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Abstract

Interest in phylogenetic trees for histories of species and DNA has spawned many problems, one
of which is TreeContainment; a problem that asks whether a tree is contained within a network.
The TreeContainment problem is proven to be NP-hard for general trees and networks, however
it is solvable in polynomial time for networks that meet the tree-child restriction. An algorithm to
solve TreeContainment for binary tree-child networks has been created previously with quadratic
running time (van Iersel, Semple, Steel, 2010). Janssen and Murakami have recently created a
new algorithm that solves a larger problem NetworkContainment, for semi-binary tree-child
networks (Janssen, Murakami, 2019). This new algorithm uses tree-child sequences introduced
by Linz and Semple, but there has not been an implementation of it until now. In this paper I
show an implementation (using Python) of this algorithm, in which I have made a modification
that increases its speed on networks with large indegrees. Furthermore I have proven in this
paper that the output of this algorithm remains correct under this modification, and that the
running time of the modified algorithm is now linear without requiring a constant maximum
indegree at all.

1 Introduction

Phylogenetic trees are commonly used in evolutionary biology to represent links in history be-
tween species. At times, networks are used instead of trees to display the presence of events
such as hybridization or horizontal gene transfer. Many theoretical problems arise from these
networks, one of which is NetworkContainment. This problem asks the question of whether a
network is contained within another network.

In general, this problem is NP-hard, but an algorithm has been created by Janssen and Murakami
which solves this problem for semi-binary tree-child networks in linear time (Janssen, Murakami,
2019). Additionally, they have shown that this algorithm runs in linear time, given that the
maximum indegree of the networks is constant. This algorithm finds a cherry picking sequence
that reduces the first network to a single leaf, and then applies this sequence to the second
network. In their paper, Janssen and Murakami have shown that the second network is contained
within the first network if and only if this cherry picking sequence also reduces the second network
to a single leaf.

This paper contains an implementation of this algorithm, alongside a number of related theo-
rems and proofs and an improvement to the algorithm that increases its speed. The text starts
with several theorems and proofs that show that the cherry picking theory behind the algorithm
works. The algorithm consists of a number of functions, each displayed in the next section of this
paper alongside the reasoning behind their code and a theoretical proof for the time complexity
of their code. The text continues with a section containing several theorems and proofs that
establish the correctness of the improved algorithms output. A final section is dedicated to a
number of tests that demonstrate the speed of the improved algorithm in practice, and show a
comparison between the direct implementation and the improved implementation. Lastly the
full code is displayed at the bottom of the text.



2 Definitions

Definition 2.1. A phylogenetic network on a non-empty taxa X is a directed acyclic graph
made up of at most 4 different kinds of nodes.

1. A single root with indegree 0 and outdegree 1 (in this report).

2. Leaves with indegree 1 and outdegree 0, labeled bijectively with X.

3. Tree nodes with indegree 1 and outdegree at least 2.

4. Reticulation nodes with indegree at least 2 and outdegree 1.

The root and a leaf must be included in every phylogenetic network. From now on I will refer
to these phylogenetic networks as simply networks. If each tree node in a network has outdegree
2 then the network is called semi-binary. If, additionally, each reticulation node in a network
has indegree 2, then the network is called binary. I will assume throughout this paper, that all
networks are semi-binary.

If there is an edge (x, y) between x and y, then x is a parent of y and y is a child of x. A network
is tree-child if every node that is not a leaf has a child that is either a tree node or a leaf (see
figure 1).

(a) Not tree-child (b) Not tree-child (c) Tree-child

Figure 1: Examples of networks, one of which is tree-child. The red nodes are non-leaf nodes
that do not have a child that is a leaf node or a tree node.

Definition 2.2. Let N and N ′ be networks on the finite sets of leaves L and L′ respectively
such that L′ ⊂ L. An embedding of N ′ in N is an injective function that maps every node of N ′

to a node of N such that their leaves are identical, and maps every edge in N ′ to edge disjoint
paths in N such that the end points of the edges and paths are identical. If an embedding of N ′

in N exists, then N ′ is a subnetwork of N .

When dealing with nodes in multiple networks, I will often refer to a node x in a network N as
xN .
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2.1 Cherry-picking sequences

Definition 2.3. Let S be a sequence of ordered pairs of two leaves. If every second coordinate
of an ordered pair in S is a first coordinate of a different pair in the remainder of S, or a second
coordinate of the last pair, then S is a cherry picking sequence.

If, additionally, no first coordinate of an ordered pair in S is used as second coordinate of an
ordered pair in the remainder of S, then S is a tree-child sequence.

Let 0 ≤ n ≤ |S|. Then S[:n] is a subsequence of S containing only the first n ordered pairs, and
S[n:] is the subsequence of S containing only the last |S| − n + 1 ordered pairs.

Definition 2.4. Let x and y be leaves in a network, and let px and py denote the parents of x
and y respectively. An ordered pair (x, y) is called a cherry if px = py. An ordered pair (x, y) is
called a reticulated cherry if px is a reticulation node and py is also the parent of px. See figure
2.

(a) a cherry (x, y) (b) a reticulated cherry (x, y)

Figure 2: The cherry and reticulated cherry structures

Definition 2.5. Let (x, y) be a cherry, let p be the parent of x and y and let pp be the parent of
p. The act of picking a cherry (x, y) or reducing a cherry (x, y) is defined as taking the following
steps (see figure 3):

1. Remove the leaf x and the edge (p, x) connecting it to its parent.

2. Remove the node p and its incident edges (pp, p) and (p, y), and add an edge (pp, y) con-
necting y to pp.

Note that after this first step, the node p has indegree 1 and outdegree 1, and does not fit the
description of any of the four earlier mentioned types of nodes in phylogenetic networks. The
second step is therefore taken to solve this problem and replace this node that connects pp and
y with a simple edge (pp, y). I may refer to this method of removing nodes with indegree 1 and
outdegree 1 as “cleaning up”.
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(a) A cherry (x, y) (b) Step 1 (c) Step 2

Figure 3: Picking a cherry (x, y)

Definition 2.6. Let (x, y) be a reticulated cherry, let px be the parent of x, let py be the parent
of y, let ppx be another parent of px that is not py and let ppy be the parent of py. The act of
picking a reticulated cherry (x, y) or reducing a reticulated cherry (x, y) is defined as taking the
following steps (see Figure 4):

1. Remove the edge (py, px) between py and px.

2. Remove the node py and its incident edges (ppy, py) and (py, y), and add an edge (ppy, y)
connecting y to ppy.

3. If px has indegree 1 after the edge removal, remove the node px and its incident edges
(ppx, px) and (px, x) and add the edge (ppx, x).

Note that this third step is only required if, prior to the reduction, px is a reticulation node with
indegree 2.

(a) A reticulated cherry (x, y) (b) Step 1 (c) Steps 2 and 3

Figure 4: Picking a reticulated cherry (x, y) when px has indegree 2

Definition 2.7. Applying a sequence S of pairs to a network N is the act of reducing each pair
of S in N in the order they appear in S. The resulting network is written as NS.

If this resulting network NS contains only 1 leaf, then S reduces N to a leaf. A network that
can be reduced to a leaf is called a cherry picking network.

3 Containment and cherry picking

This section contains a small number of lemmas and proofs that show the relation between cherry
picking sequences that reduce networks and network containment. The ideas of these lemmas
and their proofs were created by Murakami and Janssen (Janssen, Murakami, 2019).
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Lemma 1. Let N and N ′ be binary cherry picking networks on the finite sets of leaves L and
L′ respectively, and let L′ ⊆ L. Then N ′ is a subnetwork of N if there exists a cherry picking
sequence S of N (it only includes pairs that reduce cherries or reticulated cherries in N) that
reduces N and N ′ to the same leaf.

Proof. Let S′ be the cherry picking sequence containing only the pairs from S that are used in
reducing N ′, in the order they occur in S. Let f : {1, ..., |S′|} → {1, ..., |S|} be the function that
sends a given index of a pair in S′ to the corresponding index of that pair in S (S′n = Sf(n)).

Since S′ contains only the pairs from S that are used in reducing N ′, while still in the order
they occur in S, we have that S′i > S′j for i > j. Since additionally |S| ≥ |S′|, the index of a
given pair in S is either identical to its index in S′ or larger. Therefore, f is a strictly increasing
function (f(x) > f(y) for x > y).

This proof shows that the cherry picking network N ′S′[:n] is a subnetwork of the cherry picking

network NS[:f(n)] using backward induction. Note that N ′S′[:0] = N ′ since S′[:0] is an sequence

without elements and let f(0) = f(1)− 1.

The base case of the induction claims that the lemma holds for n = |S′| − 1. Let the pair (x, y)
be the last cherry in the cherry picking sequence: (x, y) = S′|S′|. If (x, y) is the last cherry,

then N ′S′[:|S′|−1] = (x, y) and the cherry picking network exists out of only the leaves x and y.

Since this pair is an element of S′, it is also an element of S and its index can be found with f .
Therefore the cherry picking network NS[:f(|S′|−1)] also has the leaves x and y. Since N ′S′[:|S′|−1]
consists solely of the cherry (x, y), there exists an embedding of N ′S′[:|S′|−1] into NS[:f(|S′|−1)].

To create this embedding, map x to x, map y to y and map the root of N ′S′[:|S′|−1] to the root
of NS[:f(|S′|−1)]. There exists a path p from the root of NS[:f(|S′|−1)] to x. Let z be the node
along this path, from where a disjoint path q to y exists (note that this could be the tree node
whose parent is the root of NS[:f(|S′|−1)]). This node z always exists, since x and y are separate
nodes. Now embed the parent p of x and y to this node z. Embed the edge between the root of
N ′S′[:|S′|−1] and p, to the part of the path p, that goes from the root of NS[:f(|S′|−1)] to the node
z. Embed the edge between the parent p and x to the part of the the path p, that goes from the
node z to x. Finally, embed the edge between the parent p and y to the path q. This embedding
is correct, and therefore, N ′S′[:|S′|−1] is a subnetwork of NS[:f(|S′|−1)].

This proves the base case n = |S′|−1 of the induction. To prove the induction step, we must prove
that N ′S′[:n] is a subnetwork of NS[:f(n+1)−1] given the induction hypothesis which states that

N ′S′[:n+2−1] = N ′S′[:n+1] is a subnetwork of NS[:f(n+2)−1]. Since f is a strictly increasing function,
NS[:f(n+2)−1] is a subnetwork of NS[:f(n+1)]. Combining this and the induction hypothesis gives
that N ′S′:n+1 is a subnetwork of NS[:f(n+1)].

Since N ′S′[:n+1] is a subnetwork of NS[:f(n+1)], there is an embedding E of N ′S′[:n+1] in NS[:f(n+1)].

