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Abstract

In this report, the rain-wind induced vibrations of cables are studied. This is done by modeling the
cable cross-section as a mass-spring system with two time-varying masses. Thereafter, the solution of
this model is approximated using a multiple timescale perturbation method. Lastly, for some choices
of the time-varying masses the eigenfrequencies are analyzed, stability properties are derived, and
approximations of the solutions are given.
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1 Introduction

In September 1996, the Erasmus bridge was officially opened, but it had to be closed in October of
the same year due to large vibrations of the cables. These vibrations were present during rainfall and
wind speeds of around ten kilometers an hour. The rain caused two rivulets to form on the cable,
which changed the aerodynamic properties of the cable. The low wind speed together with these new
aerodynamic properties caused a lift force to act on the cable. This force made the cable vibrate with a
low frequency, but with a high amplitude. Such vibrations are cause rain-wind induced vibrations.

To solve this problem, stronger dampers were installed to reduce the vibrations’ amplitude. ([1]).
The Erasmus bridge was not the only bridge to have this problem, other bridges and transmission cables
also suffer from this problem. However, installing stronger dampers costs money and is not always an
option. Therefore, the cause of these vibrations must be analyzed, so other methods of reducing them
can be found. This cause can be analyzed by constructing a model of the cable and its environment.

In this paper, such a model is derived and analyzed. The derivation starts in section two by looking at
a cross-section of and the environmental effects on the cable: the cross-section is modeled as a mass-spring
system; the effect of the rain is implemented by adding two small time-varying masses, representing the
rivulets, to the mass of the cable. In section three, the model is constructed using Newton’s second law
of motion with four forces: gravity, tension, drag, and lift. The last two depend on the locations of the
rivulets, which are such that the instability criterion of den Hartog applies, meaning that the cable is
unstable.

There have been other papers in which a similar model is constructed. For example, [2] models an ice
ridge on transmission cables, and [3] models a single rivulet on a cable. The first paper mainly used its
model as an example of an application of a theory, and did analyze the relation between the vibrations
and cable properties in depth. The second paper models the entire cable as a beam, whereas this paper
models a cross-section of the cable as a mass-spring system.

For the analysis the multiple time-scale perturbation method is used. This is possible as the rivulets’
masses and sizes are small. This method is explained in short in section four and is illustrated using the
Duffing equation. In section five, this method is applied to the present model and some situations are
examined. Finally, in section six conclusions are drawn and in section seven recommendations are given.



2 Case

In this section, the case of the cable will be outlined. This will be done by looking at the environmental
effects that act on the cable: rain and wind. Before this can be done, the coordinate system must be
defined.

2.1 Coordinate system

In figure (2.1.1), the cross-section of the cable can be seen. Here, the y- and the z-axis are the vertical
and the horizontal axis parallel to the cross-section, respectively. Additionally, up and to the right are
defined ad positive. Furthermore, the displacement of this cross-section’s center’s from its center position
will be described by the function wu(t). It is assumed that the cable only moves along the y-axis, thus
u(t) describes the vertical displacement of the cable.

z

Figure 2.1.1: Coordinate system with the cross-section of the cable.

2.2 Effect of the rain

One of the environmental effects acting on the cable is rain (see figure (2.2.1)). Due to this rain, rivulets
may form on the cable. In general, there will be two rivulets; one on the upper half, and one on the lower
half. Their locations, a; and ay respectively, are assumed to be static ([4]).

/~ \\ Upper rivulet
Yy /\ Lower rivulet

231

(a) (b)
Figure 2.2.1: Cross sections of the cable. (a) With rain. (b) With upper and lower rivulets.
The sizes of these rivulets on the cross-section change periodically in time, due to the periodic water

rivulets along the cable. Therefore, the masses of the rivulets can be modeled by:

ml(t) = Ml(l + A sin(wlt + 61)), |A1| < 1, |M1| < 1,

2.2.1
ma(t) = Ma(1+ Agsin(wat + fB2)), |42 <1, |My] <1, ( )



where M; and M, are the average masses; A; and Ay the relative amplitudes; w; and ws the wave
frequencies; and $; and B3 the phase shifts of the upper and the lower rivulet respectively. If M, is the
mass of the cable, the combined mass of the cable and rivulets can be modeled as:
m(t) =M - (1 + Ay sin(wit + B1) + Ag sin(wat + ﬁg)) :
M = My + My + My,

M (2.2.2)
Al = MlAla

- M

Ay = MQAQ.

The interesting parts of these equations are the latter:
T1 (t) = (1 =+ Al sin(wlt + 61)),
ro(t) = (1 + Az sin(wat + f2)), (2.2.3)
T(t) = (1 =+ /11 sin(wlt =+ 51) + /12 SiH(WQt =+ [32)),

where r1, 7o, and r are the relative amplitudes of the upper, the lower, and the combined rivulets
respectively.

2.3 Effect of the wind

Another environmental effect acting on the cable is the wind (see figure (2.3.1)).

Uniform

-
JE—

Airflow

(a) (b)

Figure 2.3.1: Cross-section of the cable. (a) With wind. (b) With relative wind-speed.

where v, is the wind-speed. This is not the wind-speed relative to the cable, however, because the

cable is moving with its own speed:
du

= — 2.3.1
=, (23.1)

v

thus, the relative wind speed is:
du
s(t) = Voo — —(1). 2.3.2
0s(t) = voe — (1) (23.2)

or

(0.0 = 0+ (0 (2.83)

Furthermore, ¢ is the angle between vs and the horizontal, so:

¢(t) = arctan <%> . (2.3.4)

Voo
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As galloping is a low frequency oscillation, it is assumed that |u/| < v, thus < 1. Now, the

/
previous equation can be expanded around [~ = 0:
~

o reon (24) = - (10 1 (40" 29



3 Constructing the Mathematical Model

In this section, a model for the cable will be derived. This will be done using the case described in the
previous section and Newton’s second law of motion:

d(vm) .
— ()= Z Fi(t), (3.0.1)

where v is the vertical velocity; m the mass; and F; are the forces acting along the vertical axis of the
system. The functions v and m are already described in equations (2.3.1) and (2.2.1), but the forces still
have to be determined.

3.1 Determining the Forces

There are four forces acting on the cable cross-section: gravity, tension, drag, and lift.
Firstly, gravity acts upon the mass of the cross section. As gravity pulls the cross-section down, and
as an up-force is defined to be positive, the force due to gravity is:

Fy(t) = —gm(?), (3.1.1)

where g is the gravitational acceleration.
Secondly, the tension of the cable pulls the cross-section to the opposite side of the displacement wu.
From Hooke’s law it follows that:

Fy(t) = ku(t), (3.1.2)

where k is a constant depending on the tension of the cable.

Thirdly, a drag force acts upon the cable due to the wind vs in the direction of vs. Because only
vertical forces are of interest, the vertical component of the drag is derived. Furthermore, the amount of
drag depends on the size and location of the rivulets:

Fa(t) = D(t) sin(6(t)), (3.1.3)

where D is a function depending on the on the cable, rivulets, and wind properties; and where ¢ is given
by equation (2.3.5).

Lastly, due to the rivulets, the cable may become wing shaped. This results in a lift force acting upon
the cross-section in direction perpendicular to vs. Again, only the vertical component of the force is of
interest, which is derived using cos(¢). This force also depends on the size and location of the rivulets:

Fi(t) = L(t) cos(é(t)), (3.1.4)

where L is a function depending on the on the cable, rivulets, and wind properties; and where ¢ is given
by equation (2.3.5).

3.2 Aerodynamics

The functions D and L are determined empirically, and are:

1
D(t) = 5 padv - Cp(t),

1
L(t) = ipadvg -CL(1),

(3.2.1)

where p, is the air density, and d the diameter of the cross-section (without rivulets). The constants Cp
and C}, are the quasi-steady drag and lift coefficients which, can be approximated, for ; and 65 in a
certain interval, by:
CD (t) :CDO . (ﬂlrl (t) + KJQTQ(t)),
CL(t) =Cr1- ((¢(t) + a1 — 61) - Rar1(t) + (9(t) + az — 62) - Rara(t)) (3.2.2)
+CLs - ((B(t) + o1 — 61)% - Rari (t) + (@) + an — 02)° - Rora(t)) ,



where:

Cpo > 0, Cr1 <0, Crs >0,
Cpo+Cr1 <0, (3.2.3)

1 1
icDO + 6CL1 +Cr3 >0,

are experimentally derived constants ([2]). Furthermore, Remember that r1, and ro are the relative
changes of the mass, which are directly linked to the size of the rivulets and thus the amount of drag
and lift. The x; are introduced, as the change in mass may have a different effect on each constant C', so
|k; — 1] < 1. Furthermore, it is useful to change order and gather terms:

Cp(t) =ri(t) - K1Cpo,
+72(t) - k2Cpo,
Cr(t) =ri(t) - (($(t) + a1 = 61) - &1Cr1 + ($(t) + 1 — 61)* - £1Cy) (3.2.4)
+ra(t) - ((B(t) + ag — 02) - RaCrr + ($(t) + a2 — 02)° - 72Cl3)
=T (t) -G (fb(t))
+ra(t) - Go(o(t)).

Substituting equations (2.2.2), (2.3.1) and the just determined forces into equation (3.0.1), the model

becomes:
du
%(t) = —m(t)g — ku(t) + D(¢t) sin(o(t)) + L(t) cos(p(t)).

By expanding the left hand side, the above equation becomes:

Cclng(t)m(t) + %(t)%(t) = —m(t)g — ku(t) + D(t) sin(¢(t)) + L(t) cos((1)).

This is equal to:
mu” +mg = —ku — m'u’ + Dsin(¢) + L cos(¢),
where ’ represents the derivative with respect to ¢. Substituting equations (3.2.1) and (3.2.4) into the
equation above gives:
mu” +mg = — ku —m/v
Padv? .
5 (r- Cposin(¢) + 11 - G1(9) cos(¢) + 72 - G2(¢) cos(¢)) .

This is a second order non-linear differential equation, which needs two initial values in order to be
well-posed, so let:

u(0) = uyg,
du / (3.2.5)

The current form of the model is not desirable, as it depends on an unknown function ¢(¢). In order to
solve this problem, a Taylor expansion is used.

3.3 Taylor Expansion of ¢(t)

As 9| < 1, Cposin(¢), G1(¢) cos(¢), and Ga(9) cos(¢) in this equation can now be expanded near ¢ = 0
using a Taylor series of order three. This results in:

W dv? 1
a4+ mg = —ku —m'u’ 4 P <ao () + (W) + ﬁ(u’)?’) : (3:3.1)

10



where equations (2.3.3) and (2.3.5) are used, and:

ao(t) =mi(t)- (1 = m)Rk1Cra +(a1 — mCL3>

+ra(t) - (a2 = 72)R2CL1 + (a2 F.}QCL?,)
ai(t) =mri(t)- —k1Cpo —k1Cr1 —3(o )2k1CL3

+ra(t) - —#2Cpo —k2CL1 —3(az I{QCL:;)

3 3. 2

as(t) =ri()- o1 —m)fiCo + (3 — 1) + blen c)

+ra(t) - (o —72)R2Cr1 + (3(a2 — 72) + 3 (a2 — 12)?) R2C 3)
az(t) =ry(t)- —1k1Cpo —+m1CL1 — (14 (e — /:1 3>

+ra(t) - _%H2CD() —éfﬁcm — (1 + = (a2 —Y2) HQCLg

Rewrite a;(t) as:
ai(t) =T (t)ail + ’I"Q(t)aig = (1 + A1 sin(wlt + B1))ai1 + (1 + A2 sin(wgt + Bz))aiz, (333)

in order to shorten the equations to come. Substituting equations (2.2.2), (2.2.3) into equation (3.3.1)
gives:

k - _
u’ + =9 1+ Ajsin(wit + B1) + Ag sin(wat + B2)

S
+ Ml a01(1 + Apsin(wit + B1)) + ap2(1 + Az sin(wat + F2))
51 . . ] u’
+ M a11(1 + Ap sin(wit + 1)) + a12(1 + Az sin(wat + B2)) .
Sl . . u\?
+ M CL21(1 + Al sm(wlt + 61)) + a22(1 + A2 Sll’l(o.)gt + ﬁg)) ’Ui (334)
Sl . . 1 u’ 3
—+ M a31(1 +A1 sm(wltJrﬂl)) +a32(1 +A2 SIH(WQt+ﬂ2)) T

— [wlﬁl cos(wit + 1) + wa Ay cos(wat + ﬁ2)] (u')
— |:/~11 Sin(wlt + ﬁl) + 1212 SiD(UJQt + 52):| (u”),

where:

Padv,
2 )

S1= (3.3.5)

is introduced to simplify the equation. This form of the model is already more desirable, however, it is
not in a general form. In the next subsection, it is generalized by scaling u and t so that they become
dimensionless.

