepest ascent. To minimize the loss, the weight update should proceed in the opposite direction
of the gradient:

w(k+1) = w(k) − η∇L(w(k)),

where η > 0 is the learning rate, which controls the step size of the update. By iteratively
applying this update rule, the optimization algorithm gradually moves toward a local minimum,
effectively reducing the loss function over time. However, as mentioned earlier, the complex
structure of the loss function L(w) makes finding the global minimum particularly challenging.
Due to the presence of multiple local minima, gradient descent may converge to a suboptimal
solution, as the iterative updates can become trapped in a local minimum, unable to escape.

To mitigate this issue, LeCun et al. proposed an online version of gradient descent [30], which
is based on a sum of independent observations. Instead of computing the loss over the entire
training set, the dataset is divided into M smaller subsets, often called mini-batches. This allows
the total loss function to be expressed as a sum over the losses computed on each mini-batch:

L(w) =
M∑

m=1

Lm(w),

where Lm(w) denotes the loss evaluated on the m-th mini-batch. For each step, updating the
weight vector w using a portion of randomly selected data points at each iteration

17

w(k+1) = w(k) − η∇Lm(w(k)).

This method is also known as stochastic gradient descent (SGD). Unlike standard gradient des-
cent, which requires computing the gradient over the entire dataset in each iteration, SGD makes
incremental updates by cycling through the dataset sequentially or by selecting individual data
points randomly with replacement. Therefore, SGD introduces stochasticity into the optimiza-
tion process, which can help the algorithm escape local minima and explore a broader region of
the loss landscape. Furthermore, because each update step is based on only one data point, SGD
significantly reduces the computational cost per iteration, making it more suitable for large-scale
machine learning problems.

18

3 Super-resolution via Repeated Refinement

In this section, DMs are first introduced as a class of generative models. Due to their strong gen-
erative capabilities, they have recently attracted increasing attention in the context of weather
upscaling, although their use in this domain is still in its early stages. However, their math-
ematical foundation is complex and nontrivial. To establish a rigorous basis for this thesis, a
systematic derivation is provided, starting from the fundamental principles of DMs and leading
to the formalization of their training and sampling algorithms.

Building on this foundation, Super-Resolution via Repeated Refinement (SR3) is then introduced
as an extension of the standard DMs framework, designed to overcome the limitation that
input and output must have the same dimensionality. This extension enables the application of
DMs to super-resolution tasks, where high-resolution images are generated from low-resolution
counterparts. Following a similar approach to the derivation of standard DMs, the fundamental
concepts of SR3 are first presented, followed by a mathematical formulation of its training and
sampling algorithms. These derivations establish the theoretical groundwork for the methods
employed in this thesis.

3.1 Diffusion Models

DMs are a class of generative deep neural networks that have gained significant popularity in
recent years. Unlike VAEs and GANs, which rely on a latent space z assumed to follow a fixed
prior distribution, DMs adopt a fundamentally different generative mechanism. The core idea
behind DMs is to progressively corrupt a given training sample x by adding Gaussian noise
over multiple timesteps, ultimately transforming it into a sample drawn from a known prior
distribution zT ∼ N (0, I). This process, illustrated as a left-to-right transformation in Figure 6,
is referred to as the forward (noising) process.

Figure 6: Framework of DMs. The top diagram illustrates the forward (rightward arrows) and reverse (leftward
arrows) processes. The forward process follows the transition distribution p(zk | zk−1), while the reverse process
ideally depends on p(zk | x, zk−1) (dashed arrow). Since x is unknown during inference, it is approximated by a
parameterized distribution p(zk−1 | zk,w) (backward arrow). The bottom sequence shows the diffusion process
applied to turbulence field data, where Gaussian noise is progressively added to the original data x, eventually

yielding a noise sample zT devoid of meaningful information.

19

Once the data has been mapped to this simple prior Gaussian distribution, a deep neural net-
work is trained to approximate the reverse (denoising) process. The model iteratively removes
Gaussian noise in a stepwise manner to reconstruct the original data sample x, as depicted in
the right-to-left transformation in Figure 6.

3.1.1 Forward process

In DMs, the forward process is designed to gradually introduce Gaussian noise into the data,
transforming the original input into an isotropic Gaussian distribution over multiple time steps.
Given an input x ∈ Rn×n (e.g., an image), each input unit (or pixel) undergoes an independent
blending with Gaussian noise. The first-step noise-corrupted intermediate representation z1 is
obtained by the following update rule:

z1 =
√
1− β1x +

√
β1ϵ1,

where ϵ1 ∼ N (0, I) represents Gaussian noise, and β1 ∈ (0, 1) controls the variance of the noise
perturbation.

This process is repeated iteratively, where at each time step, additional independent Gaussian
noise is added to generate a sequence of progressively noisier representations z2, z3, . . . , zT :

zk =
√
1− βkzk−1 +

√
βkϵk, (5)

where ϵk ∼ N (0, I) and mutually independent. It is worth noting that the noise variance
schedule satisfies 0 < βk−1 < βk < 1, ensuring that the mean of zk shifts closer to 0, while its
variance approaches the identity matrix I.

In other way round, this noising process can be interpreted as a Markov chain, where the
transition probability is given by:

p(zk | zk−1) = N
(√

1− βkzk−1, βkI
)
. (6)

The Markov property implies that zk is conditionally independent of x given zk−1, mathemat-
ically saying, p (zk | zk−1, x) = p (zk | zk−1). This allows us to express the marginal distribution
of zk as an integral over the intermediate latent variables:

20

p(zk | x) =
∫
· · ·
∫

p (z1, . . . , zk | x) dz1 · · · dzk−1

=

∫
· · ·
∫

p (z1 | x)
k∏

i=2

p (zi | zi−1) dz1 · · · dzk−1.

For p(zi | zi−1), using (5). Then a closed-form expression for zk can be derived by recursively
applying the diffusion process from z1 to zk:

zk =
√

(1− βk)(1− βk−1) · · · (1− β1)x +
k∑

i=1

√
βi

 k∏
j=i+1

√
1− βj

 ϵi.

Defining αk =
∏k

i=1(1−βi), due to the linearity and independence of the noise variables, zk can
be rewritten as:

zk =
√
αkx +

√
1− αkϵk, ϵk ∼ N (0, I). (7)

This expression confirms that zk follows a Gaussian distribution:

p(zk | x) = N (
√
αkx, (1− αk)I) .

Here, αk encapsulates the cumulative effect of the noise schedule, progressively diminishing the
influence of x while increasing the stochastic noise component. Notably, (7) highlights that
the forward process can be efficiently simulated in a single step without iterating through all
intermediate time steps. Instead, the total noise corruption at step k, represented by ϵk, can be
directly sampled from a standard Gaussian distribution, significantly reducing computational
complexity.

As k approaches a sufficiently large T (T →∞), the input data x is entirely destroyed, converging
to an isotropic Gaussian distribution:

p(zT) = p(zT | x) = N (0, I) .

This confirms that, given enough steps, all information in the input is lost, making the reverse
process essential for reconstructing the original data distribution.

21

3.1.2 Reverse process

Once the forward process is completed, the output zT serves as the input to the reverse process,
as shown in Figure 6, which aims to reconstruct the original input x. Similar to the forward
process, the reverse process follows a Markov chain, where the transition probability is given by

p (zk−1 | zk) =
p (zk | zk−1) p (zk−1)

p (zk)

=
p (zk | zk−1)

∫
p (zk−1 | x) p (x) dx
p (zk)

.

However, this posterior probability is intractable due to the integral over the unknown input data
distribution p(x). To address this, an alternative approach is to define the reversed transition
probability conditioned on the original input, i.e., p(zk−1 | zk, x). Under this formulation, it
turns out to be a Gaussian distribution due to the conjugacy property:

p (zk−1 | zk, x) =
p (zk | zk−1, x) p (zk−1 | x)

p (zk | x)
= N

(
mk (zk, x) , σ2

kI
)
, (8)

where the mean and variance are given by [19]:

mk (zk, x) =
(1− αk−1)

√
1− βkzk +

√
αk−1βkx

1− αk
,

σ2
k =

βk (1− αk−1)

1− αk
.

This formulation is intuitive: given a noisy observation zk, it is inherently challenging to de-
termine the exact lower-noise state zk−1 from which it originated. However, with additional
knowledge of the original input x, the reverse inference process becomes significantly more
tractable. This motivates the modeling of the reverse transition probability p(zk−1 | zk) as a
Gaussian distribution.

Feller [12] demonstrated that for continuous diffusion processes, the forward and reverse trans-
ition probabilities exhibit the same functional form. When the noise variance βk � 1, meaning
that each step introduces only a small perturbation and a large number of steps are required
to reach the prior distribution zT ∼ N (0, I), the discrete diffusion process closely approximates
a continuous diffusion process. In this regime, the transition probability of the forward process
p(zk | zk−1) and the reverse process p(zk−1 | zk) share the same functional form.

Since the exact reverse transition probability p(zk−1 | zk, x) is intractable due to the de-
pendence on the unknown original data x, it is approximated using a parameterized function

22

p (zk−1 | zk,w), where w represents the learnable parameters of a deep neural network. Spe-
cifically, the reverse transition is modeled as a Gaussian distribution with fixed variance βkI,
matching the forward noise scale:

p (zk−1 | zk,w) = N (µ (zk,w, k) , βkI) , (9)

where µ (zk,w, k) is a neural network with parameters w, trained to approximate the true reverse
transition mean. This approximation is motivated by the small noise assumption, under which
the local behavior of the diffusion process allows the reverse transition covariance to be closely
approximated by the forward noise variance βkI [12].