To show that N ′S′[:n] is a subnetwork of NS[:f(n+1)−1], we extend this embedding E to an ex-

tended embedding E′. Let S′n+1 = (x, y), let px be the parent of x and let py be the parent of
y, both in N ′S′[:n]. Additionally, let ppx be the parent of px and let ppy be the parent of py,

both in N ′S′:n, chosen so that they correspond with the parents p
N ′S′[:n+1]
x of x and p

N ′S′[:n+1]
y of

y respectively. If a pair (x, y) is reduced, the nodes x, px and py can potentially be removed.
Additionally, the edges (py, y), (ppy, py), (px, x), (ppx, px), (px, py) and edges incident to px could
be removed. Therefore these nodes and edges must be mapped explicitly in the extended em-
bedding E′, while the other nodes and edges that are not involved in the cherry (x, y) can be
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extended naturally.

In this extension E′ of the embedding E, the node py is mapped to the node py in NS[:f(n+1)−1].

The edge (ppy, py) is mapped to the path from (E(p
N ′S′[:n+1]
y to p

NS[:f(n+1)−1]
y (these are colored

blue in figures 5 and 6). The edge (py, y) is mapped to the edge (p
NS[:f(n+1)−1]
y , y) (these are

colored green in figures 5 and 6). This divides the previous edge (p
N ′S′[:n+1]
y , y) of the embedding

E into the two new edges. In the original embedding E, the leaf py was not used since it didn’t
exist in N ′S′[:n]. The further mappings are divided into two separate cases:

1. N ′S′
[:n+1] has the leaf x

In this case, the leaf x is mapped to the leaf x in NS[:f(n+1)−1] already by the natural

extension of the embedding A. The node px is mapped to p
NS[:f(n+1)−1]
x . The edge (py, px)

is mapped to the edge (p
NS[:f(n+1)−1]
y , p

NS[:f(n+1)−1]
x ) (these are colored red in figure 5). In

the original embedding E, the node p
NS[:f(n+1)−1]
x was not used since it wasn’t in N ′S′[:n]

and neither was the edge (p
NS[:f(n+1)−1]
y , p

NS[:f(n+1)−1]
x ). The edge (ppx, px) is mapped to

the path from (E(p
N ′S′[:n+1]
x to p

NS[:f(n+1)−1]
x (these are colored purple in figure 5). the

edge (px, x) is mapped to the edge (p
NS[:f(n+1)−1]
x , x) (this edge is colored gold in figure 5).

This divides the previous edge p
N ′S′[:n+1]
x , x) of the embedding E into the two new edges.

Therefore, these new mappings of the extended embedding E′ are disjoint.

(a) N ′S′[:n+1] (b) N ′S′[:n]

(c) NS[:f(n+1)] (d) NS[:f(n+1)−1]

Figure 5: An example where N ′S′[:n+1] has the leaf x

2. N ′S′
[:n+1] does not have the leaf x
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In this case, the leaf x is mapped to the leaf xNS[:f(n+1)−1] . The edge (py, x) is mapped to a

path from p
NS[:f(n+1)−1]
y to xNS[:f(n+1)−1] (these are colored red in figure 6). In the original

embedding E, the leaf xNS[:f(n+1)−1] was not used since it didn’t exist in N ′S′[:n]. The node

p
NS[:f(n+1)−1]
y doesn’t exist in N ′S′[:n], meaning that the edge (py, x) was not used either in

E. Therefore, these new mappings of the extended embedding E′ are disjoint.

(a) N ′S′[:n+1] (b) N ′S′[:n]

(c) NS[:f(n+1)] (d) NS[:f(n+1)−1]

Figure 6: An example where N ′S′[:n+1] does not have the leaf x

Extending the embedding E with these mappings ensures that every node or edge in N ′S′[:n+1] has
been mapped to a unique node or edge from NS[:f(n+1)−1], and all these mappings are disjoint.
Therefore, E′ is an embedding of N ′S′[:n] in NS[:f(n+1)−1]. Since there is an embedding, N ′S′[:n]
is a subnetwork of NS[:f(n+1)−1] which proves the induction step. Thus N ′S′[:n] is a subnetwork

of NS[:f(n)] for 0 ≤ n ≤ |S′|. Therefore N ′S′[:0] = N ′ is a subnetwork of NS[:f(0)]. Since NS[:f(0)]

is a subnetwork of N , we have that N ′ is a subnetwork of N (by the transitive property of being
a subnetwork).

Lemma 2. Let N and N ′ be semi-binary cherry picking networks on the finite sets of leaves
L and L′ respectively, and let L′ ⊆ L. Then N ′ is a subnetwork of N if there exists a cherry
picking sequence S that reduces N and N ′ to the same leaf.

A proof to this lemma can be created by extending the proof for lemma 1.

Lemma 3. If A is a subnetwork of B and B is a subnetwork of C then A is a subnetwork of C.

Proof. Since B is a subnetwork of C, there exists an embedding EC that injectively maps all
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nodes and edges of B to nodes and edge-disjoint paths of C respectively. Since A is a subnetwork
of B, there exists an embedding EB that injectively maps all node and edges of A to nodes and
edge-disjoint paths of B respectively. Then every node or edge a in A can be mapped injectively
to the node or path EC(EB(a)) in C. Every edge e in A can be mapped injectively to a edge-
disjoint path of C by first using the embedding EB and splitting up the resulting path into
disjoint edges e′: EB(e) =

⋃
e′∈EB(e). Now every edge e′ can be mapped to a path with the

second embedding EC by
⋃

EC(e′) : e′∈EB(e). These are edge-disjoint paths, and which means
that this is a correct embedding of A into C and therefore A is a subnetwork of C.

In this paper I will refer to this lemma as the transitive property of being a subnetwork.

Lemma 4. Let N be a tree-child network with N ′ a tree-child subnetwork of N on the same
leaf set X. If S is a tree-child sequence then N ′S is a subnetwork of NS.

Proof. This proof shows that N ′S is a subnetwork of NS using induction over the length of the
tree-child sequence S. The base case of the induction claims that the lemma holds for an empty
S. This is easily proven since NS = N and N ′S = N ′ for S empty. To prove the induction
step, we must prove that the lemma holds for a tree-child sequence with length n + 1 given the
induction hypothesis which states that the lemma holds for a tree-child sequence with length
n. Let S′ be the tree-child sequence S without its last pair (such that S = S′(x, y)). This new
tree-child sequence S′ has length n and due to the induction hypothesis we have that N ′S′ is a
subnetwork of NS′. The rest of this proof is divided into different cases:

1. x or y is not in N ′S′. Since a leaf that is the first coordinate of a pair cannot be used
as a second coordinate of a pair in the rest of a tree-child sequence, the leaf y cannot be
the first coordinate of any pair in S′ (since it is the second coordinate of (x, y)). Since
leaves are only removed when they are the first coordinate of a cherry, y must still be in
the network N ′S′. In this case either x or y is not in N ′S′, and since y is in N ′S′, x is
not. Because N ′S′ is a subnetwork of NS′, there exists an embedding E of N ′S′ in NS′.
However since x is not in N ′S′, the embedding E does not use the edge that is deleted
when (x, y) is reduced. Therefore, N ′S = N ′S′ and N ′S can be embedded into NS.

2. x and y are in N ′S′. This case is dependent on whether the pair (x, y) is a cherry, a
reticulated cherry or neither in NS′:

(a) (x, y) is a cherry in NS′. Since x and y are in N ′S′ and form a cherry in NS′, they
must form a cherry in N ′S′ as well due to the embedding of N ′S′ in NS′. Therefore
the embedding E requires no alteration in this case, apart from the removal of the
edge incident to x in both NS′ and N ′S′.

(b) (x, y) is a reticulated cherry in NS′. This case is dependent on whether the
embedding E uses the edge (py, px) from the parent py of y to the parent px of x:

i. The embedding uses the edge (py, px). Since this edge (py, px) is mapped to
some edge of N ′S′, the edges (px, x) and (py, y) must also be used in the mapping
to get to x and y respectively. Therefore there must be a cherry or reticulated
cherry (x, y) in N ′S′. If (x, y) is a reticulated cherry in N ′S′, reducing (x, y)
will remove the same edge in both networks, which means that the embedding
requires no alteration.

If (x, y) is a cherry in N ′S′, reducing it leaves only the edge (py, y) in N ′S where
py is ppy the parent of py in N ′S′. Since (x, y) is a reticulated cherry in NS′,
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reducing it leaves (among another edge (px, x)) this same edge (py, y) which can
be mapped to itself in N ′S.

See figure 7.

(a) NS′ (b) NS

(c) N ′S′ (d) N ′S

Figure 7: Parts of the networks in the case where the embedding uses the edge (py, px). Embed-
dings are shown by the red lines.

ii. The embedding does not use the edge (py, px).

Since N ′S′ is a subnetwork of NS′ and its embedding doesn’t utilize the edge (py, px),
it is also a subnetwork of NS that doesn’t have this edge (py, px). Now N ′S is a
subnetwork of N ′S′ (since it is the same network with a picked reticulated cherry)
and N ′S′ is a subnetwork of NS, and therefore we have that N ′S is a subnetwork of
NS due to the transitive property of being a subnetwork.

(c) (x, y) is neither.

Since (x, y) is not a cherry nor a reticulated cherry in NS′, picking it doesn’t alter the
network (NS′ = NS). Again as N ′S is a subnetwork of N ′S′ (since it is the same network
with a picked reticulated cherry) and N ′S′ is a subnetwork of NS′ (which is NS), we have
that N ′S is a subnetwork of NS due to the transitive property of being a subnetwork.

Corollary 1. Let N be a tree-child network with a tree-child subnetwork N ′ on the same leaf
set X. If S is a Tree-child sequence that reduces N , then S reduces N ′ as well.

Theorem 1. Let N and N ′ be tree-child networks on the same leaf set X. Then N ′ is a
subnetwork of N if and only if any tree-child sequence of N reduces N ′.

Proof. This follows from corollary 1 and lemma 2.
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4 The code

The code for this algorithm is written in python using the networkx module. This module im-
plements a network (not specifically phylogenetic) class based on an adjacency list implemented
using a dictionary of dictionaries. Due to this implementation, actions important for the algo-
rithm such as checking a node’s indegree or outdegree, removing a node or edge from the network
and accessing a parent or child are done in constant time.

In these functions, variable names such as p (meaning a parent), pp (meaning a parent of a parent)
or pc meaning a (child of a parent) are often used. These are not used as formal definitions, but
rather as mnemonics.

4.1 find cherry

This function takes a network N and a leaf x as its input, and returns a list of all cherries or
reticulated cherries that have the input leaf as their second coordinate.