11



3.4 Nondimensionalization

By substituting:

and multiplying by:

where:

ASS
N———
_|_

o
N
@,
=
&

(V)
=
Sl
_|_
)

[\)
N———

<31 ‘[M
[ . M _ .
as1 | 1+ A;sin (wl ?t + 61>> + aszo <1 + A sin

z _wlfll cos <w1 \/?t_—i— ﬁ1> + wy Ay cos (wg\/ff—i— Bg) }
A sin (wl ﬁf+ 51> + Ay sin (wgﬁf—i— 52> } (1),

where *denotes the derivative with respect to ¢. This equation can be rewritten as:

where:

12

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)



where C; are constants, and P;(%) are periodic functions:

Co = S1 (ao1 + ao2) ,
Ci =81 (a11 + a12) ,
Co = 81 (a1 + as2) ,
Cs = S1 (a31 + asz),
Cy =0,

and:

~ M _
Po(t) = (51GO1A1 - 2M9A1) sin (wm/ ?t + ﬁ1>
~ I M _
+ (Sla02A2 — 2MgA2> sin (UJQ ?t + BQ)
. M _ . M _
=po1 sin (wl\/ ?t + 51) + poz sin (wz - + B2,
Pl(ﬂ :SlAl sin (wlv %f—k Bl) - ’l)oonlfil COS (wlﬂ %{-l- 51>
+S1 A4, sin (wgw %f—l— 2> — Voo Mws As cos (wz %t_—l— 62>
. M M _
=p118in <w1\/ + p13 cos <w1 \/ ?t + 51
+p12 sin <w2 + p14 cos (wz\/ ?EJF B2

sy

Sl

+ B

al

+
=
I\

~— ~—
<
~

)

. M _

Py(t) =51 (a1 A1) sin <w1 ?t + /31>

(3.4.5)

. M _

+51 (a22A3) sin <w2 ?t + 52)

. M _ . M _
=p21 sin <w1 ?t + 51) + p22 sin (wz\/ ft + 52) )

) M _

P5(t) =51 (az1 A1) sin <w1 ?t + ﬁl)
M _

+S51 (az2Az) sin <w2 & + 52)

. M _ ) M _

=psz18in | wy ?t + B1 | + p3zsin | wo ?t +52 ],
_ M-
P4(7€> = 7UOOVkMA1 S11n <w1 kt+ﬂ1)
- M

—VooV kM Ag sin (wg ?t + ﬁz)

. M _ ) M _
=p41 sin <w1\/ ?t + 61> + p4o sin (wgq/ ?t + ﬁ2> )

13
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By assuming that the locations a; and as of the rivulets are such that they satisfy the instability

criterion of den Hartog:

a1 =7+ 0(e),
az =72+ O(e),
the coefficients a;; and p;; can be simplified. The a;; in equations (3.3.2) become:
apl = 0(6),
ap2 = O(E),

a11 = —k1Cpo — k1Cr1 + O(e),
a12 = —koCpo — k2Cr1 + O(e),

as = O(e),
azs = O(e),
1 1. =
as] = _iﬁchO — 651CL1 - K/ICL-?) + O(E)’

1 - =
azo = —5/{QCDO — EKQCLl - K/QCLL)) + 0(5)

From the assumptions about the aerodynamic constants (3.2.3), it then follows that:

Co=0,
i >0,
Cy =0,
C3 <0,
Cy=0.

Note S5 can also be written using these constants:

The constants p;; become:

— Cl
S2=1\/-&

po1 = —2M1 Ay g,
po2 = —2M3Aag,
p11 = S141,

p12 = S24s,

P13 = —Voow1 M1 Ay,
P13 = —Voowa Mz Ag,
p21 =0,

p22 =0,

p31 = S1A1a31,

p32 = S1A1a3z,

k
D41 ZUOO\/MMM‘h,
= ﬁ]\4Al
Paz = Voo\[ 3r M2 Aol

where equation (2.2.2) is used.

Furthermore, the initial values for 4 follow by substituting equation (3.4.1) into (3.2.5):

_ g M
(O)Z’UJO:UO—FE ?SQI,

U
i(0) = dip = .

14

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)



Now that the mathematical model has been derived, a method is needed to solve or approximate its
solution. In the next section, the multiple time-scale perturbation method for approximating the model
is explained.

15



4 Multiple time-scale perturbation method

In order to approximate the solution of (3.4.3), the multiple timescale perturbation method is used. This
method is explained in depth in Problems in Perturbation by Ali Hasan Nayfeh [5]. In this section, it
will be explained in short.

4.1 Assumptions

Let:
w +u=¢ef(uu,u), (4.1.1)

be a differential equation with dimensionless variables and small e, which is to be approximated using
the multiple time-scale perturbation method. According to the method, the solution u(t) can be written
as:

a(t,et,e%t, .. ;€)

Q(To,Tl,TQ,...;E) (412)
= ’llo (To,Tl,TQ, .. ) + 8@1 (To,Tl,TQ, .. ) + 627:@ (To,Tl,TQ, .. ) —+ ... y

u(t; e)

where:
T, =¢'t,
are called time-scales. Furthermore, using the chain-rule, it follows that:

i 8 0 L0
a_90 .9 129 L1,
oty Con "Sam T (4.13)

4.2 Procedure

In order to find an O(e™) approximation of u, substitute equation (4.1.2) and (4.1.3) into equation (4.1.1)
and disregard all powers of € higher than n. Or equivalently, substitute v and % for:

'I.L(t; 6) = ’lAl,O (To,Tl, “e ,Tnfl) +...+ Sn_l'lfl/n,1 (T(),Tl, e ,Tnfl) + O(Z{n)

d 0 0

f:7—|—...+€"717—|—0 e™).

dt 0Ty 0Ty -1 (")
Next, equate all coefficients of like powers of . This results in a set of n + 1 differential equations; one
for each 4;. Furthermore, the dependence on Ty, ..., T, should be determined by requiring that each uy
(1 <k < n)is free of secular terms.

This procedure is made more clear in the next subsection, where it is illustrated using the Duffing

equation.

4.3 Example: the Duffing Equation

For example, in order to find a 1%*-order approximation of the Duffing equation:

W +u+eu® =0, (f (u, 0, 1) = —u?),
u(0) = a, (4.3.1)
u'(0) = 6,
u and % should be substituted with:
u = to + ety + O(e%), (4.3.2)
4_ 0 + -2 + O(e?). (4.3.3)

it~ 9T, Ty

16



By equation coefficients of like powers of ¢, a set of two equations follows:

62
a 2 + g = 0,
0%y .3 82
T i =i 29Ty
and initial values:
~ 8710 (T07 Tl)
6(0,0) =, ————= =5,
9Ty To=0,T1=0
oty (Ty, T
@(0,0) = 0, 9t (To, T1) —0.
9Ty To=0,T1=0
The solution of the first equation is:
120 = A(Tl) Sil’l(To) + B(Tl) COS(To) (434)
where A and B are unknown functions of T7. Due to the initial values, it follows that:
A(0) = «a, B(0) = 5. (4.3.5)
Substituting the solution for 4g in the second equation, it becomes:
2 A
% + 0y = — A%sin®(Ty) — 342 Bsin®(Ty) cos(Tp) — 3AB? sin(Ty) cos?(Tp) — B3 cos®(Tp)
0
—2A" cos(Ty) + 2B’ sin(Tp)
dB 3 dA 3
— —ZA% - AB2 in(Tp) — ( == + =B A2 T
(dTl 1 )sm( 0) (dTl + + cos(Tp)
3 1
A3 _ 2 2\ o [ tp3 242
<4A 4AB >sm(3To) <4B + 4A B) cos(3Tp),
where:
dA 3 3
—— +-B%+ ~A’B | cos(Tt
(dT1 17T )C%( o);
dB 3
9B 3 45 3 4B ) sin(r,
(dT1 TR ) sin(To),

produce secular terms, as they contain terms of equation (4.3.4). In order to remove these terms, the
following equations must apply:

dA 3

Tﬂ == —Z(AQ"_Bz)B,

B3 (4.3.6)
1

From these, A and B can be solved. Multiplying the first equation by A, the second by B, and adding
them gives:
dA dB
— A+ —B=0,
dly + dly
— AdA + BdB =0,
= A? + B? = R;.
Due to the initial values of A and B (4.3.5), it follows that R; = a2 + 2. Substituting this into equation
(4.3.6) gives:
dA 3 dB

_2 (2 02 aB 3 9 o
a7 = 4(@ -|—B)B7 A dT1_4(a +B)A. (4.3.7)

17



Differentiating the left equation with respect to 77 and inserting the right equation gives:
d?A <3

2
halinfagu hd 2 2
dT? @ +B)> A4

which has solution:

A(Ty) = Cy sin <Z (a2 + 62) Tl) + Cy cos (i (a2 + 52) Tl) .

From the first equation of system (4.3.7), it follows that:

4 dA
B =5 v an,

= (] cos (i (a2 + 52) T1> — Cysin (i (a2 + 52) T1> .
From the initial values (4.3.5), it follows that C; = 8 and Cs = «, so A and B become:

A(Ty) = Bsin <i (a2 + ﬁz) T1> + acos <i (a2 + 52) T1> ,

w

B(T1) = —asin ( (o + %) Tl) + Bcos (i (a® + 5?) T1> .

W~

The 1%¢-order solution becomes:
to(To, Th) = (5 sin (Z (a® 4+ B%) Tl) + acos (Z (o® + B7) T1>> sin(Tp)
+ (—a sin (i (a2 + 62) Tl) + B cos <Z (a2 + 62) T1)> cos(Tp),

=f cos (i (a2 + 52) T — T0> — asin (i (a2 + 52) T — T0> .
It follows that:
u(t,e) = dg(t, et) + O(e)

= B cos (i (a® 4 %) et — t) — arsin (2 (0 + %) et — t) + O(¢)

= Bcos ((Z (a®+p%)e— 1> t) — asin ((Z (a® 4+ B%) e — 1) t) +0(e).

In order to check the accuracy of this approximation, it needs to be compared to the analytical
solution. However, as the entire analytical solution is difficult to calculate, the periods of the analytical
and the approximated solution, Ty, and T, respectively, are compared instead.

It is easily seen that the approximation wu(t,e) has period:

2w

Ty = — 438
A (4.3.8)

where the initial values (4.3.5) have been used. In order to show that the analytical solutions period Ty,
exists, equation (4.3.1) is multiplied by %:

1 /du)\? 1 1 1
<u> +—u2+§u4:§52+7a2+§a4,

2\ dt 2 4 2 4
— du 2+u2(1+5u2)—1+E
dt 27 2’
= d—u—i 14 —u2— Syt
dt 2 277
1
— du _ g

VIT5—w?—guldt
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where the initial values (4.3.5) have been used. From the second equation, it follows that the parametric

plot of u and % is elliptical, and thus Ty, exists.

Figure 4.3.1: Parametric plot of v and Z; with € = 0.5.

In order to calculate this period, the ellipse is integrated from ¢t = 0 to ¢t = %Tan (see figure (4.3.1)):
Tan 1 J Tan
4 U 4
Mot =+ 1dt,
/o VI+5—u?—Sut dl /0
Tﬂ/'n,
4 1 du Ton
S —dt =+ .
/0 JI+5 -2 —5ul dt 1
Tan

From figure (4.3.1), it follows that u(t) =l att =0and u(t) =0 at t =
above equation becomes:

4=. Using this information, the

du

_ &, 47
SU

! 1
Ty, =4
/0 VI+5—u?
where the sign has been chosen to make Ty, positive. This is a complete elliptic integral of the first kind
([6]):

4
Vi+e
b V2e

2/l +e

The elliptic integral K (k) can be calculated using the arithmetic-geometric mean (agm) ([7]):

Ton = K (k),

™

2
agm(1,v1—k2)
In the table below, the analytical and the approximated period and their difference can be seen for several
values of e, which were calculated using Appendix B:

K(k) =

Table 1: Period of the analytical and approximated solution of the Duffing equation for several values of

E.