It should be noted that the form of the parameterized reverse probability is not unique. Nichol
and Dhariwal [10] further refined this approach by incorporating the local curvature of p(zk−1)

in the vicinity of zk into the neural network. They proposed learning the covariance matrix
Σ(zk,w, k) of p(zk−1 | zk,w), thereby introducing additional flexibility into the model architec-
ture.

To sum up, the overall reverse process within the Markov chain framework is then expressed as:

p (z1, . . . , zT , x | w) = p (zT)
{

T∏
k=2

p (zk−1 | zk,w)

}
p (x | z1,w) . (10)

3.1.3 Training objective

Since the reverse process is modeled as a deep neural network parameterized by w, training the
reverse process involves finding the optimal set of parameters. The first step is to define an
appropriate objective function for the optimization. A natural choice is the likelihood function
conditioned on the input data x:

l (w | x) = p (x | w) =

∫
· · ·
∫

p (x, z1, . . . , zT | w) dz1 · · · dzT

where p (x, z1, . . . , zT | w) is defined by the reverse process described in (10). Intuitively, this
likelihood function captures the probability of observing the data x by integrating over all
possible latent trajectories (z1, . . . , zT) that could have generated the observed data. However,
the integration space is high-dimensional and computationally intractable due to the complexity
of the underlying probability distributions. This challenge motivates the search for an alternative
training objective, which leads to the formulation of the Evidence Lower Bound (ELBO).

Similar to VAEs and GANs, the training of DMs relies on maximizing the ELBO [29], denoted
by L (w), which serves as a tractable lower bound on the log-likelihood function:

23

L (w) = log p (x | w)−KL (p (z) ‖p (z | x,w))

= log p (x | w) +

∫
p (z) log

{
p (z | x,w)

p (z)

}
dz

=

∫
p (z) log

{
p (x, z | w)

p (z)

}
dz.

In this formulation, the Kullback-Leibler (KL) divergence term KL (p (z) ‖p (z | x,w)) measures
the discrepancy between the prior distribution p (z) and the posterior distribution p (z | x,w).
Since the KL divergence is always non-negative, we have the following inequality:

log p (x | w) ≥ L (w) .

Thus, maximizing the ELBO L (w) indirectly maximizes the log-likelihood of the model. The
selection of the prior distribution p (z) plays a critical role in this optimization process. Although
any valid probability distribution could theoretically serve this purpose, a carefully chosen p (z)
can simplify the expression for the ELBO, making it computationally tractable.

In VAEs, p (z) is typically parameterized using a neural network with trainable parameters [29].
Since p (x, z | w) is also parameterized by a neural network governed by w, optimizing p (z) brings
the overall optimization of the model parameters w closer to the objective of maximizing the
likelihood function p (x | w). This connection forms the foundation for efficient training of DMs
and their ability to generate high-quality outputs.

In DMs, p (z) is chosen by a fixed distribution p (z1, . . . , zT | x), which depends on input data x.
According to the Markov property of the forward process, the joint distribution is given by:

p (z1, . . . , zT | x) = p (z1 | x)
T∏

k=2

p (zk | zk−1) ,

where p (z1 | x) and p (zk | zk−1) is given in (6). Plugging it back to ELBO inllustrated above
and the only adjustable parameters are w of p (x, z | w) in the reverse process. Then, the ELBO
can be derived as:

L (w) =

∫
· · ·
∫

p (z1, . . . , zT | x) ln
{
p (x, z1, . . . , zT | w)

p (z1, . . . , zT | x)

}
dz1 · · · dzT

=

∫
· · ·
∫ {

p (z1 | x)
T∏

k=2

p (zk | zk−1)

}
ln

p (zT)
{∏T

k=2 p (zk−1 | zk,w)
}
p (x | z1,w)

p (z1 | x)
∏T

k=2 p (zk | zk−1)

 dz1 · · · dzT .

24

For simplicity, define:

Ez1:zT [f(z)] =
∫
· · ·
∫

p (z1, . . . , zT | x) [f(z)] dz1 · · · dzT

=

∫
· · ·
∫ {

p (z1 | x)
T∏

k=2

p (zk | zk−1)

}
[f(z)] dz1 · · · dzT .

Then ELBO can be expressed as

L (w) = Ez1:zT

ln
p (zT)

{∏T
k=2 p (zk−1 | zk,w)

}
p (x | z1,w)

p (z1 | x)
∏T

k=2 p (zk | zk−1)

= Ez1:zT

[
lnp (zT) + lnp (x | z1,w)− lnp (z1 | x) +

T∑
k=2

lnp (zk−1 | zk,w)

p (zk | zk−1)

]

= Ez1:zT

[
lnp (zT) + lnp (x | z1,w)

p (z1 | x)
+

T∑
k=2

lnp (zk−1 | zk,w) p (zk−1 | x)
p (zk−1 | zk, x) p (zk | x)

]

= Ez1:zT

[
lnp (zT) + lnp (x | z1,w)

p (z1 | x)
+ ln p (z1 | x)

p (zT | x)
+

T∑
k=2

lnp (zk−1 | zk,w)

p (zk−1 | zk, x)

]

= Ez1:zT

[
lnp (x | z1,w) + ln p (zT)

p (zT | x)
+

T∑
k=2

lnp (zk−1 | zk,w)

p (zk−1 | zk, x)

]
,

where the third equation holds by Bayesian formula and Markov property

p (zk | zk−1) = p (zk | zk−1, x) =
p (zk−1 | zk, x) p (zk | x)

p (zk−1 | x)
.

According to the forward process of DMs, the corrupted input will eventually converge to an
isotropic Gaussian distribution, i.e., zT ∼ N (0, I), which implies that all information from the
original input has been completely lost at the final timestep T . Consequently, no trainable
parameters are associated with p (zT), allowing to omit this term from ELBO optimization.
Similarly, since p (zT | x) is a fixed distribution without learnable parameters, it can also be
excluded from the ELBO objective.

Thus, the ELBO can be reformulated using the definition of the KL divergence as follows:

25

L (w) = Ez1:zT

[
ln p (x | z1,w) +

T∑
k=2

ln p (zk−1 | zk,w)

p (zk−1 | zk, x)

]

=

∫
· · ·
∫

p (z1, . . . , zT | x)
[

ln p (x | z1,w) +
T∑

k=2

ln p (zk−1 | zk,w)

p (zk−1 | zk, x)

]
dz1 · · · dzT

=

∫
p (z1 | x) ln p (x | z1,w) dz1︸ ︷︷ ︸

reconstruction term

−
T∑

k=2

∫
p (zk | x)KL (p (zk−1 | zk, x) ‖p (zk−1 | zk,w)) dzk︸ ︷︷ ︸

consistency term

.

The first term is commonly referred to as the reconstruction term, which measures the likelihood
of generating the observed data x from the first latent output z1. Maximizing this likelihood
contributes positively to the ELBO objective. In contrast, the second term, known as the
consistency term, enforces agreement between the true reverse p (zk−1 | zk, x), which conditions
on the original data x, and the learned reverse process p (zk−1 | zk,w), which only depends on
the former latent state zk. Minimizing the KL divergence between these two ensures that the
learned reverse model faithfully approximates the true reverse dynamics.

Since both he true reverse p (zk−1 | zk, x) and the learned reverse process p (zk−1 | zk,w) are
Gaussian distributions as defined in (8) and (9), the KL divergence between them can be com-
puted in closed form based on the analytical properties of Gaussian distributions, which is given
as

KL (p (zk−1 | zk, x) ‖p (zk−1 | zk,w)) =
1

2βk
‖mk (zk, x)− µ (zk,w, k) ‖2 + C, (11)

where βk denotes the variance of the Gaussian noise at timestep k, mk (zk, x) represents the
true mean function conditioned on x, and µ (zk,w, k) corresponds to the parameterized mean
predicted by the model. The constant C is independent of w and can thus be ignored during
optimization.

Given the KL divergence in (11), the consistency term reduces to a simple squared-loss function.
Consequently, maximizing the ELBO becomes equivalent to simultaneously maximizing the
reconstruction likelihood and minimizing the squared-error terms across all consistency steps,
thereby encouraging the learned distribution p (zk−1 | zk,w) to approximate the true distribution
p (zk−1 | zk, x). It should be noted that the computational cost of optimizing L (w) is primarily
dominated by the consistency term, as it requires optimization over all timesteps k.

3.1.4 Modified training obejective

As discussed in the previous section, the ELBO consists of the KL divergences between the true
forward noising process and the learned reverse denoising process at each step. Maximizing the

26

ELBO is equivalent to forcing the learned distribution p (zk−1 | zk,w) to approximate the true
distribution p (zk−1 | zk, x). However, as described in (7), the latent output zk at any timestep
k can be directly obtained by computing the total noise corruption applied to x up to timestep
k, rather than iteratively adding noise at each step.

Ho et al. [19] proposed a modified ELBO formulation that yields higher quality results by
altering the objective of neural network. Instead of predicting the denoised output at each
Markov chain step, a new deep neural network g (zk,w, k) is used to predict the total noise
component added to the original input x to generate the latent noisy output zk at timestep
k. This modification improves sample quality because predicting the noise is generally easier
than predicting the clean data directly, leading to a more stable training process and better
convergence properties [19].

Following the total noising approach in (7), the mean mk (zk, x) of the reverse conditional dis-
tribution p (zk−1 | zk, x) can be expressed as:

mk (zk, x) =
1√

1− βk

(
zk −

βk√
1− αk

ϵk

)
,

where ϵk represents the total noise added to x to generate zk. This formulation highlights that
the reverse process is governed by the noise structure introduced during the forward diffusion
process.