1 def f i n d c h e r r y (N, x ) :
2 l s t = l i s t ( )
3 for p in N. p r e d e c e s s o r s ( x ) :
4 i f N. i n d e g r e e (p) == 1 :
5 for pc in N. s u c c e s s o r s (p ) :
6 i f pc != x :
7 t = N. out degree ( pc )
8 i f t == 0 :
9 l s t . append ( ( pc , x ) )

10 i f t == 1 :
11 for pcc in N. s u c c e s s o r s ( pc ) :
12 i f N. out degree ( pcc ) == 0 :
13 l s t . append ( ( pcc , x ) )
14 return l s t

The function starts by creating an empty list and accessing the parent p of the input leaf x.
Since N.predecessors(x) returns an iterator over all parents of x, the function uses a for-loop to
access the parent of x even though there is only one. It proceeds to check whether the parent p
is a tree node by looking at the indegree of p. If its indegree is 1, the parent p is a tree node and
the function accesses the other child of the parent pc. The function then checks the outdegree of
the other child pc. If this outdegree of pc is 0, pc is also a leaf and the function adds the cherry
(pc, x) to the list. If the outdegree of pc is 1, pc is a reticulation and the function accesses the
child pcc of pc. It checks whether this pcc is a leaf by checking if its outdegree is 0, and appends
the reticulated cherry (pcc, x) to the list if pcc is a leaf.

Note that the returned list will either be empty or have a single element for semi-binary networks,
since the node x can only be the second coordinate of either a single cherry or a single reticulated
cherry.

Lemma 5. The function find cherry(N, x) finds all cherries and reticulated cherries with x as
their second coordinate.

Proof. Let x and y be leaves in N and let (y, x) be a cherry in N . Since (y, x) is a cherry, the
leaves x and y have the same parent p by definition. The function find cherry(N, x) accesses
the parent p and checks whether any of its children other than x have outdegree 1, it will find y
and add the cherry (y, x) to the list.
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Now let (y, x) instead be a reticulated cherry. By definition, py is a reticulation node and the
parent px of x is also the parent of py. Since py is a reticulation node and px is a parent of py,
the node px can not be a reticulation node itself due to the tree-child restriction. The function
find cherry(N, x) therefore accesses the parent px (checking if it has indegree 1) of x and checks
whether any of its children other than x have outdegree 1. This if statement will yield the node
py (since it is the other child of px), and the function will continue to check whether its child y
has outdegree 0. Since y is a leaf, the function will proceed to add the reticulated cherry (y, x)
to the list.

Since this function (as explained in the proof) uses all requirements in the definitions of cherries
and reticulated cherries to find these pairs, the function will not output any pair of leaves that
is not a cherry or reticulated cherry with with its input leaf as a second coordinate.

Lemma 6. The running time of find cherry is constant.

Proof. Creating an empty list and adding an element to a list take constant time. The leaf x only
has a single parent, so accessing it takes constant time. The indegree and outdegree of a node is
saved in the networkx implementation of the network, which makes accessing the indegree take
constant time. Since the network is semi-binary, accessing the children of p or pc takes constant
time and these for-loops both iterate over only 2 nodes. Checking whether 2 nodes are identical
takes constant time as well. Since these are all the required actions (and all these required actions
take constant time), the function runs in constant time.

4.2 find ret cherry

This function takes a network N and a leaf x as its input and returns a list of all reticulated
cherries that have the input leaf as their first coordinate.

1 def f i n d r e t c h e r r y (N, x ) :
2 l s t = l i s t ( )
3 for p in N. p r e d e c e s s o r s ( x ) :
4 i f N. out degree (p) == 1 :
5 for pp in N. p r e d e c e s s o r s (p ) :
6 for ppc in N. s u c c e s s o r s (pp ) :
7 i f ppc != p :
8 i f N. out degree ( ppc ) == 0 :
9 l s t . append ( ( x , ppc ) )

10 return l s t

Like find cherry, this function starts by creating an empty list and accessing the parent p of the
input leaf x. Subsequently it checks whether the parent p is a reticulation by checking whether
its outdegree is 1. Since a reticulation has multiple parents, the function iterates through the
parents of p using pp as variable for the parent. In this iteration, the function accesses the other
child ppc of pp that is not the original parent p. It checks whether this ppc is a leaf by checking
if its outdegree is 0, and appends the reticulated cherry (x, ppc) to the list if ppc is a leaf.

Lemma 7. The function find ret cherry(N, x) finds all reticulated cherries with x as their first
coordinate.

Proof. Let x and y be leaves in N and let (x, y) be a reticulated cherry in N . By definition, the
parent px of x is a reticulation node and the parent py of y is also the parent of px.
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Since px is a reticulation node and py is a parent of px, the node py can not be a reticulation node
itself due to the tree-child restriction. The function accesses the parent px and checks whether
it is a reticulation node. It loops through the parents of px, one of which is py. It then finds
the child y of py that is not px, checks whether it is a leaf, and proceeds to add the reticulated
cherry (x, y) to the list.

Since this function (as explained in the proof) uses all requirements in the definition of reticulated
cherries to find the reticulated cherry, the function will not output any pair of leaves that is not
a reticulated cherry with its input leaf as a first coordinate.

Lemma 8. The running time of find ret cherry is O(indegree(p)).

Proof. The leaf x only has a single parent p, so accessing it takes constant time. The parent
p however can be a reticulation with multiple parents (using pp as variable for a parent of p).
This causes a dependency on the indegree of p for accessing its parents. Because of the tree-child
restriction, no parent pp of p can be a reticulation. Therefore they will have two children each
and accessing these will take constant time. Since accessing the parents of p is linearly dependant
on its indegree and the rest of these actions take constant time, this function’s running time is
O(indegree(p))

4.3 check cherry

This function takes a network N and 2 leaves (x, y) as its input. The function returns 1 if (x, y)
is a cherry, 2 if (x, y) is a reticulated cherry and returns False otherwise.

1 def check cher ry (N, (x , y ) ) :
2 i f N. has node ( x ) :
3 i f N. has node ( y ) :
4 for px in N. p r e d e c e s s o r s ( x ) :
5 for py in N. p r e d e c e s s o r s ( y ) :
6 i f px == py :
7 return 1
8 i f N. out degree ( px ) == 1 :
9 i f px in N. s u c c e s s o r s ( py )

10 return 2
11 return False

To avoid possible errors, the function starts by checking whether the nodes x and y actually
exist within the given network N . It iterates over the parents px of x and py of y and checks if
they are identical. If they have a common parent, the function returns 1. If they do not have a
common parent, the function checks if px is a reticulation by looking at the outdegree of px. If
px is a reticulation, the function checks whether py is in the set of parents of px. If this is true,
(x, y) is a reticulated cherry and the function returns 2. In the case where neither 1 or 2 are
returned, the function instead returns False.

Note that this function does not actually check whether the nodes x and y are leaves. Why this
is not necessary for the algorithm is explained at find tcs.

Lemma 9. The running time of check cherry is constant.

Proof. Checking whether a node exists within a network, or whether 2 nodes are identical takes
a constant time. The leaves x and y both have only a single parent px and py respectively, so
accessing these takes a constant time. Checking whether px is contained within the children of
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py takes constant time because of the semi-binary tree property. Therefore, check cherry runs
in a constant time.

4.4 reduce pair

This function takes a network N and a pair (x, y) as its input and reduces this cherry or retic-
ulated cherry within the network. The function returns True if the cherry or reticulated cherry
has been successfully reduced and False otherwise.

1 def r e d u c e p a i r (N, (x , y ) ) :
2 k = check cher ry (N, (x , y ) )
3 i f k == 1 :
4 for px in N. p r e d e c e s s o r s ( x ) :
5 N. remove node ( x )
6 for ppx in N. p r e d e c e s s o r s ( px ) :
7 N. remove node ( px )
8 N. add edge (ppx , y )
9 return True

10 i f k == 2 :
11 for px in N. p r e d e c e s s o r s ( x ) :
12 for py in N. p r e d e c e s s o r s ( y ) :
13 N. remove edge (py , px )
14 i f N. i n d e g r e e ( px ) == 1 :
15 for ppx in N. p r e d e c e s s o r s ( px ) :
16 N. add edge (ppx , x )
17 N. remove node ( px )
18 for ppy in N. p r e d e c e s s o r s ( py ) :
19 N. add edge (ppy , y )
20 N. remove node ( py )
21 return True
22 return False

It starts by using the function check cherry to determine whether the given pair (x, y) is a cherry
(k = 1) or a reticulated cherry (k = 2).

If (x, y) is a cherry, the function accesses the parent px of x before removing x itself from the
network. The used networkx function remove node also removes all edges incident to x. After
removing x, the parent px now only has a single child. Additional cleanup is done by accessing
the parent ppx of the parent px, removing px itself and creating an edge from ppx to x.

If (x, y) is a reticulated cherry, the function accesses both parents px and py of x and y respectively
and removes the edge connecting them. Since py was a parent of px, we now have a situation
where the (previously) reticulation node px may only have a single remaining parent. The
function checks this and cleans up by accessing the parent ppx of px, adding an edge from ppx
to x and removing px itself. The parent py of px has also been affected by the removal of the
edge between px and py, since it now has only a single child. To solve this issue, the function
accesses the parent ppy of py, removes the node py and adds an edge from ppy to y.

Lemma 10. The running time of reduce pair is constant.

Proof. The function check cherry runs in a constant time. Accessing the parents px and py of
the leaves x and y respectively takes constant time. The time required to add or remove an edge
or node from the network is constant. If the pair (x, y) is a cherry, the parent px of x will be
a tree node and accessing its parent ppx takes constant time. If the pair (x, y) is a reticulated
cherry, the parent ppx of px is a reticulation. This parent is only accessed when px has a single
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edge remaining, which is therefore done in constant time as well. Finally, since py is a tree
node, accessing its parent ppy also takes constant time. Therefore, this function runs in constant
time.

4.5 find tcs

This function takes a network N as its input and returns a cherry picking sequence in the form
of a list.

1 def f i n d t c s (N) :
2 l s t t o d o = l i s t ( )
3 for x in N. nodes ( ) :
4 i f N. out degree ( x ) == 0 :
5 cherry1 = f i n d c h e r r y (N, x )
6 l s t t o d o . extend ( cherry1 )
7 l s t t c s = l i s t ( )
8 while l s t t o d o :
9 cherry = l s t t o d o . pop ( )

10 k = check cher ry (N, cherry )
11 i f ( k == 1) or ( k == 2 ) :
12 r e d u c e p a i r (N, cherry )
13 l s t t c s . append ( cherry )
14 l s t t o d o . extend ( f i n d c h e r r y (N, cherry [ 1 ] ) )
15 l s t t o d o . extend ( f i n d r e t c h e r r y (N, cherry [ 1 ] ) )
16 return l s t t c s

It starts by creating an empty list lst todo. The function iterates through the nodes of the
network and checks if a node is a leaf by checking its outdegree. If the node is a leaf, the function
uses the find cherry function and extends its output to the list lst todo. After the function has
completed this for-loop, the list lst todo contains all initially available cherries and reticulated
cherries (see lemma 13 in section 5.1).