As the difference between T,,, and T, is bounded by 8¢, it follows that the approximation of the solution,

£ k Tan Tap |Tan B Tap|

0.1 0.2132007163  6.060656736  6.792632765 0.731976029
0.01 0.0703597544  6.259762304 6.330665297  0.070902993
0.001 0.0223495078  6.280830511 6.287901234 0.007070723
0.0001 0.0070707142  6.282949703 6.283656581 0.000706878

at least its period, is of O(e).
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5 Approximating the Solution of the Mathematical Model

Now that the multiple time-scale perturbation analysis method is explained, it is possible to find an
approximation of the solution of the mathematical model (3.4.3):

with initial values (3.4.9):

5.1 Multiple Time-Scale Perturbation Analysis

In accordance with the method, let:

a(t,E) = ZQ(TQ,Tl,E) + ez (To,Tl, E) + 0(62),
d 0 0 (5.1.1)

Inserting this into the model and initial values results in two coupled differential equations:

(9220
— =0 5.1.2
otz T =0 (5.1.2)
8221 620 822:0 8220
— = f T — — 5.1.
aTOQ + 21 f ( 0520, TO 5 T02 ) 8T1T07 ( 3)
and initial values:
M 0zo(To, T
20,0 = L[ Mg, Ol T) ~0
Vo k 8TO Ty=0,T; =0
021 (T, T
21(0,0) = 0, 921(To, T1) —0.
9To To=0,T1=0
The first order equation will always have a solution of the form:
20(To,T1) = K(T1) sin(To) + L(Ty) cos(Tp), (5.1.4)

where the functions K and L may differ for different choices of w; and ws.
Furthermore, from the initial values, it follows that:

10— i}\/?sf (5.1.5)

In order to find K and L, the O(g) equation must be computed,
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5.2 The O(¢) Equation

In order to find the O(1) approximation, the function f (3.4.4) must be substituted into the e-order
equation (5.1.3):

P21\ = 57(Co+ Po(Th)
6T02 1 — P2 0 0 0
.
+(Ch + Pu(Ty)) a—;)
12
+55(Cy + Py(Tp)) TTZ
951
+53(Cs + P3(Ty)) Ty
:82 -
+(Cy + Py(Tp)) T;g
L 0
_ 822’0
aTlTO'

Inserting the 1%%-order solution (5.1.4); rewriting powers and products of sines and cosines as sines and
cosines; and splitting into terms independent and dependent of w; and we; substituting (3.4.5); again
rewriting products of sines and cosines as sines and cosines; gathering terms; and finally inserting Cp,
Cy, and C4 from (3.4.6) and po1, and pao from (3.4.8) gives:
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c1L — 2— +0.7552C3(L% + K L)] sin(Tp)
+ oK — 2— +0.7553C3 (K% + KL )} cos(Ty)

5203(0.75K2L +0.25L )} sin(3Tp)

+ |s3c3(0.75K L% — 0.25K3)] cos(3Tq)

-

[

- [

[s2

+ 55501 contan) sin (wl\/g TO)
[s3 }S,M,ﬁ)m(mgTO)
[s3"vee]

[s3"voe]

-1
Po1

(I)

+

—1

+ [S "Po2

M
cos(B2) sin (wg, ?TO>
syt M

P02 sin(8) cos (way/ =T

+ o.s{[an —pa1L +0.7582pg1 (K3 + KL?) + py3L] sin(81)

M
— [p11L + par K +0.755%pgq (L3 + K2L) — p13K] cos(ﬁl)} - cos <<w11/? - 1) TD>

+ 0.5{[p11L + P41 K +0.7552p31 (L3 + K2L) — p13 K] sin(81)

M
+ [p11K — pa1L +0.7553p31 (K3 + KL?) + p13L] COS(B1)} - sin ((w”/? - 1) To)

+ 0~5{[P11K —pa1L +0.7553p31 (K3 + KL?) — p13L]sin(87)

M
+ [p11L + pg1 K + 0.7553p31 (L2 + K2L) + p13K] cos(ﬁl)} - cos <<w1q/ -+ 1) T0>

+

+ 0.5{[p11K — pg1L +0.7583p31 (K2 + L2K) — p1gL] cos(B1)

M
— [P11L + pa1 K + 0.7552p31 (L2 + K2L) + p13 K] sin([-}l)} . sin ((wu/? + 1) TO)

+ o.s{[mzx — pasL +0.7553 paa (K3 + KL?) + p14L] sin(Ba)
2 3 2 M
— [P12L + P42 K + 0.7555p32 (LY + K“L) — p14 K] cos(B2) ¢ - cos wo - 1| Ty

+ 0.5{[p12L + panK +0.7582p35 (L3 + K2L) — p14 K] sin(B2)

M
+ [p12K — pagL + 0.75S3pga (K> + KL?) + p14L] COS(,BQ)} - sin ((um Y 1) T0>

+ 0~5{[p12K — paoL +0.7553p3a (K3 + KL?) — py4 L] sin(Bg)
2 3 2 M
+ [P12L + P42 K + 0.7555p32 (L + K L) + p14 K] cos(B2) ¢ - cos | | wa - T1)To
+ 0.5{[17121( — pasL + 0.7552 pgo (K3 + KL?) — P14L] cos(Ba)
2 3 2 . . M
— [P12L + P42 K + 0.7555p32 (L + K“L) + p14 K] sln(ﬁz)} - sin wo - +1| Ty
2 M
[82p31 (0.75K L% — 0.25K3)] sin(B1) + [S2p31(0.75K 2L + 0.25L%)] cos(ﬁl)} os | [wiy/— —3) 1o
k
2 3 2 2 3\7 o .
+0.5 S2p31(0.75KL — 0.25K")] cos(B1) + [S3p31(0.75 K" L + 0.25L")] sin(B1) ¢ - sin
2 301 2 2 =73 . .
+ 0.5 32p31(0.75KL — 0.25K7)]sin(B1) + [S5p31(0.75K“L + 0.25L")] cos(ﬁl)} - cos
2 M
S2p31(0 75KL° — 0.25K )] cos(B1) + [52p31(0 75K2L + 0.25L )] sxn(ﬁl)} in w1 +3] 1y
2 3 \ 2 =2 347 =
+ 0.5 32p32(0.75KL — 0.25K7)] cos(B3) + [S5p32(0.75K“L + 0.25L")] h\n(BQ)} - sin
[ o R 2 -} N
[92p32(0.75K L% — 0.25K2)] cos(B2) + [S2p32(0.75K2L + 0.25L%)] sin(By) | - cos

o
{-
{-
o
0.5 [sBrsa0.75kc L2 o.msﬂswm[sgp32<o.75K2L+0.25Ls>}cos<g2)}m((w M73> 7
{-
o -
{t

M
—0.5{[S3p32(0.75K L% — 0.25K3)] cos(B2) + [S3p32(0.75K2L + 0.25L%)] sin(ﬁg)} - sin <<w2 + 3) To) :
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Intermediate steps of this calculation can be seen in Appendix A.

In this equation, the terms with sin(7Tp) and cos(Tp) produce secular terms, as these are already
solutions of the 1%t-order equation. However, the coefficients of these temrs depend on wy, we, M, and
k, as will be explained in the next subsection.

5.3 Resonance frequencies

For certain relations between the frequencies w; and system properties M and k, the system will resonate.
Frequencies which satisfy such a relation are called resonance frequencies. For example, if:

M
w1 ? = la
then:
M
sin <w1 kTg) = sin(Tp), (5.3.1)
and so, the coefficient of sin(7p) becomes:
dL -1 2 2 2
QdT + 55 'por —C1L + —0.7555C3L(L* + K*=).
1
There are many relations between w;, and M and k& which produces resonances. All of them are listed
here:
M M
wi\f 7 =0, wy/= =0,
M M
w1 ? = 1, wo ? = 1,
M M
— =2 — =2
w1 L ) w2 L )
M M
— =4 — =4
w1 A ) w2 L

Note that it is possible that w; and ws satisfy such a relation at the same time, and each combination
will result in a different solution.

5.4 Detuning Frequencies

It can be imagined, that resonance still occurs when, for example, a frequency w; is close to a resonance

frequency:
M
wl\/?zlﬂ“ﬁa v €R,

this is called detuning. This will also alter the terms producing secular terms, as:

M
sin (wm/ kTo) = sin (T + veTp) = sin (To + 1) = cos(yT1) sin(Ty) + sin(y7T7) cos(Tp).

If v = 0, the above equation is the same as the one for the resonance frequency (5.3.1), as w; is now a
resonance frequency.
If v = O(2), then 771 = O(Tp), and thus the above equation becomes:

M
sin (Wlﬂ kTg) = sin (T + veTp) = sin((y + 1)Tp),

23



which will not result in changes for the coefficients of sin(7p) and cos(Tp), as wy is too far away from the
resonance frequency.
If v # 0 and |y| < 1, the coefficients of sin(Ty) becomes:

dL
20w+ cos(yT1) Sy 'por — C1L + —0.7552C3 L(L? + K?).
1
Note that in the case of a detuning frequency, the coefficients will contain sin(+T3) or cos(y71), which
results in a non-autonomous system of differential equations.
For each resonance frequency, there is one detuning frequency:

M
wl\/Z:0+715, UJQ\/Z
M M
wl\/Zzl—i-VlE, L@\/Z:l—l—’yge,
M
k
M
k

= O+72€7

= 2‘1"}/25’

M

wiy\/ — =2+ me, wa
k
M

w1 ?=4+’Y1€, w2

Altogether, there are 4 choices for wy and 4 for wy, which are resonance frequencies; there are 4
choices for both which are detuning frequencies; and 1 which is neither. This results in a total of
9.9 = 81 combinations of either or both resonance and detuning frequencies, which all result in a
different solution. The calculation of all of these is not interesting for the extend of this paper. So some
interesting combination will be chosen.

= 4—|—’}/26.

5.5 Case 1: No Resonance or Detuning Frequencies

In order to be able the analyze the effect of resonance or detuning on the cable, a baseline is needed, so,
the first case is that neither w; and ws are resonance or detuning frequencies:

M 1
wl\/z 7é +n + e, Vne {07172a4}7 \V/|’)/| < g’
M

1
wg\/z # +n + Y98, Vne{0,1,2,4}, V< -

Note that the negative frequencies are not omitted as these do change the solution. The coefficients of
sin(Tp) and cos(Tp) in this case are:

dL
—C L 42— —0.7552C3(L* + K°L),
dT
dK 2 3 2
1K — 27dT +0755203(K + KL ),
1

respectively. These coefficients must be equal to zero in order to remove the secular terms, resulting in
two coupled differential equations:

dL 1

— = _C,L+ §52203(1:2 + K?)L,

Ty 2 8 (5.5.1)
dK 1 3 5 o o
T, = 201K+ 8S203(K + L )K,

with initial values given by equation (5.1.5). Note that K(7}) = L(Ty) = 0 is the trivial solution, with
z0(t,e) = 0 for all ¢. From now on, it will be assumed that zo(t,€) # 0 for at least one t.
This system can be more easily solved by switching to polar coordinates:
K(Th) = R(Th) sin(®(T1)), (5.5.2)
L(Ty) = R(Ty) cos(®(T1)). o
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Substituting this into the first order solution (5.1.4) gives:
Zo(To, Tl) = K(Tl) SiH(To) + L(Tl) COS(To)

R(Ty) (sin(®(T1)) sin(Tp) + cos(®(11)) cos(Tp)) (5.5.3)
R(Tl) COS((I)(Tl) + To)

Furthermore, from the change of coordinates (5.5.2), it follows that:

R(T1)* = K(T1)* + L(T1)?,
®(T1) = arctan(K (11), L(T1)).

To transform the system to polar coordinates, two steps are needed. Firstly, in order to get an
equation for R, multiply the first equation by L and the second by K, and add them, which gives:

dL dK 1 3

L+ —K = -C(L* + K?) + =S503(K? + L*)%.

i, erT1 21( + )+823( + L*)
By differentiating both sides of R(71)? = L(T1)? + K(T})?, it follows that 2;—7}%}2 = Z%L + Q%K. So
the above equation becomes:

dR 1 3 oo s
o = 51+ SSECsR
1

3
=-C1R+ =C1R®
gt g

1 3
= 1--R?
2C’lR( 4R>,

where S5 has been substituted (3.4.2). This equation has two equilibrium points, namely R = 0 and
R = %\/3 For R# 0 and R # %\/3, it is a separable differential equation, and has solution:

lc’ R C1T,
R(T1>:\/ sLi1fe

1+ %O1R0601T1 ’

where Cy > 0 from equation (3.4.6) is used, and Ry is the integration constant.
Secondly, in order to get an equation for ®, multiply the first and the second equation of the original
system (5.5.1) by K and L respectively, and then subtract the first from the second, which gives:

Dividing both sides by (L? + K?):
dK dL
't~k _
K24 L2 '

Note that the left hand side of this equation is the derivative of arctan(K, L). Using ®(7}) = arctan(K (71), L(T1)
gives:

o

— =0
an,

which has solution:
(1) = Do,

where ®( the integration constant.
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Now that the system has been solved using polar coordinates, it must be transformed back. Inserting
R and @ into the first order solution in polar form (5.5.3) gives:

1
*ClRoeclTl
_ 2
olfo )= \/1 + 2C1ReeO Ty (o +T0),

and thus:

u(t,e) = zo(t, et) + O(e)

1
701R06015t
— )2 P O
V1 %ClROeCIEt cos (¢ 0) (©).