To estimate this noise component, a deep neural network g (zk,w, k), parameterized by w, is
introduced to predict the total noise ϵk. Consequently, the mean µ (zk,w, k) of the reverse
conditional distribution p (zk−1 | zk,w) can be rewritten in terms of the predicted noise as:

µ (zk,w, k) =
1√

1− βk

(
zk −

βk√
1− αk

g (zk,w, k)

)
. (12)

Substituting into Equation 11, the KL divergence can be rewritten in terms of the original input
x and total noise ϵk as:

KL (p (zk−1 | zk, x) ‖p (zk−1 | zk,w)) =
βk

2 (1− αk) (1− βk)
‖g(√αkx +

√
1− αkϵk︸ ︷︷ ︸

zk

,w, k)−ϵk‖2+C.

Regarding the reconstruction term, it can be written similarly to the consistency term, with
k = 1 being a special case:

ln p (x | z1,w) =
−1

2 (1− β1)
‖g(√α1x +

√
1− α1ϵ1︸ ︷︷ ︸

z1

,w, 1)− ϵ1‖2 + C.

27

Thus, the ELBO becomes:

L (w) = −
T∑

k=1

βk
2 (1− αk) (1− βk)

∫
p (zk | x) ‖g

(√
αkx +

√
1− αkϵk,w, k

)
− ϵk‖2dzk

= −Eϵk

T∑
k=1

βk
2 (1− αk) (1− βk)

‖g
(√

αkx +
√
1− αkϵk,w, k

)
− ϵk‖2,

where zk is constructed as a noisy version of x by adding Gaussian noise ϵk ∼ N (0, I). Con-
sequently, the integral over p(zk | x) can be interpreted as an expectation over ϵk. In practice,
this expectation is typically approximated by a single Monte Carlo sample of ϵk at each iteration.

Furthermore, x is sampled from the empirical data distribution pD(x), and the timestep k is
uniformly sampled from {1, . . . , T}. Combining these sampling strategies, the ELBO can be
interpreted as the weighted sum of the squared differences between the predicted noise and the
actual noise across T timesteps:

L(w) = ExEϵk,k‖g(
√
αkx +

√
1− αkϵk,w, k)− ϵk‖2. (13)

It is worth noting that Ho et al. [19] empirically observed that diffusion models achieve better
performance when the weighting factor βk

2(1−αk)(1−βk)
is omitted. This adjustment ensures that

each timestep contributes equally to the loss, rather than being weighted according to its asso-
ciated noise level. As a result, the final training objective commonly used for diffusion models
removes the original weighting term from the ELBO.

3.1.5 Denoising diffusion probabilistic models

Focusing on the training objective of DMs presented in (13), the squared error term has a
straightforward interpretation. For a given step k in the Markov chain and a given training data
point x, a total noise vector ϵk is sampled to generate the corresponding noisy latent state zk
at that step. The loss function measures the squared difference between the predicted noise,
denoted as g(zk,w, k), and the actual sampled noise ϵk. The overall training process of DMs,
known as Denoising Diffusion Probabilistic Models (DDPMs) [19], is illustrated in Figure 7.

28

Figure 7: DDPMs training process. At each timestep k, a noisy latent variable zk is generated from the original
data x as zk =

√
αkx+

√
1− αkϵk, where ϵk represents the added total noise with respect to original input x.

This process is illustrated by the black line. The neural network g (zk,w, k) (green block) is trained to predict
ϵk, depicted by the blue line in the figure.

Figure 8: An example of U-Net architecture of DMs. The U-Net consists of downsampling layers, corresponding
upsampling layers, and a bottleneck, with skip connection between symmetric layers to preserve spatial

information. This architecture is used to predict the total added noise ϵk from a noisy latent state zk. The
model takes the input and outputs in the same size (256× 256).

To predict the total noise added to the latent state zk, DMs often adopt the U-Net architecture,
given in Figure 8, which has demonstrated excellent performance in maintaining spatial struc-
tures during noise estimation. A geeral U-Net consists of downsampling blocks, upsampling
blocks, and skip connections that transfer spatial information between corresponding layers,
ensuring the preservation of fine-grained details necessary for high-fidelity generation tasks [19].

The overall training process of DDPMs is perturbing the original clean data x by adding noise
to form zk at each timestep k followed (7). Then the neural network g(zk,w, k) is then trained
to predict ϵk.

Algorithm 1 outlines the procedure for training a DDPMs using SGD. In each iteration, the
gradient vectors of the loss function are computed by randomly sampling data points from the
dataset D. Each sampled data point x is subjected to a diffusion process by adding noise at
a randomly selected timestep t along the Markov chain. Subsequently, an optimization step

29

is performed to accumulate the gradients over a mini-batch, followed by updating the model
parameters.

Algorithm 1 Denoising diffusion probabilistic models (DDPMs) training [5]
Input: Training data D = {xn}, Noise schedule {β1, . . . , βT }
Output: Neural network parameters w

1: for k ∈ {1, . . . , T} do
2: αk ←

∏k
i=1(1− βi) ▷ Calculate α from β

3: end for
4: repeat
5: x ∼ D ▷ Sample a data point
6: k ∼ {1, . . . , T} ▷ Sample a point along the Markov chain
7: ϵ ∼ N (0, I) ▷ Sample a noise vector
8: zk ←

√
αkx +

√
1− αk ϵ ▷ Evaluate noisy latent variable

9: L(w)← ‖g(zk,w, k)− ϵ‖2 ▷ Compute loss term
10: Take optimizer step
11: until converged
12: return w

Once the model is trained, the generation of new samples is performed via a sequential denoising
process, starting from zT , which is a pure Gaussian noise N (0, I). Notably, the sampling proced-
ure differs from training: instead of predicting the total noise at arbitrary timesteps, sampling
progresses step-by-step alongside the Markov chain, gradually refining the latent states zk to-
wards the target outputs.

The sampling procedure is detailed in Algorithm 2 and illustrated in Figure 9. At each denoising
step, the network predicts the noise component g (zk,w, k), which is used to compute the mean
µ(zk,w, k) of the reverse diffusion distribution followed (12).

Each denoising step from zk to zk−1 involves three sub-steps:

1. Denoising estimation: compute µ(zk,w, k) using the noise prediction network g (zk,w, k).

2. Sampling: generate a sample zk−1 from the distribution p (zk−1 | zk,w), leveraging the
Gaussian distribution properties.

3. Noise adjustment: add the scaled noise term
√
βkϵ, where ϵ represents the stochastic noise

introduced at timestep k − 1 during the forward process.

In the final step, a noise-free output x is obtained without adding any additional noise.

30

Figure 9: DDPMs sampling process. Starting from pure noise zT , the latent variable zk is iteratively denoised
using the trained neural network g(zk,w, k) (green block), which predicts the noise (black line). The estimated

mean µ(zk,w, k) is used to compute a less noisy latent state through zk−1 = µ(zk,w, k) +
√
βkϵ (blue line).

Through this iterative denoising process, the model gradually reconstructs the original input x.

Algorithm 2 Denoising diffusion probabilistic models (DDPMs) sampling [5]
Input: Trained denoising network g(zk,w, k), Noise schedule {β1, . . . , βT }
Output: Sample vector x in data space

1: zT ∼ N (0, I) ▷ Sample from final latent space
2: for k = T, T − 1, . . . , 2 do
3: αk ←

∏k
i=1(1− βi) ▷ Calculate α from β

4: µ (zk,w, t)← 1√
1−βk

(
zk − βk√

1−αk
g(zk,w, k)

)
5: ϵ ∼ N (0, I) ▷ Sample a noise vector
6: zk−1 ← µ(zk,w, k) +

√
βkϵ ▷ Add scaled noise

7: end for
8: x = 1√

1−β1

(
z1 − β1√

1−α1
g(z1,w, 1)

)
▷ Final denoising step

9: return x

Recent works have proposed improvements to the original DDPM framework to address the
computational inefficiency arising from the sequential sampling steps. For instance, Song et
al. [49] reformulated the reverse diffusion process as an ordinary differential equation, enabling
deterministic sampling with significantly fewer steps. Additionally, methods like stochastic dif-
ferential equations allowed trade-offs between computation and sample quality by tuning the
discretization scheme [50]. Recent approaches, such as consistency models, further improved
efficiency by training models to directly map noise to data in a single step [48].

3.2 Super-Resolution via Repeated Refinement

DMs require the input x and output zT to have the same dimensionality. This is because, at each
timestep, noise is added with varying intensities while maintaining the same spatial distribution.
In image processing tasks, every pixel in the reverse process must be denoised in a one-to-one
correspondence with the input pixels. If the dimensions of the input and output differ, the
structural integrity of the noise distribution is disrupted, preventing DMs from learning an

31

effective mapping from noise to a clear image.

To address this limitation, Saharia et al. [43] proposed the Super-Resolution via Repeated
Refinement (SR3) framework, which extends the capabilities of DMs for modeling conditional
probabilities. Similar to classical DDPMs, SR3 performs the forward process by progressively
adding Gaussian noise to samples from an empirical distribution, such as the conditional dis-
tribution p (y | x), through T timesteps until all information is lost, resulting in a standard
normal distribution N (0, I). The reverse process then aims to recover the original distribution
by progressively denoising within a sequence of refinement steps.

It is important to note that, in standard DMs, the reverse process aims to reconstruct an output
z0 that is as close as possible to the original input x. However, in SR3, the objective shifts:
the reverse process is conditioned on the low-resolution input x and is designed to generate a
high-resolution output z0 that closely matches the target y. Here, the SR3 model is trained on
paired data (x, y), where x serves as the low-resolution input, and the goal is to predict y, the
corresponding high-resolution target.

3.2.1 Conditional forward and reverse process

Given a dataset of N input-output pairs D = {(xi, yi)}Ni=1, where each low-resolution input
xi ∈ Rd×d corresponds to a high-resolution output yi ∈ RD×D, the goal of SR3 is to learn a
mapping from xi to yi that accurately captures the underlying conditional relationship between
low- and high-resolution data. Unlike DMs that focus on learning the marginal distributions
p (x) or p (y), the SR3 framework focuses on modeling the conditional probability distribution
p (y | x). Specifically, SR3 learns a parameterized approximation of p(y | x) by employing
DDPMs to map low-resolution inputs x to their corresponding high-resolution outputs y. The
conditional forward and reverse diffusion processes are illustrated in Figure 10.