The function continues by creating a second list lst tcs and iterating through the cherries of
lst todo until it is empty. In this while-loop, the function removes a cherry (x, y) from lst todo
and adds the cherry to lst tcs. The function uses check cherry to see if it’s a pair and reduces
it with reduce pair. To continue with cherry picking, the function now looks for new pairs that
are available after the pair has been reduced. In order to do this, the function adds the outputs
of find cherry(N, y) and find ret cherry(N, y) to lst todo. This process and its reasoning is
covered in-depth in the proofs of correctness in section 5.

Lemma 11. The running time of find tcs is O(#leaves + #reticulations).

Proof. Creating the empty lists lst todo and lst tcs takes constant time. The first for-loop
iterates through all nodes in the network. The function find cherry used within this loop runs
in a constant time. Extending the contents of cherry1 to the list lst todo also takes constant
time.

The while-loop runs until the list lst todo is empty. Whenever a cherry or reticulated cherry is
reduced in the network, the algorithm removes either a leaf or an edge leading into a reticulation
node respectively. Since this function eventually reduces the entire network (theorem 3 in section
5.2, this means that the while-loop will run a number of times equal to the sum of the number
of leaves and the number of reticulations.
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The list is initially filled by using find cherry on every leaf. This will find all initially available
cherries (x, y), duplicate cherries (y, x) and reticulated cherries exactly once (lemma 13 in section
5.1). The functions check cherry, reduce pair and find cherry all run in constant time. Adding
the cherry to the list lst tcs takes constant time.

The duration of the function find ret cherry depends on the indegree of the parent node. Since
every reticulated cherry (x, y) is found once (theorem 3 in section 5.2) and the while-loop con-
tinues until all are reduced, the function find ret cherry will be used once on every reticulation.
Therefore it will iterate over every parent of every reticulation, which means that the total num-
ber of iterations done in find ret cherry is equal to the number of reticulations in the network.

Combining this, the previous contents of the while-loop and the initial for-loop in the creation of
the list lsttodo, the running time of the find tcs function is O(#leaves + #reticulations).

Note that this result is independent of the maximum indegree of the network.

4.6 Modification

The old version of find tcs that corresponds with the theoretical version of the algorithm created
by Janssen and Murakami, featured additional code that I have removed to increase the speed
of the function. An old version of this code can be seen here:

1 def f i n d t c s (N) :
2 l s t t o d o = l i s t ( )
3 for x in N. nodes ( ) :
4 i f N. out degree ( x ) == 0 :
5 cherry1 = f i n d c h e r r y (N, x )
6 l s t t o d o . extend ( cherry1 )
7 l s t t c s = l i s t ( )
8 while l s t t o d o :
9 cherry = l s t t o d o . pop ( )

10 k = check cher ry (N, cherry )
11 i f k == 1 :
12 l s t t c s . append ( cherry )
13 r e d u c e p a i r (N, cherry )
14 i f ( cherry [ 1 ] , cherry [ 0 ] ) in l s t t o d o :
15 l s t t o d o . remove ( ( cherry [ 1 ] , cherry [ 0 ] ) )
16 l s t t o d o . extend ( f i n d c h e r r y (N, cherry [ 1 ] ) )
17 l s t t o d o . extend ( f i n d r e t c h e r r y (N, cherry [ 1 ] ) )
18 i f k == 2 :
19 l s t t c s . append ( cherry )
20 r e d u c e p a i r (N, cherry )
21 l s t t o d o . extend ( f i n d r e t c h e r r y (N, cherry [ 0 ] ) )
22 l s t t o d o . extend ( f i n d c h e r r y (N, cherry [ 1 ] ) )
23 l s t t o d o . extend ( f i n d r e t c h e r r y (N, cherry [ 1 ] ) )
24 return l s t t c s

The differences between this old version and the new version are the removal of two actions:

1. In this old version, there exists a check (lines 14 and 15) that removes a cherry (y, x)
from the list lst todo if the cherry (x, y) is reduced. This line was intended to save time
by removing a redundant cherry from lst todo, since this cherry (y, x) couldn’t exist in
the network anymore after the cherry (x, y) is reduced. In the theoretical version of the
algorithm created by Janssen and Murakami, this made sense since lst todo was supposed
to be a set instead of a list. Unfortunately, the networkx network classes objects are not
hashable, and can therefore not be elements of a set. To solve this issue, lst todo is a list
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instead of a set in this python implementation. However, since searching through the list
lst todo takes O(|lst todo|) time (whereas searching through a set is constant), this check
did not speed up the algorithm. Worse still, since the size of lst todo can be linear with
the number of leaves and this check takes place in the while-loop, this check can cause a
running time that is quadratic with the amount of leaves in the network.

2. In the old version, the case where the pair (x, y) popped from the list lst todo is a reticulated
cherry featured an extra line (Line 21) which added the output of find ret cherry(N, x) to
lst todo. This line is redundant since the reticulated cherries found by find ret cherry(N, x)
are already elements in the lst todo. The reasoning behind why these reticulated cherries
are already found is explained in section 5, and the effects of this line on the speed of the
algorithm are shown in section 6.3.

When these lines are removed, the cases for k = 1 and k = 2 become identical and can be merged
into a single case.

4.7 cps reduces network

This function takes a network N and a cherry picking sequence in the form of a list lst as its
input. It returns True if the cherry picking sequence reduces network N and False if it does not.

1 def cps reduces network (N, l s t ) :
2 for cherry in l s t :
3 r e d u c e p a i r (N, cherry )
4 i f N. s i z e ( ) == 1 :
5 return True
6 return False

The function iterates through the cherry picking sequence using a for-loop and each cherry in
the list is reduced with reduce pair. After this loop is finished, the function checks whether the
network is fully reduced by checking the network’s size attribute. Note that this N.size gives
the number of edges in the network, which means that N.size() = 1 corresponds with one edge
between the remaining leaf and the root.

Lemma 12. The running time of cps reduces network is O(|lst|).

Proof. The function reduce pair takes constant time. The size of the network is an attribute of
the network class and acquiring it takes constant time. Since the for-loop iterates over the entire
list lst, this function takes O(|lst|) time.

4.8 tcs contains

This function takes a network N and a network M as its input and returns True if N contains
M and False if N does not contain M .

1 def t c n c o n t a i n s (N, M) :
2 return cps reduces network (M, f i n d t c s (N) )

This function uses find tcs on network N and uses the resulting cherry picking sequence output
and the given network M as input for cps reduces network. The output of cps reduces network
is the output of the function.

Theorem 2. The running time of tcs contains (and therefore the algorithm) is
O(#leaves + #reticulations).
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Proof. Since reducing a cherry removes a leaf and reducing a reticulated cherry removes an
edge, the list given by find tcs will have a length equal to the sum of leaves and reticulations
of the network N . Since the function cps reduces network takes O(|lst|) time, the function
tcn contains(N,M) (and thus the algorithm) runs in O(#leaves + #reticulations).

5 Discovering pairs

This section serves to prove that the algorithm is indeed capable of reducing a network. For
the algorithm to reduce the network, it is important that it finds all pairs available at any given
moment. For the time complexity, it is important that the algorithm finds cherries a constant
number of times.

5.1 Initial phase

In the initial phase (lines 2 - 6) of the function find tcs, the list lst todo is filled with pairs by
iterating over all leaves and using the find cherry function.

Lemma 13. During the initial phase of find tcs, all initially available cherries are added to the
list lst todo twice ( including cherries with coordinates in reverse order) and all initially available
reticulated cherries are added to the list lst todo once.

Proof. The function find tcs finds all pairs with the given leaf as second coordinate once. Since
it iterates over all leaves, it will find all initially available pairs at least once. However when
reducing cherries in a network, there is no structural difference between reducing the cherry (x, y)
or reducing the cherry (y, x) other than the resulting leaf. Therefore initial available cherries are
effectively found twice, since the cherry with its coordinates in reverse order will be redundant
in the list. For reticulated cherries, this issue doesn’t occur since they are ordered.

5.2 Second phase

After the initial phase, the algorithm searches for new pairs only after reducing an old pair.
These new pairs must involve at least one of the leaves associated with the old pair, since the
other leaves in the network are not affected when a pair is reduced.

Lemma 14. After a pair (x, y) has been reduced, the combination of functions find cherry(N, y)
and find ret cherry(N, y) finds all new available pairs.

Proof. From lemma 5 we have that find cherry(N, x) finds all pairs in N with x as their second
coordinate. From lemma 6 we have that find ret cherry(N, x) finds all reticulated cherries in
N with x as their first coordinate. The next steps of the proof are divided into two cases:

1. The reduced pair (x, y) was a cherry. Since the reduced pair was a cherry (x, y),
then the leaf x has been removed. This means that all potential new pairs could be
either a cherry or reticulated cherries with y as their first or second coordinate. However,
checking for both cherries with y as their first coordinate and y as their second coordinate
is redundant, as explained in the proof of lemma 11. Therefore, the function finds all new
available pairs (see figure 8) in this case using only the outputs of find cherry(N, y) and
find ret cherry(N, y).
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(a) Reticulated cherry (y, z) (b) Reticulated cherry (z, y) (c) Cherry (y, z) or (z, y)

Figure 8: Possible new pairs if (x, y) is a cherry

2. The reduced pair (x, y) was a reticulated cherry. Since the reduced pair was a
reticulated cherry, the edge between the parent px of x and the parent py of y has been
removed. The parent py of y was a tree node (due to the tree-child restriction), and its
parent ppy of py can be either a reticulation node or a tree node. If ppy is a tree node,
the removal of the edge between py and the parent px of x can lead to a new cherry with
coordinate y1. If ppy is a reticulation node, the removal of the edge can lead to a new
reticulated cherry with y as it’s first or second coordinate (as seen in figure 9). Let px
again be the parent of x. The possible pairs with x are divided into two cases:

(a) The indegree of px was larger than two prior to reducing (x, y). If the parent
px of x had an indegree of more than two prior to reducing the cherry, it remains a
reticulation node when its edge to py is removed. This means that any reticulated
cherries using x as their first coordinate will remain reticulated cherries in the network.

If (x, y) was found during the initial phase, then the other reticulated cherries using x
as a first coordinate have also been found by using find cherry with their second leaf
as input (since find cherry has been used with every leaf as input during the initial
phase).

If (x, y) was found during the second phase, then it must have been found with the
function find ret cherry(N, x). However since find ret cherry(N, x) finds all reticu-
lated cherries with x as their first coordinate, these other possible reticulated cherries
have already been found.