In the next subsection, this solution is analyzed and plotted for different values of the constants.

5.5.1 Analysis

In the figures below, the solution @ is plotted for certain values of C, and ¢:

A O
Ml

AANANA
ERVRVATRTRYRY

(b)
Figure 5.5.1: Solution @ with Cy =1 for different values of . (a) e = 0.01. (b) e =0.1.

e

o

'
<

where Ry was chosen so that @(0) = 3.

The interesting part of this solution is its amplitude, as the frequency is quite low and will not damage
the cable. The amplitude R(et) converges when ¢ — oo:

e

Am e =

2
=23

3V3
~ 1.154700539,

as can also be seen in the figure below:
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0.7

0.6

0.5

Figure 5.5.2: Amplitude R over time.

Notice that this amplitude is independent of wind speed and cable properties. The rate of convergence
depends on the small parameter € and Cy, which depends on the aerodynamic parameters. The higher
and C are, the faster the solution converges.

In order to be able to compare the coming cases, a phase plane is made:
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Figure 5.5.3: Phase plane of R and ®.

It can be seen that ® is always stable, and all arrows point to R = % 3, as expected.
In conclusion, if the rivulets frequencies are not resonance frequencies, the cable will either stay static
or vibrate with an amplitude of %\/3
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5.6 Case 2: One Resonance Frequency

The second case is that w; is a resonance frequency, but ws is neither a resonance nor a detuning frequency.
For instance, let:

w1 7:1,

k
M 1
Wa ?#in—k'ye, Vne{0,1,2,4}, Vv < -
The coefficients of sin(Tp) and cos(Tp) in this case are:

L
—C1L + 257 —0.7555C3(L3 + K*L) + cos(81)S5 *pot,
1

dK
1K — 2o+ 0.7555C3(K® + K L?) + sin(51)S5 ' por.
1

These coefficients must be equal to zero in order to remove the secular terms, resulting in two coupled
differential equations:

ar 1 3 1 -
= g Ol (K2 4 L) SS30,L — Spor cos()S; !
dK 1 3 1 -
= 5C’lK + (K2 + L2)§S§C'3K + 3P0 sin(f1) S .

with initial values given by equation (5.1.5).
This system can be more easily solved by switching to polar coordinates (5.5.2); performing the same
operations as in in Case 1 (Section 5.5) to get equations for R and @, gives:

dR 3 1 1 B .
a7 = R (3550 1 501) = oS5 cos( 8L — sin(sy) ),
dg o l(sm(ﬂl)L + COS(ﬂl)K) (p01551>

dTy 2 K24 L2 :

Also changing K and L to polar coordinates (5.5.2) and using angle sum and difference identities:

dR 3 1 1 _
i (852203}22 + 201> R = SpoS, Lcos(® + By),
dd 1 . _
a7 =3 sin(® + 51)po1.S, L
By applying: "
T = — 5.6.1
1 Cl’ ( )

it follows that:

dm 8 2 9 et
Cs
d® DPo1
—_— = (0]
d7'1 2 Ci Sln( - Bl)
Cs
Letting:
CS
Sy = ——L, 5.6.2
3 Cs (5.6.2)
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gives:

dR 3 9 1 Po1

b - — d

pE ( 8R + 2) R N cos(® + B1),
ae po1 .

—_— = P .

dT1 2\/ Sg Sln( + ﬂl)

From this form, it follows that for large values of S3 it is similar to the system in Case 1.
In the next section, this system is analyzed and approximations of solutions are plotted for several
different values of the constants.

5.6.1 Stability Analysis

As this system is difficult to solve, its stability is analyzed instead. This is done by first calculating and
analyzing its equilibrium points, then evaluating the Jacobian of the system in these points, and finally
analyzing their eigenvalues.

From Maple, it follows that there are six equilibrium points:

# P R
1 —B1 Ry
2 —B1 Ro
3 —B1 R
4 7ﬂ1 + 7 Ry
5 —ﬁl + 7 Rs
6 B+ Rg

with R; as in Appendix B. These points consist of an amplitude and an angle. As the angle is constant,
only the amplitude is analyzed.

The amplitudes depend only on pg; and S3. The constant pg;, see equation (3.4.8), depends only on
the characteristics of the upper rivulet:

Po1 = —2M1Alg > —0029 ~ —0.27

as both M; and A; can be assumed to be lower than 0.1 in equation (2.2.1). For the remainder of this
analysis, and the other analyses, it will be assumed that pg; = —0.2. The constant S5 depends on the
ratio between the aerodynamic constants, which are unknown. The amplitudes for different values of S3
can be seen in the figure below:

-
=
) 1
® ! R
1 L 05
0 =
02 0 y : o 200 300 400
5 s
-1 ~— N @00 03
. — "
-
—
|_R]_R2_R!_R4_R5_R(»| |_R]_R2_R!_R4_RS_RD
(a) (b)

Figure 5.6.1: (a) Amplitudes for different low values of Ss. (b) Amplitude for different high values of Ss.

The amplitudes converge to three values: the first and fourth to %\/g, the second and fifth to _%\/§;
and the third and sixth to 0. These three values are the same as in Case 1, as —%x/g results in the same
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solution as %\/3 up to a phase-shift. Thus, as expected, this case is similar to the first for large values of

S3. Furthermore, note that the second up-to fifth point are only real for S3 > —po;.

The stability of the equilibrium points can be analyzed by evaluating the Jacobian of the system in
these points. As 31 only shifts the solution, it is chosen to be 0. In the figures below, the eigenvalues of

these equilibriums are plotted against Ss:

IS

IS

o

&

&

o

100 200 300 400
5
— A
(b)
100 200 300 400
ES
— A
(d)
100 200 300 400
85
— A
(f)

Figure 5.6.2: Eigenvalues of the equilibrium. (a) First equilibrium. (b) Second equilibrium. (c¢) Third
equilibrium. (d) Fourth equilibrium. (e) Fifth equilibrium. (f) Sixth equilibrium.

From these figures, it follows that the first equilibrium is stable; the second, third, fourth and fifth saddle
points; and the sixth unstable. For large Ss, this is again the same as in the first case.
In the figures below, the phase plane of R and & is plotted for several values of Ss.
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Figure 5.6.3: Phase planes for different values of S3. (a) S3 = 0.01. (b) S3 = 0.1. (c¢) S3 = 0.2. (d)
Sg =0.3. (e) Sg =1. (f) 53 = 10.

Note that this plot is 27 periodic in ®, so the first equilibrium point can both be seen at & = 0 and
® = 2. The equilibriums are also marked in (d): the first in red, the second in blue, the third in green,
the fourth in grey-blue, the fifth in purple, and the sixth in turquoise. The second, third, fourth and
fifth are only present in (d) — (f), as here S5 > —pg1 = 0.2. Furthermore, it can be seen that these are
saddle points. The sixth point is present in all figures, and is an unstable point. For large values of S3,
the phase plane indeed looks like the one from Case 1 (5.5.3).

Using Maple, the first order solution zp can be approximated if initial values are given. For example,
letting R(0) = 0 and ®(0) = 0 with S5 = 0.3 gives the figures below:
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Figure 5.6.4: (a) Phase plane with solution for R(0) = 0, ®(0) = 0 and S5 = 0.3. (b) Approximated
solution for R(0) = 0, ®(0) = 0, S3 = 0.3 and ¢ = 0.01. (c¢) Approximated solution for R(0) = 0,
®(0) =0, S3=0.3 and ¢ = 0.1.

From (a), it follows that the amplitude converges to around %\/3 This can also be seen in (b) and (c).
However, the rate of convergence in (b) is much lower than in (c), due to the lower & value.
In the figure below, the initial values R(0) = 0 and ®(0) = 7 + 0.01 are used together with S5 = 0.1:
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Figure 5.6.5: (a) Phase plane with solution for R(0) = 0, ®(0) = 7+0.01, and S3 = 0.1. (b) Approximated
solution for R(0) =0, ®(0) =7 + 0.01, S3 = 0.1, and £ = 0.01.

In (a), it can be seen that |R| becomes larger, then smaller, and then larger again, moves past one
equilibrium point, into the other. The switch from positive to negative can be seen clearly too, at around
t = 280.

For lower S3, the equilibrium amplitudes become higher, as can be seen in the figures below:
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Figure 5.6.6: (a) Approximated solution for R(0) = 0, ®(0) = 7 + 0.01, S5 = 0.0005 and ¢ = 0.01. (b)
Approximated solution for R(0) =0, ®(0) = = + 0.01, S5 = 0.0000001 and & = 0.001.

Here, the general solutions are the same as in the previous figure, however, the amplitude is larger. Note
also the small € value in the second figure: due to the small S5 value, the equilibrium is reached much
faster for the same e.

In conclusion, there is only one stable equilibrium, namely the first. So the cable will vibrate with the
first equilibriums resolution, which depends on the value of S3. For low values of S35 the amplitude can
very be high. For large values of S5 the amplitude converges to the amplitude from the previous case:

5.7 Case 3: One Detuning Frequency

It can be imagined that w; being exactly a resonance frequency is nearly impossible, therefore, the third
case is that wy is very close to a resonance frequency. Thus let wy be a detuning frequency and wy neither
a resonance nor a detuning frequencies. For instance, let:

M 1
w1 _:1+7157 |71|<< )

k €

M 1
wo ?7&:&714—76, Vne{0,1,2,4}, V]| =

The coefficients of sin(7p) and cos(Tp) in this case are:

dL

—ClL + QdT — 075S§Cg(L3 + K2L) + 52_1[)01 COS(’)/lTl -+ 51),
1
dK

CiK =2 + 0.7552C3(K> + KL*) + Sy 'po1 sin(y1 Ty + B1),
1
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respectively. Note that these coefficients are the same as in the previous case if v = 0. These coefficients
must be equal to zero in order to remove the secular terms, resulting in two coupled differential equations:

dL 1 3 1

— = -C L+ (K?>+ L*=52C5L — - T Syt
ar, ~ 29 + (K° + )8 5C3 P01 cos(mTh + £1)S5 7,
dK 1 3 1 . _
—_— = *ClK + (K2 —+ LQ)*SSC;),K + =Po1 Sll’l(’lel + 61)52 1.
dly 2 8 2

with initial values given by equation (5.1.5). This system is the same as the system in the previous
case (Case 2), except for the last term which has become dependent on 77, making it a non-autonomous
system.

Changing to polar coordinates by performing the same operations as in the previous case gives:

dR 3 1
— <_8R2+2)R— po1 COS(‘P+£TI+B1)7

dT1 2\/ 53 01
d®  po1 . gi!

_— @ —_— .

dT1 2\/ 53 Sln( + Ol nt ﬁl)

Changing variables to:

L, (5.7.1)

results in the next autonomous system:

dR 3 1
_ (—R2+>R— Po1 cos(¥ + By),

dT1 8 2 2\/ 53
ad Por . 71
— \II T .
dTl 2\/ S3 Sln( + 61) + Cl

In the next section, this system’s stability is analyzed and approximated solutions are plotted.

5.7.1 Stability Analysis

Again, like in the previous case, this system is difficult to solve, so its stability is analyzed instead. This
is done by first calculating and analyzing the equilibrium points, then using the Jacobian of the system
to analyze their stability, and finally constructing phase planes to create an idea of how the solution
behaves.

The equilibrium points are calculated using Maple, and are:

4 v R
1 arcsin % — B Ry
2 arcsin 2;;17%? — B Ry
3 arcsin 2;;17%? — B R3
4 arcsin _12731175/1?3 —p14+7 Ry
5 arcsin _12)3117&,/1573 —Bi+7 Rs
6 arcsin 712731175/1573 —-B1+7 Rg

with the R; as in (Appendix B). These points consist of an amplitude R and an angle W. First, the
amplitude is analyzed.
The amplitudes depend only on S, g—ll, and pg1. Like before, pgy = —0.2. Furthermore, these

amplitudes are only real for S3 < M. In the figures below, they can be seen for 0 < S3 < 400 and
47
0 S ’}/101 S 0.01:
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Figure 5.7.1: Equilibrium amplitudes plotted against v;Cy and S5C;. (a) First amplitude. (b) Fourth
amplitude. (c¢) Second amplitude. (d) Fifth amplitude. (e) Third amplitude. (f) Sixth amplitude.