Figure 10: Framework of SR3. SR3 consists of a forward process (rightward arrows) and a reverse process
(leftward arrows). The forward process starts from z0, representing p(y | x), and progressively adds noise via
p(zk | zk−1, x), ending at zT . The reverse process then denoises zT back to z0 using p(zk−1 | zk, x,w) (dashed

arrows), approximating the true reverse transition p(zk−1 | zk, x, z0).

For the conditonal forward process, the conditional diffusion process is conducted following the
diffusion kernel defined in (7). The marginal distribution of the corrupted sample zk at timestep
k given the original input z0 is modeled as:

32

p(zk | z0) = N (
√
αkz0, (1− αk)I) , (14)

where αk =
∏k

i=1 (1− βi), and βi controls the variance of the Gaussian noise added at each
timestep. The forward process of SR3 is similar to that of classical DMs, through progress-
ively corrupting the original input by adding noise until it reaches a nearly isotropic Gaussian
distribution.

In the conditional reverse process, the SR3 model seeks to recover the high-resolution output by
reversing this noising process. The transition probability for the reverse diffusion step can be
derived using the conjugacy property of Gaussian distributions [43], leading to:

p (zk−1 | zk, z0) = N
(
mk (zk, z0) , σ2

kI
)
,

where the mean mk and variance σ2
k are given by:

mk (zk, z0) =
(1− αk−1)

√
1− βk zk +

√
αk−1βk z0

1− αk
,

σ2
k =

βk (1− αk−1)

1− αk
.

This reverse diffusion process iteratively refines the noisy input toward a high-resolution output
that is consistent with the conditional distribution p (y | x).

3.2.2 Training SR3

In the context of SR3, the target output z0 remains unobservable, making it challenging to
explicitly determine the reversed transition probability p (zk−1 | zk, z0). As discussed in the
framework of DMs, when the number of timesteps is sufficiently large, the reverse process follows
a form similar to the forward process. Therefore, the learnable reverse Markovian process in
SR3 is parameterized as:

p (zk−1 | zk,w, x) = N (µ (zk,w, k, x) , βkI) , (15)

where µ (zk,w, k, x) is a neural network with parameters w, trained to approximate the true
reverse transition mean.

Following the total noise formulation in DMs which is defined in (14), the corrupted latent state
zk at step k can be expressed as:

33

z0 =
1
√
αk

zk −
√
1− αk√
αk

ϵk,

where ϵk ∼ N (0, I) is the total Gaussian noise added during the forward process. By substituting
the posterior probability p (zk−1 | zk, z0), its mean is given by:

mk (zk, z0, x) =
1√

1− βk

{
zk −

βk√
1− αk

ϵk

}
.

This indicates that the mean of the posterior probability depends only on zk and the total noise
added during the forward diffusion process up to time step k. To model this relationship, a
deep neural network g (zk,w, k, x) is introduced to predict the total noise and reconstruct z0.
Consequently, the approximated mean function for the learned reverse process in (15) is defined
as:

µ (zk,w, k, x) = 1√
1− βk

{
zk −

βk√
1− αk

g (zk,w, k, x)
}
. (16)

Therefore, similar to the training objective in DMs, the training objective of SR3 is to minim-
ize the KL divergence between the true posterior distribution p (zk−1 | zk, z0) and the learned
transition probability p (zk−1 | zk,w, x), formulated as:

arg min
w

KL (p (zk−1 | zk, z0) ‖p (zk−1 | zk,w, x))

= arg min
w

KL
(
N
(
mk (zk, z0) , σ2

kI
)
,N (µ (zk,w, k, x) , βkI)

)
= arg min

w
βk

2 (1− αk) (1− βk)
‖g(√αkz0 +

√
1− αkϵk︸ ︷︷ ︸

zk

,w, k, x)− ϵk‖2,

where ϵk ∼ N (0, I) and (x, y) is sampled from the dataset D. In practice, the weighting factor
βk

2(1−αk)(1−βk)
is omitted to ensure that each diffusion timestep contributes equally to the overall

loss. Consequently, the final objective function for training the parameters w is:

L(w) = E(x,y)E(ϵk,k)‖g(
√
αkz0 +

√
1− αkϵk︸ ︷︷ ︸

zk

,w, k, x)− ϵk‖2, (17)

where the outer expectation is taken over the dataset distribution pD(x, y), and the inner ex-
pectation is over the diffusion timestep k and sampled total noise ϵk. This two-level expectation
structure ensures that the model learns to predict the noise corruption across all stages of the
diffusion process, conditioned on varying input pairs (x, y).

34

The corresponding SGD training procedure is outlined in Algorithm 3.

Algorithm 3 Super-Resolution Residual Refinement (SR3) Training

Input: Training data D = {(xi, yi)}Ni=1, Noise schedule {β1, . . . , βT }
Output: Neural network parameters w

1: for k ∈ {1, . . . , T} do
2: αk ←

∏k
i=1(1− βi) ▷ Compute noise scaling factor

3: end for
4: repeat
5: (x, y) ∼ D ▷ Sample input-output pair
6: k ∼ {1, . . . , T} ▷ Sample timestep from the Markov chain
7: ϵ ∼ N (0, I) ▷ Generate noise vector
8: zk ←

√
αky +

√
1− αk ϵ ▷ Add noise to high-resolution target

9: L(w)← ‖g(zk,w, k, x)− ϵ‖2 ▷ Compute reconstruction loss
10: Update parameters w using gradient descent
11: until converged
12: return w

Similar to the training process of DMs as outlined in Figure 7 and Algorithm 1, SR3 is trained by
fitting the total noise ϵ added to the original input z0 using a deep neural network g(zk,w, k, x).
It is important to note that the structure of this neural network differs from that of DMs, as
it performs the fitting based on low-resolution x, which is a key characteristic of conditional
diffusion models. An example of U-Net architecture of SR3 is given in Figure 11.

Figure 11: An examle of U-Net architecture of SR3. Similar to DMs, the network predicts noise from a noisy
latent state zk. However, SR3 conditions on the low-resolution input x, which is upsampled via interpolation
and concatenated with zk before being fed into the model. The figure shows the activiation dimensions for a

64× 64 → 256× 256 super-resolution.

3.2.3 Sampling via SR3

Once the total noise prediction neural network g(zk,w, k, x) finishes training, the reverse trans-
ition probability p (zk−1 | zk,w, x) can be derived. Given a noisy latent state zt, the target
z0 ∼ p (y | x) can be estimated by:

35

ẑ0 =
1
√
αk

zk −
√
1− αk√
αk

g(zk,w, k, x).

By substituting the mean of the posterior distribution of the normal form p (zk−1 | zk,w, x)
defined in (16) and using the variance βk (as defined by the forward process in [19]), each step in
the iterative refinement under the low-resolution input x condition can be derived. This iterative
process takes the following form:

zk−1 ← µ (zk,w, k, x) +
√
βk =

1√
1− βk

(
zk −

βk√
1− αk

g(zk,w, k, x)
)
+
√

βk.

The sampling procedure for SR3 follows the Markov chain in a sequential manner, similar to
DMs. The detailed sampling algorithm is given in Algorithm 4.

Algorithm 4 Super-Resolution Residual Refinement (SR3) Sampling
Input: Trained refinement network g(zk,w, k, x), Low-resolution input x, Noise schedule
{β1, . . . , βT }

Output: High-resolution output y
1: zT ∼ N (0, I) ▷ Initialize with Gaussian noise
2: for k = T, T − 1, . . . , 2 do
3: αk ←

∏k
i=1(1− βi) ▷ Compute scaling factor

4: µ (zk,w, k, x)← 1√
1−βk

(
zk − βk√

1−αk
g(zk,w, k, x)

)
5: ϵ ∼ N (0, I) ▷ Sample noise vector
6: zk−1 ← µ(zk,w, k, x) +

√
βkϵ ▷ Add noise

7: end for
8: y = 1√

1−β1

(
z1 − β1√

1−α1
g(z1,w, 1, x)

)
▷ Final high-resolution reconstruction

9: return y

36

4 Experiments

As discussed in Section 1, limitations in the current measurement infrastructure and the inherent
randomness of atmospheric turbulence hinder the accurate capture of wind behavior. While LES
can provide high-resolution simulations, its computational cost renders it impractical for real-
time or large-scale industrial applications. To address this challenge, this section explores using
SR3, introduced in earlier sections, to enhance the spatial resolution of wind observations.

Specifically, real-world wind measurements are typically available at a coarse resolution of ap-
proximately 2 km, whereas both factual high-resolution observations and LES outputs are avail-
able at a much finer resolution of about 120 m. Therefore, the aiming of experiment part is to
reconstruct fine-scale wind fields from coarse input data using the SR3 framework, which can
be formulated as a 16× super-resolution task.

4.1 Experiment Setup

4.1.1 Dataset description

To enable 16× super-resolution using SR3 model, a suitable training dataset must first be
constructed. In case of this thesis, the high-resolution ground-truth data is obtained from LES,
which contains fine-grained turbulence field data over the Netherlands and adjacent coastal
regions in a certain height. The LES dataset offers hourly snapshots, where each frame has a
spatial resolution of 120 meters and covers a large geographical area, resulting in a data size of
3840× 2560 grid points per record.

However, directly using such large-scale input would be computationally inefficient and im-
practical for training. To address this, each hourly LES field is divided into smaller patches of
256×256 grid points, enabling the model to be trained on localized wind field patterns. This ap-
proach not only reduces computational cost but also promotes the learning of more generalizable
features for 16× super-resolution of turbulence.