(b) The indegree of px was exactly two prior to reducing (x, y). If px had indegree
2, it will have indegree 1 after the removal of the edge between py and px and the
cleaning up process of reduce pair will remove it entirely. Now x will be connected
with an edge to the parent ppx of px. Since px was a reticulation node in the original
network, ppx cannot be a reticulation node because of the tree-child restriction. This
means that x can now only be part of a cherry. If x is now part of a cherry (x, z) with
z another leaf in the network, this means that x would have been part of a reticulated
cherry (x, z) before reducing the cherry (x, y). Since both are written the same way,
and (x, z) should be discovered if (x, y) has been discovered, it is not necessary to add
any new cherries with coordinate x.

1This new cherry could potentially even be (x, y) if ppy = ppx, rendering it possible that a pair occurs multiple
times in a cherry picking sequence.
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(a) Reticulated cherry (y, z) (b) Reticulated cherry (z, y) (c) Cherry (y, z) or (z, y)

Figure 9: Possible new pairs if (x, y) is a reticulated cherry

Finding all cherries at least once is crucial for the correctness of the algorithm. However, for the
running time of the algorithm, it is important that all cherries are found at most once. To show
this, I have the following lemma:

Lemma 15. After a pair (x, y) has been reduced, the combination of functions find cherry(N, y)
and find ret cherry(N, y) finds all new available pairs.

Proof. To prove this, I show that a cherry cannot be found multiple times during a single loop,
and that a cherry cannot be found again in subsequent loops.

According to lemma 5 and lemma 6, the function find cherry(N, y) finds all pairs with y as
their second coordinate and find ret cherry(N, y) finds all reticulated cherries with y as their
first coordinate. These 2 functions will never find the same pair, since find ret cherry(N, y)
cannot find cherries and reticulated cherries are ordered (the reticulated cherries (x, y) and (y, x)
cannot both exist).

After the initial phase, a pair cannot be found again if it has already been found. If the pair
(x, y) is a cherry, neither x nor y can be part of another pair that contains a different leaf. That
means that these leaves x and y can only be found after the cherry (x, y) is reduced. However the
leaf x will be removed from the network when the cherry is reduced, rendering any rediscovery
of the cherry (x, y) impossible.

If the pair (x, y) is a reticulated cherry, x can be part of a reticulated cherry (x, z). If this
reticulated cherry (x, z) were to be reduced, the function would remove the edge between x and
z and check for new pairs using find cherry(N, z) and find ret cherry(N, z) Since the function
only looks for reticulated cherries with first or second coordinate z, it will never rediscover
(x, y).

Lemma 16. Every semi-binary tree-child network on taxa X with |X| > 1 has at least one
cherry or reticulated cherry.

Proof. The idea behind this proof was created by Bordewich and Semple (Bordewich and Semple,
2007). If N is a tree, then N definitely has a cherry. If N is not a tree, N must have at least one
reticulation. Let x be the reticulation node such that the path from the root to x is the longest
(passes through the largest number of nodes). Since N is tree-child, both of the parents of x
must be tree nodes. Note that the path from the root to x passes through one of these parents.
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Let p be the parent of x through which this path travels. Since p is a tree node, let y be the
other child of p that is not x.

Due to the tree-child restriction, y must either be a leaf or a tree node. We divide this into two
separate cases:

1. y is a leaf. Let z be the child of x. Then since x is a reticulation, its child z must be
either a leaf or a tree node due to the tree-child restriction. If z is a leaf, then the pair
(z, y) is a reticulated cherry (see figure 10). If z is a tree node, then there will be two or
more leaves reachable through z without passing through a reticulation (since z was the
parent furthest away from the root), and at least one cherry will be formed out of these
leaves.

Figure 10: Example of a network where y is a leaf

2. y is a tree node. If y is a tree node, then there will be two or more leaves reachable
through y without passing through a reticulation (again since z was the parent furthest
away from the root), and at least one cherry will be formed out of these leaves.

Theorem 3. Let N be a semi-binary tree-child network. The function find tcs(N) finds a tree-
child sequence of N , while iterating through every initial cherry of N twice and while iterating
through every other cherry or reticulated cherry of N once.

Proof. This follows from lemma 13, lemma 14, lemma 15 and lemma 16.

6 Tests and results

This section covers several tests used to determine the linearity of the algorithm in practice.

6.1 Generating the random networks

For the data set used in the test functions, I have used a piece of code written by Remie Janssen
that generates networks using tree-child sequences. I have modified this code slightly to generate
a folder of 10000 test files, which each have two networks. The first network ranges from 10 to
1000 leaves and 10 to 1000 reticulations in steps of 10. This second network has the same amount
of leaves (the same leaves as the first network) and half the reticulations of the first network, and
has a 50% chance to be contained within the first network by using the same tree-child sequence

21



to generate it. If this second network does not pass this 50% chance, it will instead be generated
randomly2.

6.2 Plots

This large set of data files can be used to draw useful 2d plots that shows the running time of the
algorithm, by either taking a constant number of leaves and letting the number of reticulations
vary, or by taking a constant number of reticulations and letting the number of leaves vary.
Figures 11(a) and 11(b) use a constant number of reticulations to show the linearity in the
number of leaves, while figures 11(c) and 11(d) use a constant number of leaves to show the
linearity in the number of reticulations. In these figures, a test case is shown with a blue dot
if the algorithm returns True, and a test case is shown with a red dot if the algorithm returns
False.

2This random network could theoretically be contained within the first network, but for large networks, the
chance of this happening is extremely small.
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(a) Constant 200 reticulations (b) Constant 800 reticulations

(c) Constant 200 leaves (d) Constant 800 leaves

Figure 11: Plots showing the running time of the algorithm (in seconds) when tested on various
sized networks.

6.3 Effects of the modification

Without the modification mentioned previously in Section 4.6, the algorithm will add the output
of find ret cherry (using the first coordinate of the reduced pair) to the list. As shown in section
5.2, this line is not necessary and will therefore cause the while-loop to iterate over redundant
reticulated cherries. Initially, this may not seem like it would cause much trouble since these pairs
will not pass the check cherry check (as they can only be reduced once or twice) and therefore not
waste too much time. However, these redundant reticulated cherries are added for each removed
reticulation. For a reticulation node with n reticulated cherries, the function will initially remove
a reticulation and add n−1 redundant reticulated cherries to the list. When another reticulated
cherry involving the same reticulation node is processed, the function will remove another edge
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leading into a reticulation node and add another n − 2 redundant reticulated cherries3. Since
this continues n times until there is are no reticulated cherries left in this reticulation node, this
line will add

∑n
i=1(n − i) = n(n − 1)/2 redundant reticulated cherries to the list. The effect of

this becomes apparent when testing the algorithm without the modification on a network with
few leaves and many reticulations.

(a) With modification (b) Without modification

Figure 12: The effects of the modification

For this test with a constant number of reticulations equal to 1000, the difference in running
time for low numbers of leaves is quite large (see Figure 12). The running times of the first few
networks of the algorithm without modification in figure 12 are outside of the window, and have
running times ranging from one second to 2.5 seconds.

6.4 True or false

A clear pattern in the plots is the cases with output True taking more running time than the
cases with output False. This occurs because the second network in the false cases is generated
randomly and will generally differ a lot from the first network. Therefore, most of the pairs in
the cherry picking sequence from the first network will not be cherries or reticulated cherries in
the second network. When the cps reduces network function is used, most of the pairs in the
cherry picking sequence will not pass the check cherry test in the reduce pair function. This
means that a big part of reduce pair is skipped, resulting in a shorter running time. Since this
effect depends on the size of the networks, the difference in running time between true and false
cases becomes more apparent as the number of reticulations and leaves in the network increase.

6.5 Linear regression test

With linear regression, the algorithm can be tested on its linearity. In this project, I have used
the linear regression functions from the scikit-learn linear model module. These functions predict
a linear equation based on the given data, and can show the difference between the data and

3Since new pairs are added to the end of the list and popped from the end of the list, there can be no discovery
of a reticulated cherry involving the reticulation node by reducing a pair elsewhere in the network, before other
reticulated cherries involving the reticulation node are processed.
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their prediction. This linear regression is used on the running time data received from using the
algorithm on all 10000 test cases.

The coefficient of determination R2 shows how well the prediction fits with the data. This
coefficient generally ranges from 0 to 1, where 0 indicates a really poor fit and 1 indicates a
perfect fit. The result of this test gives a R2 value of 0.9917824501469797, which indicates that
the predicted line fits the data very well. The tiny difference between this value and 1 is likely
due to the random factors in the generation of the networks, and due to the difference in running
time for True and False cases.

The linear regression test also gives an intercept value and a slope value, which together are used
to make the predicted equation. The first variable of the slope is the number of leaves, and the
second variable is the number of reticulations. According to the results of this test, the predicted
equation is given by:

t = 5.9298 ∗ 10−5#leaves + 7.0140 ∗ 10−5#reticulations− 0.0009

The number of reticulations has a higher coefficient than the number of leaves, which is likely due
to the extra steps required in the algorithm to deal with reticulated cherries instead of cherries.

Note that since the networks are generated fairly randomly and the speed of the algorithm
depends on the computer, these tests will always give slightly differing results.

7 Conclusion and discussion

In this paper I have shown a python implementation of the algorithm created by Janssen and
Murakami (Janssen, Murakami, 2019), which solves the NetworkContainment problem for semi
binary tree-child networks. I have made a modification that increases its speed and removes its
maximum indegree requirement. Furthermore I have proven that this modified algorithm works
correctly and that its time complexity is linear, by using both theoretical proofs and practical
tests. These practical tests show that not only the algorithm is linear, but its coefficients are
small enough to allow the algorithm to solve test cases of large networks (800 reticulations and
800 leaves) in under 0.2 seconds using a ordinary computer.

The algorithm’s speed could be improved further by implementing it in a faster programming
language, however this wouldn’t be too lucrative since its python implementation is already fast
enough for its current day uses. What would be more interesting is looking at the theoretical side
and changing the algorithm to work on different and more general types of trees and networks.

It would interesting to look at multifurcating trees, in which tree nodes can have more than two
children. When dealing with these types of trees, a tree node with three or more children can
also be represented by multiple nested tree nodes with two children. However, this gives rise to
the problem that not all sequences that reduce the tree node with three or more children also
reduce the nested tree nodes. One might wonder whether there’s a fast way to find a sequence
that reduces both networks, by looking at both networks.