Just as in the previous case, there are three positive and three negative amplitudes, which converge to
23, —2v/3 and 0 for large values of S3. For larger values of 71, the amplitudes Ry, Ry, Rs, and Rg get
closer to their limit, whereas the other two move away from it. Note, however, that not all combinations
of S5 and 7, result in real values of the amplitudes, as was discussed before. This concludes the amplitude
analysis, next comes the angle analysis.

First of all, these equilibrium points for ¥ are not equilibrium points of the original system. For ®,
these points are in fact lines, as:

gt

O(Ty) =9(T1) — aTl,
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so, the equilibrium lines of ® are:

291/S.
arcsin (%3> — B — lT1,

Po1C1 Ch
. 2”71\/53) M
arcsin —_— — — 7T +7T
( po1C1 A !

Additionally, as arcsin(x) is only defined for —1 < z < 1, it follows that S3 < % in order for the

equilibrium points to be real. In the figure below, the equilibrium angles are plottéd against yC for

several values of Ss:

m T
= =
8 8
sn sn
3 8
w w
n 3
8 8
z X
3 3
0 0.5 1 1.5 2 o 0.5 1 1.5 2
%e, ne
—SJ:D,UL—SS:D,[—S}:U,E Sj:ﬂj —SJ:U,UL—SS:D,I—S}:D,E Ss:ﬂj
—Sj:l —SJ:H] —Sj:l —S‘J:lﬂ

(a) (b)

Figure 5.7.2: (a) Equilibrium angle arcsin (%) for different values of S3. (b) Equilibrium angle

arcsin <7%) + 7 for different values of S3.
Ppo1Ca
It can be seen that the angles converge to 5 for higher values of 71C1, and vanish if it becomes to high.

For lower values of S3, this convergence is slower.
Now, the stability of these four equilibrium points can be analyzed by evaluating the Jacobian of the

system in these points. As (31 only shifts the solution, it is chosen to be zero. In the figures below, the
eigenvalues of these equilibriums are plotted against S3 and v, C1:
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Figure 5.7.3: Eigenvalues of equilibriums. (a) First equilibrium. (b) Second equilibrium. (c¢) Third
equilibrium. (d) Fourth equilibrium. (e) Fifth equilibrium. (f) Sixth equilibrium.

These figures look like the figures in Case 2 (figure 5.6.2). The equilibriums also have the same stability
as in Case 2: the first is stable, the sixth unstable, and the others are saddle points. The value of ~;C}
is of little influence to the eigenvalues, however, if it becomes to large, they become imaginary. This has
no impact on the stability of the equilibriums, as they are imaginary for the same values.

In the figures below, the phase plane of R and W is plotted for S5 = 0.3 and several values of ; (with
Cl = 1):
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Figure 5.7.4: Phase planes for different values of v;. (a) v1C; = 0.05. (b) v1C; = 0.1. (¢) v1Cy1 = 0.15.
(e) ’7101 =0.2. (e) ’7101 =1. (f) ’7101 =10.

In these figures, it can be seen that the equilibriums move towards 7. Furthermore, for small v; the

phase planes look like in the previous case. This can be seen more clearly in the figures below, in which
zp is plotted for S35 = 0.3, ¢ = 0.1 and several values of ~;:
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Figure 5.7.5: Solutions zg for different values of 1. (a) v1 =0.1. (b) v1 = 1. (c) 71 = 20.

Indeed, (a) looks a lot like figure (5.6.4(c)), whereas (¢) looks like figure (5.5.1(a). The most important
difference between (a) and (c) is the amplitude: the amplitude in (a) is around 0.15 larger than in (c).
Figure (b) is also interesting, as here the amplitude alternates between the one from (a) and the one from
(c). This is oscillation is due to the detuning frequency being alternately in and out of phase with the
resonance frequency.

In conclusion, a detuning frequency results in almost the same solution as a resonance frequency if
~1 is small enough. For large 1, the solution is the same as in the case of no resonance or detuning
frequency. For +; in between small and large, the solution alternates between the other two options.

5.8 Case 4: Two Resonance Frequencies

The fourth case is that both w; and wy are resonance frequencies. This is interesting, as the one may
amplify the other. For instance, let:

|
“P—‘

w1 ?

|
o

w2

SEER



The coefficients of sin(Tp) and cos(Tp) in this case are:

L
—C1L+ 257 - ZSSC’g(Lg + K2L) + cos(B1)55 'pot
1

1 3
+ 3 cos(f2) (PuK —pa L+ 152]931(-’(3 + KL?) +P13L>

1 . 3
+ 3 sin(fB2) <p11L +pa K + 1521031(133 + K°L) — p13K> ,

dK 3 (
C1K — 20w+ ngcg(fﬁ + KL?) +sin(81)S; 'pn
1

1
+3 sin(Bs) (p11K — par L + 0.755%ps1 (K* + KL?) + p13L)

1
-5 cos(B2) (p11L + pa K +0.758%p31 (L? + K?L) — p13K) .

These coefficients must be equal to zero in order to remove the secular terms, resulting in two coupled
differential equations:

dL 1 3 1
— = -CL+ (K?>+ L*=5%2C5L — = Syt
i, 29 + (K*+ )8 5C5 5Po1 cos(f1)55
1 3
1 cos(f2) (an —par L+ 1521731(}(2 +IHK +p13L)

1 . 3
— Z Sln(ﬁg) (pHL —|—p41K + 152])31([/2 + K2)L —p13K> )

dK 1 3 1 _
ot FOLK + (K2 + L2)§S2203K + 5porsin(51) S !

1 . 3
+ i Sln(ﬁg) (an —pa L+ 152])31(}(2 + Lz)K +p13L>

1 3
1 cos(f2) (PML +pu K + ZS2P31(L2 +K*L P13K> ;

with initial values given by equation (5.1.5).
Changing to polar coordinates (5.5.2) by performing the same operations as in the previous case and
using angle sum and difference identities gives:

dR 1 :
o E(4 cos(B2)p13R — 4 cos(fa)pa1 R + 3sin(B2)p31 55 R

+ 4sin(B2)p11 R + 8R — 6C1 R — 8po; cos(® + $1)S5 1),
d® 1

a7 " 16 (—4sin(B2)pa1 R — 4 cos(B2)p11 R + 4sin(B2)p1sR — 3 cos(Ba)p31 S5 R + 8poy sin(® + ﬁl)Sgl) .

Due the many unknown constants, this system is difficult to analyze. Therefore, it will be omitted in this
paper.
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6 Conclusion

In this paper, it was found that wind and rain may cause resonance of cables. The effect of the wind
and rain depends on the properties of the cable and water rivulets. These cable properties consist of
mass and tension, whereas the water rivulet properties depend on wind-speed and material, diameter,
and roughness of the cable.

In most situations, the cable will be static or vibrating with an amplitude of %\/3 For certain
combinations of cable properties, the static option vanishes and the cable will vibrate with a larger
amplitude. This amplitude depends on the aerodynamic properties of the cable and rivulets. For smaller
values of Ss this amplitude is larger, whereas it converges to %\/?: for large values of Ss.
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7 Discussion

For future study of this problem, more information about the cable and the rivulets are needed. For
example, the relation between material, diameter, and roughness of the cable and rivulet frequency; the
size and mass of the rivulets; the tension on and the mass of the cable; and much more. For example,
the cable tension k was assumed to be constant. This results in less damping, and may have resulted in
larger amplitudes than in reality. Additionally, the analysis of the type of equilibrium points was difficult
due to the eigenvalues being dependent on many of these unknown characteristics. Research was done
to find this information, but not much general data was found. Therefore, it may be better to focus on
a single cable for which much information is available.

43



References

1]

[2]

"Extra zware dempers moeten zwiepen Erasmusbrug voorkomen.” De Volkskrant. N.p., 04 June
1997. Web. 20 June 2016.

Van Horssen, W. T., ” An Asymptotic Theory for a Class of Initial-Boundary Value Problems for
Weakly Nonlinear Wave Equations with an Application to a Model of the Galloping Oscillations of
Overhead Transmission Lines.” STAM J. Appl. Math. STAM Journal on Applied Mathematics 48.6
(1988): 1227-243. Print.

Sewdoelaré, D., W.T. van Horssen. ”Rain-wind-induced Vibrations of Cables.” Thesis. TU Delft,
2010. Rain-wind-induced Vibrations of Cables. 20 Jan. 2010. Web. 20 June 2016.

Robertson, A.c., I.j. Taylor, S.k. Wilson, B.r. Duffy, and J.m. Sullivan. ”Numerical Simulation of
Rivulet Evolution on a Horizontal Cable Subject to an External Aerodynamic Field.” Journal of
Fluids and Structures 26.1 (2010): 50-73. Web.

Nayfeh, Ali Hasan. Problems in Perturbation. New York: Wiley, 1985. Print.
"Elliptical Integral.” Wikipedia. Wikimedia Foundation, n.d. Web. 05 Aug. 2016.
” Arithmeticgeometric Mean.” Wikipedia. Wikimedia Foundation, n.d. Web. 17 Aug. 2016.

44
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Symbol Definition First use
Time
t Time Section (2.1)
t Dimensionless ¢ Equation (3.4.1)
T; Time scales Equation (5.1.1)
1 Transformed time scale Equation (5.6.1)
Displacement
u(t) Vertical displacement of cross-section from center Section (2.1)
u(t) Dimensionless u Equation (3.4.1)
zi(T; Approximated displacement wu; Equation (5.1.1)
K(Ty) Function coefficient Equation 5.1.4)
L(Ty) Function coefficient Equation 5.1.4)
R(Ty) Displacement amplitude Equation (5.5.3)
(1) Displacement angle Equation (5.5.3)
(1) Transformed displacement angle Equation (5.7.1)
Cable characteristics
My Cross-section mass Equation (2.2.2)
k Spring stiffness (Cable tension) Equation (3.1.2)
d Cable diameter Equation (3.2.1)
Rivulet characteristics
oy Upper rivulet position Section (2.2)
Qs Lower rivulet position Section (2.2)
My Average upper rivulet mass Equation (2.2.1)
My Average lower rivulet mass Equation (2.2.1)
Aq Relative upper rivulet change in mass (to M) Equation (2.2.2)
Ao Relative lower rivulet change in mass (to Ma) Equation (2.2.2)
w1 Upper rivulet wave frequency Equation (2.2.1)
wa Lower rivulet wave frequency Equation (2.2.1)
51 Upper rivulet wave phase shift Equation (2.2.1)
Bo Lower rivulet wave phase shift Equation (2.2.1)
A Relative upper rivulet change in mass (to M) Equation (2.2.2)
Ay Relative lower rivulet change in mass (to M) Equation (2.2.2)
r1(t) Relative lower rivulet mass (to M) Equation (2.2.3)
ro(t) Relative upper rivulet mass (to M>) Equation (2.2.3)
System characteristics
M Average total mass Equation (2.2.2)

Relative combined system mass (to M)

Wind characteristics

Equation (2.2.3)

Voo Wind speed Section (2.3)

Us Relative wind speed Equation (2.3.2)

o(t) Angle of attack of wind Equation (2.3.4)
Environmental characteristics

g Gravitational acceleration Equation (3.1.1)

Pa Air density Equation (3.2.1)
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Drag and lift

Vertical drag function
Drag coefficient

Drag coefficient

Vertical lift function
Lift coefficient
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Approximated solutions
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Appendices

A O(e) equation calculation

Inserting the first order solution (5.1.4):

8221

2
OTU

+z1 = 52_1(00 + Po(Tp))

+(C1 + P1(To)){K cos(Ty) — L sin(Tp)
[
[
[

—(Cy4 + P4 (Tp)) | K sin(Tp) + LCOs(TO)]

+85(Co + Po(To)) | K2 cos(Ty)? — 2K L cos(Ty) sin(Ty) + L2 sin(Tp)?