Following the SR3 training process described in Algorithm 3, the training set consists of paired
samples (x, y), where x is the low-resolution input and y is the corresponding high-resolution
output. The high-resolution patches y are directly extracted from LES outputs, while the low-
resolution counterparts x are generated by applying downsampling with a factor of 16 (i.e., from
256× 256 to 16× 16) and then upsampling back to 256× 256 using interpolation. This mirrors
the SR3 pipeline where the diffusion process is conditioned on an interpolated low-resolution
image.

For the experiments in this thesis, each single-hour LES record, with a size of 2560× 3840 grid
points, is divided into smaller non-overlapping patches of 256×256 grid points. This partitioning
method allows for the generation of 150 small patches from a single hourly record. To ensure
that the training and testing sets do not overlap, data from January 2020 is used exclusively

37

for the training set, resulting in a total of 150 × 24 × 31 = 111600 training samples. For the
testing set, data from May 1, 2020 is selected, and the same patch extraction method is applied
to generate the corresponding low-resolution inputs and high-resolution ground truth. Figure 12
illustrates the process to construct training set.

Figure 12: Each large image (left) represents one hour of LES data on a 3840× 2560 spatial grid. The training
set (right) is constructed by dividing these large datasets into multiple 256× 256 patches. This patch-based

construction both diversifies the training samples and improves training efficiency.

4.1.2 Model structure

Based on the construction of the training set, the experiment focuses on achieving 16× super-
resolution from 16× 16 to 256× 256. Since super-resolution is inherently an ill-posed problem,
excessively large scaling factors, such as 16×, can result in significant information loss in the
input, making it difficult for the SR3 model to effectively reconstruct high-resolution details.
Therefore, following the approach proposed by [43], a progressive SR3 strategy is employed. This
involves using two SR3 models sequentially, where each model performs a 4× super-resolution.

The two stages are first stage (16× 16→ 64× 64) and second stage (64× 64→ 256× 256), as
illustrated in Figure 13. The underlying U-Net architecture for both stages is detailed in the
first and second rows of Table 1.

Tasks Channel dimension Depth multipliers ResNet blocks # Parameters
162 → 642 64 {1, 2, 4, 8, 4, 2, 1} 2 550M
642 → 2562 64 {1, 2, 4, 8, 16, 8, 4, 2, 1} 3 1.2B
162 → 2562 128 {1, 2, 4, 8, 16, 8, 4, 2, 1} 3 1.5B

Table 1: U-Net architectures of SR3 models.The first row shows the configuration of the U-Net used in the first
stage of progressive SR3, while the second row illustrates the architecture for the second stage. The final row
presents the structure used in 16× SR3. The "Channel dimension" corresponds to the dimension of the first

layer, and the "Depth multipliers" are applied to subsequent resolutions.

38

Additionally, to evaluate the performance of SR3, a baseline model using a standard CNNs with
the same structure is trained as a benchmark. Since SR3 incorporates diffusion mechanisms over
the conventional U-Net structure, comparing the performance of SR3 against the CNNs model
allows to assess the benefits of these enhancements.

Figure 13: Progressive SR3 framework. The model consists of two independently trained SR3 networks, each
performing 4× super-resolution. In the first stage, SR3-1 upsamples the 16× 16 low-resolution input to an

intermediate resolution of 64× 64, while in the second stage, SR3-2 further enhances the resolution from 64× 64
to 256× 256.

4.1.3 Experiment design

Building on the previously introduced models, the experiments are designed to compare the
performance of different super-resolution methods, focusing on two key experimental setups:

• Direct 16× SR3 vs. CNNs

In the first experiment, the performance of the 16× SR3 model is evaluated by directly
upscaling low-resolution images from 16 × 16 to 256 × 256 grid points. The SR3 model
is compared against a CNN model with the same U-Net architecture, which serves as the
baseline.

• Two-stage 4× SR3 vs. CNNs

In the second experiment, a progressive SR3 strategy is implemented, where two SR3
models are applied sequentially to upscale the image in two stages: from 16×16 to 64×64

in the first stage, and from 64 × 64 to 256 × 256 in the second stage. This progressive
approach is compared against a similar two-stage CNNs, where each stage performs a 4×
upscaling.

For both experiments, MSE and SSIM are used to assess the pixel-wise accuracy and perceptual
similarity of the generated high-resolution data respectively. In addition, the training time per

39

epoch and sampling (inference) time are recorded to evaluate the computational efficiency of
each model. Furthermore, visual comparisons of the generated high-resolution images will also
be provided to assess the perceptual quality.

4.2 Experiment Results

4.2.1 High-resolution reconstruction via progressive upscaling

The experiments are conducted on an NVIDIA A100 GPU. The SR3 architecture is illustrated in
Figure 11, and the corresponding architectural parameters are provided in Table 1. For baseline
comparisons, the CNNs models adopt the same architecture as their corresponding SR3 models,
but without the diffusion process.

To address the 16× super-resolution task, the progressive super-resolution framework decom-
poses the task into two successive 4× super-resolution stages. The first stage performs upscaling
from 16 × 16 to 64 × 64, referred to as SR3-1. The second stage further upscales the result to
256 × 256, referred to as SR3-2. Each stage is trained independently to optimize performance.
The traning results and hyperparameters of SR3-1 and SR3-2 are recorded in Table 2.

SR3-1 (4×) SR3-2 (4×)

Hyper-parameters

Learning rate 10−4 10−3

Batchsize 8 8
β starts 10−4 10−4

β ends 0.02 0.02
diffusion timesteps 1000 1000
Interpolation methods Bicubic Bicubic
Training loss measure L2 L2
Optimization methods Adam Adam

Earlystop patience 5 5

Training results
Training epochs 27 23

Average time per epoch 650 s 3250 s
Final training loss 0.18 0.06

Table 2: Hyperparameters and training results for the progressive SR3 models

Although both stages are designed to perform a 4× super-resolution task, there is a noticeable
gap in training loss between SR3-1 and SR3-2, with 0.18 and 0.06 respectively. This discrepancy
can be attributed to the difference in available information at each stage. Specifically, SR3-1
upscales from 16×16 to 64×64, where the input is extremely low resolution and lacks sufficient
structural details. In contrast, SR3-2 performs upscaling from 64× 64 to 256× 256, where the
input already contains richer spatial and semantic information. Consequently, SR3-2 is able to
make more informed estimations about the high-frequency details of the output.

This phenomenon is also reflected in the sampling outputs from the two models given in Fig-
ure 14. The results generated by SR3-2 demonstrate finer structural details and more accurate
reconstruction, which is more close to ground truth, benefiting from the higher-quality input.

40

For evaluation, testing was performed on an independent dataset from May 1, 2020. To en-
sure consistency, the testing set was constructed in the same manner as the training set in,
by segmenting a large spatial-temporal record into multiple non-overlapping 256 × 256 image
patches, as shown in Figure 12. Importantly, the testing data was from a much later time point
than the training set, which was taken exclusively from January 2020. This deliberate temporal
separation introduces significant variation in wind patterns between the two datasets, thereby
enabling a more rigorous assessment of the model’s generalization capability beyond seasonal or
short-term dynamics.

(a) 16× 16 input (b) 64× 64 output (c) 64× 64 ground truth

(d) 64× 64 input (e) 256× 256 ouput (f) 256× 256 ground truth
Figure 14: Results of SR3-1 and SR3-2. (a), (b), and (c) show the inference results for the SR3-1, where the

input is scaled from 16× 16 to 64× 64. (d), (e), and (f) present inference results for the SR3-2, where the input
is scaled from 64× 64 to 256× 256. The ground truth images are provided for comparison.

During sampling, the same model-specific hyperparameters were used as in training in Table 2,
including the number of diffusion timesteps and the β (noise variance control) scheduling. For a
single input, the total sampling time for the two-stage SR3 model was approximately 15 seconds
for SR3-1 and 300 seconds for SR3-2. A visual example of the complete 16× super-resolution
result is shown in Figure 15.

41

(a) 16× 16 (b) 64× 64 (c) 256× 256 (d) ground truth
Figure 15: Results of the progressive SR3 model. The low-resolution input (a) is first upscaled by 4× using
SR3-1, producing a middle-resolution data (b). This is then further upscaled by another 4× using SR3-2 to

obtain the high-resolution reconstruction (c). The ground truth high-resolution data (d) is used for performance
evaluation.

To evaluate the effectiveness of SR3 in performing super-resolution tasks, a baseline comparison
is conducted using CNNs models that share the same U-Net architecture as SR3, but without
the diffusion process. While U-Net is not the most typical choice for classical CNN-based super-
resolution methods, which often use encoder-decoder or residual blocks such as in SRCNN [11],
this architecture ensures a fair comparison in terms of model structure and capacity. This
setup isolates the contribution of the diffusion process itself, rather than differences in network
architecture. The architectural details are provided in Table 1. CNNs remain a widely-used
baseline in super-resolution, and this design allows to assess how much performance gain is
attributable specifically to the diffusion mechanism.

A visual example of the reconstruction results produced by the two-stage CNNs model is presen-
ted in Figure 16. This model follows the same progressive structure as SR3: the first CNNs
performs 4× upscaling from 16 × 16 to 64 × 64, and the second CNNs further upsamples the
result to 256× 256.

(a) 16× 16 (b) 64× 64 (c) 256× 256 (d) ground truth
Figure 16: Results of the progressive CNNs model. The low-resolution input (a) is first upscaled by 4× using

the first-stage CNNs, producing a middle-resolution data (b). This is then further upscaled by another 4× using
the second-stage CNNs to obtain the high-resolution reconstruction (c). The ground truth high-resolution data
(d) is used for performance evaluation. The CNNs architectures are the same of the U-Net structures in SR3.