Another interesting type of network is the more general cherry picking network. These can
be reduced by cherry picking sequences, however, they don’t necessarily contain a tree if there
exists a cherry picking sequence that reduces both. The exact requirements for a cherry picking
sequence to reduce both are still unproven.
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Additionally, one might look at hardness proofs for TreeContainment for these cherry picking
networks. For general networks, this problem is NP-complete but for tree child networks it is
linear. The problem for cherry picking networks could be linear, NP-complete or fall somewhere
in between, but where is unknown.
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9 Raw code

The algorithm and test functions:

1 import networkx as nx
2 import as t
3 import time
4 import numpy as np
5 from s k l e a r n . l i n ea r mode l import LinearRegre s s i on
6 import matp lo t l i b . pyplot as p l t
7
8 def f i n d c h e r r y (N, x ) :
9 l s t = l i s t ( )

10 for p in N. p r e d e c e s s o r s ( x ) :
11 i f N. i n d e g r e e (p) == 1 :
12 for pc in N. s u c c e s s o r s (p ) :
13 i f pc != x :
14 t = N. out degree ( pc )
15 i f t == 0 :
16 l s t . append ( ( pc , x ) )
17 i f t == 1 :
18 for pcc in N. s u c c e s s o r s ( pc ) :
19 i f N. out degree ( pcc ) == 0 :
20 l s t . append ( ( pcc , x ) )
21 return l s t
22
23
24 def f i n d r e t c h e r r y (N, x ) :
25 l s t = l i s t ( )
26 for p in N. p r e d e c e s s o r s ( x ) :
27 i f N. out degree (p) == 1 :
28 for pp in N. p r e d e c e s s o r s (p ) :
29 for ppc in N. s u c c e s s o r s (pp ) :
30 i f ppc != p :
31 i f N. out degree ( ppc ) == 0 :
32 l s t . append ( ( x , ppc ) )
33 return l s t
34
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35
36 def check cher ry (N, (x , y ) ) :
37 i f N. has node ( x ) :
38 i f N. has node ( y ) :
39 for px in N. p r e d e c e s s o r s ( x ) :
40 for py in N. p r e d e c e s s o r s ( y ) :
41 i f px == py :
42 return 1
43 i f N. out degree ( px ) == 1 :
44 #i f py in N. predeces sor s ( px ) :
45 i f px in N. s u c c e s s o r s ( py ) :
46 return 2
47 return False
48
49
50 def r e d u c e p a i r (N, (x , y ) ) :
51 k = check cher ry (N, (x , y ) )
52 i f k == 1 :
53 for px in N. p r e d e c e s s o r s ( x ) :
54 N. remove node ( x )
55 for ppx in N. p r e d e c e s s o r s ( px ) :
56 N. remove node ( px )
57 N. add edge (ppx , y )
58 return True
59 i f k == 2 :
60 for px in N. p r e d e c e s s o r s ( x ) :
61 for py in N. p r e d e c e s s o r s ( y ) :
62 N. remove edge (py , px )
63 i f N. i n d e g r e e ( px ) == 1 :
64 for ppx in N. p r e d e c e s s o r s ( px ) :
65 N. add edge (ppx , x )
66 N. remove node ( px )
67 #i f N. ou t degree ( py ) == 1:
68 for ppy in N. p r e d e c e s s o r s ( py ) :
69 N. add edge (ppy , y )
70 N. remove node ( py )
71 return True
72 return False
73
74 def f i n d t c s (N) :
75 l s t 1 = l i s t ( )
76 for x in N. nodes ( ) :
77 i f N. out degree ( x ) == 0 :
78 cherry1 = f i n d c h e r r y (N, x )
79 l s t 1 . extend ( cherry1 )
80 l s t 2 = l i s t ( )
81 while l s t 1 :
82 cherry = l s t 1 . pop ( )
83 k = check cher ry (N, cherry )
84 i f ( k == 1) or ( k == 2 ) :
85 r e d u c e p a i r (N, cherry )
86 l s t 2 . append ( cherry )
87 l s t 1 . extend ( f i n d c h e r r y (N, cherry [ 1 ] ) )
88 l s t 1 . extend ( f i n d r e t c h e r r y (N, cherry [ 1 ] ) )
89 return l s t 2
90
91
92 def cps reduces network (N, l s t ) :
93 for cherry in l s t :
94 r e d u c e p a i r (N, cherry )
95 i f N. s i z e ( ) == 1 :
96 return True
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97 return False
98
99

100 def t c n c o n t a i n s (N, M) :
101 return cps reduces network (M, f i n d t c s (N) )
102
103
104 def t e s t e r (min ,max) :
105 s t a r t = time . time ( )
106 for i in range (min , max+1):
107 i f i < 10 :
108 name = ” input000 ” + str ( i ) + ” . txt ”
109 else :
110 i f i > 99 :
111 name = ” input0 ” + str ( i ) + ” . txt ”
112 else :
113 name = ” input00 ” + str ( i ) + ” . txt ”
114 t e s t = open( ” SmallDataSet \\” + name , ” r ” )
115 l i n e 1 = t e s t . read ( )
116 l i n e 1 = l i n e 1 . s p l i t ( ”\n” )
117 M = nx . DiGraph ( )
118 N = nx . DiGraph ( )
119 N. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 0 ] ) )
120 M. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 1 ] ) )
121 print name , ” : ” , t c n c o n t a i n s (N, M)
122 end = time . time ( )
123 print
124 print ” time e lapsed : ” , end − s t a r t , ” seconds ”
125
126
127 def t e s t e r 2 ( ) :
128 truthnumber = 0
129 l s t 1 = l i s t ( )
130 l s t 2 = l i s t ( )
131 for i in range (1 , 1 0 1 ) :
132 for j in range (1 , 1 0 1 ) :
133 i f i > 0 : #i f i > j :
134 l s t 1 . append ((10* i , 10* j ) )
135
136 index1 = ”0000000” + str ( i )
137 index1 = index1 [ −4 : ]
138 index2 = ”0000000” + str ( j )
139 index2 = index2 [ −4 : ]
140 name = ” input ” + index1 + index2 + ” . txt ”
141
142 t e s t = open( ”DataSet\\” + name , ” r ” )
143 l i n e 1 = t e s t . read ( )
144 l i n e 1 = l i n e 1 . s p l i t ( ”\n” )
145 M = nx . DiGraph ( )
146 N = nx . DiGraph ( )
147 N. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 0 ] ) )
148 M. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 1 ] ) )
149
150 s t a r t = time . time ( )
151 conta in s = t c n c o n t a i n s (N, M)
152 end = time . time ( )
153 print name , ” : ” , conta in s
154 l s t 2 . append ( end − s t a r t )
155 i f conta in s == True :
156 truthnumber = truthnumber + 1
157 model = LinearRegre s s i on ( ) . f i t ( l s t 1 , l s t 2 )
158 r s q = model . s c o r e ( l s t 1 , l s t 2 )
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159 print ( ’ c o e f f i c i e n t o f determinat ion : ’ , r s q )
160 print ( ’ i n t e r c e p t : ’ , model . i n t e r c e p t )
161 print ( ’ s l ope : ’ , model . c o e f )
162 print ”number o f Trues” , truthnumber
163
164
165 def t e s t e r 3 ( j , check ) :
166 l s t 1 1 = l i s t ( )
167 l s t 1 2 = l i s t ( )
168 l s t 2 1 = l i s t ( )
169 l s t 2 2 = l i s t ( )
170 for i in range (1 , 1 0 1 ) :
171 index1 = ”0000000” + str ( i )
172 index1 = index1 [ −4 : ]
173 index2 = ”0000000” + str ( j )
174 index2 = index2 [ −4 : ]
175 name = ” input ” + index1 + index2 + ” . txt ”
176
177 t e s t = open( ”DataSet\\” + name , ” r ” )
178 l i n e 1 = t e s t . read ( )
179 l i n e 1 = l i n e 1 . s p l i t ( ”\n” )
180 M = nx . DiGraph ( )
181 N = nx . DiGraph ( )
182 N. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 0 ] ) )
183 M. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 1 ] ) )
184
185 s t a r t = time . time ( )
186 conta in s = t c n c o n t a i n s (N, M)
187 print name , ” : ” , conta in s
188 end = time . time ( )
189
190 i f conta in s i s True :
191 l s t 1 1 . append (10 * i )
192 l s t 2 1 . append ( end − s t a r t )
193 else :
194 l s t 1 2 . append (10 * i )
195 l s t 2 2 . append ( end − s t a r t )
196
197 i f check i s True :
198 M = nx . DiGraph ( )
199 N = nx . DiGraph ( )
200 N. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 0 ] ) )
201 M. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 1 ] ) )
202 indeg ree = check maximum indegree (N)
203 print ” indegr ee : ” + str ( indeg ree )
204
205 p l t . p l o t ( l s t 11 , l s t 21 , ’ bo ’ )
206 p l t . p l o t ( l s t 12 , l s t 22 , ’ ro ’ )
207
208 t i t l e = ” R e t i c u l a t i o n s : ” + str (10* j )
209 p l t . t i t l e ( t i t l e )
210 p l t . x l a b e l ( ’ l e a v e s ’ )
211 p l t . y l a b e l ( ’ time ( s ) ’ )
212 p l t . yl im ( ( 0 , 0 . 1 5 ) )
213 p l t . show ( )
214
215
216 def t e s t e r 4 ( i , check ) :
217 truthnumber = 0
218 l s t 1 1 = l i s t ( )
219 l s t 1 2 = l i s t ( )
220 l s t 2 1 = l i s t ( )
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221 l s t 2 2 = l i s t ( )
222 for j in range (1 , 1 0 1 ) :
223 index1 = ”0000000” + str ( i )
224 index1 = index1 [ −4 : ]
225 index2 = ”0000000” + str ( j )
226 index2 = index2 [ −4 : ]
227 name = ” input ” + index1 + index2 + ” . txt ”
228
229 t e s t = open( ”DataSet\\” + name , ” r ” )
230 l i n e 1 = t e s t . read ( )
231 l i n e 1 = l i n e 1 . s p l i t ( ”\n” )
232 M = nx . DiGraph ( )
233 N = nx . DiGraph ( )
234 N. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 0 ] ) )
235 M. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 1 ] ) )
236
237 s t a r t = time . time ( )
238 conta in s = t c n c o n t a i n s (N, M)
239 print name , ” : ” , conta in s
240 end = time . time ( )
241
242 i f conta in s i s True :
243 l s t 1 1 . append (10 * j )
244 l s t 2 1 . append ( end − s t a r t )
245 truthnumber = truthnumber + 1
246 else :
247 l s t 1 2 . append (10 * j )
248 l s t 2 2 . append ( end − s t a r t )
249
250 i f check i s True :
251 M = nx . DiGraph ( )
252 N = nx . DiGraph ( )
253 N. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 0 ] ) )
254 M. add edges from ( as t . l i t e r a l e v a l ( l i n e 1 [ 1 ] ) )
255 indeg ree = check maximum indegree (N)
256 print ” indegr ee : ” + str ( indeg ree )
257
258 p l t . p l o t ( l s t 11 , l s t 21 , ’ bo ’ )
259 p l t . p l o t ( l s t 12 , l s t 22 , ’ ro ’ )
260 print ”number o f Trues : ” , truthnumber
261 t i t l e = ” l e a f s : ” + str (10* i )
262 p l t . t i t l e ( t i t l e )
263 p l t . x l a b e l ( ’ r e t i c u l a t i o n s ’ )
264 p l t . y l a b e l ( ’ time ( s ) ’ )
265 p l t . yl im ( ( 0 , 0 . 1 5 ) )
266 p l t . show ( )
267
268
269
270 def check maximum indegree (N) :
271 indeg ree = 0
272 for x in N. nodes ( ) :
273 x indeg r e e = N. i n d e g r e e ( x )
274 i f x indeg r e e > i ndeg r ee :
275 indeg ree = x indeg r e e
276 return i ndeg r ee