+82(C3 + P3(Tp)) | K3 cos(T)® — 3K2 L cos(T)? sin(Ty) + 3K L2 cos(Ty) sin(Tp)? — L2 sin(Tp)>

dK dL
72[ cos(Tp) — sin(TO)}
4Ty 4Ty

Rewriting powers and products of sines and cosines as sines and cosines:

82z,
2
T3

+21 =55 ' (Co + Po(Tp))
+(C1 + Pl(TO))[K cos(Tp) — LsirA(To)}
+S9(Cq + Py (Ty)) [0.51(2(1 + cos(2T()) — K Lsin(2Tg) + 0.5L2(1 — cos(2T0))]
+52(C3 + P3(Tp)) [K3(0.75 cos(Tp) + 0.25 cos(3Ty)) — 3K 2L(0.25 sin(Tg) + 0.25 sin(3T))
+ 3K L%(0.25 cos(T) — 0.25 cos(3Tp)) — L3(0.75 sin(Tp) — 0.25 sin(3Tp))

~(Ca + P4(To)) [ sin(Tg) + L cos(To) |

dK dL
72[ cos(Tg) — sin(TO)}
4Ty 4Ty

Gathering sines and cosines of equal angles, and splitting into factors dependent on sines and cosines of
different angles:

822, -1 1 2 2
o2 +21 = [Sg (Co + Py (Tp)) + 552<02 + Po(Tp))(K* + L%)
0

dr ]

[(cl + P (To)L — 2+ (Cat P4(To))K + 0.7552(C3 + P3(Tp))(L> + K2L)] sin(Tg)
1
aK 2 3 2

+ [(cl + P1TO)K = 2= = (C4 + P4(To))L +0.7583 (O3 + P3(T0)) (K* + KL )} cos(Ty)
1

[52(02 + PQ(TO))KL} sin(2T)

+ [0-5S2<c2 + Py (To)) (K2 + L2>] cos(2T()

52(C3 + P3(T())(0.75K2L + 0.25L3)] sin(37Tp)

- [sg(c3 + P5(T())(0.75 KL% — O.ZSKS)} cos(3Tp)-
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Splitting C and P:

827,1

- [s;lco +0.55505 (K2 + L2)]

ciL — 27 + C4K +0.758303(L% + K L)] sin(Tg)
+ oK — 27 — C4L +0.7582C5 (K3 + KL )] cos(Tp)
SZCQKL] sin(2T()
+ 0.55505(K2 + L )] cos(2Tg)

52C3(0.75K%L 4 0.25L )] sin(3T0)

52C3(0.75KL% — 0.25K )} cos(3Tq)

-

[

-

[

- [s2

- [s2

+ [s3 Po(mo) + 0.552 P2 (10 (1% 4 1)
— [P (@0 L + Py (T0) K + 07553 Py (1) (L2 + K2L)] sin(To)

+ [P1<T0)K — P4(Tp)L + 0.7553 P3(To) (K3 + KLQ)} cos(To)
[SZPQ(TO)KL] sin(27)

+ [0-552 Po (10) (52 + 17)] cos(aTy)
[s P3(Tp)(0.75K2L + 0.25L >} sin(3T)
- [2

52 P5(To)(0. 75K L? 0.25K3)] cos(3T).
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Inserting P:

8221 -1 2 2
+2g = [52 Co + 0.555Co (K2 + L?)
aT2
0
ciL — 27 + 4K +0.7583C03(L% + K L)} sin(Tp)
+ oK — 27 — C4L +0.7553C3 (K> + KL )} cos(Tp)

SoCo KL} sin(2Tq)
+ |0.555C5(K2% + L )] cos(2Tg)
52C3(0.75K2L +0.25L )] sin(37TQ)

s2c3(0.75KL% — 0.25K )] cos(3T)

M

+ S5 'po1 +0.552p21 (K2 + L )} sin (u.)l /?Toﬁ—Bl)
5 M

+ |55 "po2 + 0.552pa2 (K + L )} sin | way[—To + 82

M
p11L +pg1 K + 0.7555p31 (L2 + K L)] sin(Tp) sin <w11/?T0 + 51>

[M
p12L + paoK +0.7553p3a (L3 + K L)] sin(Tp) sin <w2 ?To + ﬁz)

M
p13L] sin(Tp) cos | wy TTO+51

-
[
-
[
- [s2
- [s2
[
[
[
[
[
[p142] sncTo) cos (JE ¥ 52)
4 [p11 K = par £+ 0,753 ma (6 + KL conr) sim (
[
[
[
-
-
[
[
- [
-
- [s2
- [

Ty + 51)

r‘g

+ |p12K — pagL + 0.7553paa (K3 + KL )] cos(Ty) sin <w2 Ty + [:72>

+

M

p13K] cos(Tp) cos (wM/ - To+ Bl)
M

P14K] cos(Tp) cos (wzy/ ?To + Bz)

M
Sapal KL] sin(2Tg) sin (w”/f:ro + ﬁ1>
k

+

Sopo2 KL] sin(2T() sin (wz —Tp + 52)
M

+ 0.589p01 (K2 + L )} cos(2Tp) sin [ wy ?TO + 81
P X M

+ |0.582p90 (K2 + L )} cos(2Tp) sin [ wy ?TD + Bo

S5p31(0. 75K2 L +0.25L )} sin(3T() sin | wy

To + A1

=| %

/N

wo To + B2

)
)

52p30(0.75K2L +0.25L )} sin(3T) sin

/

52p31(0.75K L% — 0.25K )] cos(3Tp) sin | w1y —To + A1

r‘g

)
)

z-‘g

S5p32(0. 75KL? — 0.25K3)] cos(3Tq) sin (wz
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Again, rewriting products of sines and cosines as sines and cosines:

2
0%z —
o A= [sz 1og + 055505 (K2 + L2)]

ciL — 27 + C4K +0.7583C03(L% + K L)} sin(To)
+ oK — 27 — C4L +0.7582C5 (K% + KL )] cos(Tg)
S26’2KL} sin(2T()
+ [0.58505(K2 + L )] cos(2Tg)

52¢C3(0.75K2L 4 0.25L )] sin(3Tq)

52C3(0.75KL? — 0.25K )} cos(3Tq)

M
+ |85 po1 + 0.552pa (K2 + L2 ):stn <w1,/?T0+ﬁ1

g
Sy 'po2 +0.552pan (K2 + L )] sin <w2‘/TT0 + Bs

~—

-
{
-
{
-[s2
-[s2
[52
[s2

~———

+
3 M
—05{p11L+P41K+0 7552p31(L + K L)]cos wy -
M
+05[p11L+p41K+07532p31(L + K L)}cos oy
3 M
705[p12L+p42K+07052p32(L + K L)]cos way/ =
3 M
+ 0. 5|:p12L+P42K+0 7552p32(L + K L)} cos wg -
M
+0.5[p13L:| sin<(w1,/— 71) To+ﬁl>
k
M
_ o.s{me] sin ((Wu/* + 1) To + Bl)
k
M
+0,5[p14L] sin <(w2, —_— = 1) To + BQ)
k
M
70.5{;71414] sin<<w2,/—+1) T0+ﬂ2>
k
M
+0.5[p11K—p41L+0 75S3p31 (K° + KL )] sln((wl i
k
} 2 3 2 M
+0.5|p11 K — pg1 L +0.75S5p31 (K° + KL?)| sin wy -
-~ 2 3 2 Mo
+0.5|p12K — pgoL + 0.75S5p32(K” + KL”)| sin wo .
M
+0.5[p12K—p42L+0 7553 p30 (K3 + KL )] sm<(w2 i
k
M
+0,5[p13K] cos <<w1' ? - 1> To +ﬁ1>
M
+0.5[p13K:| cos | {wiy/— + 1) To + 61
M
#oafpnardcos (a3 = 1) 704 )
M
+0,5[p14K] cos wo ?4»1 To + B2

51

- 1) T + 51)
+ 1) Ty + zﬁ)
7Q%+@)
+ 1) Ty + Bz)

1) Ty + 51>
+1> Ty +ﬁ1>

)T0+52>
+ 1) Ty + ﬁz)



e e N N

N N

73) To +31>
To + A1
To + B2
Ty + B2
To + 81
To + A1
Ty + B2
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Rewriting sines and cosines in

- [52—100 +0.55,C05(K2 + Lz)}

+
Sa 2KL} sin(2Tg)

+ 0552C2(K + L )] cos(2T()

+ |s2cz(0.75KL2 — 0.251(3)] cos(3T()

n 2

i 2

+ 2

+

]
]
]
]

[
[
-
[
[s C3(0.75K2L + 0.25L )] sin(3T)
[s2
[s2"
[52
[s2"
[s2"

S, "po1 + 0. 552p21(K + L%)| cos(B1) sin

S5 p01 + 0. SSgpgl(K + L“)| sin(B7) cos

57 pog + 0.559p22 (K2 + L?)| cos(8y) sin

S, "po2 + 0. 552p22(K +L )| sin(Bg) cos

order to split sin(3;) and cos(5;):

w1

wi

w2

w2

=g =& =&

=| &

Cc1L — 27 + C4K +0.755303(L3 + K L)} sin(Tp)

C1K — 27 — C4L +0.755205 (K3 + KL >} cos(Tp)

- 0A5[1)11L + P41 K +0.7552pg1 (L2 + K2L)| cos(B1) cos [ [ wy

+0.5[p11L+p41K+0.
.5[p11L+p41K+0.
A5[p11L+p41K+0,
*0-5[P12L+P42K+0
.5[p12L+p42K+0.
A5|:p12L+p42K+0.

-5{01214 + pa2 K + 0.

+0.5[prsL] con(p) sin ((ﬁ
+0.5p1aL] sinoy) con (( .
— 0.5[p132] con(ay) sin (( b
o afpmsr] snoncor ((on
0 afpmar] orcomr i ( (a5 -
+05[prat] (H(( M
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+

1

1

)
)
)
)
)
)

To

s

7553 p30 (L3 + K2L)

(
7552p31 (L3 + K2L)| sin(8}) sin ((Wl
7553p31 (L + K2L)| cos(81) cos ((m

7552p31 (L2 + K2L)| sin(B1) sin (
cos(ﬁz)cos(
7553p32 (L% + K2 L)| sin(8y) sin ((Wg
7552 p3a (L3 + K2 L)| cos(By) cos (<w2
(

7553p30 (L3 + K2 L)| sin(8y) sin
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pa1L + 0.
pgq1 L + 0.
pa1 L + 0.
paoL + 0.
pao2 L + 0.

paoL + 0.

cos(B1) cos (

sin(B1) sin (wl

sin(81) sin
cos(Bg) cos (uz
sin(Bg) sin (uz
cos(Ba) cos <w2

sin(By) sin (UJ2

.5|Sgpo1 KL|sin(B7) sin
.5|S9pa KL| cos(81) cos
5| Sopoq KL| sin(8y) sin
.5|Sopo2 KL| cos(B2) cos

5| Sopag KL| sin(Ba) sin

]
]
]
]
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-
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-
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2 2
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-

cos(fB1) sin

z-‘g
S

755331 (K% + KL?)

R“E
+
-
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0.5Spoo (K~ + L

0.552p92 (K2 + L
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75K L?
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75K L2

75K L?
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2 3 . .