The quantitative evaluation results comparing progressive SR3 and progressive CNNs are sum-
marized in Table 3. These results are based on error metrics between the predicted high-
resolution data and the ground truth. From the evaluation results, the SR3 model consistently

42

outperforms CNNs in terms of MSE and SSIM, highlighting its superior reconstruction capabil-
ities. This performance gain is attributed to the fundamental difference in model mechanisms:
while CNNs rely on deterministic upscaling operations, SR3 employs a probabilistic denoising
diffusion process that captures complex data distributions and structural dependencies more
effectively.

Evaluation metrics Progressive SR3 Progressive CNNs
MSE 0.014 0.0256

Variance 0.0139 0.0171
SSIM 0.6 0.54

Average training time per epoch 650 + 3250 s 45 + 1670 s
Average sampling time per input 15 + 300 s both less than 1 s

Table 3: Evaluation metrics of progressive SR3 and progressive CNNs on the testing set.

However, this performance advantage comes at a computational cost. Both training and sampling
times of SR3 are significantly longer compared to CNNs. This is particularly evident during the
sampling phase. For CNNs, generating a high-resolution image takes less than one second, while
SR3 requires considerably more time, with about 300 seconds. This increased cost is due to the
iterative nature of the sampling process, which is directly proportional to the number of diffusion
timesteps. This behavior aligns with the expected dynamics of the SR3 sampling algorithm, as
outlined in Algorithm 4, where each sample must be sequentially generated through a Markov
chain of reverse noise steps.

Visual comparisons in Figure 15 and Figure 16 further reinforce the quantitative findings. SR3
reconstructions demonstrate superior detail preservation, while CNNs-generated data tend to
be overly smooth and lack fine textures. This is likely due to the interpolation-based upscaling
mechanisms commonly employed in CNNs, which rely on local grid point neighborhoods and
often result in blurred edges and loss of high-frequency information [55].

4.2.2 High-resolution reconstruction via directly upscaling

In this section, a new SR3 model is constructed to address the 16× super-resolution task. Unlike
the progressive SR3 mentioned in the previous section, which performs super-resolution through
two successive 4× SR3 models, the direct SR3 model attempts to upscale the low-resolution
input (16× 16) to high-resolution output (256× 256) in a single step. The network structure of
the direct SR3 model is provided in Table 1.

The experimental results in Table 4 demonstrate that the progressive strategy yields superior
performance in both MSE and SSIM compared to the direct approach. Furthermore, the lower
variance further indicates that the SR3 can generates more stable and consistent results. This
performance advantage can be attributed to the ill-posed nature of the super-resolution problem,
which becomes increasingly challenging as the upscaling factor grows.

43

Evaluation metrics Direct 16× SR3 Progressive 16× SR3
MSE 0.0248 0.014

Variance 0.0195 0.0139
SSIM 0.57 0.6

Average training time per epoch 8300 s 650 + 3250 s
Average sampling time per input 759 s 15 + 300 s

Table 4: Evaluation metrics of direct SR3 and progressive SR3 on the testing set.

From an inverse problem perspective, super-resolution aims to recover high-resolution data y ∈
RD×D from its corresponding low-resolution observation x ∈ Rd×d, where the scaling factor is
defined as s = D/d. This process can be understood as estimating the inverse function D−1

s of a
downsampling operator Ds, as introduced in (1). However, this inverse problem is inherently ill-
posed due to the significant loss of high-frequency information during the downsampling process.
The degree of information loss increases exponentially with the scaling factor s, making the
recovery of fine details extremely difficult when s is large (e.g., s = 16).

In such cases, directly applying a 16× SR3 model often results in outputs that only preserve
the coarse structure of the original data, while failing to reconstruct fine-grained textures and
details. In contrast, the progressive SR3 framework decomposes the difficult 16× task into two
simpler 4× sub-tasks, thereby reducing the reconstruction ambiguity and allowing each model
stage to focus on more localized structures. This hierarchical design enables the model to better
preserve both global context and local fidelity, as illustrated qualitatively in Figure 17.

(a) direct 16× SR3 (b) progressive 4× SR3 (c) ground truth

(d) direct 16× SR3 (e) progressive 4× SR3 (f) ground truth
Figure 17: Results of direct SR3 and progressive SR3 models. (a) shows the inference result from the direct SR3

model, while (b) displays the corresponding result from the progressive SR3 model. (c) presents the ground
truth for comparison. (d), (e), and (f) illustrate another test sample, following the same order: direct SR3

result, progressive SR3 result, and ground truth, respectively.

44

In addition to its superior reconstruction quality, the progressive model also exhibits an advant-
age in computational efficiency. Specifically, the total sampling time for the progressive SR3
model is significantly lower than that of the direct SR3 model. As shown in Table 1, the direct
model requires a substantially larger NN to handle the more complex one-shot 16× upscaling
task. This increase in model size leads to longer inference times, making the direct approach
less efficient overall.

When comparing the performance of the direct SR3 model with that of the progressive CNNs, the
results appear similar in terms of MSE and variance. As illustrated in Figure 16 and Figure 17,
both models struggle to recover fine-grained high-frequency details. However, in terms of SSIM,
direct SR3 achieves a higher score compared to progressive CNNs, indicating that the direct
SR3 appears to better preserve large-scale structural patterns and semantic layout, even if the
grid-point-level accuracy is comparable.

4.2.3 Hyperparameters tuning

In this section, hyperparameter tuning was performed for the progressive SR3 model to optimize
its performance. The tuned hyperparameters, listed in Table 2, include the learning rate, inter-
polation method, loss function, and optimization algorithm. These were selected through grid
search, and the results are summarized in Table 5. For fair comparison, the CNNs baseline were
implemented with the same architecture and training setup as SR3, but without the diffusion
process. However, no dedicated hyperparameter tuning was performed for the CNNs, which
may put them at a slight disadvantage in terms of optimal performance.

Hyperparameters Tuning range SR3-1 SR3-2
Learning rate {10−3, 10−4} 10−4 10−3

Interpolation methods {Bicubic, Bilinear} Bicubic Bicubic
Loss measure {L1,L2} L2 L2

Optimization methods {Adam, Momentum} Adam Adam
Table 5: Hyperparameters tuning results of progressive SR3 model.

This outcome suggests that fine-tuning hyperparameters such as learning rate and interpolation
methods can significantly influence the performance of the SR3 models. In particular, the
choice of interpolation method directly affects the quality of the initial upsampled input, which
in turn influences the difficulty of the subsequent denoising task. Since the diffusion process is
conditioned on the upsampled input, as illustrated in Figure 11, a poor initial estimate can lead
the denoising trajectory away from the ground truth. To investigate this effect, the following
experiments compare two widely used interpolation strategies, bilinear and bicubic, to assess
their impact on reconstruction quality.

Bilinear interpolation, as defined in (2), offers computational efficiency but often results in no-
ticeable blurring, as it estimates the values using a linear approximation based on a limited
local neighborhood. In contrast, bicubic interpolation, described in (3), utilizes a larger neigh-

45

borhood and performs cubic convolution along both the horizontal and vertical axes. Although
bicubic interpolation method is more computationally intensive, it typically produces smoother
and more visually accurate results, especially around edges and fine textures.

In the context of super-resolution, bicubic interpolation is often favored as it retains more image
detail, especially in high-resolution reconstructions [11, 31, 43]. This characteristic makes bicubic
interpolation particularly effective for the SR3 model, where the goal is to generate high-quality,
high-resolution images.

The results of the interpolation experiment, shown in Table 6, confirm that bicubic interpolation
consistently outperforms bilinear interpolation across multiple metrics, including MSE, variance,
and SSIM. Bicubic interpolation achieves better reconstruction quality, suggesting its superior
ability to preserve structural details. This improvement can be attributed to its consideration
of a larger neighborhood and smoother gradient transitions, which is essential for high-quality
super-resolution.

Evaluation metrics Bilinear interpolation Bicubic interpolation
MSE 0.0154 0.014

Variance 0.0165 0.0139
SSIM 0.57 0.6

Average interpolation time 43 s 68 s
Table 6: Evaluation metrics of bicubic and bilinear interpolation methods on the testing set.

(a) 16× 16 (b) 64× 64 (Bicubic) (c) 256× 256 (Bicubic) (d) ground truth

(e) 16× 16 (f) 64× 64 (Bilinear) (g) 256× 256 (Bilinear) (h) ground truth
Figure 18: Results of bicubic and biliear interpolation methods. (a), (b), and (c) show the low-resolution

(16× 16), medium-resolution (64× 64), and high-resolution outputs (256× 256) using bicubic interpolation,
respectively, with (d) as the ground truth. (e), (f), (g), and (h) show the corresponding results using bilinear

interpolation.

Figure 18 visually demonstrates the difference in the quality of images reconstructed using

46

Bicubic and Bilinear interpolation. In the figures, Bicubic interpolation produces sharper, more
detailed results, while Bilinear interpolation results in a softer, slightly blurred image.

Another interesting observation from the tuning process is the importance of the progressive
reconstruction approach. When the first stage of the progressive SR3 model uses effective
interpolation methods, it provides a solid foundation for the subsequent stages, which leads to
improved final performance. Specifically, when the first stage interpolation is effective, it helps
the second stage to further refine the reconstruction and achieve even higher-quality results. This
highlights the value of using intermediate resolutions in progressive super-resolution models,
where each stage builds upon the previous one to bridge the gap between low-resolution inputs
and high-resolution outputs.