The code used to make network test files:

1 import networkx as nx
2 import random
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3 import matp lo t l i b . pyplot as p l t
4 import os
5 import as t
6 import re
7 import time
8 from copy import deepcopy
9

10 def SeqToNewick ( sequence ) :
11 return ””
12
13
14 def Newick To Network ( newick ) :
15 newick = newick [ : −1 ]
16 newick = newick . r e p l a c e ( ” ( ” , ” [ ” )
17 newick = newick . r e p l a c e ( ” ) ” , ” ] ” )
18 newick = re . sub ( r ”\]\#H( [ \ d]+) ” , r ”,#R\1 ] ” , newick )
19 newick = re . sub ( r ”#([RH] ) ( [ \ d]+) ” , r ” ’#\1\2 ’” , newick )
20 n e s t e d t r e e = ast . l i t e r a l e v a l ( newick )
21 edges , l eaves , l a b e l s e t , cur rent node = NestedList To Tree ( nes t edt r ee , 1 )
22 edges . append ( [ 0 , 1 ] )
23 r e t l a b e l s = dict ( )
24 l e a f l a b e l s = dict ( )
25 for l in l e a v e s :
26 i f len ( l )>2 and ( l [ :2 ]== ”#H” or l [ :2 ]== ”#R” ) :
27 r e t l a b e l s [ l [ 2 : ] ] = [ ]
28 else :
29 l e a f l a b e l s [ l ] = [ ]
30 for l in l a b e l s e t :
31 i f len ( l [0 ] ) >2 and ( l [ 0 ] [ : 2 ] = = ”#H” or l [ 0 ] [ : 2 ] = = ”#R” ) :
32 i f l [ 0 ] [ 1 ]== ’H ’ :
33 r e t l a b e l s [ l [ 0 ] [ 2 : ] ] + = [ l [ 1 ] ]
34 else :
35 r e t l a b e l s [ l [ 0 ] [ 2 : ] ] = [ l [ 1 ] ] + r e t l a b e l s [ l [ 0 ] [ 2 : ] ]
36 else :
37 l e a f l a b e l s [ l [ 0 ] ]+=[ l [ 1 ] ]
38 network = nx . DiGraph ( )
39 network . add edges from ( edges )
40 for r e t i c in r e t l a b e l s :
41 r = r e t l a b e l s [ r e t i c ]
42 r e c e i v i n g = r [ 0 ]
43 p a r e n t r e c e i v i n g = 0
44 for p in network . p r e d e c e s s o r s ( r e c e i v i n g ) :
45 p a r e n t r e c e i v i n g = p
46 network . remove node ( r e c e i v i n g )
47 for v in r [ 1 : ] :
48 network . add edge (v , p a r e n t r e c e i v i n g )
49 network = nx . cont rac t ed edge ( network , ( v , p a r e n t r e c e i v i n g ) )
50 network . remove edge (v , v )
51 p a r e n t r e c e i v i n g = v
52 l e a v e s = set ( )
53 for l in l e a f l a b e l s :
54 l e a f l a b e l s [ l ]= l e a f l a b e l s [ l ] [ 0 ]
55 l e a v e s . add ( l )
56 return network , l eaves , l e a f l a b e l s
57
58
59 def NestedList To Tree ( nes tedL i s t , next node ) :
60 edges = [ ]
61 l e a v e s = set ( )
62 l a b e l s = [ ]
63 top node = next node
64 current node = next node+1
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65 for t in n e s t ed L i s t :
66 edges . append ( ( top node , cur rent node ) )
67 i f type ( t)== l i s t :
68 ext ra edges , e x t r a l e a v e s , e x t r a l a b e l s , cur rent node = NestedList To Tree ( t , cur rent node )
69 else :
70 ex t r a edge s = [ ]
71 e x t r a l e a v e s = set ( [ str ( t ) ] )
72 e x t r a l a b e l s = [ [ str ( t ) , cur rent node ] ]
73 current node+=1
74 edges = edges + ex t ra edge s
75 l e a v e s = l e a v e s . union ( e x t r a l e a v e s )
76 l a b e l s = l a b e l s + e x t r a l a b e l s
77 return edges , l eaves , l a b e l s , cur rent node
78
79
80
81
82 ################################################################################
83 ################################################################################
84 ################################################################################
85 ######## #############
86 ######## PHYLOGENETIC NETWORK CLASS #############
87 ######## #############
88 ################################################################################
89 ################################################################################
90 ################################################################################
91
92
93
94 #A c l a s s f o r phy l o g ene t i c networks
95 class PhN:
96 def i n i t ( s e l f , seq = None , newick = None ) :
97 #the ac tua l graph
98 s e l f . nw = nx . DiGraph ( )
99 #the s e t o f l e a f l a b e l s o f the network

100 s e l f . l e a v e s = set ( )
101 #a d i c t i ona ry g i v i n g the node fo r a g iven l e a f l a b e l
102 s e l f . l a b e l s = dict ( )
103 #the number o f nodes in the graph
104 s e l f . no nodes = 0
105 s e l f . l e a f n o d e s = dict ( )
106 s e l f .TCS=seq
107 s e l f .CPS=seq
108 s e l f . newick=newick
109 s e l f . r e d u c i b l e p a i r s=set ( )
110 s e l f . r e t i c u l a t e d c h e r r i e s=set ( )
111 s e l f . c h e r r i e s=set ( )
112 i f seq :
113 #Creates a phy l o g ene t i c network from a cherry p i c k ing sequence :
114 for pa i r in reversed ( seq ) :
115 s e l f . add pa i r (* pa i r )
116 i f newick :
117 s e l f . newick = newick
118 network , s e l f . l eaves , s e l f . l a b e l s = Newick To Network ( newick )
119 s e l f . nw = network
120 s e l f . no nodes = len ( l i s t ( s e l f . nw) )
121 s e l f . Compute Leaf Nodes ( )
122
123 def Compute Leaf Nodes ( s e l f ) :
124 s e l f . l e a f n o d e s = dict ( )
125 for v in s e l f . l a b e l s :
126 s e l f . l e a f n o d e s [ s e l f . l a b e l s [ v ] ]= v