T5K2L + 0.25L )] sin(B7) sin
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And gathering terms:

62z1

+2 = {s—lco +0.585C5 (K2 + L?)
oTg

c1L — 27 + C4K +0.755%05 (L% + K L)] sin(Tg)
+ clezf — C4L +0.7552C5(K> + KL )] cos(Tp)
SCo KL] sin(27T()

+ [0.55Co (K2 + L )] cos(2Tq)

-
[
-
[
[3203(0 75K2L + 0.25L )} sin(3Tp)
[
[
[
[
[

+ [s2¢3(0.75K L2 — 0.25K )} cos(3Tq)
+ st s i M
po1 + 0.552p91 (K2 + L2)| cos(B1) sin [ wy 70
—1 2 . M
+ (57 po1 + 0.555p0q (K2 + L2)| sin(By) cos [ wy —To
—1 2 . ) M
+ [S™ "po2 + 0. 5Szp22(K + L?)| cos(Bg) sin | wo ?TO
1 - M
+ [S" "po2 +0. 5S2p22 (K2 + L?)| sin(By) cos [ wy ?TO

+ 0-5{[p11K — pa1L +0.7582pg1 (K3 + KL?) + py3L] sin(B1)

M
— [p11L + pa1 K +0.755%p31 (L3 + K2 L) — p13K] 005(131)} - cos ((Wu/? - 1) To)

+ 0-5{[p11L +pa1 K +0.755%p31 (L3 + K2L) — p13K] sin(8y)
2 3 2 . M
+ [p11K — pa1 L + 0.755%pg1 (K> + KL2) + py3L] cos(ﬁl)} cein (| w1y/ - = 1) 7o
+ 0-5{[p11K — pa1L +0.7582pg1 (K3 + KL?) — py1gL]sin(8y)
2 3 2 M
+ [P11L + p41 K +0.755"p31 (L° + K“L) + p13 K] cos(B1) p - cos wq ?4»1 To
+ 0.5{[p11K —pg1L +0.7552pg1 (K2 + L2K) — p1gL] cos(B1)

[M
— [p11L 4 pa1 K + 0.7582pg1 (L3 + K2L) + p13K] sin([-}l)} - sin ((ul - + 1) TO)

+ 0.5{[p121< — pasL +0.755%p30 (K3 + KL?) + p14L] sin(B2)
2 3 2 M
— [P12L + pga K + 0.755"p3o(L° + K“L) — p14 K] cos(B2) ¢ - cos wo o 1| Ty
+ 0.5{[p12L + pao K +0.755%pgo (L3 + K2 L) — p14 K] sin(Bg)
2 3 2 . M
+ [P12K — pgoL + 0.755%pgo(K° + KL*) + p14L] COS(ﬁQ)}-sln wo - —1|Tp
+ 0.5{[;,121( — pasL +0.7552pg0 (K3 + KL?) — py4L] sin(B2)
2 3 2 M
+ [pP12L + pg2a K +0.755%p32 (LY + K“L) + p14 K] cos(B2) p - cos | | wa - T1)To
+ 0.5{[;:121( — paol +0.7582pga (K3 + KL?) — Py4L] cos(By)

[M
— [p12L 4 pas K + 0.7552pgo (L3 + K2 L) + p14 K] sin([32)} - sin ((uz - + 1) TU)
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B Maple code

98



B.1 Duffing equation: Period approximation

[>

> for n from 1 by 1 to4 do
alpha:=1:

beta:=0:

assume(0 < u < alpha) :
epsilon = evalf (10™") :

Sfun == u— 5 5 i ! n 1 5
sar (B + 4 SN2 pflon 1)
Tpn = 4- integrate( fun(u), u =0..alpha) :
Tpa = abs S B R
3/ 2 2
X(Oﬁ + B ) c-1

print("epsilon:", epsilon);
print("Ongesplitste integraal: ", abs(7pn) );
print("Approx: ", Tpa);
print("Verschil: ", abs(abs(7pa) -abs(Tpn)));
print()

restart :

end do:

"epsilon:", 0.1000000000
"Ongesplitste integraal: ", 6.060656736
"Approx: ", 6.792632764
"Verschil: ", 0.731976028

"epsilon:", 0.01000000000
"Ongesplitste integraal: ", 6.259762304
"Approx: ", 6.330665298
"Verschil: ", 0.070902994

"epsilon:", 0.001000000000
"Ongesplitste integraal: ", 6.280830512
"Approx: ", 6.287901234
"Verschil: ", 0.007070722

"epsilon:", 0.0001000000000
"Ongesplitste integraal: ", 6.282949700
"Approx: ", 6.283656584
"Verschil: ", 0.000706884
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(O]

> epsilon = 0.5

L €:=05 ?)
> plot(”u, sqrt(l + 7eps2110n 2 cpsilon ~u4j, u=-1.1 ], [u,—sqrt(l + 7ep52110n -’
_ cpsilon -u4j, u=-1.1 ], [u, sqrt(l + epsilon _ ut— epsilon -u4j, u=0.1 }, color
2 2 2
— [black, red, black), labels = [u % , )
1
du
0.5




B.2 Case 1: Solution

[> restart;
> Ri=T1 — sqrt 0.5v3C1-R0-exp(C]-T])
1+ gCl ‘RO-exp(CI-T1)
CITI
Ro=Tl— 0‘53CI ROe o
Ly C1 R0
(> = t—R(epsilon-t) -cos(t + Phi0)
L u=t—>R(et) cos(t+ @) ?2)
. 6)
> Cl =1,
g:=9.81;
M = 10.14;
k == 331.5780000;
v = 10;
Cl=1
g:=9.81
M:=10.14
k :=331.5780000
B v:=10 “@)
> RO = solve[R(O) = %,R()) ;
R(0);
Phi0 == 0;
epsilon :== 0.01
RO :=0.6153846154
0.5000000000
D) =0
L €:=0.01 Q)]
> realu = t—>v~sqrt(M ] u(t) — &M
k k
i realu =t—v | % u(t) — % (6)
> realu(10)
L 0.9102705240 cos(10) — 0.3000000000 (@)
> plot(realu(sqrt( % ) -t), t=0..10000, labels = ["s", "m" )
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>
> limit(R(epsilon-t), t = infinity)

[> plot(R(epsilon-t), t=0..1000)

1.154700538

®)
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B.3 Case 1: Phase plane

[> restart;
> with(DEtools) :
1

> p0l :=—§;
betal = 0;
__1
pO1 : 5
i Bl=0 0]
> DER = diff (R(T1), T1) = (-%R(n)% %J R(TI)
—_d _(.3 2 1
I DER = — R(T1) ( g R(TI) +2JR(T1) )
[> DEPHi == diff (Phi(T1), T1) =0
Lo d -
DEPhi : o *rn=0 3)

> DEplot([DER, DEPhi], [R(T1),Phi(T1)], T1=0..100, R=-3.3, Phi=-0.1..2-Pi + 0.1, arrows
= medium, arrowsize = magnitude, size = [ 500, 500 ], color = magnitude, )
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B.4 Case 2: Equilibriums and eigenvalues

[> restart;
1
> p0l :==-—;
P 5
betal = 0;
1
0l = -—
P 5
pl=0
i 3051 1 p0I-cos(P + betal)
> eqR= (RP)—[-> R+~ |.p— L. pOlcostl+betal)
eqR = (R, )_’( 8 +2) 2 sqrt(S3)
01 cos(P + fI
8 2 2 N
[ 0.5- sin(P + betal) - (p01)
> egP = (R,P
egP = (R, P)— (53]
0.5 sin(P + A1) p01
eqP:=(R,P)—>—Sm( Al p

L N
> r:=solve([eqP(R, P) =0,0 < P, P < 2-Pi], P, allsolutions )
r={P=3.141592654 Z2~}, {P=3.141592654 ZI~}

Pl1:=0
L P2:=m
(> RsPI = evalf (solve(simplify(subs(P =PI, eqR(R,P)) =0),R)) :
RsP2 = evalf (solve(simplify(subs(P=P2 ,eqR(R, P)) =0),R)) :

=> RIP1 = unapply(simplify(RsPI1[11]),S3) :

R2P1 = unapply(simplify(RsP1[2]), S3)
R3PI = unapply(szmplljj/(RsPlB]), S3)
RI1P2 = unapply(simplify(RsP2[1]), S3) :
R2P2 = unapply(simplify(RsP2[2]), 83) :
R3P2 = unapply(simplify(RsP2(3]), S3) :

=> plot( [RIPI(S3),R2P1(S3), R3P1(S3), RIP2(S3), R2P2(S3), R3P2(S3)],S3=0..1, legend
= [Rl, Ry, Ry, Ry, R, Rﬁ], labels = [53, R])

U]

2

(©)]

“@

()
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1.154700538 + 0.1
1.154700538 + 0.1
-1.154700539 + 0.1
-1.154700539 + 0.1

6.101°+0.1

i 6.10"+0.1
> RIPI := RIPI(S3) :
R2PI == R2PI(S3) :

R3PI := R3PI1(S3) :
RIP2 :== RIP2(S3) :
R2P2 := R2P2(S3) :
R3P2 := R3P2(S3) :

j> with(linalg) : J := jacobian([eqR(R, P), eqP(R, P) ], [R, P]) :

2
R
1 /_,
0 :
0.2 0 0.6 -8
N %
-1
-2
R1 R2 R3 R4 R5 R6
(> limit(RIP1(S3), §3 = infinity);
limit(RIP2(S3), S3 = infinity);
limit(R2P1(S3), S3 = infinity).
limit(R2P2(S3), S3 = infinity).
limit(R3P1(S3), S3 = infinity).
limit(R3P2(S3), S3 = infinity);

©)




> Jstar == map(x — subs(R=RIPl,P=PIl,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = coeff (chareq, lambda, 2) :

a:

b = coeff (chareq, lambda, 1) :
¢ = coeff (chareq, lambda, 0) :
DI = sqrt(b2 —4-q-c) :

_> 11 = evalf(M) :

2-a
_ (-b—DI) .
i 112 = o
> plot( [111,112],83=0..400, y=-2..2, labels = [S3, lambda], legend = [lambdal, lambdaz], color
=[red, green])
2
A1
0 — ‘
100 200 300 400
S3
-1
-2
7L1 7\'2




(> Jstar == map(x — subs(R=R2P1,P=Pl,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = coeff (chareq, lambda, 2) :

a:

b = coeff (chareq, lambda, 1) :
¢ = coeff (chareq, lambda, 0) :
DI = sqrt(b2 —4-q-c) :

_> 11 = evalf(M) :

2-a
_ (-b—DI) .
i 112 = o
> plot( [111,112],83=0..400, y=-2..2, labels = [S3, lambda], legend = [lambdal, lambdaz], color
=[red, green])
2
A1
0 ‘
100 200 300 400
S3
-1
-2
7L1 7\'2




(> Jstar == map(x — subs(R=R3P1,P=Pl,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = coeff (chareq, lambda, 2) :

a:
b = coeff (chareq, lambda, 1) :
¢ = coeff (chareq, lambda, 0) :
L Di:= sqrt(b2—4~a-c) :
> 111 = evalf(M) :
2-a

_ (-b=DI)

112 o

=> plot( [111,112],83=0..400, y=-2..2, labels = [S3, lambda], legend = [lambdal, lambdaz], color
=[red, green])

2

0 ‘
100 200 300 400
S3
-1
-2
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(> Jstar == map(x — subs(R=RIP2,P=P2,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = coeff (chareq, lambda, 2) :

a:

b = coeff (chareq, lambda, 1) :
¢ = coeff (chareq, lambda, 0) :
DI = sqrt(b2 —4-q-c) :

_> 11 = evalf(M) :

2-a
_ (-b—DI) .
i 112 = o
> plot( [111,112],83=0..400, y=-2..2, labels = [S3, lambda], legend = [lambdal, lambdaz], color
=[red, green])
2
A1
0 S ‘
100 200 300 400
S3
-1
-2
7L1 7\'2




(> Jstar == map(x — subs(R=R2P2, P=P2,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = coeff (chareq, lambda, 2) :

a:

b = coeff (chareq, lambda, 1) :
¢ = coeff (chareq, lambda, 0) :
DI = sqrt(b2 —4-q-c) :

_> 11 = evalf(M) :

2-a
_ (-b—DI) .
i 112 = o
> plot( [111,112],83=0..400, y=-2..2, labels = [S3, lambda], legend = [lambdal, lambdaz], color
=[red, green])
2
A1
0 S ‘
100 200 300 400
S3
-1
-2
7L1 7\'2




(> Jstar == map(x — subs(R=R3P2,P=P2,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = coeff (chareq, lambda, 2) :

a:
b = coeff (chareq, lambda, 1) :
¢ = coeff (chareq, lambda, 0) :
L Di:= sqrt(b2—4~a-c) :
> 111 = evalf(M) :
2-a

_ (-b=DI)

112 o

=> plot( [111,112],83=0..400, y=-2..2, labels = [S3, lambda], legend = [lambdal, lambdaz], color
=[red, green])

2

0 ‘
100 200 300 400
S3
-1
-2
7\ll 7\'2




B.5 Case 2: Phase plane and solution

[> restart;
> with(DEtools) :
L with(LinearAlgebra) :
>
> p0l =-L.
P 5’
betal = 0,
pol =-—
L Bl=0 )
o 71 2 i _ pOI cos( Sl +Phi(T1))
> DER = diff (R(TI), TI) = ( g 2] (53]
-4 3 prnte L 1 cos(®(TD)
DER: dn R(TI) ( . +5 JR(T1)+ o = @
I R _ 1 sin(Phi(T1) + betal) - (p01)
> DEPhi := diff (Phi(T1), T1) = wan(3)
pEPhi = -4 o7y = - L Sn(@TD) 3
71 0 /33
[> §3:=03
§3:=03 @

> DEplot( [DER, DEPhi], [R(TI1),Phi(TI1)],T1=0..100, R=-2.2,Phi=-0.1..2-Pi +0.1,
arrows = medium, arrowsize = magnitude, size = [500, 5001, color = magnitude, title = [S3
=S3], [[R(0) =0, Phi(0) =011, numpoints = 10000)
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i
10 °
800
dt

dt ==

N =
N =

2
R

8000

T = Transpose(Array(1..N, (i) —dt-(i—1))):

epsilon := 0.1
€=

0.1

sol := dsolve( { DER, DEPhi, R(0) =0, Phi(0) =0}, numeric, output = Array(1 ..N, (i) —dt