4.2.4 Joint learning of progressive SR3

In the previous section, the progressive SR3 model was trained in a decoupled manner—specific-
ally, SR3-1 and SR3-2 were trained separately, as illustrated in Figure 13. The main advantage of
this approach lies in the independence between the two stages, preventing interference between
different SR3 models and allowing each to focus on its respective resolution scale. However, this
separation comes at the cost of computational redundancy. Since both stages involve similar
steps such as data loading and intermediate storage, the total training time and sampling latency
increase significantly.

Figure 19: Joint training progressive SR3 framework. Unlike the progressive setup, the joint training model
optimizes both SR3-1 and SR3-2 simultaneously. Both intermediate and final outputs are supervised using their
respective ground truths through Loss-1 and Loss-2, enabling end-to-end learning and joint optimization of both

networks for improved overall performance.

To address these inefficiencies, the separate training strategy is replaced with a joint training
framework, as depicted in Figure 19, in which SR3-1 and SR3-2 are trained simultaneously
within a unified optimization framework. In this setting, the total training loss is formulated as
a weighted combination of the individual losses from each stage, and the model parameters are

47

updated end-to-end.. The total training loss L is given as

L(w(1),w(2)) = λ1L(1)(w(1)) + λ2L(2)(w(2)), (18)

where L(1) and L(2) denote the training losses for SR3-1 and SR3-2, respectively, and w(1) and
w(2) are the corresponding sets of trainable parameters. The weighting coefficients λ1 and λ2

provide flexibility in adjusting the contribution of each stage during training, enabling the model
to emphasize the resolution level that is more critical to the specific super-resolution task.

In the experiments, the relative weighting between the two loss components plays a significant
role in the quality of the final reconstruction. Assigning a higher weight to L(1) (e.g., λ1 = 0.8,
λ2 = 0.2) consistently leads to better overall performance. This indicates that producing a
strong intermediate representation at the 64 × 64 resolution is essential for the second-stage
model to perform effective refinement. In contrast, assigning excessive weight to L(2) (e.g.,
λ1 = 0 or λ2 = 1) often results in degraded performance, with the final outputs appearing
overly localized or pixelated. This is likely due to insufficient guidance in the intermediate
stage, causing the second stage to overfit local features without reliable global structure. These
observations motivate the use of a loss weighting strategy that prioritizes early-stage accuracy,
typically by allocating a larger proportion of the total loss to L(1).

The experimental results presented in Table 7 compare the performance of the joint learning
model (with weighting coefficients λ1 = 0.8 and λ2 = 0.2) against the separate learning strategy.
While the separate learning model achieves slightly better scores in MSE and variance, the joint
learning model performs noticeably better in terms of SSIM. This improvement suggests that
the joint training strategy is more effective at preserving the structural and perceptual quality
of the output, likely due to its end-to-end optimization that allows information to flow between
both stages during training [59, 60]. Such interaction can guide the early SR3-1 to produce
features that are more beneficial for the subsequent SR3-2, ultimately enhancing the overall
structural consistency. A visual example is given in Figure 20.

Evaluation metrics Separate learning Joint learning
MSE 0.014 0.0172

Variance 0.0139 0.0198
SSIM 0.6 0.67

Average training time per epoch 650 + 3250 s 3750 s
Average sampling time per input 15 + 300 s 158 s

Table 7: Evaluation metrics of separate learning and joint learning strategies of the progressive SR3 model on
the testing set.

Moreover, as previously discussed, joint training reduces redundant computational steps such as
data loading and model initialization, which are duplicated in the separate training process. As
shown in Table 7, this efficiency gain is reflected in the reduction in both training and sampling

48

processes. Although the reduction may appear modest in absolute terms, it becomes increasingly
significant when scaling to larger datasets or higher-resolution tasks.

(a) 16× 16 input (b) joint learning output (c) separate learning output (d) 256× 256 ground truth
Figure 20: Results of joint learning and separate training of progressive SR3 models. (a) shows the

low-resolution input (16× 16). (b) and (c) present the high-resolution outputs from the jointly trained and
separately trained progressive SR3 models, respectively. (d) displays the ground truth.

49

5 Discussion and Conclusion

5.1 Conclusions

This thesis investigates the application of diffusion-based generative models for high-resolution
wind field reconstruction from sparse observations. By implementing and evaluating the SR3
framework, several important conclusions can be drawn:

• Generative modeling capacity: Compared to deterministic model such as CNNs, the
stochastic denoising process of SR3 is more suitable for solving ill-posed super-resolution
problems, where low-resolution input and its corresponding possible high-resolution out-
puts forms a one-to-many mapping, as shown in Figure 1. Deterministic models tends
to offers an overly smooth results, while SR3 can capture the underlying distribution of
possible solutions and enable the recovery of more structurally faithful details [50].

• Progressive refinement strategy: The design of progressive SR3 model divides a large 16×
upscaling task into two manageable subproblems (16× 16→ 64× 64 and 64× 64→ 256×
256), as illustrated in Figure 13. This approach outperforms the direct 16×16→ 256×256
upscaling, as it gradually bridges the semantic and structural resolution gap, improving
stability and visual fidelity at each stage.

• Impact of intermediate quality: In a multi-stage SR3 pipeline, the quality of the inter-
mediate reconstruction plays a crucial role in determining the final result. High-quality
intermediate outputs provide more reliable priors for subsequent refinement, which sug-
gests that more emphasis should be palced on optimizing earlier stages. For example, in
joint training (Figure 19), increasing the weight of the loss function associated with the
first stage can help guide the overall learning process more effectively.

• Interpolation as initialization: Interpolation methods serve as the initial upsampling step
in super-resolution pipelines and have a notable impact on final output quality. Within
the SR3 framework, this initial interpolation acts as a guide for the subsequent diffusion
process, as shown in Figure 11. Experimental results show that bicubic interpolation leads
to better final reconstructions than bilinear, as it better preserves edge information and
gradient continuity [11, 31, 43].

• Joint vs. separate training: Joint training of the two SR3 stages yields improved structural
reconstruction compared to separate training. This can be attributed to the benefits of
end-to-end optimization, where gradients can flow across stages, allowing the model to
coordinate learning across resolution levels [59, 60]. Additionally, joint training eliminates
redundant operations such as repeated data loading and model re-initialization, resulting
in notable gains in training and inference efficiency.

While these findings underscore the strengths of the SR3 approach, there are also important

50

practical considerations. Diffusion-based models, especially in multi-stage settings, are compu-
tationally intensive. Even with joint training optimizations, training and inference times remain
significantly longer than other data-driven methods such as CNNs. Moreover, although the
assumption of uniform low-resolution sampling may not reflect all real-world scenarios, it is
a commonly used and reproducible setup in numerical weather modeling [13]. It serves as a
valuable benchmark to isolate the model’s behavior under varying data densities.

In conclusion, the progressive SR3 framework presents a promising path for enhancing meteoro-
logical super-resolution pipelines. Its capacity to generate high-fidelity wind field reconstructions
from sparse data may contribute to more accurate and data-driven weather modeling.

5.2 Future Research Directions

Despite the promising results achieved by the proposed SR3-based framework in generate high-
fidelity wind field reconstructions problems, there remain several directions for further improve-
ment and extension.

(a) Refinement of training objective

The current training objective minimizes the MSE between the predicted and true noise as
illustrated in (17), which is standard in diffusion models. However, it ignore perceptual quality,
which also serves as an important critiria in evaluating super-resolution results. Future work
could consider adding reconstruction-based losses, such as SSIM, between the generated high-
resolution image and the ground truth. Since SSIM is not meaningful when computed on noise,
it should be applied to compare the final output ŷ with the reference y:

L(w) = LMSE + LSSIM = LMSE + µ(1− SSIM(ŷ, y)).

Such a hybrid loss could encourage both statistical accuracy and perceptual sharpness.

(b) Improved guidance during sampling

Another promising direction is to enhance the fidelity and controllability of the sampling process.
The diffusion framework in [45] demonstrates that guided sampling, where a low-resolution input
or physics-based condition, such as PDE residual, is used to steer the reverse process, significantly
improves reconstruction accuracy, particularly under sparse or mismatched input distributions.
Similar guidance strategies, such as classifier-free guidance [21] or iterative sampling with noise
injection and feedback [45], could be explored in SR3 to better exploit spatial priors and improve
reconstruction accuracy.

51

References

[1] Ronald J Adrian. Twenty years of particle image velocimetry. Experiments in fluids, 39:159–
169, 2005.

[2] Mohammed H Alsharif, Abu Jahid, Raju Kannadasan, and Mun-Kyeom Kim. Unleashing
the potential of sixth generation (6g) wireless networks in smart energy grid management:
A comprehensive review. Energy Reports, 11:1376–1398, 2024.

[3] John David Anderson and John Wendt. Computational fluid dynamics, volume 206.
Springer, 1995.

[4] Arnav V Bhavsar and Ambasamudram N Rajagopalan. Range map superresolution-
inpainting, and reconstruction from sparse data. Computer Vision and Image Understand-
ing, 116(4):572–591, 2012.

[5] Christopher M Bishop and Hugh Bishop. Deep learning: Foundations and concepts.
Springer Nature, 2023.

[6] Steven L Brunton and Bernd R Noack. Closed-loop turbulence control: Progress and
challenges. Applied Mechanics Reviews, 67(5):050801, 2015.

[7] Michele Buzzicotti. Data reconstruction for complex flows using ai: Recent progress,
obstacles, and perspectives. Europhysics Letters, 142(2):23001, 2023.

[8] Lichao Cao, Mingwei Ge, Xiaoxia Gao, Bowen Du, Baoliang Li, Zhi Huang, and Yongqian
Liu. Wind farm layout optimization to minimize the wake induced turbulence effect on
wind turbines. Applied Energy, 323:119599, 2022.

[9] Hongguang Chen, Xing Zhang, Yintian Liu, and Qiangyu Zeng. Generative adversarial
networks capabilities for super-resolution reconstruction of weather radar echo images. At-
mosphere, 10(9):555, 2019.