32



127
128
129 #A method fo r adding a pair , us ing the cons t ruc t i on from a sequence
130 def add pa i r ( s e l f , x , y ) :
131 i f len ( s e l f . l e a v e s )==0:
132 s e l f . nw . add edges from ( [ ( 0 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) ] )
133 s e l f . l e a v e s = set ( [ x , y ] )
134 s e l f . l a b e l s [ x]=2
135 s e l f . l a b e l s [ y]=3
136 s e l f . l e a f n o d e s [2 ]= x
137 s e l f . l e a f n o d e s [3 ]= y
138 s e l f . no nodes=4
139 return True
140 i f y not in s e l f . l e a v e s :
141 return False
142 node y=s e l f . l a b e l s [ y ]
143 i f x not in s e l f . l e a v e s :
144 s e l f . nw . add edges from ( [ ( node y , s e l f . no nodes ) , ( node y , s e l f . no nodes +1)])
145 s e l f . l e a v e s . add ( x )
146 s e l f . l e a f n o d e s . pop ( s e l f . l a b e l s [ y ] , Fa l se )
147 s e l f . l a b e l s [ y]= s e l f . no nodes
148 s e l f . l a b e l s [ x]= s e l f . no nodes+1
149 s e l f . l e a f n o d e s [ s e l f . no nodes ]=y
150 s e l f . l e a f n o d e s [ s e l f . no nodes+1]=x
151 s e l f . no nodes+=2
152 else :
153 node x=s e l f . l a b e l s [ x ]
154 for parent in s e l f . nw . p r e d e c e s s o r s ( node x ) :
155 px = parent
156 i f s e l f . nw . i n d e g r e e ( px)>1:
157 s e l f . nw . add edges from ( [ ( node y , px ) , ( node y , s e l f . no nodes ) ] )
158 s e l f . l e a f n o d e s . pop ( s e l f . l a b e l s [ y ] , Fa l se )
159 s e l f . l a b e l s [ y]= s e l f . no nodes
160 s e l f . l e a f n o d e s [ s e l f . no nodes ]=y
161 s e l f . no nodes+=1
162 else :
163 s e l f . nw . add edges from ( [ ( node y , node x ) , ( node y , s e l f . no nodes ) , ( node x , s e l f . no nodes +1)])
164 s e l f . l e a f n o d e s . pop ( s e l f . l a b e l s [ x ] , Fa l se )
165 s e l f . l e a f n o d e s . pop ( s e l f . l a b e l s [ y ] , Fa l se )
166 s e l f . l a b e l s [ y]= s e l f . no nodes
167 s e l f . l a b e l s [ x]= s e l f . no nodes+1
168 s e l f . l e a f n o d e s [ s e l f . no nodes ]=y
169 s e l f . l e a f n o d e s [ s e l f . no nodes+1]=x
170 s e l f . no nodes+=2
171 return True
172
173
174 #A method which p l o t s the network
175 def show network ( s e l f ) :
176 #Change co lour s ( and shapes , does not work cu r r en t l y ) o f nodes
177 #green : root ; red : l e a f ; b l ue : t r e e node ; b l a c k : r e t i c u l a t i o n
178 color map =[ ]
179 shape map =[ ]
180 for v in l i s t ( s e l f . nw ) :
181 i f s e l f . nw . out degree ( v)==0:
182 color map . append ( ’ red ’ )
183 e l i f s e l f . nw . i n d e g r e e ( v)==0:
184 color map . append ( ’ green ’ )
185 e l i f s e l f . nw . i n d e g r e e ( v)>1:
186 color map . append ( ’ b lack ’ )
187 shape map . append ( ” s ” )
188 else :
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189 color map . append ( ’ b lue ’ )
190 shape map . append ( ”o” )
191 #Draw with a lgor i thm tha t makes nice l ayou t
192 nx . draw kamada kawai ( s e l f . nw, node co l o r=color map )
193 p l t . show ( )
194
195 def f ind cps method ( s e l f ) :
196 s e l f .CPS = f i n d c p s ( s e l f )
197
198 def Newick ( s e l f ) :
199 i f not s e l f . newick :
200 s e l f . f ind cps method ( )
201 s e l f . newick = SeqToNewick ( s e l f .CPS)
202 return s e l f . newick
203
204
205
206
207
208 ################################################################################
209 ################################################################################
210 ################################################################################
211 ######## #############
212 ######## RANDOM NETWORKS #############
213 ######## #############
214 ################################################################################
215 ################################################################################
216 ################################################################################
217
218
219
220
221
222
223
224 #A func t ion tha t re turns a tree−c h i l d sequence with a g iven number o f l e a v e s and r e t i c u l a t i o n s
225 def random TC sequence ( l eaves , r e t i c s ) :
226 c u r r e n t l e a v e s = set ( [ 1 , 2 ] )
227 seq = [ ( 2 , 1 ) ]
228 not f o rb idden = set ( [ 2 ] )
229 l e a v e s l e f t = leaves−2
230 r e t i c s l e f t = r e t i c s
231
232 #Continue u n t i l l we added enough l e a v e s and r e t i c u l a t i o n s
233 while l e a v e s l e f t > 0 or r e t i c s l e f t > 0 :
234 #Decide i f we add a l e a f , or a r e t i c u l a t i o n
235 type added=’L ’
236 i f len ( no t f o rb idden )>0 and l e a v e s l e f t >0 and r e t i c s l e f t >0:
237 i f random . rand int (0 , l e a v e s l e f t+r e t i c s l e f t −1)< r e t i c s l e f t : #p r o b a b i l i t y o f r e t i c depends on number o f r e t i c s l e f t to add
238 # i f random . randint (0 , 1)<1: #p r o b a b i l i t y o f r e t i c s and l e a v e s are the same i f both are an opt ion
239 type added=’R ’
240 e l i f len ( no t f o rb idden )>0 and r e t i c s l e f t >0:
241 type added=’R ’
242 e l i f l e a v e s l e f t >0:
243 type added=’L ’
244 else :
245 return ( Fa l se )
246
247
248 #Actua l l y add the pa i r
249 i f type added==’R ’ :
250 f i r s t e l e m e n t = random . cho i c e ( l i s t ( no t f o rb idden ) )
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251 r e t i c s l e f t −=1
252 i f type added==’L ’ :
253 f i r s t e l e m e n t = len ( c u r r e n t l e a v e s )+1
254 l e a v e s l e f t −=1
255 c u r r e n t l e a v e s . add ( f i r s t e l e m e n t )
256 not f o rb idden . add ( f i r s t e l e m e n t )
257
258 second e lement = random . cho i c e ( l i s t ( c u r r e n t l e a v e s−set ( [ f i r s t e l e m e n t ] ) ) )
259 not f o rb idden . d i s ca rd ( second e lement )
260 seq . append ( ( f i r s t e l e m e n t , second e lement ) )
261
262 #rever se the sequence , as i t was b u i l t in reve r s e order
263 seq =[ pa i r for pa i r in reversed ( seq ) ]
264 return ( seq )
265
266
267 #A func t ion tha t re turns a tree−c h i l d subsequence with a g iven number o f r e t i c u l a t i o n s
268 def random TC subsequence ( seq , r ) :
269 #Fi r s t ‘ uni formly at random ’ choose one pa i r per l e a f , wi th t ha t l e a f as f i r s t e lement
270 l e a v e s = dict ( )
271 i n d i c e s = set ( )
272 for i , pa i r in enumerate( seq ) :
273 x=pa i r [ 0 ]
274 i f x not in l e a v e s :
275 i n d i c e s . add ( i )
276 l e a v e s [ x ]=(1 , i )
277 else :
278 i f random . rand int (0 , l e a v e s [ x ] [ 0 ] ) < 1 :
279 i n d i c e s . remove ( l e a v e s [ x ] [ 1 ] )
280 i n d i c e s . add ( i )
281 l e a v e s [ x ]=( l e a v e s [ x ] [ 0 ] + 1 , i )
282 else :
283 l e a v e s [ x ]=( l e a v e s [ x ] [ 0 ] + 1 , l e a v e s [ x ] [ 1 ] )
284 #Add r r e t i c u l a t i o n s with a max of the whole sequence
285 unused = set (range ( len ( seq )))− i n d i c e s
286 for j in range ( r ) :
287 new = random . cho i c e ( l i s t ( unused ) )
288 unused = unused−set ( [ new ] )
289 i n d i c e s . add (new)
290 newSeq =[ ]
291 for i , pa i r in enumerate( seq ) :
292 i f i in i n d i c e s :
293 newSeq . append ( pa i r )
294 return newSeq
295
296
297 def make random f i l e s ( repeats , f a i l u r e s , l eaves , r e t i c u l a t i o n s , fo lder name , edges = False ) :
298 try :
299 os . mkdir ( ” . / ”+fo lder name+”/” )
300 except :
301 pass
302 f= open( ” . / ”+fo lder name+”/ h i t s a n d m i s s e s . txt ” , ”w+” )
303 f . wr i t e ( ” index ; subnetwork ? \n” )
304 f . c l o s e ( )
305
306 #Make a l i s t o f i nd i c e s we need to do
307 todo=l i s t (range (1 , r epea t s +1))
308 todo . r e v e r s e ( )
309 for i in range ( r epea t s ) :
310 #pick a random index to f i l l wi th an ins tance
311 index = todo . pop ( )
312 #Add the r i g h t number o f zeros to the index .
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313 index = ”0000000”+str ( index )
314 index = index [ −4 : ]
315 print ( i )
316 print ( index )
317 #Find random tree−c h i l d sequence
318 sequence = random TC sequence ( l eaves , r e t i c u l a t i o n s )
319 #Decide i f i t f a i l s or not
320 snw or not = ’ yes ’
321 i f random . rand int (0 , repeats−i )< f a i l u r e s :
322 f a i l u r e s −=1
323 #Find some other random network , unre la t ed to the f i r s t
324 subsequence = random TC sequence ( l eaves , r e t i c u l a t i o n s )
325 snw or not = ’ no ’
326 else :
327 #Finds sebsequence corresponding to a network wi t the same l e a f s e t
328 subsequence = random TC subsequence ( sequence , r e t i c u l a t i o n s )
329 f= open( ” . / ”+fo lder name+”/ input ”+index+” . txt ” , ”w+” )
330 i f edges :
331 #bu i l d network from sequences
332 network = PhN( seq = sequence )
333 subnetwork = PhN( seq = subsequence )
334 #now change the l a b e l s
335 for node in network . l e a f n o d e s :
336 network . l e a f n o d e s [ node ] = ”L”+str ( network . l e a f n o d e s [ node ] )
337 for node in subnetwork . l e a f n o d e s :
338 subnetwork . l e a f n o d e s [ node ] = ”L”+str ( subnetwork . l e a f n o d e s [ node ] )
339 network .nw = nx . r e l a b e l n o d e s ( network . nw, network . l e a f n o d e s )
340 subnetwork .nw = nx . r e l a b e l n o d e s ( subnetwork . nw, subnetwork . l e a f n o d e s )
341 #Write edges to f i l e
342 #f . wr i t e ( s t r ( network .nw. edges )+”\r\n”)
343 f . wr i t e ( str ( network .nw . edges ())+ ”\ r \n” )
344 f . wr i t e ( str ( subnetwork .nw . edges ( ) ) )
345 else :
346 #Write newick to f i l e
347 f . wr i t e ( SeqToNewick ( sequence)+”\ r \n” )
348 f . wr i t e ( SeqToNewick ( subsequence ) )
349 f . c l o s e ( )
350 #wri t e answer to sepera t e f i l e
351 f= open( ” . / ”+fo lder name+”/ h i t s a n d m i s s e s . txt ” , ”a+” )
352 f . wr i t e ( index+” ; ”+snw or not+”\n” )
353 f . c l o s e ( )
354
355
356 def m a k e a l o t o f r a n d o m f i l e s ( fo lder name , edges = False ) :
357 try :
358 os . mkdir ( ” . / ”+fo lder name+”/” )
359 except :
360 pass
361 f= open( ” . / ”+fo lder name+”/ h i t s a n d m i s s e s . txt ” , ”w+” )
362 f . wr i t e ( ” index ; subnetwork ? \n” )
363 f . c l o s e ( )
364 s t a r t = time . time ( )
365
366 for l e a v e s in range (1 , 1 0 1 ) :
367 for r e t i c u l a t i o n s in range (1 , 1 0 1 ) :
368 index1 = ”0000000”+str ( l e a v e s )
369 index1 = index1 [ −4 : ]
370 index2 = ”0000000”+str ( r e t i c u l a t i o n s )
371 index2 = index2 [ −4 : ]
372 index = index1 + index2
373
374 print ( index )
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375 sequence = random TC sequence (10* l eaves ,10* r e t i c u l a t i o n s )
376 snw or not = ’ yes ’
377 i f random . rand int (0 , 1 ) == 1 :
378 subsequence = random TC sequence (10* l eaves ,10* r e t i c u l a t i o n s )
379 snw or not = ’ no ’
380 else :
381 subsequence = random TC subsequence ( sequence , 5* r e t i c u l a t i o n s )
382 f= open( ” . / ”+fo lder name+”/ input ”+index+” . txt ” , ”w+” )
383 i f edges :
384 #bu i l d network from sequences
385 network = PhN( seq = sequence )
386 subnetwork = PhN( seq = subsequence )
387 #now change the l a b e l s
388 for node in network . l e a f n o d e s :
389 network . l e a f n o d e s [ node ] = ”L”+str ( network . l e a f n o d e s [ node ] )
390 for node in subnetwork . l e a f n o d e s :
391 subnetwork . l e a f n o d e s [ node ] = ”L”+str ( subnetwork . l e a f n o d e s [ node ] )
392 network .nw = nx . r e l a b e l n o d e s ( network . nw, network . l e a f n o d e s )
393 subnetwork .nw = nx . r e l a b e l n o d e s ( subnetwork . nw, subnetwork . l e a f n o d e s )
394 #Write edges to f i l e
395 #f . wr i t e ( s t r ( network .nw. edges )+”\r\n”)
396 f . wr i t e ( str ( network .nw . edges ())+ ”\ r \n” )
397 f . wr i t e ( str ( subnetwork .nw . edges ( ) ) )
398 else :
399 #Write newick to f i l e
400 f . wr i t e ( SeqToNewick ( sequence)+”\ r \n” )
401 f . wr i t e ( SeqToNewick ( subsequence ) )
402 f . c l o s e ( )
403 #wri t e answer to sepera t e f i l e
404 f= open( ” . / ”+fo lder name+”/ h i t s a n d m i s s e s . txt ” , ”a+” )
405 f . wr i t e ( index+” ; ”+snw or not+”\n” )
406 f . c l o s e ( )
407 end = time . time ( )
408 print ” time e lapsed : ” , end − s t a r t , ” seconds ”
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