-epsilon- (7

(i—1)))
solM = sol[2][ 1
[

RM = solM 3

1
]
]

3

©)




>
>

Iv "V IIV IIv "V "V "V L

PhiM = soIM[ .., 2]:

u = RM-~map(evalf@cos, PhiM + T) :

pair = (Tu) — [T u]:

P :=zip(pair, T,u) :

plot(P, labels = [t, z()], legend = [z()(t, epsilon) ], title = [S3 =83 and 'epsilon'= epsilon and R(0)

=OandPhi(0)=n+0.0l]);
S; =03 and €=0.1 and R(0) =0 and ®(0) =3.151592654

m

\II\H l ‘




B.6 Case 3: Equilibriums and eigenvalues

[> restart;
> betal = 0;
1
01 =-—;
p 5>
pl=0
1
01 = -— 1
_ P 5 o
= 3., 1Y, 1 p0l-cos(betal +P)
> eqR: (R,P)—>( SR+ 2)R ! ostbet!
eqR::(R,P)H(_%RZ_g_%]R_%W @
\ S3
I 1 sin(P + betal) - (p01) ga
> egP = (R, P)— —- ga
ar=®&n=g sqrt(S3) ci
i 1 + P) p0l
eqp;:(R’p)_,i w_l_& G)
2 JS3 Cl

> r:= solve([eqgP(R, P) =0,0 < P, P < 2-Pi), P, allsolutions)
r:—[ ——Zarcsm( 10 a\/ j,B4N+7LB4N+2“724N+arcsin[ 10 ga+/ S3 )
P

e o

4

-2 arcsin[ 10gay 53 S3 ] B3~+mn_B3~+2n_Z3~+ arcsin(

—2arcsin[ 10gaVv.s3 ] BZ~+7c_BZ~+27'c_ZZ~+arcsin( 10ga V 53 j

CI
-2 arcsin[ 10g BI~+7E_BI~+21'C_ZI~+arcsin(10gaT V.53
> Pl :=-betal +arcs1n( 01 C] sqrt(SS));
P2 =—beta1+arcsm( ol CI sqlt(S3)) +Pi;
Pl = arcsin[mg(bi VSSN]
Cl~
P2:= —arcsin( 10 cg] 83~ ] +r o)

(> PI = unapply(P1, C1, 53, ga);
P2 :== unapply(P2, Cl, S3,ga);

= (Cl~, S3~, ga~) —*arcsin[ m‘o’“gf VNS3~ J

P2:=(CIl~, 83~ ga~)—>—arcsin[mgag%) +m ©)

7



> plot([P](1,0.0l,ga),Pl(l,O.],ga),P1(1,0.2,ga),P1(1,0.3, ga),P1(1,1, ga), PI(1, 10,
ga)l,ga=0.2,y=0..Pi, numpoints = 100, labels = [YI-C], ‘I’], legend = [5320.01, §;=0.1,
§,=02,8,=03,8;= 1,S3:10])

T

0 0.5 1 1.5 2
Y]CI
—— 5,=0.01 — §,=0.1 —— §,=02 —— §,=0.3
—85,=1 ——S8,=10

_> plot( [P2(1,0.01, ga), P2(1,0.1, ga), P2(1,0.2, ga), P2(1, 0.3, ga), P2(1, 1, ga), P2(1, 10,
ga)l,ga=0.2,y=0.Pi, numpoints =100, labels = [chﬂ ‘{"], legend = [S3=O.01, S;=0.1,
§;=02,8,=03, 5321,53210])




T
8
s
8
4
3n
8
T
8
0 0.5 1 1.5
YIC1
—— 5,=0.01 — §,=0.1 —— 8,=02 —— §,=0.3
—§,=1 ——5,=10

[> P1:=PI(CI,$3,ga) :
P2 = P2(CI, S3, ga) :

=> RsP1 = solve(simplify(subs(P =PI , eqR(R, P)) =0),R) :
RsP2 = solve(simplify(subs(P=P2 ,eqR(R, P)) =0),R) :

> RIPI = unapply(simplify(RsP1[1]), CI, S3, ga) :
R2P1 = unapply(simplify(RsP1[2]), C1, 83, ga) :
R3P1 = unapply(simplify(RsP1[3]), Cl, S3, ga) :
RIP2 = unapply(simplify(RsP2[1]), Cl1, S3, ga) :
R2P2 = unapply(simplify(RsP2[2]), Cl1, S3, ga) :
R3P2 := unapply(simplify(RsP2[3]), C1, 83, ga) :




_> plot3d(R]PI( 1, 83, ga), S3=0..400, ga =0..0.01, labels = [S3,'71'~C1, R], numpoints = 10000,
orientation = [55, 75, 0]);

(U]




> plotSd(RZP]( 1,83, ga), $3=0..400, ga =0..0.01, labels = [S3,'71'-C1, R], numpoints = 10000,
orientation = [55, 75, O]);

400
%




> plot3d(R3P]( 1,83, ga), $3=0..400, ga =0..0.01, labels = [33-01,'71'@1, R], numpoints
=10000, orientation = [55, 75, 0]);




> plot3d(R]P2( 1,83, ga), $3=0..400, ga =0..0.01, labels = [S ,'yl'-CI, R], numpoints = 10000,
orientation = [55, 75, O]);

300
400
5

Vi C}




> plot3d(R2P2( 1,83, ga), $3=0..400, ga =0..0.01, labels = [S ,'yl'-CI, R], numpoints = 10000,
orientation = [55, 75, O]);

200
400
%

300
Vi Cj




> plot3d(R3P2( 1,83, ga), $3=0..400, ga =0..0.01, labels = [S ,'71'-C1, R], numpoints = 10000,
orientation = [55, 75, O]);




>
> RIPI == RIPI(1,83,ga) :
R2P] := R2PI(1,83,ga):

R3PI == R3PI(1,83,ga) :
RIP2 := RIP2(1, 83, ga)
R2P2 = R2P2(1, 83, ga) :
R3P2 :== R3P2(1, S3, ga)

:> with(linalg) :
> J:= jacobian([eqR(R, P), eqP(R, P) ], [R, P]) :




(> Jstar == map(x — subs(R=RIPIl,P=Pl,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda) :

> a = (coeff (chareq, lambda, 2) ) :
b = (coeff (chareq, lambda, 1)) :
¢ = (coeff (chareq, lambda, 0) ) :

DI == sqrt(b2—4~a~c) :
> 1] = unapply((_zil),C],S&gaj :
-a

112 = unapply[%, Cl, 83, ga) :

_> plot3d( [111(1,83,ga),112(1,83,ga)], $3=0.400, ga =0..0.01, labels = [S N Y]'CI’ X], color
= [red, green], numpoints = 1000, orientation = [55, 75, 0])

200

4pp 200




(> Jstar == map(x — subs(R=R2P1,P=Pl,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda)

> a = (coeff (chareq, lambda, 2) ) :

(coeff (chareq, lambda, 1)) :
(coeff (chareq, lambda, 0)) :
DI == sqrt(b2 —4-a-c):

a:

b

¢

> 1] = unapply((_zi]),C],S&gaj :
-a

112 = unapply[%, Cl, 83, ga) :

_> plot3d( [111(1,83,0),112(1,83,0)],83=0.400, ga=0..0.01, labels = [S Y Ch lambda],
color = [red, green], numpoints = 1000, orientation = [55, 75, 0 ])

300
400
7, GI %




(> Jstar == map(x — subs(R=R3P1,P=Pl,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda)

> a = (coeff (chareq, lambda, 2) ) :

a:

b = (coeff (chareq, lambda, 1)) :
¢ = (coeff (chareq, lambda, 0) ) :
DI == sqrt(b2 —4-a-c):

> 1] = unapply((_zil),C],S&gaj :
-a

112 = unapply[%, Cl, 83, ga) :

_> plot3d( [111(1,S83,ga),112(1,83,ga)],S§3=0.400,ga=0..0.01, labels = [S Y Ch lambda],
color = [red, green], numpoints = 1000, orientation = [55, 75, 0])




(> Jstar == map(x — subs(R=RIP2,P=P2,x),J)

(> chareq = collect(charpoly(Jstar, lambda), lambda)
>

(coeff (chareq, lambda, 2)) :
(coeff (chareq, lambda, 1)) :
= (coeff (chareq, lambda, 0) ) :
DI == sqrt(b2 —4-a-c):

> 111 = unapply( (_Zi]), Cl, S3,gaj
-a

112 = unapply[%, Cl, 83, ga) :

a:
b
c

_> plot3d( [111(1,S83,ga),112(1,83,ga)],S§3=0.400,ga=0..0.01, labels = [S Y Ch lambda],
color = [red, green], numpoints = 1000, orientation = [55, 75, 0 ])

200
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(> Jstar == map(x — subs(R=R2P2, P=P2,x),J) :

(> chareq = collect(charpoly(Jstar, lambda), lambda)

> a = (coeff (chareq, lambda, 2) ) :

a:

b = (coeff (chareq, lambda, 1)) :
¢ = (coeff (chareq, lambda, 0) ) :
DI == sqrt(b2 —4-a-c):

> 1] = unapply((_zil),C],S&gaj :
-a

112 = unapply[%, Cl, 83, ga) :

_> plot3d( [111(1,S83,ga),112(1,83,ga)],S§3=0.400,ga=0..0.01, labels = [S Y Ch lambda],
color = [red, green], numpoints = 1000, orientation = [55, 75, 0])

200
app 00




(> Jstar == map(x — subs(R=R3P2,P=P2,x),J)

(> chareq = collect(charpoly(Jstar, lambda), lambda)
>

a = (coeff (chareq, lambda, 2)) :
b = (coeff (chareq, lambda, 1)) :
¢ = (coeff (chareq, lambda, 0) ) :
DI == sqrt(b2 —4-a-c):

> 111 = unapply( (_Zi]), Cl, S3,gaj
-a

112 = unapply[%, Cl, 83, ga) :

_> plot3d( [111(1,S83,ga),112(1,83,ga)],S§3=0.400,ga=0..0.01, labels = [S Y Ch lambda],
color = [red, green], numpoints = 1000, orientation = [55, 75, 0 ])




B.7 Case 3: Phase plane and solution

[> restart;
> with(DEtools) : with(LinearAlgebra) :

N
> p0l = 5
betal = 0,
-1
pol == 5
L pl=0 1))
S (.3 2 1 _ p01 cos( Bl +Phi(T1))
> DER = diff (R(T1), T1) ( g RITD™+ ]R(TI) 2. sqt(S3)
DER = ﬁ R(TI) = [% R(TH* + %) R(TI) +0.1825741858 cos(®(7T1)) Q?)
- D oD _ 1 sin(Phi(T1) + betal)-(p0I) ga
> DEPhi = diff (Phi(TlI), TI) 5 Sat(53) +2
DEPhi := % D(T1) =-0.1825741858 sin (@ (T1) ) + 0.1 3)
> c1=1;
ga =1,
§3:=03
Ccl=1
ga:=1
(C))

§3:=0.3
=-2.2,Phi=-0.1.2- Pi + 0.1, arrows

> DEplot( [DER, DEPhi], [R(T1),Phi(T1)],T1=0..8, R
= medium, arrowsize = magnitude, size = [ 500, 500 ], color = magnitude, title = [S3 =53

and y, :ga])
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;
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[> c1:=1;
ga=1;
S3 = 0.3;

Cl =
=1

ga

R

§3:=0.3

600

N :=6000

®

)




> T:= Transpose(Array(1..N, (i) —dt-(i—1))):
> epsilon := 0.1
L e:=0.1 (@]
> sol := dsolve({DER, DEPhi, R(0) =0, Phi(0) =0}, numeric, output = Array(1 ..N, (i) —dt
-epsilon- (i —1))) :
> solM = sol[2][1]:
> RM = soIM| ..,3]:
PsiM = solMT| ..,2]:

> PhiM = PsiM — ga-epsilon-T':

> u := RM-~map(evalf@cos, PhiM +T) :

> pair == (T,u) — [T,u]:

P == zip(pair, T,u) :

plol(P, labels = [t, zo], legend = [zo(t, epsilon) ], title= [S3 =53 and 'epsilon'= epsilon and |

=ga and R(0) =0 and Phi(0) =0]);

§; =03 and €=0.1 and Y, =1 and R(0) =0 and ®(0) =0
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