[10] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[11] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution
using deep convolutional networks. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015.

[12] William Feller. Retracted chapter: On the theory of stochastic processes, with particular
reference to applications. In Selected Papers I, pages 769–798. Springer, 2015.

[13] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution reconstruction of turbu-
lent flows with machine learning. Journal of Fluid Mechanics, 870:106–120, 2019.

52

[14] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution analysis via ma-
chine learning: a survey for fluid flows. Theoretical and Computational Fluid Dynamics,
37(4):421–444, 2023.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

[16] Yusuke Hatanaka, Yannik Glaser, Geoff Galgon, Giuseppe Torri, and Peter Sadowski. Dif-
fusion models for high-resolution solar forecasts. arXiv preprint arXiv:2302.00170, 2023.

[17] Warren E Heilman. Atmospheric turbulence and wildland fires: a review. International
journal of wildland fire, 32(4):476–495, 2023.

[18] Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length and
helmholtz free energy. Advances in neural information processing systems, 6, 1993.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

[20] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and
Tim Salimans. Cascaded diffusion models for high fidelity image generation. Journal of
Machine Learning Research, 23(47):1–33, 2022.

[21] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[22] Yawen Huang, Ling Shao, and Alejandro F Frangi. Simultaneous super-resolution and cross-
modality synthesis of 3d medical images using weakly-supervised joint convolutional sparse
coding. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6070–6079, 2017.

[23] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 694–711.
Springer, 2016.

[24] Ahsan Kareem. Emerging frontiers in wind engineering: Computing, stochastics, machine
learning and beyond. Journal of wind engineering and industrial aerodynamics, 206:104320,
2020.

[25] Robert Keys. Cubic convolution interpolation for digital image processing. IEEE transac-
tions on acoustics, speech, and signal processing, 29(6):1153–1160, 1981.

[26] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using

53

very deep convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1646–1654, 2016.

[27] Kwang In Kim and Younghee Kwon. Single-image super-resolution using sparse regression
and natural image prior. IEEE transactions on pattern analysis and machine intelligence,
32(6):1127–1133, 2010.

[28] Sookyung Kim, Sasha Ames, Jiwoo Lee, Chengzhu Zhang, Aaron C Wilson, and Dean
Williams. Resolution reconstruction of climate data with pixel recursive model. In 2017
IEEE international conference on data mining workshops (ICDMW), pages 313–321. IEEE,
2017.

[29] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

[30] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

[31] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Ale-
jandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative adversarial network. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4681–4690, 2017.

[32] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep
residual networks for single image super-resolution. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 136–144, 2017.

[33] XuDong Ling, ChaoRong Li, FengQing Qin, LiHong Zhu, and Yuanyuan Huang. Two-stage
rainfall-forecasting diffusion model. IEEE Geoscience and Remote Sensing Letters, 2024.

[34] Bo Liu, Jiupeng Tang, Haibo Huang, and Xi-Yun Lu. Deep learning methods for super-
resolution reconstruction of turbulent flows. Physics of fluids, 32(2), 2020.

[35] Yunjie Liu, Evan Racah, Joaquin Correa, Amir Khosrowshahi, David Lavers, Ken-
neth Kunkel, Michael Wehner, William Collins, et al. Application of deep convolu-
tional neural networks for detecting extreme weather in climate datasets. arXiv preprint
arXiv:1605.01156, 2016.

[36] Morteza Mardani, Noah Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu Chen, Cheng-
Chin Liu, Arash Vahdat, Karthik Kashinath, Jan Kautz, and Mike Pritchard. Residual
diffusion modeling for km-scale atmospheric downscaling. 2024.

[37] Fabio Merizzi, Andrea Asperti, and Stefano Colamonaco. Wind speed super-resolution and
validation: from era5 to cerra via diffusion models. Neural Computing and Applications,
36(34):21899–21921, 2024.

54

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022.

[39] Matthias Roth. Review of atmospheric turbulence over cities. Quarterly Journal of the
Royal Meteorological Society, 126(564):941–990, 2000.

[40] Alex Rybchuk, Malik Hassanaly, Nicholas Hamilton, Paula Doubrawa, Mitchell J Fulton,
and Luis A Martínez-Tossas. Ensemble flow reconstruction in the atmospheric boundary
layer from spatially limited measurements through latent diffusion models. Physics of
Fluids, 35(12), 2023.

[41] Alex Rybchuk, Luis A Martinez-Tossas, Nicholas Hamilton, Paula Doubrawa, Ganesh Vi-
jayakumar, Malik Hassanaly, Michael B Kuhn, and Daniel S Zalkind. A baseline for
ensemble-based, time-resolved inflow reconstruction for a single turbine using large-eddy
simulations and latent diffusion models. In Journal of Physics: Conference Series, volume
2505, page 012018. IOP Publishing, 2023.

[42] Alex Rybchuk, Luis A Martínez-Tossas, Stefano Letizia, Nicholas Hamilton, Andy Schol-
brock, Emina Maric, Daniel R Houck, Thomas G Herges, Nathaniel B de Velder, and
Paula Doubrawa. Ensemble-based, large-eddy reconstruction of wind turbine inflow in a
near-stationary atmospheric boundary layer through generative artificial intelligence. arXiv
preprint arXiv:2410.14024, 2024.

[43] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mo-
hammad Norouzi. Image super-resolution via iterative refinement. IEEE transactions on
pattern analysis and machine intelligence, 45(4):4713–4726, 2022.

[44] Vinothkumar Sekar, Qinghua Jiang, Chang Shu, and Boo Cheong Khoo. Fast flow field
prediction over airfoils using deep learning approach. Physics of Fluids, 31(5), 2019.

[45] Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for
high-fidelity flow field reconstruction. Journal of Computational Physics, 478:111972, 2023.

[46] Joseph Smagorinsky. General circulation experiments with the primitive equations: I. the
basic experiment. Monthly weather review, 91(3):99–164, 1963.

[47] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. In International conference on
machine learning, pages 2256–2265. PMLR, 2015.

[48] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine Learning, pages 32211–32252. PMLR, 2023.

55

[49] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood train-
ing of score-based diffusion models. Advances in neural information processing systems,
34:1415–1428, 2021.

[50] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456, 2020.

[51] Karen Stengel, Andrew Glaws, Dylan Hettinger, and Ryan N King. Adversarial super-
resolution of climatological wind and solar data. Proceedings of the National Academy of
Sciences, 117(29):16805–16815, 2020.

[52] Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image super-resolution using gradient
profile prior. In 2008 IEEE conference on computer vision and pattern recognition, pages
1–8. IEEE, 2008.

[53] Torsten Tritscher, Raanan Raz, Yoav Levi, Ilan Levy, David M Broday, et al. Emissions vs.
turbulence and atmospheric stability: A study of their relative importance in determining
air pollutant concentrations. Science of the Total Environment, 733:139300, 2020.

[54] Eva M Urbano, Konstantinos Kampouropoulos, and Luis Romeral. Energy crisis in europe:
The european union’s objectives and countries’policy trends—new transition paths?
Energies, 16(16):5957, 2023.

[55] Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A
survey. IEEE transactions on pattern analysis and machine intelligence, 43(10):3365–3387,
2020.

[56] Zhuo Wang, Kun Luo, Dong Li, Junhua Tan, and Jianren Fan. Investigations of data-driven
closure for subgrid-scale stress in large-eddy simulation. Physics of Fluids, 30(12), 2018.

[57] Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global
weather prediction using deep convolutional neural networks on a cubed sphere. Journal of
Advances in Modeling Earth Systems, 12(9):e2020MS002109, 2020.

[58] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempogan: A temporally coherent,
volumetric gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG),
37(4):1–15, 2018.

[59] Wei Xu, Sen Jia, Zhuo-Xu Cui, Qingyong Zhu, Xin Liu, Dong Liang, and Jing Cheng.
Joint image reconstruction and super-resolution for accelerated magnetic resonance ima-
ging. Bioengineering, 10(9):1107, 2023.

[60] Xuan Xu, Yanfang Ye, and Xin Li. Joint demosaicing and super-resolution (jdsr): Network

56

design and perceptual optimization. IEEE Transactions on Computational Imaging, 6:968–
980, 2020.

[61] Mustafa Z Yousif, Linqi Yu, and Hee-Chang Lim. High-fidelity reconstruction of turbu-
lent flow from spatially limited data using enhanced super-resolution generative adversarial
network. Physics of Fluids, 33(12), 2021.

[62] Liujie Zhang, Qiang Wang, Kun Luo, Xuanxuan Ming, and Jianren Fan. A novel residual-
pyramid-attention super resolution model for mesoscale meteorological forecasting spatial
downscaling. International Journal of Green Energy, 21(15):3458–3469, 2024.

57

	Introduction
	Related Work
	Super-resolution methods in meteorological application
	Diffusion models for high-resolution weather reconstruction
	Research gap

	Structure of Thesis

	Mathematical Backgrounds
	Super-resolution
	Downsampling methods
	The inverse problem view
	Super-resolution techniques
	Quality assessment

	Deep Neural Networks
	Neural networks structure
	Autoencoder
	Training methods

	Super-resolution via Repeated Refinement
	Diffusion Models
	Forward process
	Reverse process
	Training objective
	Modified training obejective
	Denoising diffusion probabilistic models

	Super-Resolution via Repeated Refinement
	Conditional forward and reverse process
	Training SR3
	Sampling via SR3

	Experiments
	Experiment Setup
	Dataset description
	Model structure
	Experiment design

	Experiment Results
	High-resolution reconstruction via progressive upscaling
	High-resolution reconstruction via directly upscaling
	Hyperparameters tuning
	Joint learning of progressive SR3

	Discussion and Conclusion
	Conclusions
	Future Research Directions

